ETH Price: $2,378.54 (+0.40%)

Contract Diff Checker

Contract Name:
LineaRollup

Contract Source Code:

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)

pragma solidity ^0.8.0;

import "./IAccessControlUpgradeable.sol";
import "../utils/ContextUpgradeable.sol";
import "../utils/StringsUpgradeable.sol";
import "../utils/introspection/ERC165Upgradeable.sol";
import "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControlUpgradeable, ERC165Upgradeable {
    function __AccessControl_init() internal onlyInitializing {
    }

    function __AccessControl_init_unchained() internal onlyInitializing {
    }
    struct RoleData {
        mapping(address => bool) members;
        bytes32 adminRole;
    }

    mapping(bytes32 => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with a standardized message including the required role.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     *
     * _Available since v4.1._
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControlUpgradeable).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
        return _roles[role].members[account];
    }

    /**
     * @dev Revert with a standard message if `_msgSender()` is missing `role`.
     * Overriding this function changes the behavior of the {onlyRole} modifier.
     *
     * Format of the revert message is described in {_checkRole}.
     *
     * _Available since v4.6._
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Revert with a standard message if `account` is missing `role`.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert(
                string(
                    abi.encodePacked(
                        "AccessControl: account ",
                        StringsUpgradeable.toHexString(account),
                        " is missing role ",
                        StringsUpgradeable.toHexString(uint256(role), 32)
                    )
                )
            );
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address account) public virtual override {
        require(account == _msgSender(), "AccessControl: can only renounce roles for self");

        _revokeRole(role, account);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event. Note that unlike {grantRole}, this function doesn't perform any
     * checks on the calling account.
     *
     * May emit a {RoleGranted} event.
     *
     * [WARNING]
     * ====
     * This function should only be called from the constructor when setting
     * up the initial roles for the system.
     *
     * Using this function in any other way is effectively circumventing the admin
     * system imposed by {AccessControl}.
     * ====
     *
     * NOTE: This function is deprecated in favor of {_grantRole}.
     */
    function _setupRole(bytes32 role, address account) internal virtual {
        _grantRole(role, account);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual {
        if (!hasRole(role, account)) {
            _roles[role].members[account] = true;
            emit RoleGranted(role, account, _msgSender());
        }
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual {
        if (hasRole(role, account)) {
            _roles[role].members[account] = false;
            emit RoleRevoked(role, account, _msgSender());
        }
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)

pragma solidity ^0.8.0;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControlUpgradeable {
    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     *
     * _Available since v3.1._
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     */
    function renounceRole(bytes32 role, address account) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils/AddressUpgradeable.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
     * constructor.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: setting the version to 255 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized != type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint8) {
        return _initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _initializing;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;
import "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuardUpgradeable is Initializable {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    function __ReentrancyGuard_init() internal onlyInitializing {
        __ReentrancyGuard_init_unchained();
    }

    function __ReentrancyGuard_init_unchained() internal onlyInitializing {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;
import "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[50] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165Upgradeable.sol";
import "../../proxy/utils/Initializable.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable {
    function __ERC165_init() internal onlyInitializing {
    }

    function __ERC165_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165Upgradeable).interfaceId;
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[50] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165Upgradeable {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library MathUpgradeable {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMathUpgradeable {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/MathUpgradeable.sol";
import "./math/SignedMathUpgradeable.sol";

/**
 * @dev String operations.
 */
library StringsUpgradeable {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = MathUpgradeable.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMathUpgradeable.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, MathUpgradeable.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/BitMaps.sol)
pragma solidity ^0.8.0;

/**
 * @dev Library for managing uint256 to bool mapping in a compact and efficient way, providing the keys are sequential.
 * Largely inspired by Uniswap's https://github.com/Uniswap/merkle-distributor/blob/master/contracts/MerkleDistributor.sol[merkle-distributor].
 */
library BitMaps {
    struct BitMap {
        mapping(uint256 => uint256) _data;
    }

    /**
     * @dev Returns whether the bit at `index` is set.
     */
    function get(BitMap storage bitmap, uint256 index) internal view returns (bool) {
        uint256 bucket = index >> 8;
        uint256 mask = 1 << (index & 0xff);
        return bitmap._data[bucket] & mask != 0;
    }

    /**
     * @dev Sets the bit at `index` to the boolean `value`.
     */
    function setTo(BitMap storage bitmap, uint256 index, bool value) internal {
        if (value) {
            set(bitmap, index);
        } else {
            unset(bitmap, index);
        }
    }

    /**
     * @dev Sets the bit at `index`.
     */
    function set(BitMap storage bitmap, uint256 index) internal {
        uint256 bucket = index >> 8;
        uint256 mask = 1 << (index & 0xff);
        bitmap._data[bucket] |= mask;
    }

    /**
     * @dev Unsets the bit at `index`.
     */
    function unset(BitMap storage bitmap, uint256 index) internal {
        uint256 bucket = index >> 8;
        uint256 mask = 1 << (index & 0xff);
        bitmap._data[bucket] &= ~mask;
    }
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity >=0.8.19 <=0.8.22;

/**
 * @title Interface declaring generic errors.
 * @author ConsenSys Software Inc.
 * @custom:security-contact [email protected]
 */
interface IGenericErrors {
  /**
   * @dev Thrown when a parameter is the zero address.
   */
  error ZeroAddressNotAllowed();
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity >=0.8.19 <=0.8.22;

/**
 * @title Interface declaring pre-existing cross-chain messaging functions, events and errors.
 * @author ConsenSys Software Inc.
 * @custom:security-contact [email protected]
 */
interface IMessageService {
  /**
   * @dev Emitted when a message is sent.
   * @dev We include the message hash to save hashing costs on the rollup.
   */
  event MessageSent(
    address indexed _from,
    address indexed _to,
    uint256 _fee,
    uint256 _value,
    uint256 _nonce,
    bytes _calldata,
    bytes32 indexed _messageHash
  );

  /**
   * @dev Emitted when a message is claimed.
   */
  event MessageClaimed(bytes32 indexed _messageHash);

  /**
   * @dev Thrown when fees are lower than the minimum fee.
   */
  error FeeTooLow();

  /**
   * @dev Thrown when the value sent is less than the fee.
   * @dev Value to forward on is msg.value - _fee.
   */
  error ValueSentTooLow();

  /**
   * @dev Thrown when the destination address reverts.
   */
  error MessageSendingFailed(address destination);

  /**
   * @dev Thrown when the recipient address reverts.
   */
  error FeePaymentFailed(address recipient);

  /**
   * @notice Sends a message for transporting from the given chain.
   * @dev This function should be called with a msg.value = _value + _fee. The fee will be paid on the destination chain.
   * @param _to The destination address on the destination chain.
   * @param _fee The message service fee on the origin chain.
   * @param _calldata The calldata used by the destination message service to call the destination contract.
   */
  function sendMessage(address _to, uint256 _fee, bytes calldata _calldata) external payable;

