Contract Name:
AdventStars
Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.2) (token/ERC721/ERC721.sol)
pragma solidity ^0.8.0;
import "./IERC721.sol";
import "./IERC721Receiver.sol";
import "./extensions/IERC721Metadata.sol";
import "../../utils/Address.sol";
import "../../utils/Context.sol";
import "../../utils/Strings.sol";
import "../../utils/introspection/ERC165.sol";
/**
* @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
* the Metadata extension, but not including the Enumerable extension, which is available separately as
* {ERC721Enumerable}.
*/
contract ERC721 is Context, ERC165, IERC721, IERC721Metadata {
using Address for address;
using Strings for uint256;
// Token name
string private _name;
// Token symbol
string private _symbol;
// Mapping from token ID to owner address
mapping(uint256 => address) private _owners;
// Mapping owner address to token count
mapping(address => uint256) private _balances;
// Mapping from token ID to approved address
mapping(uint256 => address) private _tokenApprovals;
// Mapping from owner to operator approvals
mapping(address => mapping(address => bool)) private _operatorApprovals;
/**
* @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return
interfaceId == type(IERC721).interfaceId ||
interfaceId == type(IERC721Metadata).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC721-balanceOf}.
*/
function balanceOf(address owner) public view virtual override returns (uint256) {
require(owner != address(0), "ERC721: address zero is not a valid owner");
return _balances[owner];
}
/**
* @dev See {IERC721-ownerOf}.
*/
function ownerOf(uint256 tokenId) public view virtual override returns (address) {
address owner = _ownerOf(tokenId);
require(owner != address(0), "ERC721: invalid token ID");
return owner;
}
/**
* @dev See {IERC721Metadata-name}.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev See {IERC721Metadata-symbol}.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev See {IERC721Metadata-tokenURI}.
*/
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
_requireMinted(tokenId);
string memory baseURI = _baseURI();
return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : "";
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, can be overridden in child contracts.
*/
function _baseURI() internal view virtual returns (string memory) {
return "";
}
/**
* @dev See {IERC721-approve}.
*/
function approve(address to, uint256 tokenId) public virtual override {
address owner = ERC721.ownerOf(tokenId);
require(to != owner, "ERC721: approval to current owner");
require(
_msgSender() == owner || isApprovedForAll(owner, _msgSender()),
"ERC721: approve caller is not token owner or approved for all"
);
_approve(to, tokenId);
}
/**
* @dev See {IERC721-getApproved}.
*/
function getApproved(uint256 tokenId) public view virtual override returns (address) {
_requireMinted(tokenId);
return _tokenApprovals[tokenId];
}
/**
* @dev See {IERC721-setApprovalForAll}.
*/
function setApprovalForAll(address operator, bool approved) public virtual override {
_setApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC721-isApprovedForAll}.
*/
function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
return _operatorApprovals[owner][operator];
}
/**
* @dev See {IERC721-transferFrom}.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) public virtual override {
//solhint-disable-next-line max-line-length
require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
_transfer(from, to, tokenId);
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) public virtual override {
safeTransferFrom(from, to, tokenId, "");
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes memory data
) public virtual override {
require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
_safeTransfer(from, to, tokenId, data);
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* `data` is additional data, it has no specified format and it is sent in call to `to`.
*
* This internal function is equivalent to {safeTransferFrom}, and can be used to e.g.
* implement alternative mechanisms to perform token transfer, such as signature-based.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeTransfer(
address from,
address to,
uint256 tokenId,
bytes memory data
) internal virtual {
_transfer(from, to, tokenId);
require(_checkOnERC721Received(from, to, tokenId, data), "ERC721: transfer to non ERC721Receiver implementer");
}
/**
* @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
*/
function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
return _owners[tokenId];
}
/**
* @dev Returns whether `tokenId` exists.
*
* Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
*
* Tokens start existing when they are minted (`_mint`),
* and stop existing when they are burned (`_burn`).
*/
function _exists(uint256 tokenId) internal view virtual returns (bool) {
return _ownerOf(tokenId) != address(0);
}
/**
* @dev Returns whether `spender` is allowed to manage `tokenId`.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) {
address owner = ERC721.ownerOf(tokenId);
return (spender == owner || isApprovedForAll(owner, spender) || getApproved(tokenId) == spender);
}
/**
* @dev Safely mints `tokenId` and transfers it to `to`.
*
* Requirements:
*
* - `tokenId` must not exist.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeMint(address to, uint256 tokenId) internal virtual {
_safeMint(to, tokenId, "");
}
/**
* @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
* forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
*/
function _safeMint(
address to,
uint256 tokenId,
bytes memory data
) internal virtual {
_mint(to, tokenId);
require(
_checkOnERC721Received(address(0), to, tokenId, data),
"ERC721: transfer to non ERC721Receiver implementer"
);
}
/**
* @dev Mints `tokenId` and transfers it to `to`.
*
* WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
*
* Requirements:
*
* - `tokenId` must not exist.
* - `to` cannot be the zero address.
*
* Emits a {Transfer} event.
*/
function _mint(address to, uint256 tokenId) internal virtual {
require(to != address(0), "ERC721: mint to the zero address");
require(!_exists(tokenId), "ERC721: token already minted");
_beforeTokenTransfer(address(0), to, tokenId, 1);
// Check that tokenId was not minted by `_beforeTokenTransfer` hook
require(!_exists(tokenId), "ERC721: token already minted");
unchecked {
// Will not overflow unless all 2**256 token ids are minted to the same owner.
// Given that tokens are minted one by one, it is impossible in practice that
// this ever happens. Might change if we allow batch minting.
// The ERC fails to describe this case.
_balances[to] += 1;
}
_owners[tokenId] = to;
emit Transfer(address(0), to, tokenId);
_afterTokenTransfer(address(0), to, tokenId, 1);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
* This is an internal function that does not check if the sender is authorized to operate on the token.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId) internal virtual {
address owner = ERC721.ownerOf(tokenId);
_beforeTokenTransfer(owner, address(0), tokenId, 1);
// Update ownership in case tokenId was transferred by `_beforeTokenTransfer` hook
owner = ERC721.ownerOf(tokenId);
// Clear approvals
delete _tokenApprovals[tokenId];
unchecked {
// Cannot overflow, as that would require more tokens to be burned/transferred
// out than the owner initially received through minting and transferring in.
_balances[owner] -= 1;
}
delete _owners[tokenId];
emit Transfer(owner, address(0), tokenId);
_afterTokenTransfer(owner, address(0), tokenId, 1);
}
/**
* @dev Transfers `tokenId` from `from` to `to`.
