ETH Price: $2,401.88 (-3.23%)

Contract Diff Checker

Contract Name:
FOMO

Contract Source Code:

File 1 of 1 : FOMO

// SPDX-License-Identifier: MIT
/*
Website: https://fomonetwork.io
Telegram: https://t.me/FOMONetwork
Twitter: https://twitter.com/FOMO_Network
*/

pragma solidity ^0.8.1;

library Address {
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }
    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

pragma solidity ^0.8.0;

interface IERC20 {
    event Transfer(address indexed from, address indexed to, uint256 value);
    event Approval(address indexed owner, address indexed spender, uint256 value);
    function totalSupply() external view returns (uint256);
    function balanceOf(address account) external view returns (uint256);
    function transfer(address to, uint256 amount) external returns (bool);
    function allowance(address owner, address spender) external view returns (uint256);
    function approve(address spender, uint256 amount) external returns (bool);
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

interface IERC20Metadata is IERC20 {
    function name() external view returns (string memory);
    function symbol() external view returns (string memory);
    function decimals() external view returns (uint8);
}

abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }
    function name() public view virtual override returns (string memory) {
        return _name;
    }
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }
    function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }
    function _transfer(address from, address to, uint256 amount) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
            // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
            // decrementing then incrementing.
            _balances[to] += amount;
        }

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        unchecked {
            // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
            _balances[account] += amount;
        }
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            // Overflow not possible: amount <= accountBalance <= totalSupply.
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }
    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}

abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    constructor() {
        _transferOwnership(_msgSender());
    }
    modifier onlyOwner() {
        _checkOwner();
        _;
    }
    function owner() public view virtual returns (address) {
        return _owner;
    }
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

interface IERC20Permit {
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;
    function nonces(address owner) external view returns (uint256);
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

library SafeERC20 {
    using Address for address;
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}

library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

pragma solidity >=0.5.0;

interface IUniswapV2Factory {
    event PairCreated(
        address indexed token0,
        address indexed token1,
        address pair,
        uint256
    );

    function feeTo() external view returns (address);

    function feeToSetter() external view returns (address);

    function getPair(address tokenA, address tokenB)
        external
        view
        returns (address pair);

    function allPairs(uint256) external view returns (address pair);

    function allPairsLength() external view returns (uint256);

    function createPair(address tokenA, address tokenB)
        external
        returns (address pair);

    function setFeeTo(address) external;

    function setFeeToSetter(address) external;
}
interface IUniswapV2Pair {
    event Approval(address indexed owner, address indexed spender, uint value);
    event Transfer(address indexed from, address indexed to, uint value);

    function name() external pure returns (string memory);
    function symbol() external pure returns (string memory);
    function decimals() external pure returns (uint8);
    function totalSupply() external view returns (uint);
    function balanceOf(address owner) external view returns (uint);
    function allowance(address owner, address spender) external view returns (uint);

    function approve(address spender, uint value) external returns (bool);
    function transfer(address to, uint value) external returns (bool);
    function transferFrom(address from, address to, uint value) external returns (bool);

    function DOMAIN_SEPARATOR() external view returns (bytes32);
    function PERMIT_TYPEHASH() external pure returns (bytes32);
    function nonces(address owner) external view returns (uint);

    function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;

    event Mint(address indexed sender, uint amount0, uint amount1);
    event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
    event Swap(
        address indexed sender,
        uint amount0In,
        uint amount1In,
        uint amount0Out,
        uint amount1Out,
        address indexed to
    );
    event Sync(uint112 reserve0, uint112 reserve1);

    function MINIMUM_LIQUIDITY() external pure returns (uint);
    function factory() external view returns (address);
    function token0() external view returns (address);
    function token1() external view returns (address);
    function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
    function price0CumulativeLast() external view returns (uint);
    function price1CumulativeLast() external view returns (uint);
    function kLast() external view returns (uint);