  /**
   * @notice Deliver a message to the destination chain.
   * @notice Is called by the Postman, dApp or end user.
   * @param _from The msg.sender calling the origin message service.
   * @param _to The destination address on the destination chain.
   * @param _value The value to be transferred to the destination address.
   * @param _fee The message service fee on the origin chain.
   * @param _feeRecipient Address that will receive the fees.
   * @param _calldata The calldata used by the destination message service to call/forward to the destination contract.
   * @param _nonce Unique message number.
   */
  function claimMessage(
    address _from,
    address _to,
    uint256 _fee,
    uint256 _value,
    address payable _feeRecipient,
    bytes calldata _calldata,
    uint256 _nonce
  ) external;

  /**
   * @notice Returns the original sender of the message on the origin layer.
   * @return The original sender of the message on the origin layer.
   */
  function sender() external view returns (address);
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity >=0.8.19 <=0.8.22;

/**
 * @title Interface declaring pre-existing pausing functions, events and errors.
 * @author ConsenSys Software Inc.
 * @custom:security-contact [email protected]
 */
interface IPauseManager {
  /**
   * @dev Thrown when a specific pause type is paused.
   */
  error IsPaused(uint256 pauseType);

  /**
   * @dev Thrown when a specific pause type is not paused and expected to be.
   */
  error IsNotPaused(uint256 pauseType);

  /**
   * @dev Emitted when a pause type is paused.
   */
  event Paused(address messageSender, uint256 indexed pauseType);

  /**
   * @dev Emitted when a pause type is unpaused.
   */
  event UnPaused(address messageSender, uint256 indexed pauseType);
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity >=0.8.19 <=0.8.22;

/**
 * @title Interface declaring rate limiting messaging functions, events and errors.
 * @author ConsenSys Software Inc.
 * @custom:security-contact [email protected]
 */
interface IRateLimiter {
  /**
   * @dev Thrown when an amount breaches the limit in the period.
   */
  error RateLimitExceeded();

  /**
   * @dev Thrown when the period is initialised to zero.
   */
  error PeriodIsZero();

  /**
   * @dev Thrown when the limit is initialised to zero.
   */
  error LimitIsZero();

  /**
   * @dev Emitted when the Rate Limit is initialized.
   */
  event RateLimitInitialized(uint256 periodInSeconds, uint256 limitInWei, uint256 currentPeriodEnd);

  /**
   * @dev Emitted when the amount in the period is reset to zero.
   */
  event AmountUsedInPeriodReset(address indexed resettingAddress);

  /**
   * @dev Emitted when the limit is changed.
   * @dev If the current used amount is higher than the new limit, the used amount is lowered to the limit.
   */
  event LimitAmountChanged(
    address indexed amountChangeBy,
    uint256 amount,
    bool amountUsedLoweredToLimit,
    bool usedAmountResetToZero
  );

  /**
   * @notice Resets the rate limit amount to the amount specified.
   * @param _amount sets the new limit amount.
   */
  function resetRateLimitAmount(uint256 _amount) external;

  /**
   * @notice Resets the amount used in the period to zero.
   */
  function resetAmountUsedInPeriod() external;
}

// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.22;

/**
 * @title L1 Message manager interface for current functions, events and errors.
 * @author ConsenSys Software Inc.
 * @custom:security-contact [email protected]
 */
interface IL1MessageManager {
  /**
   * @dev Emitted when a new message is sent and the rolling hash updated.
   */
  event RollingHashUpdated(uint256 indexed messageNumber, bytes32 indexed rollingHash, bytes32 indexed messageHash);

  /**
   * @dev Emitted when the l2 merkle root has been anchored on L1.
   */
  event L2MerkleRootAdded(bytes32 indexed l2MerkleRoot, uint256 indexed treeDepth);

  /**
   * @dev Emitted when the l2 block contains L2 messages during finalization
   */
  event L2MessagingBlockAnchored(uint256 indexed l2Block);

  /**
   * @dev Thrown when the message has already been claimed.
   */
  error MessageAlreadyClaimed(uint256 messageIndex);

  /**
   * @dev Thrown when the L2 merkle root has already been anchored on L1.
   */
  error L2MerkleRootAlreadyAnchored(bytes32 merkleRoot);

  /**
   * @dev Thrown when the L2 messaging blocks offsets bytes length is not a multiple of 2.
   */
  error BytesLengthNotMultipleOfTwo(uint256 bytesLength);

  /**
   * @notice Check if the L2->L1 message is claimed or not.
   * @param _messageNumber The message number on L2.
   */
  function isMessageClaimed(uint256 _messageNumber) external view returns (bool);
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.22;

/**
 * @title L1 Message manager V1 interface for pre-existing functions, events and errors.
 * @author ConsenSys Software Inc.
 * @custom:security-contact [email protected]
 */
interface IL1MessageManagerV1 {
  /**
   * @dev Emitted when L2->L1 message hashes have been added to L1 storage.
   */
  event L2L1MessageHashAddedToInbox(bytes32 indexed messageHash);

  /**
   * @dev Emitted when L1->L2 messages have been anchored on L2 and updated on L1.
   */
  event L1L2MessagesReceivedOnL2(bytes32[] messageHashes);

  /**
   * @dev Thrown when the message has already been claimed.
   */
  error MessageDoesNotExistOrHasAlreadyBeenClaimed(bytes32 messageHash);

  /**
   * @dev Thrown when the message has already been received.
   */
  error MessageAlreadyReceived(bytes32 messageHash);

  /**
   * @dev Thrown when the L1->L2 message has not been sent.
   */
  error L1L2MessageNotSent(bytes32 messageHash);
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.22;

/**
 * @title L1 Message Service interface for pre-existing functions, events and errors.
 * @author ConsenSys Software Inc.
 * @custom:security-contact [email protected]
 */

interface IL1MessageService {
  /**
   * @dev Emitted when initializing Linea Rollup contract with a system migration block.
   */
  event SystemMigrationBlockInitialized(uint256 systemMigrationBlock);
  /**
   * @dev Thrown when L2 merkle root does not exist.
   */
  error L2MerkleRootDoesNotExist();

  /**
   * @dev Thrown when the merkle proof is invalid.
   */
  error InvalidMerkleProof();

  /**
   * @dev Thrown when merkle depth doesn't match proof length.
   */
  error ProofLengthDifferentThanMerkleDepth(uint256 actual, uint256 expected);

  /**
   * @dev Thrown when the system migration block is 0.
   */
  error SystemMigrationBlockZero();

  /**
   * @param proof The proof array related to the claimed message.
   * @param messageNumber The message number of the claimed message.
   * @param leafIndex The leaf index related to the merkle proof of the message.
   * @param from The address of the original sender.
   * @param to The address the message is intended for.
   * @param fee The fee being paid for the message delivery.
   * @param value The value to be transferred to the destination address.
   * @param feeRecipient The recipient for the fee.
   * @param merkleRoot The merkle root of the claimed message.
   * @param data The calldata to pass to the recipient.
   */
  struct ClaimMessageWithProofParams {
    bytes32[] proof;
    uint256 messageNumber;
    uint32 leafIndex;
    address from;
    address to;
    uint256 fee;
    uint256 value;
    address payable feeRecipient;
    bytes32 merkleRoot;
    bytes data;
  }
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.22;