* As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
*
* Emits a {Transfer} event.
*/
function _transfer(
address from,
address to,
uint256 tokenId
) internal virtual {
require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
require(to != address(0), "ERC721: transfer to the zero address");
_beforeTokenTransfer(from, to, tokenId, 1);
// Check that tokenId was not transferred by `_beforeTokenTransfer` hook
require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
// Clear approvals from the previous owner
delete _tokenApprovals[tokenId];
unchecked {
// `_balances[from]` cannot overflow for the same reason as described in `_burn`:
// `from`'s balance is the number of token held, which is at least one before the current
// transfer.
// `_balances[to]` could overflow in the conditions described in `_mint`. That would require
// all 2**256 token ids to be minted, which in practice is impossible.
_balances[from] -= 1;
_balances[to] += 1;
}
_owners[tokenId] = to;
emit Transfer(from, to, tokenId);
_afterTokenTransfer(from, to, tokenId, 1);
}
/**
* @dev Approve `to` to operate on `tokenId`
*
* Emits an {Approval} event.
*/
function _approve(address to, uint256 tokenId) internal virtual {
_tokenApprovals[tokenId] = to;
emit Approval(ERC721.ownerOf(tokenId), to, tokenId);
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Emits an {ApprovalForAll} event.
*/
function _setApprovalForAll(
address owner,
address operator,
bool approved
) internal virtual {
require(owner != operator, "ERC721: approve to caller");
_operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Reverts if the `tokenId` has not been minted yet.
*/
function _requireMinted(uint256 tokenId) internal view virtual {
require(_exists(tokenId), "ERC721: invalid token ID");
}
/**
* @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
* The call is not executed if the target address is not a contract.
*
* @param from address representing the previous owner of the given token ID
* @param to target address that will receive the tokens
* @param tokenId uint256 ID of the token to be transferred
* @param data bytes optional data to send along with the call
* @return bool whether the call correctly returned the expected magic value
*/
function _checkOnERC721Received(
address from,
address to,
uint256 tokenId,
bytes memory data
) private returns (bool) {
if (to.isContract()) {
try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) {
return retval == IERC721Receiver.onERC721Received.selector;
} catch (bytes memory reason) {
if (reason.length == 0) {
revert("ERC721: transfer to non ERC721Receiver implementer");
} else {
/// @solidity memory-safe-assembly
assembly {
revert(add(32, reason), mload(reason))
}
}
}
} else {
return true;
}
}
/**
* @dev Hook that is called before any token transfer. This includes minting and burning. If {ERC721Consecutive} is
* used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, ``from``'s tokens will be transferred to `to`.
* - When `from` is zero, the tokens will be minted for `to`.
* - When `to` is zero, ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
* - `batchSize` is non-zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 firstTokenId,
uint256 batchSize
) internal virtual {}
/**
* @dev Hook that is called after any token transfer. This includes minting and burning. If {ERC721Consecutive} is
* used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, ``from``'s tokens were transferred to `to`.
* - When `from` is zero, the tokens were minted for `to`.
* - When `to` is zero, ``from``'s tokens were burned.
* - `from` and `to` are never both zero.
* - `batchSize` is non-zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(
address from,
address to,
uint256 firstTokenId,
uint256 batchSize
) internal virtual {}
/**
* @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
*
* WARNING: Anyone calling this MUST ensure that the balances remain consistent with the ownership. The invariant
* being that for any address `a` the value returned by `balanceOf(a)` must be equal to the number of tokens such
* that `ownerOf(tokenId)` is `a`.
*/
// solhint-disable-next-line func-name-mixedcase
function __unsafe_increaseBalance(address account, uint256 amount) internal {
_balances[account] += amount;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional metadata extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Metadata is IERC721 {
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.0;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Base64.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides a set of functions to operate with Base64 strings.
*
* _Available since v4.5._
*/
library Base64 {
/**
* @dev Base64 Encoding/Decoding Table
*/
string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
/**
* @dev Converts a `bytes` to its Bytes64 `string` representation.
*/
function encode(bytes memory data) internal pure returns (string memory) {
/**
* Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
* https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
*/
if (data.length == 0) return "";
// Loads the table into memory
string memory table = _TABLE;
// Encoding takes 3 bytes chunks of binary data from `bytes` data parameter
// and split into 4 numbers of 6 bits.
// The final Base64 length should be `bytes` data length multiplied by 4/3 rounded up
// - `data.length + 2` -> Round up
// - `/ 3` -> Number of 3-bytes chunks
// - `4 *` -> 4 characters for each chunk
string memory result = new string(4 * ((data.length + 2) / 3));
/// @solidity memory-safe-assembly
assembly {
// Prepare the lookup table (skip the first "length" byte)
let tablePtr := add(table, 1)
// Prepare result pointer, jump over length
let resultPtr := add(result, 32)
// Run over the input, 3 bytes at a time
for {
let dataPtr := data
let endPtr := add(data, mload(data))
} lt(dataPtr, endPtr) {
} {
// Advance 3 bytes
dataPtr := add(dataPtr, 3)
let input := mload(dataPtr)
// To write each character, shift the 3 bytes (18 bits) chunk
// 4 times in blocks of 6 bits for each character (18, 12, 6, 0)
// and apply logical AND with 0x3F which is the number of
// the previous character in the ASCII table prior to the Base64 Table
// The result is then added to the table to get the character to write,
// and finally write it in the result pointer but with a left shift
// of 256 (1 byte) - 8 (1 ASCII char) = 248 bits
mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
}
// When data `bytes` is not exactly 3 bytes long
// it is padded with `=` characters at the end
switch mod(mload(data), 3)
case 1 {
mstore8(sub(resultPtr, 1), 0x3d)
mstore8(sub(resultPtr, 2), 0x3d)
}
case 2 {
mstore8(sub(resultPtr, 1), 0x3d)
}
}
return result;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.22;
import "@openzeppelin/contracts/token/ERC721/ERC721.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "./StarSky.sol";
/*
* A celestial Advent Calendar,
* to accompany its holder throughout the advent days.
*
* Every day until Dec. 24th, a new star will shine in the night
* sky, sometimes together with colorful nebulae.
*
* Each NFT will generate its own unique vibrant firmament.
* Only at Christmas Eve the cosmic artwork will be complete.
*
* Next year? Restart it, and the magic will happen again.
*
* %@@-
* :%@@=
*
*
* @@
* @%
* @@
* . . ...
* . . ... . .@:.
* . . .
* . . . . .. .
* @ . . . . @ . . . . .
* . . . . . ...*@-:.:... .... . .. .
* .-@- . ....... . .... .. .. . . .
