ETH Price: $2,743.17 (+5.66%)

Contract Diff Checker

Contract Name:
BBFC

Contract Source Code:

File 1 of 1 : BBFC

/**
 *Submitted for verification at Etherscan.io on 2022-05-21
*/

// SPDX-License-Identifier: MIT
pragma solidity 0.8.0;

/**
 * @dev ERC-721 non-fungible token standard.
 * See https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md.
 */
interface ERC721
{

  /**
   * @dev Emits when ownership of any NFT changes by any mechanism. This event emits when NFTs are
   * created (`from` == 0) and destroyed (`to` == 0). Exception: during contract creation, any
   * number of NFTs may be created and assigned without emitting Transfer. At the time of any
   * transfer, the approved address for that NFT (if any) is reset to none.
   */
  event Transfer(
    address indexed _from,
    address indexed _to,
    uint256 indexed _tokenId
  );

  /**
   * @dev This emits when the approved address for an NFT is changed or reaffirmed. The zero
   * address indicates there is no approved address. When a Transfer event emits, this also
   * indicates that the approved address for that NFT (if any) is reset to none.
   */
  event Approval(
    address indexed _owner,
    address indexed _approved,
    uint256 indexed _tokenId
  );

  /**
   * @dev This emits when an operator is enabled or disabled for an owner. The operator can manage
   * all NFTs of the owner.
   */
  event ApprovalForAll(
    address indexed _owner,
    address indexed _operator,
    bool _approved
  );

  /**
   * @dev Transfers the ownership of an NFT from one address to another address.
   * @notice Throws unless `msg.sender` is the current owner, an authorized operator, or the
   * approved address for this NFT. Throws if `_from` is not the current owner. Throws if `_to` is
   * the zero address. Throws if `_tokenId` is not a valid NFT. When transfer is complete, this
   * function checks if `_to` is a smart contract (code size > 0). If so, it calls
   * `onERC721Received` on `_to` and throws if the return value is not
   * `bytes4(keccak256("onERC721Received(address,uint256,bytes)"))`.
   * @param _from The current owner of the NFT.
   * @param _to The new owner.
   * @param _tokenId The NFT to transfer.
   * @param _data Additional data with no specified format, sent in call to `_to`.
   */
  function safeTransferFrom(
    address _from,
    address _to,
    uint256 _tokenId,
    bytes calldata _data
  )
    external;

  /**
   * @dev Transfers the ownership of an NFT from one address to another address.
   * @notice This works identically to the other function with an extra data parameter, except this
   * function just sets data to ""
   * @param _from The current owner of the NFT.
   * @param _to The new owner.
   * @param _tokenId The NFT to transfer.
   */
  function safeTransferFrom(
    address _from,
    address _to,
    uint256 _tokenId
  )
    external;

  /**
   * @dev Throws unless `msg.sender` is the current owner, an authorized operator, or the approved
   * address for this NFT. Throws if `_from` is not the current owner. Throws if `_to` is the zero
   * address. Throws if `_tokenId` is not a valid NFT.
   * @notice The caller is responsible to confirm that `_to` is capable of receiving NFTs or else
   * they may be permanently lost.
   * @param _from The current owner of the NFT.
   * @param _to The new owner.
   * @param _tokenId The NFT to transfer.
   */
  function transferFrom(
    address _from,
    address _to,
    uint256 _tokenId
  )
    external;

  /**
   * @dev Set or reaffirm the approved address for an NFT.
   * @notice The zero address indicates there is no approved address. Throws unless `msg.sender` is
   * the current NFT owner, or an authorized operator of the current owner.
   * @param _approved The new approved NFT controller.
   * @param _tokenId The NFT to approve.
   */
  function approve(
    address _approved,
    uint256 _tokenId
  )
    external;

  /**
   * @dev Enables or disables approval for a third party ("operator") to manage all of
   * `msg.sender`'s assets. It also emits the ApprovalForAll event.
   * @notice The contract MUST allow multiple operators per owner.
   * @param _operator Address to add to the set of authorized operators.
   * @param _approved True if the operators is approved, false to revoke approval.
   */
  function setApprovalForAll(
    address _operator,
    bool _approved
  )
    external;

