Contract Name:
SbeeStaking
Contract Source Code:
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.0;
import {ERC20} from "solmate/src/tokens/ERC20.sol";
import {SafeTransferLib} from "solmate/src/utils/SafeTransferLib.sol";
contract SbeeStaking {
using SafeTransferLib for ERC20;
using Cast for uint256;
event Staked(address user, uint256 amount);
event Unstaked(address user, uint256 amount);
event Claimed(address user, uint256 amount);
event RewardsPerTokenUpdated(uint256 accumulated);
event UserRewardsUpdated(address user, uint256 rewards, uint256 checkpoint);
struct RewardsPerToken {
uint128 accumulated;
uint128 lastUpdated;
}
struct UserRewards {
uint128 accumulated;
uint128 checkpoint;
uint256 totalEarned;
}
ERC20 public immutable stakingToken;
uint256 public totalStaked;
uint256 public totalStakers;
mapping(address => uint256) public userStake;
uint256 public immutable rewardsRate;
uint256 public immutable stakingStart;
uint256 public immutable stakingEnd;
RewardsPerToken public rewardsPerToken;
mapping(address => UserRewards) public accumulatedRewards;
constructor(
ERC20 _stakingToken,
uint256 _stakingStart,
uint256 _stakingEnd,
uint256 totalRewards
) {
stakingToken = _stakingToken;
stakingStart = _stakingStart;
stakingEnd = _stakingEnd;
rewardsRate = totalRewards / (_stakingEnd - _stakingStart);
rewardsPerToken.lastUpdated = _stakingStart.u128();
}
function _calculateRewardsPerToken(
RewardsPerToken memory rewardsPerTokenIn
) internal view returns (RewardsPerToken memory) {
RewardsPerToken memory rewardsPerTokenOut = RewardsPerToken(
rewardsPerTokenIn.accumulated,
rewardsPerTokenIn.lastUpdated
);
uint256 _totalStaked = totalStaked;
if (block.timestamp < stakingStart) return rewardsPerTokenOut;
uint256 updateTime = block.timestamp < stakingEnd
? block.timestamp
: stakingEnd;
uint256 elapsed = updateTime - rewardsPerTokenIn.lastUpdated;
if (elapsed == 0) return rewardsPerTokenOut;
rewardsPerTokenOut.lastUpdated = updateTime.u128();
if (totalStaked == 0) return rewardsPerTokenOut;
rewardsPerTokenOut.accumulated = (rewardsPerTokenIn.accumulated +
(1e18 * elapsed * rewardsRate) /
_totalStaked).u128();
return rewardsPerTokenOut;
}
function _calculateUserRewards(
uint256 _staked,
uint256 earlierCheckpoint,
uint256 latterCheckpoint
) internal pure returns (uint256) {
return (_staked * (latterCheckpoint - earlierCheckpoint)) / 1e18;
}
function _updateRewardsPerToken()
internal
returns (RewardsPerToken memory)
{
RewardsPerToken memory rewardsPerTokenIn = rewardsPerToken;
RewardsPerToken memory rewardsPerTokenOut = _calculateRewardsPerToken(
rewardsPerTokenIn
);
if (rewardsPerTokenIn.lastUpdated == rewardsPerTokenOut.lastUpdated)
return rewardsPerTokenOut;
rewardsPerToken = rewardsPerTokenOut;
emit RewardsPerTokenUpdated(rewardsPerTokenOut.accumulated);
return rewardsPerTokenOut;
}
function _updateUserRewards(
address user
) internal returns (UserRewards memory) {
RewardsPerToken memory _rewardsPerToken = _updateRewardsPerToken();
UserRewards memory _userRewards = accumulatedRewards[user];
if (_userRewards.checkpoint == _rewardsPerToken.lastUpdated)
return _userRewards;
uint256 earnedSinceLastUpdate = _calculateUserRewards(
userStake[user],
_userRewards.checkpoint,
_rewardsPerToken.accumulated
);
_userRewards.accumulated += earnedSinceLastUpdate.u128();
_userRewards.totalEarned += earnedSinceLastUpdate.u128();
_userRewards.checkpoint = _rewardsPerToken.accumulated;
accumulatedRewards[user] = _userRewards;
emit UserRewardsUpdated(
user,
_userRewards.accumulated,
_userRewards.checkpoint
);
return _userRewards;
}
function _stake(address user, uint256 amount) internal {
_updateUserRewards(user);
if (userStake[user] == 0) {
totalStakers++;
}
totalStaked += amount;
userStake[user] += amount;
stakingToken.safeTransferFrom(user, address(this), amount);
emit Staked(user, amount);
}
function _unstake(address user, uint256 amount) internal {
require(userStake[user] >= amount, "Insufficient staked amount");
_updateUserRewards(user);
if (userStake[user] == amount) {
totalStakers--;
}
totalStaked -= amount;
userStake[user] -= amount;
stakingToken.safeTransfer(user, amount);
emit Unstaked(user, amount);
}
function _claim(address user, uint256 amount) internal {
uint256 rewardsAvailable = _updateUserRewards(msg.sender).accumulated;
accumulatedRewards[user].accumulated = (rewardsAvailable - amount)
.u128();
stakingToken.safeTransfer(user, amount);
emit Claimed(user, amount);
}
function stake(uint256 amount) public virtual {
_stake(msg.sender, amount);
}
function unstake(uint256 amount) public virtual {
_unstake(msg.sender, amount);
}
function claim() public virtual returns (uint256) {
uint256 claimed = _updateUserRewards(msg.sender).accumulated;
_claim(msg.sender, claimed);
return claimed;
}
function currentRewardsPerToken() public view returns (uint256) {
return _calculateRewardsPerToken(rewardsPerToken).accumulated;
}
function currentUserRewards(address user) public view returns (uint256) {
UserRewards memory accumulatedRewards_ = accumulatedRewards[user];
RewardsPerToken memory rewardsPerToken_ = _calculateRewardsPerToken(
rewardsPerToken
);
return
accumulatedRewards_.accumulated +
_calculateUserRewards(
userStake[user],
accumulatedRewards_.checkpoint,
rewardsPerToken_.accumulated
);
}
}
library Cast {
function u128(uint256 x) internal pure returns (uint128 y) {
require(x <= type(uint128).max, "Cast overflow");
y = uint128(x);
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
/// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
abstract contract ERC20 {
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event Transfer(address indexed from, address indexed to, uint256 amount);
event Approval(address indexed owner, address indexed spender, uint256 amount);
/*//////////////////////////////////////////////////////////////