* . ............: .... .. ..
* .. .. .......... .......... .. ... . @@@
* . . .. @@ ...:...... .......... . .
* . . . ........::-%@:..........:.... .. .
* ...............::.::. .:..:.. ..... .. ..
* . .. ........:.:.:::..::..:::..::.:.......... ... ..
* . . ....:..:..::.:.::..:.....::...:........ ... ... ..
* . .........:.:.::.:.::::...:...::::::.......... . . .. .
* . ...........::::....::::---::::::.::::.:........:.... ....
* . . ......:.:::.:::::::::.:...:.::::::::...::.:...... ... ... . .
* . ............::.:..:::::::::::::-.::::::.:.::.:::..:.... . .. .
* . .............:::::::::: .::::::::.:.:.::::::.::. :-.... . .
* . . .. ......:::::..:.:::::: @@ -:::::::::-:::::::-::::::... ...:. .
* . . .. ..........:..:::.:::: ::::::::-: :::-:::..:. :::.. ...
* . .... .:.:..::::.::.::::::-::--- @ ---:---:. ..:..:: .: . .. .
* . . . .... @@ ..::::::::::-::::::-:--::- --:-::---*@@=::::.:: :...
* . . .... ....:.::::::.:::::::--:----::::------:.-.::::-.:.: ... ..
* .. . . .........:.:...::::::--:--:----: :-----:::...:.:-.::........ . .
* . . . ..........:.::::::::::-:----:--:@%------:-:::----:::::::.. .. .
* . ... ........:.:..:.:::::-:-:------:@=:-----=----:-:--:::::..-..:....
* . .. ...........:::::::-:--:------: :----:-----:-:-:::::..:.. :
* . .. . ..:.....::.:::-:: ----@@:--:-----:-:--::::::.::.: . ..
* . .. ............::::-:-- @@ ---:=+.--:---:-:--. -:::.:.:.. .. ..
* . . ..........::.:: ---::.:-------:---.=@ ::::::.:..... .
* : .. . .. ....:::::::::::-:::-:-::---:---:--:: ::.:-::: ..... .
* . . . .. ...........::.:::-:------:::::: -:--::::::.:. ... . .
* . .... . ... ::-:::::.::::::::.::-----@:--:::.:::-..:... . .
* . . .:: ....:.::.:::-:-:-::..: ..::...::.-.. .
* . . . . . :. .:.:....:.::--::-::..:----.: .:-+- ...
* . .:..:-:...::::::::.::....::::..:.::..-#+::
* ..... . .. ....:.:.. .:.::: ::... ..
* @@ . . .. . :..... .::.:..:.... . .. ... .
* . .. . .. ...::::. . .:...
* . .........
*
*/
contract AdventStars is StarSky, ERC721, Ownable {
uint256 public immutable MINT_END;
uint256 public immutable PRICE;
uint256 public constant MAX_SUPPLY = 432;
uint256 currentToken = 1;
mapping(uint256 => uint256) _seeds;
mapping(uint256 => uint256) _tokenToYear;
mapping(address => uint256) _discordUsersDiscount;
constructor(
uint256 price,
uint256 mintEnd
) ERC721("Advent Stars", "STARS") {
PRICE = price;
MINT_END = mintEnd;
}
/* Admin */
function withdraw() public onlyOwner {
(bool success, ) = msg.sender.call{ value: address(this).balance }("");
require(success, "fail");
}
function setDiscounts(
address[] memory wallets,
uint256[] memory discounts
) public onlyOwner {
uint256 length = wallets.length;
for (uint256 i = 0; i < length; ) {
_discordUsersDiscount[wallets[i]] = discounts[i];
unchecked {
i++;
}
}
}
/* Public Write */
function mint(uint256 amount) public payable {
require(msg.value >= PRICE * amount, "not enough ether");
require(block.timestamp < MINT_END, "mint ended");
for (uint256 i = 0; i < amount; ) {
_mint();
unchecked {
i++;
}
}
}
function restart(uint256 tokenId) public {
require(msg.sender == ownerOf(tokenId), "not the owner");
(uint256 month, uint256 day, uint256 year) = toDate(block.timestamp);
require(2023 != year, "not this year");
require(_tokenToYear[tokenId] != year, "already restarted");
require((month == 11 && day > 23) || month == 12, "too early");
_tokenToYear[tokenId] = year;
_seeds[tokenId] = uint256(
keccak256(abi.encodePacked(blockhash(block.number - 1), tokenId))
);
}
function mintDiscount(uint256 amount) public payable {
require(_discordUsersDiscount[msg.sender] > 0, "you have no discount");
require(
msg.value >=
((PRICE * amount) * 100) / _discordUsersDiscount[msg.sender],
"not enough ether"
);
delete _discordUsersDiscount[msg.sender];
require(block.timestamp < MINT_END, "mint ended");
for (uint256 i = 0; i < amount; ) {
_mint();
unchecked {
i++;
}
}
}
/* Public Read */
function minted() public view returns (uint256) {
return currentToken - 1;
}
function tokenAtIndex(uint256 index) public view returns (uint256) {
for (uint256 i = 1; i < currentToken; ) {
if (msg.sender == ownerOf(i)) {
if (index == 0) {
return i;
} else {
index--;
}
}
unchecked {
i = i + 1;
}
}
revert("you don't that many tokens");
}
function adventDay() public view returns (uint256) {
(uint256 month, uint256 day, ) = toDate(block.timestamp);
if (month == 12 && day < 25) {
return day;
} else if (month == 12) {
return 24;
} else {
return 0;
}
}
function render(uint256 tokenId) public view returns (string memory) {
(uint256 currentAdventDay, uint256 year) = _validateRequest(tokenId);
return _render(_seeds[tokenId], currentAdventDay, year);
}
function tokenURI(
uint256 tokenId
) public view override returns (string memory) {
(uint256 currentAdventDay, uint256 year) = _validateRequest(tokenId);
return _json(tokenId, _seeds[tokenId], currentAdventDay, year);
}
/* Possibly useful public utilities */
function toDate(
uint256 s
) public pure returns (uint256 month, uint256 day, uint256 year) {
uint256 z = s / 86400 + 719468;
uint256 era = (z >= 0 ? z : z - 146096) / 146097;
uint256 doe = z - era * 146097;
uint256 yoe = (doe - doe / 1460 + doe / 36524 - doe / 146096) / 365;
year = yoe + era * 400;
uint256 doy = doe - (365 * yoe + yoe / 4 - yoe / 100);
uint256 mp = (5 * doy + 2) / 153;
day = doy - (153 * mp + 2) / 5 + 1;
month = uint256(int256(mp) + (mp < 10 ? int256(3) : -9));
year += (month <= 2 ? 1 : 0);
}
/* Internal */
function _validateRequest(
uint256 tokenId
) internal view returns (uint256 currentAdventDay, uint256 tokenYear) {
require(_exists(tokenId), "not a token");
tokenYear = _tokenToYear[tokenId];
if (tokenYear == 0) {
tokenYear = 2023;
}
(uint256 month, uint256 day, uint256 currentYear) = toDate(
block.timestamp
);
if (tokenYear == currentYear && month == 12 && day <= 24) {
currentAdventDay = day;
} else if (tokenYear == currentYear && month < 12) {
currentAdventDay = 0;
} else {
currentAdventDay = 24;
}
}
function _mint() internal {
require(currentToken <= MAX_SUPPLY, "beyond supply");
_seeds[currentToken] = uint256(
keccak256(
abi.encodePacked(blockhash(block.number - 1), currentToken)
)
);
_mint(msg.sender, currentToken++);
}
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2021 the ethier authors (github.com/divergencetech/ethier)
pragma solidity 0.8.22;
/// @title DynamicBuffer
/// @author David Huber (@cxkoda) and Simon Fremaux (@dievardump). See also
/// https://raw.githubusercontent.com/dievardump/solidity-dynamic-buffer
/// @notice This library is used to allocate a big amount of container memory
// which will be subsequently filled without needing to reallocate
/// memory.