  /**
   * @dev Returns the number of NFTs owned by `_owner`. NFTs assigned to the zero address are
   * considered invalid, and this function throws for queries about the zero address.
   * @param _owner Address for whom to query the balance.
   * @return Balance of _owner.
   */
  function balanceOf(
    address _owner
  )
    external
    view
    returns (uint256);

  /**
   * @dev Returns the address of the owner of the NFT. NFTs assigned to the zero address are
   * considered invalid, and queries about them do throw.
   * @param _tokenId The identifier for an NFT.
   * @return Address of _tokenId owner.
   */
  function ownerOf(
    uint256 _tokenId
  )
    external
    view
    returns (address);

  /**
   * @dev Get the approved address for a single NFT.
   * @notice Throws if `_tokenId` is not a valid NFT.
   * @param _tokenId The NFT to find the approved address for.
   * @return Address that _tokenId is approved for.
   */
  function getApproved(
    uint256 _tokenId
  )
    external
    view
    returns (address);

  /**
   * @dev Returns true if `_operator` is an approved operator for `_owner`, false otherwise.
   * @param _owner The address that owns the NFTs.
   * @param _operator The address that acts on behalf of the owner.
   * @return True if approved for all, false otherwise.
   */
  function isApprovedForAll(
    address _owner,
    address _operator
  )
    external
    view
    returns (bool);

}
/**
 * @dev Optional metadata extension for ERC-721 non-fungible token standard.
 * See https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md.
 */
interface ERC721Metadata
{

  /**
   * @dev Returns a descriptive name for a collection of NFTs in this contract.
   * @return _name Representing name.
   */
  function name()
    external
    view
    returns (string memory _name);

  /**
   * @dev Returns a abbreviated name for a collection of NFTs in this contract.
   * @return _symbol Representing symbol.
   */
  function symbol()
    external
    view
    returns (string memory _symbol);

  /**
   * @dev Returns a distinct Uniform Resource Identifier (URI) for a given asset. It Throws if
   * `_tokenId` is not a valid NFT. URIs are defined in RFC3986. The URI may point to a JSON file
   * that conforms to the "ERC721 Metadata JSON Schema".
   * @return URI of _tokenId.
   */
  function tokenURI(uint256 _tokenId)
    external
    view
    returns (string memory);

}
/**
 * @dev Utility library of inline functions on addresses.
 * @notice Based on:
 * https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Address.sol
 * Requires EIP-1052.
 */
library AddressUtils
{

  /**
   * @dev Returns whether the target address is a contract.
   * @param _addr Address to check.
   * @return addressCheck True if _addr is a contract, false if not.
   */
  function isContract(
    address _addr
  )
    internal
    view
    returns (bool addressCheck)
  {
    // This method relies in extcodesize, which returns 0 for contracts in
    // construction, since the code is only stored at the end of the
    // constructor execution.

    // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
    // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
    // for accounts without code, i.e. `keccak256('')`
    bytes32 codehash;
    bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
    assembly { codehash := extcodehash(_addr) } // solhint-disable-line
    addressCheck = (codehash != 0x0 && codehash != accountHash);
  }

}
/**
 * @dev A standard for detecting smart contract interfaces. 
 * See: https://eips.ethereum.org/EIPS/eip-165.
 */
interface ERC165
{

  /**
   * @dev Checks if the smart contract includes a specific interface.
   * This function uses less than 30,000 gas.
   * @param _interfaceID The interface identifier, as specified in ERC-165.
   * @return True if _interfaceID is supported, false otherwise.
   */
  function supportsInterface(
    bytes4 _interfaceID
  )
    external
    view
    returns (bool);
    
}
/**
 * @dev ERC-721 interface for accepting safe transfers.
 * See https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md.
 */
interface ERC721TokenReceiver
{

  /**
   * @dev Handle the receipt of a NFT. The ERC721 smart contract calls this function on the
   * recipient after a `transfer`. This function MAY throw to revert and reject the transfer. Return
   * of other than the magic value MUST result in the transaction being reverted.
   * Returns `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` unless throwing.
   * @notice The contract address is always the message sender. A wallet/broker/auction application
   * MUST implement the wallet interface if it will accept safe transfers.
   * @param _operator The address which called `safeTransferFrom` function.
   * @param _from The address which previously owned the token.
   * @param _tokenId The NFT identifier which is being transferred.
   * @param _data Additional data with no specified format.
   * @return Returns `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`.
   */
  function onERC721Received(
    address _operator,
    address _from,
    uint256 _tokenId,
    bytes calldata _data
  )
    external
    returns(bytes4);