    function mint(address to) external returns (uint liquidity);
    function burn(address to) external returns (uint amount0, uint amount1);
    function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
    function skim(address to) external;
    function sync() external;

    function initialize(address, address) external;
}

pragma solidity >=0.6.2;

interface IUniswapV2Router01 {
    function factory() external pure returns (address);

    function WETH() external pure returns (address);

    function addLiquidity(
        address tokenA,
        address tokenB,
        uint256 amountADesired,
        uint256 amountBDesired,
        uint256 amountAMin,
        uint256 amountBMin,
        address to,
        uint256 deadline
    )
        external
        returns (
            uint256 amountA,
            uint256 amountB,
            uint256 liquidity
        );

    function addLiquidityETH(
        address token,
        uint256 amountTokenDesired,
        uint256 amountTokenMin,
        uint256 amountETHMin,
        address to,
        uint256 deadline
    )
        external
        payable
        returns (
            uint256 amountToken,
            uint256 amountETH,
            uint256 liquidity
        );

    function removeLiquidity(
        address tokenA,
        address tokenB,
        uint256 liquidity,
        uint256 amountAMin,
        uint256 amountBMin,
        address to,
        uint256 deadline
    ) external returns (uint256 amountA, uint256 amountB);

    function removeLiquidityETH(
        address token,
        uint256 liquidity,
        uint256 amountTokenMin,
        uint256 amountETHMin,
        address to,
        uint256 deadline
    ) external returns (uint256 amountToken, uint256 amountETH);

    function removeLiquidityWithPermit(
        address tokenA,
        address tokenB,
        uint256 liquidity,
        uint256 amountAMin,
        uint256 amountBMin,
        address to,
        uint256 deadline,
        bool approveMax,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external returns (uint256 amountA, uint256 amountB);

    function removeLiquidityETHWithPermit(
        address token,
        uint256 liquidity,
        uint256 amountTokenMin,
        uint256 amountETHMin,
        address to,
        uint256 deadline,
        bool approveMax,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external returns (uint256 amountToken, uint256 amountETH);

    function swapExactTokensForTokens(
        uint256 amountIn,
        uint256 amountOutMin,
        address[] calldata path,
        address to,
        uint256 deadline
    ) external returns (uint256[] memory amounts);

    function swapTokensForExactTokens(
        uint256 amountOut,
        uint256 amountInMax,
        address[] calldata path,
        address to,
        uint256 deadline
    ) external returns (uint256[] memory amounts);

    function swapExactETHForTokens(
        uint256 amountOutMin,
        address[] calldata path,
        address to,
        uint256 deadline
    ) external payable returns (uint256[] memory amounts);

    function swapTokensForExactETH(
        uint256 amountOut,
        uint256 amountInMax,
        address[] calldata path,
        address to,
        uint256 deadline
    ) external returns (uint256[] memory amounts);

    function swapExactTokensForETH(
        uint256 amountIn,
        uint256 amountOutMin,
        address[] calldata path,
        address to,
        uint256 deadline
    ) external returns (uint256[] memory amounts);

    function swapETHForExactTokens(
        uint256 amountOut,
        address[] calldata path,
        address to,
        uint256 deadline
    ) external payable returns (uint256[] memory amounts);

    function quote(
        uint256 amountA,
        uint256 reserveA,
        uint256 reserveB
    ) external pure returns (uint256 amountB);

    function getAmountOut(
        uint256 amountIn,
        uint256 reserveIn,
        uint256 reserveOut
    ) external pure returns (uint256 amountOut);

    function getAmountIn(
        uint256 amountOut,
        uint256 reserveIn,
        uint256 reserveOut
    ) external pure returns (uint256 amountIn);

    function getAmountsOut(uint256 amountIn, address[] calldata path)
        external
        view
        returns (uint256[] memory amounts);