/// @dev First, allocate memory.
/// Then use `buffer.appendUnchecked(theBytes)` or `appendSafe()` if
/// bounds checking is required.
library DynamicBuffer {
/// @notice Allocates container space for the DynamicBuffer
/// @param capacity_ The intended max amount of bytes in the buffer
/// @return buffer The memory location of the buffer
/// @dev Allocates `capacity_ + 0x60` bytes of space
/// The buffer array starts at the first container data position,
/// (i.e. `buffer = container + 0x20`)
function allocate(
uint256 capacity_
) internal pure returns (bytes memory buffer) {
assembly {
// Get next-free memory address
let container := mload(0x40)
// Allocate memory by setting a new next-free address
{
// Add 2 x 32 bytes in size for the two length fields
// Add 32 bytes safety space for 32B chunked copy
let size := add(capacity_, 0x60)
let newNextFree := add(container, size)
mstore(0x40, newNextFree)
}
// Set the correct container length
{
let length := add(capacity_, 0x40)
mstore(container, length)
}
// The buffer starts at idx 1 in the container (0 is length)
buffer := add(container, 0x20)
// Init content with length 0
mstore(buffer, 0)
}
return buffer;
}
/// @notice Appends data to buffer, and update buffer length
/// @param buffer the buffer to append the data to
/// @param data the data to append
/// @dev Does not perform out-of-bound checks (container capacity)
/// for efficiency.
function appendUnchecked(
bytes memory buffer,
bytes memory data
) internal pure {
assembly {
let length := mload(data)
for {
data := add(data, 0x20)
let dataEnd := add(data, length)
let copyTo := add(buffer, add(mload(buffer), 0x20))
} lt(data, dataEnd) {
data := add(data, 0x20)
copyTo := add(copyTo, 0x20)
} {
// Copy 32B chunks from data to buffer.
// This may read over data array boundaries and copy invalid
// bytes, which doesn't matter in the end since we will
// later set the correct buffer length, and have allocated an
// additional word to avoid buffer overflow.
mstore(copyTo, mload(data))
}
// Update buffer length
mstore(buffer, add(mload(buffer), length))
}
}
/// @notice Appends data to buffer, and update buffer length
/// @param buffer the buffer to append the data to
/// @param data the data to append
/// @dev Performs out-of-bound checks and calls `appendUnchecked`.
function appendSafe(bytes memory buffer, bytes memory data) internal pure {
checkOverflow(buffer, data.length);
appendUnchecked(buffer, data);
}
/// @notice Appends data encoded as Base64 to buffer.
/// @param fileSafe Whether to replace '+' with '-' and '/' with '_'.
/// @param noPadding Whether to strip away the padding.
/// @dev Encodes `data` using the base64 encoding described in RFC 4648.
/// See: https://datatracker.ietf.org/doc/html/rfc4648
/// Author: Modified from Solady (https://github.com/vectorized/solady/blob/main/src/utils/Base64.sol)
/// Author: Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/Base64.sol)
/// Author: Modified from (https://github.com/Brechtpd/base64/blob/main/base64.sol) by Brecht Devos.
function appendSafeBase64(
bytes memory buffer,
bytes memory data,
bool fileSafe,
bool noPadding
) internal pure {
uint256 dataLength = data.length;
if (data.length == 0) {
return;
}
uint256 encodedLength;
uint256 r;
assembly {
// For each 3 bytes block, we will have 4 bytes in the base64
// encoding: `encodedLength = 4 * divCeil(dataLength, 3)`.
// The `shl(2, ...)` is equivalent to multiplying by 4.
encodedLength := shl(2, div(add(dataLength, 2), 3))
r := mod(dataLength, 3)
if noPadding {
// if r == 0 => no modification
// if r == 1 => encodedLength -= 2
// if r == 2 => encodedLength -= 1
encodedLength := sub(
encodedLength,
add(iszero(iszero(r)), eq(r, 1))
)
}
}
checkOverflow(buffer, encodedLength);
assembly {
let nextFree := mload(0x40)
// Store the table into the scratch space.
// Offsetted by -1 byte so that the `mload` will load the character.
// We will rewrite the free memory pointer at `0x40` later with
// the allocated size.
mstore(0x1f, "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef")
mstore(
0x3f,
sub(
"ghijklmnopqrstuvwxyz0123456789-_",
// The magic constant 0x0230 will translate "-_" + "+/".
mul(iszero(fileSafe), 0x0230)
)
)
// Skip the first slot, which stores the length.
let ptr := add(add(buffer, 0x20), mload(buffer))
let end := add(data, dataLength)
// Run over the input, 3 bytes at a time.
// prettier-ignore
// solhint-disable-next-line no-empty-blocks
for {} 1 {} {
data := add(data, 3) // Advance 3 bytes.
let input := mload(data)
// Write 4 bytes. Optimized for fewer stack operations.
mstore8( ptr , mload(and(shr(18, input), 0x3F)))
mstore8(add(ptr, 1), mload(and(shr(12, input), 0x3F)))
mstore8(add(ptr, 2), mload(and(shr( 6, input), 0x3F)))
mstore8(add(ptr, 3), mload(and( input , 0x3F)))
ptr := add(ptr, 4) // Advance 4 bytes.
