ETH Price: $3,086.45 (+0.81%)
Gas: 6 Gwei

Contract Diff Checker

Contract Name:
Router

Contract Source Code:

// SPDX-License-Identifier: MIT
// solhint-disable no-inline-assembly
pragma solidity >=0.6.9;

import "./interfaces/IRelayRecipient.sol";

/**
 * A base contract to be inherited by any contract that want to receive relayed transactions
 * A subclass must use "_msgSender()" instead of "msg.sender"
 */
abstract contract BaseRelayRecipient is IRelayRecipient {

    /*
     * Forwarder singleton we accept calls from
     */
    address private _trustedForwarder;

    function trustedForwarder() public virtual view returns (address){
        return _trustedForwarder;
    }

    function _setTrustedForwarder(address _forwarder) internal {
        _trustedForwarder = _forwarder;
    }

    function isTrustedForwarder(address forwarder) public virtual override view returns(bool) {
        return forwarder == _trustedForwarder;
    }

    /**
     * return the sender of this call.
     * if the call came through our trusted forwarder, return the original sender.
     * otherwise, return `msg.sender`.
     * should be used in the contract anywhere instead of msg.sender
     */
    function _msgSender() internal override virtual view returns (address ret) {
        if (msg.data.length >= 20 && isTrustedForwarder(msg.sender)) {
            // At this point we know that the sender is a trusted forwarder,
            // so we trust that the last bytes of msg.data are the verified sender address.
            // extract sender address from the end of msg.data
            assembly {
                ret := shr(96,calldataload(sub(calldatasize(),20)))
            }
        } else {
            ret = msg.sender;
        }
    }

    /**
     * return the msg.data of this call.
     * if the call came through our trusted forwarder, then the real sender was appended as the last 20 bytes
     * of the msg.data - so this method will strip those 20 bytes off.
     * otherwise (if the call was made directly and not through the forwarder), return `msg.data`
     * should be used in the contract instead of msg.data, where this difference matters.
     */
    function _msgData() internal override virtual view returns (bytes calldata ret) {
        if (msg.data.length >= 20 && isTrustedForwarder(msg.sender)) {
            return msg.data[0:msg.data.length-20];
        } else {
            return msg.data;
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0;

/**
 * a contract must implement this interface in order to support relayed transaction.
 * It is better to inherit the BaseRelayRecipient as its implementation.
 */
abstract contract IRelayRecipient {

    /**
     * return if the forwarder is trusted to forward relayed transactions to us.
     * the forwarder is required to verify the sender's signature, and verify
     * the call is not a replay.
     */
    function isTrustedForwarder(address forwarder) public virtual view returns(bool);

    /**
     * return the sender of this call.
     * if the call came through our trusted forwarder, then the real sender is appended as the last 20 bytes
     * of the msg.data.
     * otherwise, return `msg.sender`
     * should be used in the contract anywhere instead of msg.sender
     */
    function _msgSender() internal virtual view returns (address);

    /**
     * return the msg.data of this call.
     * if the call came through our trusted forwarder, then the real sender was appended as the last 20 bytes
     * of the msg.data - so this method will strip those 20 bytes off.
     * otherwise (if the call was made directly and not through the forwarder), return `msg.data`
     * should be used in the contract instead of msg.data, where this difference matters.
     */
    function _msgData() internal virtual view returns (bytes calldata);

    function versionRecipient() external virtual view returns (string memory);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Contract that enables a single call to call multiple methods on itself.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/Multicallable.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/Multicallable.sol)
/// @dev WARNING!
/// Multicallable is NOT SAFE for use in contracts with checks / requires on `msg.value`
/// (e.g. in NFT minting / auction contracts) without a suitable nonce mechanism.
/// It WILL open up your contract to double-spend vulnerabilities / exploits.
/// See: (https://www.paradigm.xyz/2021/08/two-rights-might-make-a-wrong/)
abstract contract Multicallable {
    function multicall(bytes[] calldata data) public payable returns (bytes[] memory results) {
        assembly {
            if data.length {
                results := mload(0x40) // Point `results` to start of free memory.
                mstore(results, data.length) // Store `data.length` into `results`.
                results := add(results, 0x20)

                // `shl` 5 is equivalent to multiplying by 0x20.
                let end := shl(5, data.length)
                // Copy the offsets from calldata into memory.
                calldatacopy(results, data.offset, end)
                // Pointer to the top of the memory (i.e. start of the free memory).
                let memPtr := add(results, end)
                end := add(results, end)