    function getAmountsIn(uint256 amountOut, address[] calldata path)
        external
        view
        returns (uint256[] memory amounts);
}
interface IUniswapV2Router02 is IUniswapV2Router01 {
    function removeLiquidityETHSupportingFeeOnTransferTokens(
        address token,
        uint256 liquidity,
        uint256 amountTokenMin,
        uint256 amountETHMin,
        address to,
        uint256 deadline
    ) external returns (uint256 amountETH);

    function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
        address token,
        uint256 liquidity,
        uint256 amountTokenMin,
        uint256 amountETHMin,
        address to,
        uint256 deadline,
        bool approveMax,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external returns (uint256 amountETH);

    function swapExactTokensForTokensSupportingFeeOnTransferTokens(
        uint256 amountIn,
        uint256 amountOutMin,
        address[] calldata path,
        address to,
        uint256 deadline
    ) external;

    function swapExactETHForTokensSupportingFeeOnTransferTokens(
        uint256 amountOutMin,
        address[] calldata path,
        address to,
        uint256 deadline
    ) external payable;

    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint256 amountIn,
        uint256 amountOutMin,
        address[] calldata path,
        address to,
        uint256 deadline
    ) external;
}
pragma solidity 0.8.19;

contract FOMO is ERC20, Ownable {
    using SafeERC20 for IERC20;
    
    uint256 private constant MAX = ~uint256(0);

    uint8 private _decimals;
    ///////////////////////////////////////////////////////////////////////////
    address public baseTokenForMarket;
    bool private inSwapAndLiquify;
    uint24 public sellLiquidityFee;
    uint24 public buyLiquidityFee;

    uint24 public sellMarketingFee;
    uint24 public buyMarketingFee;

    address public marketingWallet;

    uint256 public minAmountToTakeFee;
    uint256 public maxWallet;
    uint256 public maxTransactionAmount;

    address public mainRouter;
    address public mainPair;


    mapping(address => bool) public isExcludedFromMaxTransactionAmount;
    mapping(address => bool) public isExcludedFromFee;
    mapping(address => bool) public automatedMarketMakerPairs;

    uint256 private _liquidityFeeTokens;
    uint256 private _marketingFeeTokens;
    event UpdateLiquidityFee(
        uint24 newSellLiquidityFee,
        uint24 newBuyLiquidityFee,
        uint24 oldSellLiquidityFee,
        uint24 oldBuyLiquidityFee
    );
    event UpdateMarketingFee(
        uint24 newSellMarketingFee,
        uint24 newBuyMarketingFee,
        uint24 oldSellMarketingFee,
        uint24 oldBuyMarketingFee
    );
    event UpdateMarketingWallet(
        address indexed newMarketingWallet,
        address indexed oldMarketingWallet
    );
    event ExcludedFromMaxTransactionAmount(address indexed account, bool isExcluded);
    event UpdateMinAmountToTakeFee(uint256 newMinAmountToTakeFee, uint256 oldMinAmountToTakeFee);
    event SetAutomatedMarketMakerPair(address indexed pair, bool value);
    event ExcludedFromFee(address indexed account, bool isEx);
    event SwapAndLiquify(
        uint256 tokensForLiquidity,
        uint256 baseTokenForLiquidity
    );
    event MarketingFeeTaken(
        uint256 marketingFeeTokens,
        uint256 marketingFeeBaseTokenSwapped
    );
    event MainRouterUpdated(
        address mainRouter, address mainPair, address baseTokenForMarket
    );
    event UpdateMaxWallet(uint256 newMaxWallet, uint256 oldMaxWallet);
    event UpdateMaxTransactionAmount(uint256 newMaxTransactionAmount, uint256 oldMaxTransactionAmount);
    ///////////////////////////////////////////////////////////////////////////////
 
    constructor(
        address _mainRouter,
        address _marketingWallet
    ) ERC20("FOMO Network", "FOMO") {
        _decimals = 18;
        _mint(msg.sender, 500000000000000000000000000);
        mainRouter=_mainRouter;
        baseTokenForMarket = IUniswapV2Router02(mainRouter).WETH();
        require(_marketingWallet!=address(0), "marketing wallet can not be 0");
        require(_mainRouter!=address(0), "Router address can not be 0");

        marketingWallet=_marketingWallet;
        emit UpdateMarketingWallet(
            marketingWallet,
            address(0)
        );        
        