// prettier-ignore
if iszero(lt(data, end)) { break }
}
if iszero(noPadding) {
// Offset `ptr` and pad with '='. We can simply write over the end.
mstore8(sub(ptr, iszero(iszero(r))), 0x3d) // Pad at `ptr - 1` if `r > 0`.
mstore8(sub(ptr, shl(1, eq(r, 1))), 0x3d) // Pad at `ptr - 2` if `r == 1`.
}
mstore(buffer, add(mload(buffer), encodedLength))
mstore(0x40, nextFree)
}
}
/// @notice Returns the capacity of a given buffer.
function capacity(bytes memory buffer) internal pure returns (uint256) {
uint256 cap;
assembly {
cap := sub(mload(sub(buffer, 0x20)), 0x40)
}
return cap;
}
/// @notice Reverts if the buffer will overflow after appending a given
/// number of bytes.
function checkOverflow(
bytes memory buffer,
uint256 addedLength
) internal pure {
uint256 cap = capacity(buffer);
uint256 newLength = buffer.length + addedLength;
if (cap < newLength) {
revert("DynamicBuffer: Appending out of bounds.");
}
}
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.22;
import "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/utils/Base64.sol";
import "./DynamicBuffer.sol";
contract StarSky {
using Strings for uint8;
using Strings for uint16;
using Strings for uint256;
string constant html1 =
"<!DOCTYPE html><html lang='en'> <head> <meta charset='UTF-8'> <meta name='viewport' content='width=device-width, initial-scale=1.0, viewport-fit=cover'> <title>Advent Stars</title> <style> * { margin: 0; padding: 0; border: 0; } body { overflow: hidden; } </style></head><body>";
string constant html2 = "</body></html>";
bytes constant svg1 =
"<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 600 600' width='100%' height='100%'> <defs><style> @keyframes ifl { 0% { opacity: 1 } 40% { opacity: 0.3; } 100% { opacity: 0.8; } } #star { animation: ifl 20s infinite alternate-reverse; } #sky {transform-origin: center;} .year {font: 20px Times;fill: rgb(153,153,153);} .t {fill: transparent; } .sg { stroke: rgb(153,153,153) } .p { font: 25px Times; } .w { fill: white; }</style> <clipPath id='frame'><circle cx='300' cy='300' r='420' /></clipPath><filter id='blur' filterUnits='userSpaceOnUse' x='-50%' y='-50%' width='200%' height='200%'> <feGaussianBlur in='SourceGraphic' stdDeviation='5' result='blur5' /> <feGaussianBlur in='SourceGraphic' stdDeviation='10' result='blur10' /> <feGaussianBlur in='SourceGraphic' stdDeviation='20' result='blur30' /> <feMerge result='merged'> <feMergeNode in='blur10' /> <feMergeNode in='blur30' /> </feMerge> <feMerge > <feMergeNode in='blur5' /> <feMergeNode in='merged' /> </feMerge> </filter> ";
bytes constant svg2 =
" </defs> <rect x='0' y='0' width='600' height='600' class='sg' fill='black' /> <g id='sky' transform='rotate(";
bytes constant svg3 = ") scale(0.7)' clip-path='url(#frame)'>";
bytes constant svg4 =
"</g> <circle cx='300' cy='300' r='294' class='t sg' />";
bytes constant svg5 =
"<line class='sg' x1='0' x2='40' y1='0' y2='40' /> <line class='sg' x1='600' x2='560' y1='0' y2='40' /> <line class='sg' x1='0' x2='40' y1='600' y2='560' /> <line class='sg' x1='600' x2='560' y1='600' y2='560' /></svg>";
bytes constant text1 =
"<circle cx='49' cy='51' r='13' class='t sg' /><text class='year' x='44' y='57'>";
bytes constant text2 =
"<circle cx='551' cy='51' r='13' class='t sg' /><text class='year' x='546' y='57'>";
bytes constant text3 =
"<circle cx='49' cy='549' r='13' class='t sg' /><text class='year' x='44' y='556'>";
bytes constant text4 =
"<circle cx='551' cy='549' r='13' class='t sg' /><text class='year' x='546' y='556'>";
bytes constant textClose = "</text>";
bytes constant frame =
"<rect x='0' y='0' width='600' height='600' class='t sg' />";
bytes constant placeholder0 =
"<circle cx='300' cy='300' r='50' filter='url(#pb)' id='star' fill='hsl(";
bytes constant placeholder1 =
",100%,60%)' /><circle cx='300' cy='300' r='30' filter='url(#pbc)' id='star' fill='rgba(255,255,255,0.5)' /><text text-anchor='middle' x='50%' y='47%' width='600' heigh='50' class='p w'>The first Star will appear on the</text> <text text-anchor='middle' x='50%' y='53%' width='600' heigh='50' class='p w'>first of December</text>";
bytes constant placeholderBlur =
"<filter id='pb' filterUnits='userSpaceOnUse' x='-50%' y='-50%' width='200%' height='200%'> <feGaussianBlur in='SourceGraphic' stdDeviation='50' result='b1' /> <feGaussianBlur in='SourceGraphic' stdDeviation='70' result='b2' /> <feGaussianBlur in='SourceGraphic' stdDeviation='120' result='b3' /> <feMerge result='m'> <feMergeNode in='b1' /> <feMergeNode in='b2' /> </feMerge> <feMerge> <feMergeNode in='b3' /> <feMergeNode in='m' /> </feMerge> </filter><filter id='pbc' filterUnits='userSpaceOnUse' x='-50%' y='-50%' width='200%' height='200%'> <feGaussianBlur in='SourceGraphic' stdDeviation='10' result='b1' /> <feGaussianBlur in='SourceGraphic' stdDeviation='30' result='b2' /> <feGaussianBlur in='SourceGraphic' stdDeviation='40' result='b3' /> <feMerge result='m'> <feMergeNode in='b1' /> <feMergeNode in='b2' /> </feMerge> <feMerge> <feMergeNode in='b3' /> <feMergeNode in='m' /> </feMerge> </filter>";
bytes constant star0 = "<circle cx='";
bytes constant star1 = "' cy='";
bytes constant star2 = "' r='";
bytes constant star3 = "' id='star' style='animation-duration:";
bytes constant star4 = "s;' fill='rgba(";
bytes constant starComma = ",";
bytes constant star5 = ")' filter='url(#blur)' />";