}
/**
 * @dev Implementation of standard for detect smart contract interfaces.
 */
contract SupportsInterface is
  ERC165
{

  /**
   * @dev Mapping of supported intefraces. You must not set element 0xffffffff to true.
   */
  mapping(bytes4 => bool) internal supportedInterfaces;

  /**
   * @dev Contract constructor.
   */
  constructor()
  {
    supportedInterfaces[0x01ffc9a7] = true; // ERC165
  }

  /**
   * @dev Function to check which interfaces are suported by this contract.
   * @param _interfaceID Id of the interface.
   * @return True if _interfaceID is supported, false otherwise.
   */
  function supportsInterface(
    bytes4 _interfaceID
  )
    external
    override
    view
    returns (bool)
  {
    return supportedInterfaces[_interfaceID];
  }

}
/**
 * @dev Implementation of ERC-721 non-fungible token standard.
 */
contract NFToken is
  ERC721,
  SupportsInterface
{
  using AddressUtils for address;

  /**
   * @dev List of revert message codes. Implementing dApp should handle showing the correct message.
   * Based on 0xcert framework error codes.
   */
  string constant ZERO_ADDRESS = "003001";
  string constant NOT_VALID_NFT = "003002";
  string constant NOT_OWNER_OR_OPERATOR = "003003";
  string constant NOT_OWNER_APPROVED_OR_OPERATOR = "003004";
  string constant NOT_ABLE_TO_RECEIVE_NFT = "003005";
  string constant NFT_ALREADY_EXISTS = "003006";
  string constant NOT_OWNER = "003007";
  string constant IS_OWNER = "003008";

  /**
   * @dev Magic value of a smart contract that can receive NFT.
   * Equal to: bytes4(keccak256("onERC721Received(address,address,uint256,bytes)")).
   */
  bytes4 internal constant MAGIC_ON_ERC721_RECEIVED = 0x150b7a02;

  /**
   * @dev A mapping from NFT ID to the address that owns it.
   */
  mapping (uint256 => address) internal idToOwner;

  /**
   * @dev Mapping from NFT ID to approved address.
   */
  mapping (uint256 => address) internal idToApproval;

   /**
   * @dev Mapping from owner address to count of their tokens.
   */
  mapping (address => uint256) private ownerToNFTokenCount;

  /**
   * @dev Mapping from owner address to mapping of operator addresses.
   */
  mapping (address => mapping (address => bool)) internal ownerToOperators;

  /**
   * @dev Guarantees that the msg.sender is an owner or operator of the given NFT.
   * @param _tokenId ID of the NFT to validate.
   */
  modifier canOperate(
    uint256 _tokenId
  )
  {
    address tokenOwner = idToOwner[_tokenId];
    require(
      tokenOwner == msg.sender || ownerToOperators[tokenOwner][msg.sender],
      NOT_OWNER_OR_OPERATOR
    );
    _;
  }

  /**
   * @dev Guarantees that the msg.sender is allowed to transfer NFT.
   * @param _tokenId ID of the NFT to transfer.
   */
  modifier canTransfer(
    uint256 _tokenId
  )
  {
    address tokenOwner = idToOwner[_tokenId];
    require(
      tokenOwner == msg.sender
      || idToApproval[_tokenId] == msg.sender
      || ownerToOperators[tokenOwner][msg.sender],
      NOT_OWNER_APPROVED_OR_OPERATOR
    );
    _;
  }

  /**
   * @dev Guarantees that _tokenId is a valid Token.
   * @param _tokenId ID of the NFT to validate.
   */
  modifier validNFToken(
    uint256 _tokenId
  )
  {
    require(idToOwner[_tokenId] != address(0), NOT_VALID_NFT);
    _;
  }

  /**
   * @dev Contract constructor.
   */
  constructor()
  {
    supportedInterfaces[0x80ac58cd] = true; // ERC721
  }