        _approve(address(this), mainRouter, MAX);        
        emit MainRouterUpdated(mainRouter, mainPair, baseTokenForMarket);
        mainPair = IUniswapV2Factory(IUniswapV2Router02(mainRouter).factory()).createPair(
            address(this),
            baseTokenForMarket
        ); 
        
        maxWallet=500000000000000000000000000;
        emit UpdateMaxWallet(maxWallet, 0);
        maxTransactionAmount=500000000000000000000000000;
        emit UpdateMaxTransactionAmount(maxTransactionAmount, 0);
        
        sellLiquidityFee=0;
        buyLiquidityFee=0;
        emit UpdateLiquidityFee(sellLiquidityFee, buyLiquidityFee, 0, 0);        
        sellMarketingFee=30000;
        buyMarketingFee=30000;
        emit UpdateMarketingFee(
            sellMarketingFee,
            buyMarketingFee,
            0,
            0
        );
        minAmountToTakeFee=50000000000000000000000;
        emit UpdateMinAmountToTakeFee(minAmountToTakeFee, 0);
        isExcludedFromFee[address(this)]=true;
        isExcludedFromFee[marketingWallet]=true;
        isExcludedFromFee[_msgSender()]=true;
        isExcludedFromFee[address(0xdead)] = true;
        isExcludedFromMaxTransactionAmount[address(0xdead)]=true;
        isExcludedFromMaxTransactionAmount[address(this)]=true;
        isExcludedFromMaxTransactionAmount[marketingWallet]=true;
        isExcludedFromMaxTransactionAmount[_msgSender()]=true;
        _setAutomatedMarketMakerPair(mainPair, true);
    }

    function decimals() public view override returns (uint8) {
        return _decimals;
    }

    function updateMainPair(
        address _mainRouter
    ) external onlyOwner {
        baseTokenForMarket = IUniswapV2Router02(mainRouter).WETH();
        if(mainRouter != _mainRouter){
            _approve(address(this), _mainRouter, MAX);
            mainRouter = _mainRouter;
        } 
        mainPair = IUniswapV2Factory(IUniswapV2Router02(mainRouter).factory()).createPair(
            address(this),
            baseTokenForMarket
        );        
     
        emit MainRouterUpdated(mainRouter, mainPair, baseTokenForMarket);
        _setAutomatedMarketMakerPair(mainPair, true);
    }


    /////////////////////////////////////////////////////////////////////////////////
    modifier lockTheSwap() {
        inSwapAndLiquify = true;
        _;
        inSwapAndLiquify = false;
    }

    function updateLiquidityFee(
        uint24 _sellLiquidityFee,
        uint24 _buyLiquidityFee
    ) external onlyOwner {
        require(
            _sellLiquidityFee + sellMarketingFee <= 200000,
            "sell fee <= 20%"
        );
        require(_buyLiquidityFee + buyMarketingFee <= 200000, "buy fee <= 20%");
        emit UpdateLiquidityFee(
            _sellLiquidityFee,
            _buyLiquidityFee,
            sellLiquidityFee,
            buyLiquidityFee
        );
        sellLiquidityFee = _sellLiquidityFee;
        buyLiquidityFee = _buyLiquidityFee;           
    }

    function updateMaxWallet(uint256 _maxWallet) external onlyOwner {
        require(_maxWallet>=totalSupply() / 10000, "maxWallet >= total supply / 10000");
        emit UpdateMaxWallet(_maxWallet, maxWallet);
        maxWallet = _maxWallet;
    }