/**
 * @title LineaRollup interface for current functions, events and errors.
 * @author ConsenSys Software Inc.
 * @custom:security-contact [email protected]
 */
interface ILineaRollup {
  /**
   * @dev parentStateRootHash is the starting root hash.
   * @dev dataParentHash is used in order to link data.
   * @dev finalStateRootHash is used to set next data.
   * @dev firstBlockInData is the first block that is included in the data submitted.
   * @dev finalBlockInData is the last block that is included in the data submitted.
   * @dev snarkHash is the computed hash for compressed data (using a SNARK-friendly hash function) that aggregates per data submission to be used in public input.
   * @dev compressedData is the compressed transaction data. It contains ordered data for each L2 block - l2Timestamps, the encoded txData.
   */
  struct SubmissionData {
    bytes32 parentStateRootHash;
    bytes32 dataParentHash;
    bytes32 finalStateRootHash;
    uint256 firstBlockInData;
    uint256 finalBlockInData;
    bytes32 snarkHash;
    bytes compressedData;
  }

  /**
   * @dev parentStateRootHash is the expected last state root hash finalized.
   * @dev dataHashes is the optional previously submitted compressed data item hashes.
   * @dev dataParentHash is the last finalized compressed data item hash.
   * @dev finalBlockNumber is the last block that is being finalized.
   * @dev lastFinalizedTimestamp is the expected last finalized block's timestamp.
   * @dev finalTimestamp is the timestamp of the last block being finalized.
   * @dev l1RollingHash is the calculated rolling hash on L2 that is expected to match L1 at l1RollingHashMessageNumber.
   * This value will be used along with the stored last finalized L2 calculated rolling hash in the public input.
   * @dev l1RollingHashMessageNumber is the calculated message number on L2 that is expected to match the existing L1 rolling hash.
   * This value will be used along with the stored last finalized L2 calculated message number in the public input.
   * @dev l2MerkleRoots is an array of L2 message merkle roots of depth l2MerkleTreesDepth between last finalized block and finalBlockNumber.
   * @dev l2MerkleTreesDepth is the depth of all l2MerkleRoots.
   * @dev l2MessagingBlocksOffsets indicates by offset from currentL2BlockNumber which L2 blocks contain MessageSent events.
   */
  struct FinalizationData {
    bytes32 parentStateRootHash;
    bytes32[] dataHashes;
    bytes32 dataParentHash;
    uint256 finalBlockNumber;
    uint256 lastFinalizedTimestamp;
    uint256 finalTimestamp;
    bytes32 l1RollingHash;
    uint256 l1RollingHashMessageNumber;
    bytes32[] l2MerkleRoots;
    uint256 l2MerkleTreesDepth;
    bytes l2MessagingBlocksOffsets;
  }

  /**
   * @dev Emitted when a verifier is set for a particular proof type.
   */
  event VerifierAddressChanged(
    address indexed verifierAddress,
    uint256 indexed proofType,
    address indexed verifierSetBy,
    address oldVerifierAddress
  );

  /**
   * @dev Emitted when compressed data is being submitted and verified succesfully on L1.
   */
  event DataSubmitted(bytes32 indexed dataHash, uint256 indexed startBlock, uint256 indexed endBlock);

  /**
   * @dev Emitted when L2 blocks have been finalized on L1.
   */
  event DataFinalized(
    uint256 indexed lastBlockFinalized,
    bytes32 indexed startingRootHash,
    bytes32 indexed finalRootHash,
    bool withProof
  );

  /**
   * @dev Thrown when the starting block in the data item is out of sequence with the last block number.
   */
  error DataStartingBlockDoesNotMatch(uint256 expected, uint256 actual);

  /**
   * @dev Thrown when the ending block in the data item is out of sequence with the finalization data.
   */
  error DataEndingBlockDoesNotMatch(uint256 expected, uint256 actual);

  /**
   * @dev Thrown when the expected data item's shnarf is empty.
   */
  error DataParentHasEmptyShnarf();

  /**
   * @dev Thrown when the current data was already submitted.
   */
  error DataAlreadySubmitted(bytes32 currentDataHash);

  /**
   * @dev Thrown when parent stateRootHash does not match or is empty.
   */
  error StateRootHashInvalid(bytes32 expected, bytes32 actual);

  /**
   * @dev Thrown when submissionData is empty.
   */
  error EmptySubmissionData();

  /**
   * @dev Thrown when finalizationData.dataHashes is empty.
   */
  error FinalizationDataMissing();

  /**
   * @dev Thrown when finalizationData.l1RollingHash does not exist on L1 (Feedback loop).
   */
  error L1RollingHashDoesNotExistOnL1(uint256 messageNumber, bytes32 rollingHash);

  /**
   * @dev Thrown when finalizationData.lastFinalizedTimestamp does not match currentTimestamp.
   */
  error TimestampsNotInSequence(uint256 expected, uint256 value);

  /**
   * @dev Thrown when the last submissionData finalBlockInData does not match finalizationData.finalBlockNumber.
   */
  error FinalBlockNumberInvalid(uint256 expected, uint256 value);

  /**
   * @dev Thrown when finalizationData.dataParentHash does not match parent of _finalizationData.dataHashes[0].
   */
  error ParentHashesDoesNotMatch(bytes32 firstHash, bytes32 secondHash);

  /**
   * @dev Thrown when parent finalStateRootHash does not match _finalizationData.parentStateRootHash.
   */
  error FinalStateRootHashDoesNotMatch(bytes32 firstHash, bytes32 secondHash);

  /**
   * @dev Thrown when data hashes are not in sequence.
   */
  error DataHashesNotInSequence(bytes32 expected, bytes32 value);

  /**
   * @dev Thrown when the first block is greater than final block in submission data.
   */
  error FirstBlockGreaterThanFinalBlock(uint256 firstBlockNumber, uint256 finalBlockNumber);

  /**
   * @dev Thrown when the first block in data is less than or equal to the last finalized block during data submission.
   */
  error FirstBlockLessThanOrEqualToLastFinalizedBlock(uint256 firstBlockNumber, uint256 lastFinalizedBlock);

  /**
   * @dev Thrown when the final block number in finalization data is less than or equal to the last finalized block during finalization.
   */
  error FinalBlockNumberLessThanOrEqualToLastFinalizedBlock(uint256 finalBlockNumber, uint256 lastFinalizedBlock);

  /**
   * @dev Thrown when the final block state equals the zero hash during finalization.
   */
  error FinalBlockStateEqualsZeroHash();

  /**
   * @dev Thrown when final l2 block timestamp higher than current block.timestamp during finalization.
   */
  error FinalizationInTheFuture(uint256 l2BlockTimestamp, uint256 currentBlockTimestamp);