  /**
   * @dev Transfers the ownership of an NFT from one address to another address. This function can
   * be changed to payable.
   * @notice Throws unless `msg.sender` is the current owner, an authorized operator, or the
   * approved address for this NFT. Throws if `_from` is not the current owner. Throws if `_to` is
   * the zero address. Throws if `_tokenId` is not a valid NFT. When transfer is complete, this
   * function checks if `_to` is a smart contract (code size > 0). If so, it calls
   * `onERC721Received` on `_to` and throws if the return value is not
   * `bytes4(keccak256("onERC721Received(address,uint256,bytes)"))`.
   * @param _from The current owner of the NFT.
   * @param _to The new owner.
   * @param _tokenId The NFT to transfer.
   * @param _data Additional data with no specified format, sent in call to `_to`.
   */
  function safeTransferFrom(
    address _from,
    address _to,
    uint256 _tokenId,
    bytes calldata _data
  )
    external
    override
  {
    _safeTransferFrom(_from, _to, _tokenId, _data);
  }

  /**
   * @dev Transfers the ownership of an NFT from one address to another address. This function can
   * be changed to payable.
   * @notice This works identically to the other function with an extra data parameter, except this
   * function just sets data to ""
   * @param _from The current owner of the NFT.
   * @param _to The new owner.
   * @param _tokenId The NFT to transfer.
   */
  function safeTransferFrom(
    address _from,
    address _to,
    uint256 _tokenId
  )
    external
    override
  {
    _safeTransferFrom(_from, _to, _tokenId, "");
  }

  /**
   * @dev Throws unless `msg.sender` is the current owner, an authorized operator, or the approved
   * address for this NFT. Throws if `_from` is not the current owner. Throws if `_to` is the zero
   * address. Throws if `_tokenId` is not a valid NFT. This function can be changed to payable.
   * @notice The caller is responsible to confirm that `_to` is capable of receiving NFTs or else
   * they may be permanently lost.
   * @param _from The current owner of the NFT.
   * @param _to The new owner.
   * @param _tokenId The NFT to transfer.
   */
  function transferFrom(
    address _from,
    address _to,
    uint256 _tokenId
  )
    external
    override
    canTransfer(_tokenId)
    validNFToken(_tokenId)
  {
    address tokenOwner = idToOwner[_tokenId];
    require(tokenOwner == _from, NOT_OWNER);
    require(_to != address(0), ZERO_ADDRESS);

    _transfer(_to, _tokenId);
  }

  /**
   * @dev Set or reaffirm the approved address for an NFT. This function can be changed to payable.
   * @notice The zero address indicates there is no approved address. Throws unless `msg.sender` is
   * the current NFT owner, or an authorized operator of the current owner.
   * @param _approved Address to be approved for the given NFT ID.
   * @param _tokenId ID of the token to be approved.
   */
  function approve(
    address _approved,
    uint256 _tokenId
  )
    external
    override
    canOperate(_tokenId)
    validNFToken(_tokenId)
  {
    address tokenOwner = idToOwner[_tokenId];
    require(_approved != tokenOwner, IS_OWNER);

    idToApproval[_tokenId] = _approved;
    emit Approval(tokenOwner, _approved, _tokenId);
  }

  /**
   * @dev Enables or disables approval for a third party ("operator") to manage all of
   * `msg.sender`'s assets. It also emits the ApprovalForAll event.
   * @notice This works even if sender doesn't own any tokens at the time.
   * @param _operator Address to add to the set of authorized operators.
   * @param _approved True if the operators is approved, false to revoke approval.
   */
  function setApprovalForAll(
    address _operator,
    bool _approved
  )
    external
    override
  {
    ownerToOperators[msg.sender][_operator] = _approved;
    emit ApprovalForAll(msg.sender, _operator, _approved);
  }

  /**
   * @dev Returns the number of NFTs owned by `_owner`. NFTs assigned to the zero address are
   * considered invalid, and this function throws for queries about the zero address.
   * @param _owner Address for whom to query the balance.
   * @return Balance of _owner.
   */
  function balanceOf(
    address _owner
  )
    external
    override
    view
    returns (uint256)
  {
    require(_owner != address(0), ZERO_ADDRESS);
    return _getOwnerNFTCount(_owner);
  }