    function updateMaxTransactionAmount(uint256 _maxTransactionAmount)
        external
        onlyOwner
    {
        require(_maxTransactionAmount>=totalSupply() / 10000, "maxTransactionAmount >= total supply / 10000");
        emit UpdateMaxTransactionAmount(_maxTransactionAmount, maxTransactionAmount);
        maxTransactionAmount = _maxTransactionAmount;
    }

    function updateMarketingFee(
        uint24 _sellMarketingFee,
        uint24 _buyMarketingFee
    ) external onlyOwner {
        require(
            _sellMarketingFee + sellLiquidityFee <= 200000,
            "sell fee <= 20%"
        );
        require(_buyMarketingFee + buyLiquidityFee <= 200000, "buy fee <= 20%");
        emit UpdateMarketingFee(
            _sellMarketingFee,
            _buyMarketingFee,
            sellMarketingFee,
            buyMarketingFee
        );
        sellMarketingFee = _sellMarketingFee;
        buyMarketingFee = _buyMarketingFee;  
    }

    function updateMarketingWallet(
        address _marketingWallet
    ) external onlyOwner {
        require(_marketingWallet != address(0), "marketing wallet can't be 0");
        emit UpdateMarketingWallet(_marketingWallet,
            marketingWallet);
        marketingWallet = _marketingWallet;
        isExcludedFromFee[_marketingWallet] = true;
        isExcludedFromMaxTransactionAmount[_marketingWallet] = true;
    }

    function updateMinAmountToTakeFee(uint256 _minAmountToTakeFee)
        external
        onlyOwner
    {
        require(_minAmountToTakeFee > 0, "minAmountToTakeFee > 0");
        emit UpdateMinAmountToTakeFee(_minAmountToTakeFee, minAmountToTakeFee);
        minAmountToTakeFee = _minAmountToTakeFee;     
    }

    function setAutomatedMarketMakerPair(address pair, bool value)
        public
        onlyOwner
    {
        require(
            automatedMarketMakerPairs[pair] != value,
            "Automated market maker pair is already set to that value"
        );
        _setAutomatedMarketMakerPair(pair, value);
    }

    function _setAutomatedMarketMakerPair(address pair, bool value) private {        
        automatedMarketMakerPairs[pair] = value;
        isExcludedFromMaxTransactionAmount[pair] = value;
        emit SetAutomatedMarketMakerPair(pair, value);
    }

    function excludeFromFee(address account, bool isEx) external onlyOwner {
        require(isExcludedFromFee[account] != isEx, "already");
        isExcludedFromFee[account] = isEx;
        emit ExcludedFromFee(account, isEx);
    }

    function excludeFromMaxTransactionAmount(address account, bool isEx)
        external
        onlyOwner
    {
        require(isExcludedFromMaxTransactionAmount[account]!=isEx, "already");
        isExcludedFromMaxTransactionAmount[account] = isEx;
        emit ExcludedFromMaxTransactionAmount(account, isEx);
    }

    function _transfer(
        address from,
        address to,
        uint256 amount
    ) internal override {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");
        uint256 contractTokenBalance = balanceOf(address(this));
        
        uint256 totalTokensTaken = _liquidityFeeTokens + _marketingFeeTokens;
        bool overMinimumTokenBalance = totalTokensTaken >=
            minAmountToTakeFee && totalTokensTaken <= contractTokenBalance;
        // Take Fee
        if (
            !inSwapAndLiquify &&
            balanceOf(mainPair) > 0 &&
            overMinimumTokenBalance &&
            automatedMarketMakerPairs[to]
        ) {
            takeFee();
        }

        uint256 _liquidityFee;
        uint256 _marketingFee;
        // If any account belongs to isExcludedFromFee account then remove the fee