  /**
   * @dev Thrown when a rolling hash is provided without a corresponding message number.
   */
  error MissingMessageNumberForRollingHash(bytes32 rollingHash);

  /**
   * @dev Thrown when a message number is provided without a corresponding rolling hash.
   */
  error MissingRollingHashForMessageNumber(uint256 messageNumber);

  /**
   * @dev Thrown when the first byte is not zero.
   * @dev This is used explicitly with the four bytes in assembly 0x729eebce.
   */
  error FirstByteIsNotZero();

  /**
   * @dev Thrown when bytes length is not a multiple of 32.
   */
  error BytesLengthNotMultipleOf32();

  /**
   * @notice Adds or updated the verifier contract address for a proof type.
   * @dev VERIFIER_SETTER_ROLE is required to execute.
   * @param _newVerifierAddress The address for the verifier contract.
   * @param _proofType The proof type being set/updated.
   */
  function setVerifierAddress(address _newVerifierAddress, uint256 _proofType) external;

  /**
   * @notice Submit compressed data.
   * @dev OPERATOR_ROLE is required to execute.
   * @param _submissionData The full compressed data collection - parentStateRootHash, dataParentHash,
   * finalStateRootHash, firstBlockInData, finalBlockInData, snarkHash, compressedData.
   */
  function submitData(SubmissionData calldata _submissionData) external;

  /**
   * @notice Finalize compressed blocks without proof.
   * @dev DEFAULT_ADMIN_ROLE is required to execute.
   * @param _finalizationData The full finalization data.
   */
  function finalizeCompressedBlocksWithoutProof(FinalizationData calldata _finalizationData) external;

  /**
   * @notice Finalize compressed blocks with proof.
   * @dev OPERATOR_ROLE is required to execute.
   * @param _aggregatedProof The aggregated proof.
   * @param _proofType The proof type.
   * @param _finalizationData The full finalization data.
   */
  function finalizeCompressedBlocksWithProof(
    bytes calldata _aggregatedProof,
    uint256 _proofType,
    FinalizationData calldata _finalizationData
  ) external;
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.22;

/**
 * @title Interface declaring verifier functions.
 * @author ConsenSys Software Inc.
 * @custom:security-contact [email protected]
 */
interface IPlonkVerifier {
  /**
   * @notice Interface for verifier contracts.
   * @param _proof The proof used to verify.
   * @param _public_inputs The computed public inputs for the proof verification.
   */
  function Verify(bytes calldata _proof, uint256[] calldata _public_inputs) external returns (bool);
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.22;

/**
 * @title ZkEvm rollup interface for pre-existing functions, events and errors.
 * @author ConsenSys Software Inc.
 * @custom:security-contact [email protected]
 */
interface IZkEvmV2 {
  /**
   * @dev blockRootHash is the calculated root hash of the block.
   * @dev l2BlockTimestamp corresponds to the time the block was produced.
   * @dev transactions is the transaction collection on the block RLP encoded.
   * @dev l2ToL1MsgHashes collection contains all the hashes for L2 to L1 anchoring.
   * @dev fromAddresses is a concatenation of all the from addresses for the transactions.
   * @dev batchReceptionIndices defines which transactions in the collection are L2 to L1 messages.
   */
  struct BlockData {
    bytes32 blockRootHash;
    uint32 l2BlockTimestamp;
    bytes[] transactions;
    bytes32[] l2ToL1MsgHashes;
    bytes fromAddresses;
    uint16[] batchReceptionIndices;
  }

  /**
   * @dev Emitted when a L2 block has been finalized on L1
   */
  event BlockFinalized(uint256 indexed blockNumber, bytes32 indexed stateRootHash, bool indexed finalizedWithProof);
  /**
   * @dev Emitted when a L2 blocks have been finalized on L1
   */
  event BlocksVerificationDone(uint256 indexed lastBlockFinalized, bytes32 startingRootHash, bytes32 finalRootHash);

  /**
   * @dev Thrown when l2 block timestamp is not correct
   */
  error BlockTimestampError(uint256 l2BlockTimestamp, uint256 currentBlockTimestamp);

  /**
   * @dev Thrown when the starting rootHash does not match the existing state
   */
  error StartingRootHashDoesNotMatch();

  /**
   * @dev Thrown when blockData is empty
   */
  error EmptyBlockDataArray();

  /**
   * @dev Thrown when block contains zero transactions
   */
  error EmptyBlock();

  /**
   * @dev Thrown when zk proof is empty bytes
   */
  error ProofIsEmpty();

  /**
   * @dev Thrown when zk proof type is invalid
   */
  error InvalidProofType();

  /**
   * @dev Thrown when zk proof is invalid
   */
  error InvalidProof();

  /**
   * @notice Finalizes blocks without using a proof
   * @dev DEFAULT_ADMIN_ROLE is required to execute
   * @param _calldata The full BlockData collection - block, transaction and log data
   */
  function finalizeBlocksWithoutProof(BlockData[] calldata _calldata) external;

  /**
   * @notice Finalizes blocks using a proof.
   * @dev OPERATOR_ROLE is required to execute.
   * @dev If the verifier based on proof type is not found, it reverts.
   * @param _blocksData The full BlockData collection - block, transaction and log data.
   * @param _proof The proof to be verified with the proof type verifier contract.
   * @param _proofType The proof type to determine which verifier contract to use.
   * @param _parentStateRootHash The starting roothash for the last known block.
   */
  function finalizeBlocks(
    BlockData[] calldata _blocksData,
    bytes calldata _proof,
    uint256 _proofType,
    bytes32 _parentStateRootHash
  ) external;
}

// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.19 <=0.8.22;

library Utils {
  /**
   * @notice Performs a gas optimized keccak hash.
   * @param _left Left value.
   * @param _right Right value.
   */
  function _efficientKeccak(bytes32 _left, bytes32 _right) internal pure returns (bytes32 value) {
    /// @solidity memory-safe-assembly
    assembly {
      mstore(0x00, _left)
      mstore(0x20, _right)
      value := keccak256(0x00, 0x40)
    }
  }
}

// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.22;

import { AccessControlUpgradeable } from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";
import { L1MessageService } from "./messageService/l1/L1MessageService.sol";
import { ZkEvmV2 } from "./ZkEvmV2.sol";
import { ILineaRollup } from "./interfaces/l1/ILineaRollup.sol";