bytes constant starCore0 = "<circle cx='";
bytes constant starCore1 = "' cy='";
bytes constant starCore2 = "' r='";
bytes constant starCore3 = "' class='w' />";
bytes constant dustFilter0 = "<filter id='d";
bytes constant dustFilter1 =
"' filterUnits='userSpaceOnUse' x='-50%' y='-50%' width='200%' height='200%'> <feGaussianBlur in='SourceGraphic' stdDeviation='";
bytes constant dustFilter2 =
"' result='b1' /> <feGaussianBlur in='SourceGraphic' stdDeviation='";
bytes constant dustFilter3 =
"' result='b2' /> <feGaussianBlur in='SourceGraphic' stdDeviation='";
bytes constant dustFilter4 =
"' result='b3' /> <feMerge result='b'> <feMergeNode in='b1' /> <feMergeNode in='b2' /> <feMergeNode in='b3' /> </feMerge> <feColorMatrix result='cb' in='b' type='matrix' values=' ";
bytes constant dustFilter5 = " 0 0 0 0 0 ";
bytes constant dustFilter6 = " 0 0 0 0 0 ";
bytes constant dustFilter7 = " 0 0 0 0 0 ";
bytes constant dustFilter8 = " 0' /> </filter>";
bytes constant dust0 = "<path d='M ";
bytes constant dust1 = "' filter='url(#d";
bytes constant dust2 = ")' stroke='white' stroke-width='";
bytes constant dust3 = "px' />";
uint256 constant STAR_TRAITS = 8;
uint256 constant STAR_TRAIT_SIZE = 256 / STAR_TRAITS;
uint256 constant STAR_TRAIT_MASK = 2 ** STAR_TRAIT_SIZE - 1;
uint256 constant CONSTELLATION_TRAITS = 10;
uint256 constant CONSTELLATION_TRAIT_SIZE = 256 / CONSTELLATION_TRAITS;
uint256 constant CONSTELLATION_TRAIT_MASK =
2 ** CONSTELLATION_TRAIT_SIZE - 1;
struct Star {
uint8 r;
uint8 g;
uint8 b;
uint8 a;
uint16 xRand;
uint16 yRand;
uint16 radius;
uint16 duration;
uint256 seed;
}
struct Constellation {
bool incRand;
uint8 keepProb;
uint16 rotation;
uint16 maxDust;
uint16 startX;
uint16 startY;
uint16 minX;
uint16 minY;
uint16 maxX;
uint16 maxY;
}
constructor() {}
function _renderName(
uint256 randomness
) internal pure returns (bytes memory) {
uint256 lettersCount = (_starTrait(randomness, 0) % 4) + 1;
uint256 numbersCount = (_starTrait(randomness, 1) % 5) + 1;
bytes memory letters;
for (uint8 i = 2; i < lettersCount + 2; i++) {
letters = abi.encodePacked(
letters,
uint8((randomness >> i) % 25) + 65
);
}
bytes memory numbers;
for (uint8 i = 7; i < 7 + numbersCount; i++) {
numbers = abi.encodePacked(
numbers,
uint8((randomness >> i) % 10) + 48
);
}
return abi.encodePacked(letters, " ", numbers);
}
function _renderFloat(bytes memory buffer, uint16 number) internal pure {
bytes memory numberStr = bytes(number.toString());
if (numberStr.length == 4) {
DynamicBuffer.appendUnchecked(
buffer,
abi.encodePacked(
numberStr[0],
numberStr[1],
".",
numberStr[2],
numberStr[3]
)
);
} else if (numberStr.length == 3) {
DynamicBuffer.appendUnchecked(
buffer,
abi.encodePacked(numberStr[0], ".", numberStr[1], numberStr[2])
);
} else if (numberStr.length == 2) {
DynamicBuffer.appendUnchecked(
buffer,
abi.encodePacked("0.", numberStr[0], numberStr[1])
);
} else {
DynamicBuffer.appendUnchecked(
buffer,
abi.encodePacked("0.0", numberStr[0])
);
}
}
function _render(
uint256 seed,
uint256 day,
uint256 year
) internal pure returns (string memory) {
Constellation memory constellation = _constellation(seed);
return string(_renderSVG(seed, day, year, constellation));
}
function _json(
uint256 tokenId,
uint256 seed,
uint256 day,
uint256 year
) internal pure returns (string memory) {
Constellation memory constellation = _constellation(seed);
bytes memory attributes = abi.encodePacked(
'","attributes":',
'[{"trait_type":"Cluster Density","value":"',
(6 - constellation.keepProb).toString(),
'"},{"trait_type":"Incremental","value":"',
(constellation.incRand ? "True" : "False"),
'"},{"trait_type":"Rotation","value":"',
constellation.rotation.toString(),
'"},{"trait_type":"Max Dust","value":"',
constellation.maxDust.toString(),
'"}]}'
);
bytes memory image = _renderSVG(seed, day, year, constellation);
string memory imageAnimated = Base64.encode(image);
image[188] = "c";
string memory imageStatic = Base64.encode(image);
bytes memory name = _renderName(seed);
bytes memory description;
if (day == 0) {
description = abi.encodePacked(
"The Star Cluster **",
name,
"** will start forming on 1st Dec. ",
year.toString()
);
} else {
description = abi.encodePacked(
"View of the Star Cluster **",
name,
"** on ",
day.toString(),
"/12/",
year.toString()
);
}
return
string(
abi.encodePacked(
"data:application/json;base64,",
Base64.encode(
abi.encodePacked(
'{"name":"#',
tokenId.toString(),
" - ",
name,
'", "description":"',
description,
'","image":"data:image/svg+xml;base64,',
imageStatic,
'","animation_url":"data:image/svg+xml;base64,',
imageAnimated,
attributes
)
)
)
);
}
function _renderSVG(
uint256 seed,
uint256 day,
uint256 year,
Constellation memory constellation
) internal pure returns (bytes memory) {
bytes memory starsRender = DynamicBuffer.allocate(100000);
bytes memory filters = DynamicBuffer.allocate(100000);
bytes memory dusts;
bytes memory dustsFilters;
if (day > 0) {
uint16[2][25] memory points;
Star[] memory stars = new Star[](25);
uint8 i = 0;
for (; i < day; i++) {
uint256 seedRound = uint256(
keccak256(abi.encodePacked(seed, i + 1))
);
Star memory star = _decode(seedRound);
stars[i] = star;
uint16 newX;
uint16 newY;
if (constellation.incRand) {
newX = star.xRand;
newY = star.yRand;
} else {
constellation.startX =
((constellation.startX +
(star.xRand % constellation.maxX) +