                // prettier-ignore
                for {} 1 {} {
                    // The offset of the current bytes in the calldata.
                    let o := add(data.offset, mload(results))
                    // Copy the current bytes from calldata to the memory.
                    calldatacopy(
                        memPtr,
                        add(o, 0x20), // The offset of the current bytes' bytes.
                        calldataload(o) // The length of the current bytes.
                    )
                    if iszero(delegatecall(gas(), address(), memPtr, calldataload(o), 0x00, 0x00)) {
                        // Bubble up the revert if the delegatecall reverts.
                        returndatacopy(0x00, 0x00, returndatasize())
                        revert(0x00, returndatasize())
                    }
                    // Append the current `memPtr` into `results`.
                    mstore(results, memPtr)
                    results := add(results, 0x20)
                    // Append the `returndatasize()`, and the return data.
                    mstore(memPtr, returndatasize())
                    returndatacopy(add(memPtr, 0x20), 0x00, returndatasize())
                    // Advance the `memPtr` by `returndatasize() + 0x20`,
                    // rounded up to the next multiple of 32.
                    memPtr := and(add(add(memPtr, returndatasize()), 0x3f), 0xffffffffffffffe0)
                    // prettier-ignore
                    if iszero(lt(results, end)) { break }
                }
                // Restore `results` and allocate memory for it.
                results := mload(0x40)
                mstore(0x40, memPtr)
            }
        }
    }
}

// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
/// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
abstract contract ERC20 {
    /*//////////////////////////////////////////////////////////////
                                 EVENTS
    //////////////////////////////////////////////////////////////*/

    event Transfer(address indexed from, address indexed to, uint256 amount);

    event Approval(address indexed owner, address indexed spender, uint256 amount);

    /*//////////////////////////////////////////////////////////////
                            METADATA STORAGE
    //////////////////////////////////////////////////////////////*/

    string public name;

    string public symbol;

    uint8 public immutable decimals;

    /*//////////////////////////////////////////////////////////////
                              ERC20 STORAGE
    //////////////////////////////////////////////////////////////*/

    uint256 public totalSupply;

    mapping(address => uint256) public balanceOf;

    mapping(address => mapping(address => uint256)) public allowance;

    /*//////////////////////////////////////////////////////////////
                            EIP-2612 STORAGE
    //////////////////////////////////////////////////////////////*/

    uint256 internal immutable INITIAL_CHAIN_ID;

    bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;

    mapping(address => uint256) public nonces;

    /*//////////////////////////////////////////////////////////////
                               CONSTRUCTOR
    //////////////////////////////////////////////////////////////*/

    constructor(
        string memory _name,
        string memory _symbol,
        uint8 _decimals
    ) {
        name = _name;
        symbol = _symbol;
        decimals = _decimals;

        INITIAL_CHAIN_ID = block.chainid;
        INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
    }

    /*//////////////////////////////////////////////////////////////
                               ERC20 LOGIC
    //////////////////////////////////////////////////////////////*/

    function approve(address spender, uint256 amount) public virtual returns (bool) {
        allowance[msg.sender][spender] = amount;

        emit Approval(msg.sender, spender, amount);

        return true;
    }

    function transfer(address to, uint256 amount) public virtual returns (bool) {
        balanceOf[msg.sender] -= amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(msg.sender, to, amount);

        return true;
    }

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual returns (bool) {
        uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.

        if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;

        balanceOf[from] -= amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(from, to, amount);

        return true;
    }

    /*//////////////////////////////////////////////////////////////
                             EIP-2612 LOGIC
    //////////////////////////////////////////////////////////////*/

    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");

        // Unchecked because the only math done is incrementing
        // the owner's nonce which cannot realistically overflow.
        unchecked {
            address recoveredAddress = ecrecover(
                keccak256(
                    abi.encodePacked(
                        "\x19\x01",
                        DOMAIN_SEPARATOR(),
                        keccak256(
                            abi.encode(
                                keccak256(
                                    "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                                ),
                                owner,
                                spender,
                                value,
                                nonces[owner]++,
                                deadline
                            )
                        )
                    )
                ),
                v,
                r,
                s
            );

            require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");

            allowance[recoveredAddress][spender] = value;
        }

        emit Approval(owner, spender, value);
    }

    function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
        return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
    }

    function computeDomainSeparator() internal view virtual returns (bytes32) {
        return
            keccak256(
                abi.encode(
                    keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                    keccak256(bytes(name)),
                    keccak256("1"),
                    block.chainid,
                    address(this)
                )
            );
    }

    /*//////////////////////////////////////////////////////////////
                        INTERNAL MINT/BURN LOGIC
    //////////////////////////////////////////////////////////////*/

    function _mint(address to, uint256 amount) internal virtual {
        totalSupply += amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(address(0), to, amount);
    }

    function _burn(address from, uint256 amount) internal virtual {
        balanceOf[from] -= amount;