/**
 * @title Contract to manage cross-chain messaging on L1 and rollup proving.
 * @author ConsenSys Software Inc.
 * @custom:security-contact [email protected]
 */
contract LineaRollup is AccessControlUpgradeable, ZkEvmV2, L1MessageService, ILineaRollup {
  bytes32 public constant VERIFIER_SETTER_ROLE = keccak256("VERIFIER_SETTER_ROLE");
  bytes32 internal constant EMPTY_HASH = 0x0;
  uint256 internal constant Y_MODULUS = 52435875175126190479447740508185965837690552500527637822603658699938581184513;

  mapping(bytes32 dataHash => bytes32 finalStateRootHash) public dataFinalStateRootHashes;
  mapping(bytes32 dataHash => bytes32 parentHash) public dataParents;
  mapping(bytes32 dataHash => bytes32 shnarfHash) public dataShnarfHashes;
  mapping(bytes32 dataHash => uint256 startingBlock) public dataStartingBlock;
  mapping(bytes32 dataHash => uint256 endingBlock) public dataEndingBlock;

  uint256 public currentL2StoredL1MessageNumber;
  bytes32 public currentL2StoredL1RollingHash;

  uint256[50] private __gap_ZkEvm;

  /// @custom:oz-upgrades-unsafe-allow constructor
  constructor() {
    _disableInitializers();
  }

  /**
   * @notice Initializes LineaRollup and underlying service dependencies.
   * @dev DEFAULT_ADMIN_ROLE is set for the security council.
   * @dev OPERATOR_ROLE is set for operators.
   * @param _initialStateRootHash The initial hash at migration used for proof verification.
   * @param _initialL2BlockNumber The initial block number at migration.
   * @param _defaultVerifier The default verifier for rollup proofs.
   * @param _securityCouncil The address for the security council performing admin operations.
   * @param _operators The allowed rollup operators at initialization.
   * @param _rateLimitPeriodInSeconds The period in which withdrawal amounts and fees will be accumulated.
   * @param _rateLimitAmountInWei The limit allowed for withdrawing in the period.
   * @param _systemMigrationBlock The service migration block.
   */
  function initialize(
    bytes32 _initialStateRootHash,
    uint256 _initialL2BlockNumber,
    address _defaultVerifier,
    address _securityCouncil,
    address[] calldata _operators,
    uint256 _rateLimitPeriodInSeconds,
    uint256 _rateLimitAmountInWei,
    uint256 _systemMigrationBlock
  ) external initializer {
    if (_defaultVerifier == address(0)) {
      revert ZeroAddressNotAllowed();
    }

    for (uint256 i; i < _operators.length; ++i) {
      if (_operators[i] == address(0)) {
        revert ZeroAddressNotAllowed();
      }
      _grantRole(OPERATOR_ROLE, _operators[i]);
    }

    _grantRole(DEFAULT_ADMIN_ROLE, _securityCouncil);
    _grantRole(VERIFIER_SETTER_ROLE, _securityCouncil);

    __ReentrancyGuard_init();

    __MessageService_init(
      _securityCouncil,
      _securityCouncil,
      _rateLimitPeriodInSeconds,
      _rateLimitAmountInWei,
      _systemMigrationBlock
    );

    verifiers[0] = _defaultVerifier;
    currentL2BlockNumber = _initialL2BlockNumber;
    stateRootHashes[_initialL2BlockNumber] = _initialStateRootHash;
  }

  /**
   * @notice Reinitializes the LineaRollup and sets the compressed data migration block.
   * @param _systemMigrationBlock The block number we are synchronizing from.
   * @dev This must be called in the same upgrade transaction to avoid issues.
   * @dev __SystemMigrationBlock_init validates the block value.
   */
  function initializeSystemMigrationBlock(uint256 _systemMigrationBlock) external reinitializer(2) {
    __SystemMigrationBlock_init(_systemMigrationBlock);
  }

  /**
   * @notice Adds or updates the verifier contract address for a proof type.
   * @dev VERIFIER_SETTER_ROLE is required to execute.
   * @param _newVerifierAddress The address for the verifier contract.
   * @param _proofType The proof type being set/updated.
   */
  function setVerifierAddress(address _newVerifierAddress, uint256 _proofType) external onlyRole(VERIFIER_SETTER_ROLE) {
    if (_newVerifierAddress == address(0)) {
      revert ZeroAddressNotAllowed();
    }

    emit VerifierAddressChanged(_newVerifierAddress, _proofType, msg.sender, verifiers[_proofType]);

    verifiers[_proofType] = _newVerifierAddress;
  }

  /**
   * @notice Submit compressed data.
   * @dev OPERATOR_ROLE is required to execute.
   * @param _submissionData The full compressed data collection - parentStateRootHash, dataParentHash,
   * finalStateRootHash, firstBlockInData, finalBlockInData, snarkHash, compressedData.
   */
  function submitData(
    SubmissionData calldata _submissionData
  ) external whenTypeAndGeneralNotPaused(PROVING_SYSTEM_PAUSE_TYPE) onlyRole(OPERATOR_ROLE) {
    _submitData(_submissionData);
  }

  /**
   * @notice Internal function to submit compressed data.
   * @param _submissionData The full compressed data collection - parentStateRootHash, dataParentHash,
   * finalStateRootHash, firstBlockInData, finalBlockInData, snarkHash, compressedData.
   */
  function _submitData(SubmissionData calldata _submissionData) internal returns (bytes32 shnarf) {
    if (_submissionData.compressedData.length == 0) {
      revert EmptySubmissionData();
    }

    if (_submissionData.finalStateRootHash == EMPTY_HASH) {
      revert FinalBlockStateEqualsZeroHash();
    }

    shnarf = dataShnarfHashes[_submissionData.dataParentHash];

    bytes32 parentFinalStateRootHash = dataFinalStateRootHashes[_submissionData.dataParentHash];
    uint256 lastFinalizedBlock = currentL2BlockNumber;

    uint256 parentEndingBlock = dataEndingBlock[_submissionData.dataParentHash];

    // once upgraded, this initial condition will be removed - the internals remain
    if (_submissionData.dataParentHash != EMPTY_HASH) {
      if (parentFinalStateRootHash == EMPTY_HASH) {
        revert StateRootHashInvalid(parentFinalStateRootHash, _submissionData.parentStateRootHash);
      }

      uint256 expectedStartingBlock = parentEndingBlock + 1;
      if (expectedStartingBlock != _submissionData.firstBlockInData) {
        revert DataStartingBlockDoesNotMatch(expectedStartingBlock, _submissionData.firstBlockInData);
      }

      if (shnarf == EMPTY_HASH) {
        revert DataParentHasEmptyShnarf();
      }
    }

    if (_submissionData.firstBlockInData <= lastFinalizedBlock) {
      revert FirstBlockLessThanOrEqualToLastFinalizedBlock(_submissionData.firstBlockInData, lastFinalizedBlock);
    }

    if (_submissionData.firstBlockInData > _submissionData.finalBlockInData) {
      revert FirstBlockGreaterThanFinalBlock(_submissionData.firstBlockInData, _submissionData.finalBlockInData);
    }

    if (_submissionData.parentStateRootHash != parentFinalStateRootHash) {
      revert StateRootHashInvalid(parentFinalStateRootHash, _submissionData.parentStateRootHash);
    }

    bytes32 currentDataHash = keccak256(_submissionData.compressedData);

    if (dataFinalStateRootHashes[currentDataHash] != EMPTY_HASH) {
      revert DataAlreadySubmitted(currentDataHash);
    }

    dataParents[currentDataHash] = _submissionData.dataParentHash;
    dataFinalStateRootHashes[currentDataHash] = _submissionData.finalStateRootHash;
    dataStartingBlock[currentDataHash] = _submissionData.firstBlockInData;
    dataEndingBlock[currentDataHash] = _submissionData.finalBlockInData;

    bytes32 compressedDataComputedX = keccak256(abi.encode(_submissionData.snarkHash, currentDataHash));

    shnarf = keccak256(
      abi.encode(
        shnarf,
        _submissionData.snarkHash,
        _submissionData.finalStateRootHash,
        compressedDataComputedX,
        _calculateY(_submissionData.compressedData, compressedDataComputedX)
      )
    );

    dataShnarfHashes[currentDataHash] = shnarf;

    emit DataSubmitted(currentDataHash, _submissionData.firstBlockInData, _submissionData.finalBlockInData);
  }