constellation.minX) % 581) +
10;
constellation.startY =
((constellation.startY +
(star.yRand % constellation.maxY) +
constellation.minY) % 581) +
10;
newX = constellation.startX;
newY = constellation.startY;
}
points[i] = [newX, newY];
DynamicBuffer.appendUnchecked(starsRender, star0);
DynamicBuffer.appendUnchecked(
starsRender,
bytes(newX.toString())
);
DynamicBuffer.appendUnchecked(starsRender, star1);
DynamicBuffer.appendUnchecked(
starsRender,
bytes(newY.toString())
);
DynamicBuffer.appendUnchecked(starsRender, star2);
_renderFloat(starsRender, star.radius + 300);
DynamicBuffer.appendUnchecked(starsRender, star3);
_renderFloat(starsRender, star.duration);
DynamicBuffer.appendUnchecked(starsRender, star4);
DynamicBuffer.appendUnchecked(
starsRender,
bytes(
(100 + (((uint256(star.r) * 1000) / 256) * 156) / 1000)
.toString()
)
);
DynamicBuffer.appendUnchecked(starsRender, starComma);
DynamicBuffer.appendUnchecked(
starsRender,
bytes(
(100 + (((uint256(star.g) * 1000) / 256) * 156) / 1000)
.toString()
)
);
DynamicBuffer.appendUnchecked(starsRender, starComma);
DynamicBuffer.appendUnchecked(
starsRender,
bytes(
(100 + (((uint256(star.b) * 1000) / 256) * 156) / 1000)
.toString()
)
);
DynamicBuffer.appendUnchecked(starsRender, starComma);
_renderFloat(starsRender, star.a);
DynamicBuffer.appendUnchecked(starsRender, star5);
DynamicBuffer.appendUnchecked(starsRender, starCore0);
DynamicBuffer.appendUnchecked(
starsRender,
bytes(newX.toString())
);
DynamicBuffer.appendUnchecked(starsRender, starCore1);
DynamicBuffer.appendUnchecked(
starsRender,
bytes(newY.toString())
);
DynamicBuffer.appendUnchecked(starsRender, starCore2);
_renderFloat(starsRender, star.radius);
DynamicBuffer.appendUnchecked(starsRender, starCore3);
}
(dusts, dustsFilters) = _renderDust(
points,
i,
stars,
constellation
);
}
bytes memory svg = DynamicBuffer.allocate(1000000);
DynamicBuffer.appendUnchecked(svg, svg1);
if (day == 0) {
DynamicBuffer.appendUnchecked(svg, placeholderBlur);
}
DynamicBuffer.appendUnchecked(svg, filters);
DynamicBuffer.appendUnchecked(svg, dustsFilters);
DynamicBuffer.appendUnchecked(svg, svg2);
DynamicBuffer.appendUnchecked(
svg,
bytes(constellation.rotation.toString())
);
DynamicBuffer.appendUnchecked(svg, svg3);
DynamicBuffer.appendUnchecked(svg, dusts);
DynamicBuffer.appendUnchecked(svg, starsRender);
DynamicBuffer.appendUnchecked(svg, svg4);
DynamicBuffer.appendUnchecked(svg, _renderYear(year, day));
if (day == 0) {
uint16 h = uint16(seed % 360);
DynamicBuffer.appendUnchecked(svg, placeholder0);
DynamicBuffer.appendUnchecked(svg, bytes(h.toString()));
DynamicBuffer.appendUnchecked(svg, placeholder1);
}
DynamicBuffer.appendUnchecked(svg, svg5);
return svg;
}
function _renderYear(
uint256 year,
uint256 day
) internal pure returns (bytes memory) {
bytes memory yearBytes = bytes(year.toString());
bytes memory dayBytes = bytes(day.toString());
bytes memory text = DynamicBuffer.allocate(320);
DynamicBuffer.appendUnchecked(text, text1);
if (dayBytes.length == 2) {
DynamicBuffer.appendUnchecked(text, abi.encodePacked(dayBytes[0]));
DynamicBuffer.appendUnchecked(text, textClose);
DynamicBuffer.appendUnchecked(text, text2);
DynamicBuffer.appendUnchecked(text, abi.encodePacked(dayBytes[1]));
} else {
DynamicBuffer.appendUnchecked(text, bytes("0"));
DynamicBuffer.appendUnchecked(text, textClose);
DynamicBuffer.appendUnchecked(text, text2);
DynamicBuffer.appendUnchecked(text, abi.encodePacked(dayBytes[0]));
}
DynamicBuffer.appendUnchecked(text, textClose);
DynamicBuffer.appendUnchecked(text, text3);
DynamicBuffer.appendUnchecked(text, abi.encodePacked(yearBytes[2]));
DynamicBuffer.appendUnchecked(text, textClose);
DynamicBuffer.appendUnchecked(text, text4);
DynamicBuffer.appendUnchecked(text, abi.encodePacked(yearBytes[3]));
DynamicBuffer.appendUnchecked(text, textClose);
DynamicBuffer.appendUnchecked(text, frame);
return text;
}
function _renderDust(
uint16[2][25] memory points,
uint8 length,
Star[] memory stars,
Constellation memory constellation
) internal pure returns (bytes memory, bytes memory) {
bytes memory dusts = DynamicBuffer.allocate(100000);
bytes memory dustsFilters = DynamicBuffer.allocate(100000);
points = _sortPointsByDistance(points, length, [uint16(0), 0]);
for (uint16 i = 0; i < length; i++) {
uint16[2][25] memory subarray = createSubArray(points, length, i);
uint16[2][25] memory sortedPoints = _sortPointsByDistance(
subarray,
length - i,
points[i]
);
_buildDust(
dusts,
dustsFilters,
sortedPoints,
length - i,
i,
stars[i],
constellation
);
}
return (dusts, dustsFilters);
}
function _buildDust(
bytes memory dusts,
bytes memory dustsFilters,
uint16[2][25] memory points,
uint16 length,
uint16 i,
Star memory star,
Constellation memory constellation
) internal pure {
if (i % constellation.keepProb != 0) {
return;
}
bytes memory pathPoints = DynamicBuffer.allocate(3200);
_constructPath(pathPoints, points[0][0], points[0][1]);
for (uint16 j = 1; j < length; j++) {
uint16 diffX = absDiff(points[j][0], points[j - 1][0]);
uint16 diffY = absDiff(points[j][1], points[j - 1][1]);
if (diffX <= 200 && diffY <= 200) {
_constructPath(pathPoints, points[j][0], points[j][1]);
} else if (j > 3) {
_constructDust(dusts, pathPoints, i, j, constellation);
_constructDustsFilters(dustsFilters, i, star);
break;
} else {
break;
}
}
}