        if (
            !inSwapAndLiquify &&
            !isExcludedFromFee[from] &&
            !isExcludedFromFee[to]
        ) {
            // Buy
            if (automatedMarketMakerPairs[from]) {
                _liquidityFee = amount * buyLiquidityFee / 1000000;
                _marketingFee = amount * buyMarketingFee / 1000000;
            }
            // Sell
            else if (automatedMarketMakerPairs[to]) {
                _liquidityFee = amount * sellLiquidityFee / 1000000;
                _marketingFee = amount * sellMarketingFee / 1000000;
            }
            uint256 _feeTotal = _liquidityFee + _marketingFee;
            if (_feeTotal > 0) super._transfer(from, address(this), _feeTotal);
            amount = amount - _liquidityFee - _marketingFee;
            _liquidityFeeTokens = _liquidityFeeTokens + _liquidityFee;
            _marketingFeeTokens = _marketingFeeTokens + _marketingFee;
        }
        super._transfer(from, to, amount);
        if (!inSwapAndLiquify) {
            if (!isExcludedFromMaxTransactionAmount[from]) {
                require(
                    amount <= maxTransactionAmount,
                    "ERC20: exceeds transfer limit"
                );
            }
            if (!isExcludedFromMaxTransactionAmount[to]) {
                require(
                    balanceOf(to) <= maxWallet,
                    "ERC20: exceeds max wallet limit"
                );
            }
        }
    }

    function takeFee() private lockTheSwap {

        // Halve the amount of liquidity tokens
        uint256 tokensForLiquidity = _liquidityFeeTokens / 2;
        uint256 initialBaseTokenBalance = address(this).balance;        
         
        uint256 baseTokenForLiquidity;
            uint256 tokensForSwap=tokensForLiquidity+_marketingFeeTokens;
            if(tokensForSwap>0)
                swapTokensForBaseToken(tokensForSwap);
            uint256 baseTokenBalance = address(this).balance - initialBaseTokenBalance;
            uint256 baseTokenAmountForMarketing = (baseTokenBalance *
                _marketingFeeTokens) / tokensForSwap;
            baseTokenForLiquidity = baseTokenBalance - baseTokenAmountForMarketing;
            if(baseTokenAmountForMarketing>0){
                    (bool success, )=address(marketingWallet).call{value: baseTokenAmountForMarketing}("");
                    if(success){
                        emit MarketingFeeTaken(0, baseTokenAmountForMarketing);
                    }
                             
            }            
        

        if (tokensForLiquidity > 0 && baseTokenForLiquidity > 0) {
            addLiquidity(tokensForLiquidity, baseTokenForLiquidity);
            emit SwapAndLiquify(tokensForLiquidity, baseTokenForLiquidity);
        }
        _marketingFeeTokens = 0;
        _liquidityFeeTokens = 0;    
        if(balanceOf(address(this))>0){
            if(owner()!=address(0)){
                _transfer(address(this), owner(), balanceOf(address(this)));  
            }else{
                _transfer(address(this), address(0xdead), balanceOf(address(this)));  
            }
        } 
    }

    function swapTokensForBaseToken(uint256 tokenAmount) private {
        address[] memory path = new address[](2);
        path[0] = address(this);
        path[1] = baseTokenForMarket;     
        IUniswapV2Router02(mainRouter).swapExactTokensForETHSupportingFeeOnTransferTokens(
            tokenAmount,
            0, // accept any amount of BaseToken
            path,
            address(this),
            block.timestamp
        );
       
        
    }

    function addLiquidity(uint256 tokenAmount, uint256 baseTokenAmount)
        private
    {
        IUniswapV2Router02(mainRouter).addLiquidityETH{value: baseTokenAmount}(
            address(this),
            tokenAmount,
            0, // slippage is unavoidable
            0, // slippage is unavoidable
            address(0xdead),
            block.timestamp
        );
      
    }

    function withdrawETH() external onlyOwner {
        (bool success, )=address(owner()).call{value: address(this).balance}("");
        require(success, "Failed in withdrawal");
    }
    function withdrawToken(address token) external onlyOwner{
        require(address(this) != token, "Not allowed");
        IERC20(token).safeTransfer(owner(), IERC20(token).balanceOf(address(this)));
    }
    receive() external payable {}
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):