  /**
   * @notice Finalize compressed blocks with proof.
   * @dev OPERATOR_ROLE is required to execute.
   * @param _aggregatedProof The aggregated proof.
   * @param _proofType The proof type.
   * @param _finalizationData The full finalization data.
   */
  function finalizeCompressedBlocksWithProof(
    bytes calldata _aggregatedProof,
    uint256 _proofType,
    FinalizationData calldata _finalizationData
  ) external whenTypeAndGeneralNotPaused(PROVING_SYSTEM_PAUSE_TYPE) onlyRole(OPERATOR_ROLE) {
    if (_aggregatedProof.length == 0) {
      revert ProofIsEmpty();
    }

    uint256 lastFinalizedBlockNumber = currentL2BlockNumber;

    if (stateRootHashes[lastFinalizedBlockNumber] != _finalizationData.parentStateRootHash) {
      revert StartingRootHashDoesNotMatch();
    }

    uint256 lastFinalizedL2StoredL1MessageNumber = currentL2StoredL1MessageNumber;
    bytes32 lastFinalizedL2StoredL1RollingHash = currentL2StoredL1RollingHash;

    _finalizeCompressedBlocks(_finalizationData, lastFinalizedBlockNumber, true);

    bytes32 shnarf;

    unchecked {
      shnarf = dataShnarfHashes[_finalizationData.dataHashes[_finalizationData.dataHashes.length - 1]];
      if (shnarf == EMPTY_HASH) {
        revert DataParentHasEmptyShnarf();
      }
    }

    uint256 publicInput = uint256(
      keccak256(
        bytes.concat(
          abi.encode(
            shnarf,
            _finalizationData.parentStateRootHash,
            _finalizationData.lastFinalizedTimestamp,
            _finalizationData.finalTimestamp,
            lastFinalizedBlockNumber,
            _finalizationData.finalBlockNumber
          ),
          abi.encode(
            lastFinalizedL2StoredL1RollingHash,
            _finalizationData.l1RollingHash,
            lastFinalizedL2StoredL1MessageNumber,
            _finalizationData.l1RollingHashMessageNumber,
            _finalizationData.l2MerkleTreesDepth,
            keccak256(abi.encodePacked(_finalizationData.l2MerkleRoots))
          )
        )
      )
    );

    assembly {
      publicInput := mod(publicInput, MODULO_R)
    }

    _verifyProof(publicInput, _proofType, _aggregatedProof, _finalizationData.parentStateRootHash);
  }

  /**
   * @notice Finalize compressed blocks without proof.
   * @dev DEFAULT_ADMIN_ROLE is required to execute.
   * @param _finalizationData The simplified finalization data without proof.
   */
  function finalizeCompressedBlocksWithoutProof(
    FinalizationData calldata _finalizationData
  ) external whenTypeNotPaused(GENERAL_PAUSE_TYPE) onlyRole(DEFAULT_ADMIN_ROLE) {
    uint256 lastFinalizedBlock = currentL2BlockNumber;

    _finalizeCompressedBlocks(_finalizationData, lastFinalizedBlock, false);
  }

  /**
   * @notice Internal function to finalize compressed blocks.
   * @param _finalizationData The full finalization data.
   * @param _lastFinalizedBlock The last finalized block.
   * @param _withProof If we are finalizing with a proof.
   */
  function _finalizeCompressedBlocks(
    FinalizationData calldata _finalizationData,
    uint256 _lastFinalizedBlock,
    bool _withProof
  ) internal {
    uint256 finalizationDataDataHashesLength = _finalizationData.dataHashes.length;

    if (finalizationDataDataHashesLength == 0) {
      revert FinalizationDataMissing();
    }

    if (_finalizationData.finalBlockNumber <= _lastFinalizedBlock) {
      revert FinalBlockNumberLessThanOrEqualToLastFinalizedBlock(
        _finalizationData.finalBlockNumber,
        _lastFinalizedBlock
      );
    }

    _validateL2ComputedRollingHash(_finalizationData.l1RollingHashMessageNumber, _finalizationData.l1RollingHash);

    if (currentTimestamp != _finalizationData.lastFinalizedTimestamp) {
      revert TimestampsNotInSequence(currentTimestamp, _finalizationData.lastFinalizedTimestamp);
    }

    if (_finalizationData.finalTimestamp >= block.timestamp) {
      revert FinalizationInTheFuture(_finalizationData.finalTimestamp, block.timestamp);
    }

    bytes32 startingDataParentHash = dataParents[_finalizationData.dataHashes[0]];

    if (startingDataParentHash != _finalizationData.dataParentHash) {
      revert ParentHashesDoesNotMatch(startingDataParentHash, _finalizationData.dataParentHash);
    }

    bytes32 startingParentFinalStateRootHash = dataFinalStateRootHashes[startingDataParentHash];

    // once upgraded, this initial condition will be removed - the internals remain
    if (startingDataParentHash != EMPTY_HASH) {
      if (startingParentFinalStateRootHash != _finalizationData.parentStateRootHash) {
        revert FinalStateRootHashDoesNotMatch(startingParentFinalStateRootHash, _finalizationData.parentStateRootHash);
      }
    }

    bytes32 finalBlockState = dataFinalStateRootHashes[
      _finalizationData.dataHashes[finalizationDataDataHashesLength - 1]
    ];

    if (finalBlockState == EMPTY_HASH) {
      revert FinalBlockStateEqualsZeroHash();
    }

    _addL2MerkleRoots(_finalizationData.l2MerkleRoots, _finalizationData.l2MerkleTreesDepth);
    _anchorL2MessagingBlocks(_finalizationData.l2MessagingBlocksOffsets, _lastFinalizedBlock);

    for (uint256 i = 1; i < finalizationDataDataHashesLength; ++i) {
      unchecked {
        if (dataParents[_finalizationData.dataHashes[i]] != _finalizationData.dataHashes[i - 1]) {
          revert DataHashesNotInSequence(
            _finalizationData.dataHashes[i - 1],
            dataParents[_finalizationData.dataHashes[i]]
          );
        }
      }
    }

    uint256 suppliedStartingBlock = dataStartingBlock[_finalizationData.dataHashes[0]];
    uint256 suppliedFinalBlock = dataEndingBlock[_finalizationData.dataHashes[finalizationDataDataHashesLength - 1]];