METADATA STORAGE
//////////////////////////////////////////////////////////////*/
string public name;
string public symbol;
uint8 public immutable decimals;
/*//////////////////////////////////////////////////////////////
ERC20 STORAGE
//////////////////////////////////////////////////////////////*/
uint256 public totalSupply;
mapping(address => uint256) public balanceOf;
mapping(address => mapping(address => uint256)) public allowance;
/*//////////////////////////////////////////////////////////////
EIP-2612 STORAGE
//////////////////////////////////////////////////////////////*/
uint256 internal immutable INITIAL_CHAIN_ID;
bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;
mapping(address => uint256) public nonces;
/*//////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////*/
constructor(
string memory _name,
string memory _symbol,
uint8 _decimals
) {
name = _name;
symbol = _symbol;
decimals = _decimals;
INITIAL_CHAIN_ID = block.chainid;
INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
}
/*//////////////////////////////////////////////////////////////
ERC20 LOGIC
//////////////////////////////////////////////////////////////*/
function approve(address spender, uint256 amount) public virtual returns (bool) {
allowance[msg.sender][spender] = amount;
emit Approval(msg.sender, spender, amount);
return true;
}
function transfer(address to, uint256 amount) public virtual returns (bool) {
balanceOf[msg.sender] -= amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(msg.sender, to, amount);
return true;
}
function transferFrom(
address from,
address to,
uint256 amount
) public virtual returns (bool) {
uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.
if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;
balanceOf[from] -= amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(from, to, amount);
return true;
}
/*//////////////////////////////////////////////////////////////
EIP-2612 LOGIC
//////////////////////////////////////////////////////////////*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual {
require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");
// Unchecked because the only math done is incrementing
// the owner's nonce which cannot realistically overflow.
unchecked {
address recoveredAddress = ecrecover(
keccak256(
abi.encodePacked(
"\x19\x01",
DOMAIN_SEPARATOR(),
keccak256(
abi.encode(
keccak256(
"Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
),
owner,
spender,
value,
nonces[owner]++,
deadline
)
)
)
),
v,
r,
s
);
require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");
allowance[recoveredAddress][spender] = value;
}
emit Approval(owner, spender, value);
}
function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
}
function computeDomainSeparator() internal view virtual returns (bytes32) {
return
keccak256(
abi.encode(
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
keccak256(bytes(name)),
keccak256("1"),
block.chainid,
address(this)
)
);
}
/*//////////////////////////////////////////////////////////////
INTERNAL MINT/BURN LOGIC
//////////////////////////////////////////////////////////////*/
function _mint(address to, uint256 amount) internal virtual {
totalSupply += amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(address(0), to, amount);
}
function _burn(address from, uint256 amount) internal virtual {
balanceOf[from] -= amount;
// Cannot underflow because a user's balance
// will never be larger than the total supply.
unchecked {
totalSupply -= amount;
}
emit Transfer(from, address(0), amount);
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
import {ERC20} from "../tokens/ERC20.sol";
/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
/// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller.
library SafeTransferLib {
/*//////////////////////////////////////////////////////////////
ETH OPERATIONS
//////////////////////////////////////////////////////////////*/
function safeTransferETH(address to, uint256 amount) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Transfer the ETH and store if it succeeded or not.
success := call(gas(), to, amount, 0, 0, 0, 0)
}
require(success, "ETH_TRANSFER_FAILED");
}
/*//////////////////////////////////////////////////////////////
ERC20 OPERATIONS
//////////////////////////////////////////////////////////////*/
function safeTransferFrom(
ERC20 token,
address from,
address to,
uint256 amount
) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from" argument.
mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
// We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
// Counterintuitively, this call must be positioned second to the or() call in the
// surrounding and() call or else returndatasize() will be zero during the computation.
call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)
)
}
require(success, "TRANSFER_FROM_FAILED");
}
function safeTransfer(
ERC20 token,
address to,
uint256 amount
) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
// We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
// Counterintuitively, this call must be positioned second to the or() call in the
// surrounding and() call or else returndatasize() will be zero during the computation.
call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
)
}
require(success, "TRANSFER_FAILED");
}
function safeApprove(
ERC20 token,
address to,
uint256 amount
) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
// We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
// Counterintuitively, this call must be positioned second to the or() call in the
// surrounding and() call or else returndatasize() will be zero during the computation.
call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
)
}
require(success, "APPROVE_FAILED");
}
}