function _constellationTrait(
uint256 randomness,
uint8 index
) internal pure returns (uint256) {
return ((randomness >> (CONSTELLATION_TRAIT_SIZE * index)) &
CONSTELLATION_TRAIT_MASK);
}
function _constellation(
uint256 randomness
) internal pure returns (Constellation memory constellation) {
constellation.rotation = uint16(
_constellationTrait(randomness, 0) % 360
);
constellation.incRand = _constellationTrait(randomness, 1) % 2 == 0;
constellation.maxDust = uint16(
(_constellationTrait(randomness, 2) % 401) + 100
);
constellation.startX = uint16(
(_constellationTrait(randomness, 3) % 581) + 10
);
constellation.startY = uint16(
(_constellationTrait(randomness, 4) % 581) + 10
);
constellation.keepProb = uint8(
(_constellationTrait(randomness, 5) % 6) + 1
);
constellation.minX = uint16(
(_constellationTrait(randomness, 6) % 91) + 10
);
constellation.minY = uint16(
(_constellationTrait(randomness, 7) % 91) + 10
);
constellation.maxX =
uint16(
(_constellationTrait(randomness, 8) %
(251 - constellation.minX))
) +
1;
constellation.maxY =
uint16(
(_constellationTrait(randomness, 9) %
(251 - constellation.minY))
) +
1;
}
function absDiff(uint16 a, uint16 b) private pure returns (uint16) {
if (a > b) {
return a - b;
} else {
return b - a;
}
}
function createSubArray(
uint16[2][25] memory array,
uint16 length,
uint16 startIndex
) private pure returns (uint16[2][25] memory subArray) {
uint16 newArrayLength = length - startIndex;
for (uint16 i = 0; i < newArrayLength; i++) {
subArray[i][0] = array[startIndex + i][0];
subArray[i][1] = array[startIndex + i][1];
}
}
function _constructPath(
bytes memory buffer,
uint16 x,
uint16 y
) internal pure {
DynamicBuffer.appendUnchecked(buffer, bytes(" "));
DynamicBuffer.appendUnchecked(buffer, bytes(x.toString()));
DynamicBuffer.appendUnchecked(buffer, bytes(","));
DynamicBuffer.appendUnchecked(buffer, bytes(y.toString()));
}
function _constructDust(
bytes memory buffer,
bytes memory path,
uint16 index,
uint16 pathLength,
Constellation memory constellation
) internal pure {
uint16 thickness = constellation.maxDust / pathLength;
DynamicBuffer.appendUnchecked(buffer, dust0);
DynamicBuffer.appendUnchecked(buffer, path);
DynamicBuffer.appendUnchecked(buffer, dust1);
DynamicBuffer.appendUnchecked(buffer, bytes(index.toString()));
DynamicBuffer.appendUnchecked(buffer, dust2);
DynamicBuffer.appendUnchecked(buffer, bytes(thickness.toString()));
DynamicBuffer.appendUnchecked(buffer, dust3);
}
function _constructDustsFilters(
bytes memory buffer,
uint16 index,
Star memory star
) internal pure {
uint16 baseDust = uint16((star.seed % 80) + 40);
DynamicBuffer.appendUnchecked(buffer, dustFilter0);
DynamicBuffer.appendUnchecked(buffer, bytes(index.toString()));
DynamicBuffer.appendUnchecked(buffer, dustFilter1);
DynamicBuffer.appendUnchecked(buffer, bytes(baseDust.toString()));
DynamicBuffer.appendUnchecked(buffer, dustFilter2);
DynamicBuffer.appendUnchecked(
buffer,
bytes((baseDust + 50).toString())
);
DynamicBuffer.appendUnchecked(buffer, dustFilter3);
DynamicBuffer.appendUnchecked(
buffer,
bytes((baseDust + 100).toString())
);
DynamicBuffer.appendUnchecked(buffer, dustFilter4);
_renderFloat(buffer, (uint16(star.r) * 100) / 256);
DynamicBuffer.appendUnchecked(buffer, dustFilter5);
_renderFloat(buffer, (uint16(star.g) * 100) / 256);
DynamicBuffer.appendUnchecked(buffer, dustFilter6);
_renderFloat(buffer, (uint16(star.b) * 100) / 256);
DynamicBuffer.appendUnchecked(buffer, dustFilter7);
_renderFloat(buffer, star.a);
DynamicBuffer.appendUnchecked(buffer, dustFilter8);
}
function _sortPointsByDistance(
uint16[2][25] memory points,
uint16 length,
uint16[2] memory origin
) internal pure returns (uint16[2][25] memory) {
_quickSort(points, origin, 0, length - 1);
return points;
}
function _quickSort(
uint16[2][25] memory arr,
uint16[2] memory origin,
uint16 left,
uint16 right
) internal pure {
int16 i = int16(left);
int16 j = int16(right);
if (i == j) return;
int256 pivot = _distanceSquared(
arr[uint16(left + (right - left) / 2)],
origin
);
while (i <= j) {
while (_distanceSquared(arr[uint16(i)], origin) < pivot) i++;
while (pivot < _distanceSquared(arr[uint16(j)], origin)) j--;
if (i <= j) {
(arr[uint16(i)], arr[uint16(j)]) = (
arr[uint16(j)],
arr[uint16(i)]
);
i++;
j--;
}
}
if (int16(left) < j) _quickSort(arr, origin, left, uint16(j));
if (i < int16(right)) _quickSort(arr, origin, uint16(i), right);
}
function _distanceSquared(
uint16[2] memory p,
uint16[2] memory origin
) internal pure returns (int256) {
return
(int256(int16(p[0])) - int256(int16(origin[0]))) ** 2 +
(int256(int16(p[1])) - int256(int16(origin[1]))) ** 2;
}
function _starTrait(
uint256 randomness,
uint8 index
) internal pure returns (uint256) {
return ((randomness >> (STAR_TRAIT_SIZE * index)) & STAR_TRAIT_MASK);
}
function _decode(
uint256 randomness
) internal pure returns (Star memory star) {
star.r = uint8(_starTrait(randomness, 0) % 256);
star.g = uint8(_starTrait(randomness, 1) % 256);
star.b = uint8(_starTrait(randomness, 2) % 256);
star.a = uint8((_starTrait(randomness, 3) % 101) + 1);
star.xRand = uint16((_starTrait(randomness, 4) % 581) + 10);
star.yRand = uint16((_starTrait(randomness, 5) % 581) + 10);
star.radius = uint16((_starTrait(randomness, 6) % 500) + 100);
star.duration = uint16((_starTrait(randomness, 7) % 1001) + 100);
star.seed = randomness;
}
}