        // Cannot underflow because a user's balance
        // will never be larger than the total supply.
        unchecked {
            totalSupply -= amount;
        }

        emit Transfer(from, address(0), amount);
    }
}

// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

import {ERC20} from "../tokens/ERC20.sol";

/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
/// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller.
library SafeTransferLib {
    /*//////////////////////////////////////////////////////////////
                             ETH OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function safeTransferETH(address to, uint256 amount) internal {
        bool success;

        assembly {
            // Transfer the ETH and store if it succeeded or not.
            success := call(gas(), to, amount, 0, 0, 0, 0)
        }

        require(success, "ETH_TRANSFER_FAILED");
    }

    /*//////////////////////////////////////////////////////////////
                            ERC20 OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function safeTransferFrom(
        ERC20 token,
        address from,
        address to,
        uint256 amount
    ) internal {
        bool success;

        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), from) // Append the "from" argument.
            mstore(add(freeMemoryPointer, 36), to) // Append the "to" argument.
            mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument.

            success := and(
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data.
                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                // Counterintuitively, this call must be positioned second to the or() call in the
                // surrounding and() call or else returndatasize() will be zero during the computation.
                call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)
            )
        }

        require(success, "TRANSFER_FROM_FAILED");
    }

    function safeTransfer(
        ERC20 token,
        address to,
        uint256 amount
    ) internal {
        bool success;

        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument.
            mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument.

            success := and(
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data.
                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                // Counterintuitively, this call must be positioned second to the or() call in the
                // surrounding and() call or else returndatasize() will be zero during the computation.
                call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
            )
        }

        require(success, "TRANSFER_FAILED");
    }

    function safeApprove(
        ERC20 token,
        address to,
        uint256 amount
    ) internal {
        bool success;

        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument.
            mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument.

            success := and(
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data.
                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                // Counterintuitively, this call must be positioned second to the or() call in the
                // surrounding and() call or else returndatasize() will be zero during the computation.
                call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
            )
        }

        require(success, "APPROVE_FAILED");
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.16;

/// @author Open Zeppelin
interface IERC4626 {
    event Deposit(address indexed caller, address indexed owner, uint256 assets, uint256 shares);

    event Withdraw(
        address indexed caller, address indexed receiver, address indexed owner, uint256 assets, uint256 shares
    );

    /**
     * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
     *
     * - MUST be an ERC-20 token contract.
     * - MUST NOT revert.
     */
    function asset() external view returns (address assetTokenAddress);

    /**
     * @dev Returns the total amount of the underlying asset that is “managed” by Vault.
     *
     * - SHOULD include any compounding that occurs from yield.
     * - MUST be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT revert.
     */
    function totalAssets() external view returns (uint256 totalManagedAssets);

    /**
     * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToShares(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToAssets(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
     * through a deposit call.
     *
     * - MUST return a limited value if receiver is subject to some deposit limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
     * - MUST NOT revert.
     */
    function maxDeposit(address receiver) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
     * call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
     * in the same transaction.
     * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
     * deposit would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewDeposit(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     * deposit execution, and are accounted for during deposit.
     * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
     * approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function deposit(uint256 assets, address receiver) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
     * - MUST return a limited value if receiver is subject to some mint limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
     * - MUST NOT revert.
     */
    function maxMint(address receiver) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
     * in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
     * same transaction.
     * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
     * would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by minting.
     */
    function previewMint(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
     * execution, and are accounted for during mint.
     * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
     * approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function mint(uint256 shares, address receiver) external returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
     * Vault, through a withdraw call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxWithdraw(address owner) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
     * call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
     * called
     * in the same transaction.
     * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
     * the withdrawal would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewWithdraw(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     * withdraw execution, and are accounted for during withdraw.
     * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
     * not having enough shares, etc).
     *
     * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
     * through a redeem call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxRedeem(address owner) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
     * in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
     * same transaction.
     * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
     * redemption would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by redeeming.
     */
    function previewRedeem(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     * redeem execution, and are accounted for during redeem.
     * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
     * not having enough shares, etc).
     *
     * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.16;

interface IWETH {
    function deposit() external payable;
    function transfer(address to, uint256 value) external returns (bool);
    function withdraw(uint256) external;
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.16;

import {ERC4626RouterBase, SafeTransferLib, ERC20, IERC4626} from "./ERC4626RouterBase.sol";