    // check final item supplied matches
    if (suppliedFinalBlock != _finalizationData.finalBlockNumber) {
      revert DataEndingBlockDoesNotMatch(suppliedFinalBlock, _finalizationData.finalBlockNumber);
    }

    // check suppliedStartingBlock is 1 more than the last finalized block
    if (suppliedStartingBlock != _lastFinalizedBlock + 1) {
      revert DataStartingBlockDoesNotMatch(_lastFinalizedBlock + 1, suppliedStartingBlock);
    }

    stateRootHashes[_finalizationData.finalBlockNumber] = finalBlockState;
    currentTimestamp = _finalizationData.finalTimestamp;
    currentL2BlockNumber = _finalizationData.finalBlockNumber;
    currentL2StoredL1MessageNumber = _finalizationData.l1RollingHashMessageNumber;
    currentL2StoredL1RollingHash = _finalizationData.l1RollingHash;

    emit DataFinalized(
      _finalizationData.finalBlockNumber,
      _finalizationData.parentStateRootHash,
      finalBlockState,
      _withProof
    );
  }

  /**
   * @notice Private function to validate l1 rolling hash.
   * @param _rollingHashMessageNumber Message number associated with the rolling hash as computed on L2.
   * @param _rollingHash L1 rolling hash as computed on L2.
   */
  function _validateL2ComputedRollingHash(uint256 _rollingHashMessageNumber, bytes32 _rollingHash) internal view {
    if (_rollingHashMessageNumber == 0) {
      if (_rollingHash != EMPTY_HASH) {
        revert MissingMessageNumberForRollingHash(_rollingHash);
      }
    } else {
      if (_rollingHash == EMPTY_HASH) {
        revert MissingRollingHashForMessageNumber(_rollingHashMessageNumber);
      }
      if (rollingHashes[_rollingHashMessageNumber] != _rollingHash) {
        revert L1RollingHashDoesNotExistOnL1(_rollingHashMessageNumber, _rollingHash);
      }
    }
  }

  /**
   * @notice Internal function to calculate Y for public input generation.
   * @param _data Compressed data from submission data.
   * @param _compressedDataComputedX Computed X for public input generation.
   * @dev Each chunk of 32 bytes must start with a 0 byte.
   * @dev The compressedDataComputedX value is modulo-ed down during the computation and scalar field checking is not needed.
   * @dev There is a hard constraint in the circuit to enforce the polynomial degree limit (4096), which will also be enforced with EIP-4844.
   * @return compressedDataComputedY The Y calculated value using the Horner method.
   */
  function _calculateY(
    bytes calldata _data,
    bytes32 _compressedDataComputedX
  ) internal pure returns (bytes32 compressedDataComputedY) {
    if (_data.length % 0x20 != 0) {
      revert BytesLengthNotMultipleOf32();
    }

    bytes4 errorSelector = ILineaRollup.FirstByteIsNotZero.selector;
    assembly {
      for {
        let i := _data.length
      } gt(i, 0) {

      } {
        i := sub(i, 0x20)
        let chunk := calldataload(add(_data.offset, i))
        if iszero(iszero(and(chunk, 0xFF00000000000000000000000000000000000000000000000000000000000000))) {
          let ptr := mload(0x40)
          mstore(ptr, errorSelector)
          revert(ptr, 0x4)
        }
        compressedDataComputedY := addmod(
          mulmod(compressedDataComputedY, _compressedDataComputedX, Y_MODULUS),
          chunk,
          Y_MODULUS
        )
      }
    }
  }
}

// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.22;

import { BitMaps } from "@openzeppelin/contracts/utils/structs/BitMaps.sol";
import { L1MessageManagerV1 } from "./v1/L1MessageManagerV1.sol";
import { IL1MessageManager } from "../../interfaces/l1/IL1MessageManager.sol";
import { Utils } from "../../lib/Utils.sol";

/**
 * @title Contract to manage cross-chain message rolling hash computation and storage on L1.
 * @author ConsenSys Software Inc.
 * @custom:security-contact [email protected]
 */
abstract contract L1MessageManager is L1MessageManagerV1, IL1MessageManager {
  using BitMaps for BitMaps.BitMap;
  using Utils for *;

  mapping(uint256 messageNumber => bytes32 rollingHash) public rollingHashes;
  BitMaps.BitMap internal _messageClaimedBitMap;
  mapping(bytes32 merkleRoot => uint256 treeDepth) public l2MerkleRootsDepths;

  /// @dev Keep free storage slots for future implementation updates to avoid storage collision.
  uint256[50] private __gap_L1MessageManager;

  /**
   * @notice Take an existing message hash, calculates the rolling hash and stores at the message number.
   * @param _messageNumber The current message number being sent.
   * @param _messageHash The hash of the message being sent.
   */
  function _addRollingHash(uint256 _messageNumber, bytes32 _messageHash) internal {
    unchecked {
      bytes32 newRollingHash = Utils._efficientKeccak(rollingHashes[_messageNumber - 1], _messageHash);

      rollingHashes[_messageNumber] = newRollingHash;
      emit RollingHashUpdated(_messageNumber, newRollingHash, _messageHash);
    }
  }

  /**
   * @notice Set the L2->L1 message as claimed when a user claims a message on L1.
   * @param  _messageNumber The message number on L2.
   */
  function _setL2L1MessageToClaimed(uint256 _messageNumber) internal {
    if (_messageClaimedBitMap.get(_messageNumber)) {
      revert MessageAlreadyClaimed(_messageNumber);
    }
    _messageClaimedBitMap.set(_messageNumber);
  }

  /**
   * @notice Add the L2 merkle roots to the storage.
   * @dev This function is called during block finalization.
   * @param _newRoots New L2 merkle roots.
   */
  function _addL2MerkleRoots(bytes32[] calldata _newRoots, uint256 _treeDepth) internal {
    for (uint256 i; i < _newRoots.length; ++i) {
      if (l2MerkleRootsDepths[_newRoots[i]] != 0) {
        revert L2MerkleRootAlreadyAnchored(_newRoots[i]);
      }

      l2MerkleRootsDepths[_newRoots[i]] = _treeDepth;

      emit L2MerkleRootAdded(_newRoots[i], _treeDepth);
    }
  }

  /**
   * @notice Emit an event for each L2 block containing L2->L1 messages.
   * @dev This function is called during block finalization.
   * @param _l2MessagingBlocksOffsets Is a sequence of uint16 values, where each value plus the last finalized L2 block number.
   * indicates which L2 blocks have L2->L1 messages.
   * @param _currentL2BlockNumber Last L2 block number finalized on L1.
   */
  function _anchorL2MessagingBlocks(bytes calldata _l2MessagingBlocksOffsets, uint256 _currentL2BlockNumber) internal {
    if (_l2MessagingBlocksOffsets.length % 2 != 0) {
      revert BytesLengthNotMultipleOfTwo(_l2MessagingBlocksOffsets.length);
    }

    uint256 l2BlockOffset;
    unchecked {
      for (uint256 i; i < _l2MessagingBlocksOffsets.length; ) {
        assembly {
          l2BlockOffset := shr(240, calldataload(add(_l2MessagingBlocksOffsets.offset, i)))
        }
        emit L2MessagingBlockAnchored(_currentL2BlockNumber + l2BlockOffset);
        i += 2;
      }
    }
  }