  /**
   * @dev Returns the address of the owner of the NFT. NFTs assigned to the zero address are
   * considered invalid, and queries about them do throw.
   * @param _tokenId The identifier for an NFT.
   * @return _owner Address of _tokenId owner.
   */
  function ownerOf(
    uint256 _tokenId
  )
    external
    override
    view
    returns (address _owner)
  {
    _owner = idToOwner[_tokenId];
    require(_owner != address(0), NOT_VALID_NFT);
  }

  /**
   * @dev Get the approved address for a single NFT.
   * @notice Throws if `_tokenId` is not a valid NFT.
   * @param _tokenId ID of the NFT to query the approval of.
   * @return Address that _tokenId is approved for.
   */
  function getApproved(
    uint256 _tokenId
  )
    external
    override
    view
    validNFToken(_tokenId)
    returns (address)
  {
    return idToApproval[_tokenId];
  }

  /**
   * @dev Checks if `_operator` is an approved operator for `_owner`.
   * @param _owner The address that owns the NFTs.
   * @param _operator The address that acts on behalf of the owner.
   * @return True if approved for all, false otherwise.
   */
  function isApprovedForAll(
    address _owner,
    address _operator
  )
    external
    override
    view
    returns (bool)
  {
    return ownerToOperators[_owner][_operator];
  }

  /**
   * @dev Actually performs the transfer.
   * @notice Does NO checks.
   * @param _to Address of a new owner.
   * @param _tokenId The NFT that is being transferred.
   */
  function _transfer(
    address _to,
    uint256 _tokenId
  )
    internal
  {
    address from = idToOwner[_tokenId];
    _clearApproval(_tokenId);

    _removeNFToken(from, _tokenId);
    _addNFToken(_to, _tokenId);

    emit Transfer(from, _to, _tokenId);
  }

  /**
   * @dev Mints a new NFT.
   * @notice This is an internal function which should be called from user-implemented external
   * mint function. Its purpose is to show and properly initialize data structures when using this
   * implementation.
   * @param _to The address that will own the minted NFT.
   * @param _tokenId of the NFT to be minted by the msg.sender.
   */
  function _mint(
    address _to,
    uint256 _tokenId
  )
    internal
    virtual
  {
    require(_to != address(0), ZERO_ADDRESS);
    require(idToOwner[_tokenId] == address(0), NFT_ALREADY_EXISTS);

    _addNFToken(_to, _tokenId);

    emit Transfer(address(0), _to, _tokenId);
  }

  /**
   * @dev Burns a NFT.
   * @notice This is an internal function which should be called from user-implemented external burn
   * function. Its purpose is to show and properly initialize data structures when using this
   * implementation. Also, note that this burn implementation allows the minter to re-mint a burned
   * NFT.
   * @param _tokenId ID of the NFT to be burned.
   */
  function _burn(
    uint256 _tokenId
  )
    internal
    virtual
    validNFToken(_tokenId)
  {
    address tokenOwner = idToOwner[_tokenId];
    _clearApproval(_tokenId);
    _removeNFToken(tokenOwner, _tokenId);
    emit Transfer(tokenOwner, address(0), _tokenId);
  }

  /**
   * @dev Removes a NFT from owner.
   * @notice Use and override this function with caution. Wrong usage can have serious consequences.
   * @param _from Address from which we want to remove the NFT.
   * @param _tokenId Which NFT we want to remove.
   */
  function _removeNFToken(
    address _from,
    uint256 _tokenId
  )
    internal
    virtual
  {
    require(idToOwner[_tokenId] == _from, NOT_OWNER);
    ownerToNFTokenCount[_from] -= 1;
    delete idToOwner[_tokenId];
  }