/// @title ERC4626Router contract
contract ERC4626Router is ERC4626RouterBase {
    using SafeTransferLib for ERC20;

    constructor(string memory name) {}

    function depositToVault(IERC4626 vault, address to, uint256 amount, uint256 minSharesOut)
        external
        payable
        returns (uint256 sharesOut)
    {
        ERC20(vault.asset()).safeTransferFrom(_msgSender(), address(this), amount);
        return deposit(vault, to, amount, minSharesOut);
    }

    function withdrawToDeposit(
        IERC4626 fromVault,
        IERC4626 toVault,
        address to,
        uint256 amount,
        uint256 maxSharesIn,
        uint256 minSharesOut
    ) external payable returns (uint256 sharesOut) {
        withdraw(fromVault, address(this), amount, maxSharesIn);
        return deposit(toVault, to, amount, minSharesOut);
    }

    function redeemToDeposit(IERC4626 fromVault, IERC4626 toVault, address to, uint256 shares, uint256 minSharesOut)
        external
        payable
        returns (uint256 sharesOut)
    {
        uint256 amount = redeem(fromVault, address(this), shares, 0);
        return deposit(toVault, to, amount, minSharesOut);
    }

    function depositMax(IERC4626 vault, address to, uint256 minSharesOut) public payable returns (uint256 sharesOut) {
        ERC20 asset = ERC20(vault.asset());
        uint256 assetBalance = asset.balanceOf(_msgSender());
        uint256 maxDeposit = vault.maxDeposit(to);
        uint256 amount = maxDeposit < assetBalance ? maxDeposit : assetBalance;
        ERC20(vault.asset()).safeTransferFrom(_msgSender(), address(this), amount);
        return deposit(vault, to, amount, minSharesOut);
    }

    function redeemMax(IERC4626 vault, address to, uint256 minAmountOut) public payable returns (uint256 amountOut) {
        uint256 shareBalance = ERC20(address(vault)).balanceOf(_msgSender());
        uint256 maxRedeem = vault.maxRedeem(_msgSender());
        uint256 amountShares = maxRedeem < shareBalance ? maxRedeem : shareBalance;
        return redeem(vault, to, amountShares, minAmountOut);
    }

    function approve(ERC20 token, address to, uint256 amount) public payable {
        token.safeApprove(to, amount);
    }

    function versionRecipient() external view virtual override returns (string memory) {
        return "1";
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.16;

import {ERC20} from "solmate/src/tokens/ERC20.sol";
import {SafeTransferLib} from "solmate/src/utils/SafeTransferLib.sol";
import {IERC4626} from "src/interfaces/IERC4626.sol";
import {Multicallable} from "solady/src/utils/Multicallable.sol";
import {BaseRelayRecipient} from "@opengsn/contracts/src/BaseRelayRecipient.sol";

/// @title ERC4626 Router Base Contract
abstract contract ERC4626RouterBase is Multicallable, BaseRelayRecipient {
    using SafeTransferLib for ERC20;

    error MinAmountError();

    /// @notice thrown when amount of shares received is below the min set by caller
    error MinSharesError();

    /// @notice thrown when amount of assets received is above the max set by caller
    error MaxAmountError();

    /// @notice thrown when amount of shares received is above the max set by caller
    error MaxSharesError();

    function mint(IERC4626 vault, address to, uint256 shares, uint256 maxAmountIn)
        public
        payable
        virtual
        returns (uint256 amountIn)
    {
        if ((amountIn = vault.mint(shares, to)) > maxAmountIn) {
            revert MaxAmountError();
        }
    }

    function deposit(IERC4626 vault, address to, uint256 amount, uint256 minSharesOut)
        public
        payable
        virtual
        returns (uint256 sharesOut)
    {
        if ((sharesOut = vault.deposit(amount, to)) < minSharesOut) {
            revert MinSharesError();
        }
    }

    function withdraw(IERC4626 vault, address to, uint256 amount, uint256 maxSharesOut)
        public
        payable
        virtual
        returns (uint256 sharesOut)
    {
        if ((sharesOut = vault.withdraw(amount, to, _msgSender())) > maxSharesOut) {
            revert MaxSharesError();
        }
    }

    function redeem(IERC4626 vault, address to, uint256 shares, uint256 minAmountOut)
        public
        payable
        virtual
        returns (uint256 amountOut)
    {
        if ((amountOut = vault.redeem(shares, to, _msgSender())) < minAmountOut) {
            revert MinAmountError();
        }
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.16;

import {ERC4626Router} from "./ERC4626Router.sol";
import {IWETH} from "src/interfaces/IWETH.sol";

contract Router is ERC4626Router {
    constructor(string memory name, address forwarder, IWETH _weth) ERC4626Router(name) {
        _setTrustedForwarder(forwarder);
        weth = _weth;
    }

    IWETH public immutable weth;

    function depositNative() external payable {
        weth.deposit{value: msg.value}();
    }

    function versionRecipient() external view virtual override returns (string memory) {
        return "1";
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):