  /**
   * @dev Assigns a new NFT to owner.
   * @notice Use and override this function with caution. Wrong usage can have serious consequences.
   * @param _to Address to which we want to add the NFT.
   * @param _tokenId Which NFT we want to add.
   */
  function _addNFToken(
    address _to,
    uint256 _tokenId
  )
    internal
    virtual
  {
    require(idToOwner[_tokenId] == address(0), NFT_ALREADY_EXISTS);

    idToOwner[_tokenId] = _to;
    ownerToNFTokenCount[_to] += 1;
  }

  /**
   * @dev Helper function that gets NFT count of owner. This is needed for overriding in enumerable
   * extension to remove double storage (gas optimization) of owner NFT count.
   * @param _owner Address for whom to query the count.
   * @return Number of _owner NFTs.
   */
  function _getOwnerNFTCount(
    address _owner
  )
    internal
    virtual
    view
    returns (uint256)
  {
    return ownerToNFTokenCount[_owner];
  }

  /**
   * @dev Actually perform the safeTransferFrom.
   * @param _from The current owner of the NFT.
   * @param _to The new owner.
   * @param _tokenId The NFT to transfer.
   * @param _data Additional data with no specified format, sent in call to `_to`.
   */
  function _safeTransferFrom(
    address _from,
    address _to,
    uint256 _tokenId,
    bytes memory _data
  )
    private
    canTransfer(_tokenId)
    validNFToken(_tokenId)
  {
    address tokenOwner = idToOwner[_tokenId];
    require(tokenOwner == _from, NOT_OWNER);
    require(_to != address(0), ZERO_ADDRESS);

    _transfer(_to, _tokenId);

    if (_to.isContract())
    {
      bytes4 retval = ERC721TokenReceiver(_to).onERC721Received(msg.sender, _from, _tokenId, _data);
      require(retval == MAGIC_ON_ERC721_RECEIVED, NOT_ABLE_TO_RECEIVE_NFT);
    }
  }

  /**
   * @dev Clears the current approval of a given NFT ID.
   * @param _tokenId ID of the NFT to be transferred.
   */
  function _clearApproval(
    uint256 _tokenId
  )
    private
  {
    delete idToApproval[_tokenId];
  }

}
/**
 * @dev Optional metadata implementation for ERC-721 non-fungible token standard.
 */
contract NFTokenMetadata is
  NFToken,
  ERC721Metadata
{

  /**
   * @dev A descriptive name for a collection of NFTs.
   */
  string internal nftName;

  /**
   * @dev An abbreviated name for NFTokens.
   */
  string internal nftSymbol;

  /**
   * @dev Mapping from NFT ID to metadata uri.
   */
  mapping (uint256 => string) internal idToUri;

  /**
   * @dev Contract constructor.
   * @notice When implementing this contract don't forget to set nftName and nftSymbol.
   */
  constructor()
  {
    supportedInterfaces[0x5b5e139f] = true; // ERC721Metadata
  }

  /**
   * @dev Returns a descriptive name for a collection of NFTokens.
   * @return _name Representing name.
   */
  function name()
    external
    override
    view
    returns (string memory _name)
  {
    _name = nftName;
  }

  /**
   * @dev Returns an abbreviated name for NFTokens.
   * @return _symbol Representing symbol.
   */
  function symbol()
    external
    override
    view
    returns (string memory _symbol)
  {
    _symbol = nftSymbol;
  }

  /**
   * @dev A distinct URI (RFC 3986) for a given NFT.
   * @param _tokenId Id for which we want uri.
   * @return URI of _tokenId.
   */
  function tokenURI(
    uint256 _tokenId
  )
    external
    override
    view
    validNFToken(_tokenId)
    returns (string memory)
  {
    return idToUri[_tokenId];
  }

  /**
   * @dev Burns a NFT.
   * @notice This is an internal function which should be called from user-implemented external
   * burn function. Its purpose is to show and properly initialize data structures when using this
   * implementation. Also, note that this burn implementation allows the minter to re-mint a burned
   * NFT.
   * @param _tokenId ID of the NFT to be burned.
   */
  function _burn(
    uint256 _tokenId
  )
    internal
    override
    virtual
  {
    super._burn(_tokenId);

    delete idToUri[_tokenId];
  }

  /**
   * @dev Set a distinct URI (RFC 3986) for a given NFT ID.
   * @notice This is an internal function which should be called from user-implemented external
   * function. Its purpose is to show and properly initialize data structures when using this
   * implementation.
   * @param _tokenId Id for which we want URI.
   * @param _uri String representing RFC 3986 URI.
   */
  function _setTokenUri(
    uint256 _tokenId,
    string memory _uri
  )
    internal
    validNFToken(_tokenId)
  {
    idToUri[_tokenId] = _uri;
  }

}
/**
 * @dev The contract has an owner address, and provides basic authorization control whitch
 * simplifies the implementation of user permissions. This contract is based on the source code at:
 * https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/ownership/Ownable.sol
 */
contract Ownable
{

  /**
   * @dev Error constants.
   */
  string public constant NOT_CURRENT_OWNER = "018001";
  string public constant CANNOT_TRANSFER_TO_ZERO_ADDRESS = "018002";

  /**
   * @dev Current owner address.
   */
  address public owner;

  /**
   * @dev An event which is triggered when the owner is changed.
   * @param previousOwner The address of the previous owner.
   * @param newOwner The address of the new owner.
   */
  event OwnershipTransferred(
    address indexed previousOwner,
    address indexed newOwner
  );

  /**
   * @dev The constructor sets the original `owner` of the contract to the sender account.
   */
  constructor()
  {
    owner = msg.sender;
  }

  /**
   * @dev Throws if called by any account other than the owner.
   */
  modifier onlyOwner()
  {
    require(msg.sender == owner, NOT_CURRENT_OWNER);
    _;
  }

  /**
   * @dev Allows the current owner to transfer control of the contract to a newOwner.
   * @param _newOwner The address to transfer ownership to.
   */
  function transferOwnership(
    address _newOwner
  )
    public
    onlyOwner
  {
    require(_newOwner != address(0), CANNOT_TRANSFER_TO_ZERO_ADDRESS);
    emit OwnershipTransferred(owner, _newOwner);
    owner = _newOwner;
  }

}

contract utils{
     function strConcat(string memory _a, string memory _b) internal pure returns (string memory){
     bytes memory _ba = bytes(_a);
     bytes memory _bb = bytes(_b);
     string memory ret = new string(_ba.length + _bb.length);
     bytes memory bret = bytes(ret);
     uint k = 0;
     for (uint i = 0; i < _ba.length; i++)bret[k++] = _ba[i];
     for (uint i = 0; i < _bb.length; i++) {
         bret[k++] = _bb[i];
         
     }
     return string(ret);
 } 
   function toString(uint256 value) internal pure returns (string memory) {
        if (value == 0) {
            return "0";
        }
        uint256 temp = value;
        uint256 digits;
        while (temp != 0) {
            digits++;
            temp /= 10;
        }
        bytes memory buffer = new bytes(digits);
        while (value != 0) {
            digits -= 1;
            buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
            value /= 10;
        }
        return string(buffer);
  }
}

interface IERC20 {

    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

contract BBFC is NFTokenMetadata, Ownable, utils {

    //0.18eth
    uint256 public price = 180000000 * 10 ** 9;
    uint256 public tokenId = 1;
    
    uint256 public minMint = 1;

    string baseUri = "https://boringbearfortuneclub.mypinata.cloud/ipfs/QmVrKn1ZFEvhPJKtbJUvHByws5geiGdgH7SyXzYcbhHTNb/";
   
    constructor() {
        nftName = "BoringBearFortuneClub";
        nftSymbol = "BBFC";
    }
    address payable public payAddress = payable(0x4F867ad863E3FC714792480A3F53f90C4259aAA7);

    function mint(uint256 tokenQuantity) payable public{
      require(msg.value * tokenQuantity >= price, "price too little");
      require(tokenId <= totalSupply(), "too many");
      require(tokenQuantity >= minMint && tokenQuantity <= 10, "amount false");
      for (uint256 i = 0; i < tokenQuantity; i++) {
          super._mint(msg.sender, tokenId);
          super._setTokenUri(tokenId, strConcat(baseUri, toString(tokenId)));
          tokenId ++;
      }
      payAddress.transfer(msg.value);
      
    }

    function setPrice(uint256 _target) external onlyOwner{
        price = _target * 10 ** 9;
    }

    function setMinAmount(uint256 _target) external onlyOwner{
        minMint = _target;
    }

    function totalSupply() public pure returns (uint256) {
        return 3333;
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):