  /**
   * @notice Check if the L2->L1 message is claimed or not.
   * @param _messageNumber The message number on L2.
   */
  function isMessageClaimed(uint256 _messageNumber) external view returns (bool) {
    return _messageClaimedBitMap.get(_messageNumber);
  }
}

// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.22;

import { AccessControlUpgradeable } from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";
import { L1MessageServiceV1 } from "./v1/L1MessageServiceV1.sol";
import { L1MessageManager } from "./L1MessageManager.sol";
import { IL1MessageService } from "../../interfaces/l1/IL1MessageService.sol";
import { IGenericErrors } from "../../interfaces/IGenericErrors.sol";
import { SparseMerkleTreeVerifier } from "../lib/SparseMerkleTreeVerifier.sol";

/**
 * @title Contract to manage cross-chain messaging on L1.
 * @author ConsenSys Software Inc.
 * @custom:security-contact [email protected]
 */
abstract contract L1MessageService is
  AccessControlUpgradeable,
  L1MessageServiceV1,
  L1MessageManager,
  IL1MessageService,
  IGenericErrors
{
  using SparseMerkleTreeVerifier for *;

  uint256 public systemMigrationBlock;

  // Keep free storage slots for future implementation updates to avoid storage collision.
  uint256[50] private __gap_L1MessageService;

  /**
   * @notice Initialises underlying message service dependencies.
   * @dev _messageSender is initialised to a non-zero value for gas efficiency on claiming.
   * @param _limitManagerAddress The address owning the rate limiting management role.
   * @param _pauseManagerAddress The address owning the pause management role.
   * @param _rateLimitPeriod The period to rate limit against.
   * @param _rateLimitAmount The limit allowed for withdrawing the period.
   * @param _systemMigrationBlock The service migration block.
   */
  function __MessageService_init(
    address _limitManagerAddress,
    address _pauseManagerAddress,
    uint256 _rateLimitPeriod,
    uint256 _rateLimitAmount,
    uint256 _systemMigrationBlock
  ) internal onlyInitializing {
    if (_limitManagerAddress == address(0)) {
      revert ZeroAddressNotAllowed();
    }

    if (_pauseManagerAddress == address(0)) {
      revert ZeroAddressNotAllowed();
    }

    __ERC165_init();
    __Context_init();
    __AccessControl_init();
    __RateLimiter_init(_rateLimitPeriod, _rateLimitAmount);

    _grantRole(RATE_LIMIT_SETTER_ROLE, _limitManagerAddress);
    _grantRole(PAUSE_MANAGER_ROLE, _pauseManagerAddress);

    __SystemMigrationBlock_init(_systemMigrationBlock);

    nextMessageNumber = 1;
    _messageSender = DEFAULT_SENDER_ADDRESS;
  }

  /**
   * @notice Initializer function when upgrading.
   * @dev Sets the systemMigrationBlock when the migration will occur.
   * @param _systemMigrationBlock The future migration block.
   */
  function __SystemMigrationBlock_init(uint256 _systemMigrationBlock) internal onlyInitializing {
    if (_systemMigrationBlock == 0) {
      revert SystemMigrationBlockZero();
    }

    systemMigrationBlock = _systemMigrationBlock;

    emit SystemMigrationBlockInitialized(systemMigrationBlock);
  }

  /**
   * @notice Adds a message for sending cross-chain and emits MessageSent.
   * @dev The message number is preset (nextMessageNumber) and only incremented at the end if successful for the next caller.
   * @dev This function should be called with a msg.value = _value + _fee. The fee will be paid on the destination chain.
   * @param _to The address the message is intended for.
   * @param _fee The fee being paid for the message delivery.
   * @param _calldata The calldata to pass to the recipient.
   */
  function sendMessage(
    address _to,
    uint256 _fee,
    bytes calldata _calldata
  ) external payable whenTypeAndGeneralNotPaused(L1_L2_PAUSE_TYPE) {
    if (_to == address(0)) {
      revert ZeroAddressNotAllowed();
    }

    if (_fee > msg.value) {
      revert ValueSentTooLow();
    }

    uint256 messageNumber = nextMessageNumber++;
    uint256 valueSent = msg.value - _fee;

    bytes32 messageHash = keccak256(abi.encode(msg.sender, _to, _fee, valueSent, messageNumber, _calldata));

    if (systemMigrationBlock > block.number) {
      _addL1L2MessageHash(messageHash);
    } else {
      _addRollingHash(messageNumber, messageHash);
    }

    emit MessageSent(msg.sender, _to, _fee, valueSent, messageNumber, _calldata, messageHash);
  }

  /**
   * @notice Claims and delivers a cross-chain message using merkle proof.
   * @dev if merkle depth is empty, it will revert with L2MerkleRootDoesNotExist.
   * @dev if merkle depth is different than proof size, it will revert with ProofLengthDifferentThanMerkleDepth.
   * @param _params Collection of claim data with proof and supporting data.
   */
  function claimMessageWithProof(
    ClaimMessageWithProofParams calldata _params
  ) external nonReentrant distributeFees(_params.fee, _params.to, _params.data, _params.feeRecipient) {
    _requireTypeAndGeneralNotPaused(L2_L1_PAUSE_TYPE);

    uint256 merkleDepth = l2MerkleRootsDepths[_params.merkleRoot];

    if (merkleDepth == 0) {
      revert L2MerkleRootDoesNotExist();
    }

    if (merkleDepth != _params.proof.length) {
      revert ProofLengthDifferentThanMerkleDepth(merkleDepth, _params.proof.length);
    }

    _setL2L1MessageToClaimed(_params.messageNumber);

    _addUsedAmount(_params.fee + _params.value);

    bytes32 messageLeafHash = keccak256(
      abi.encode(_params.from, _params.to, _params.fee, _params.value, _params.messageNumber, _params.data)
    );

    if (
      !SparseMerkleTreeVerifier._verifyMerkleProof(
        messageLeafHash,
        _params.proof,
        _params.leafIndex,
        _params.merkleRoot
      )
    ) {
      revert InvalidMerkleProof();
    }

    _messageSender = _params.from;

    (bool callSuccess, bytes memory returnData) = _params.to.call{ value: _params.value }(_params.data);
    if (!callSuccess) {
      if (returnData.length > 0) {
        assembly {
          let data_size := mload(returnData)
          revert(add(32, returnData), data_size)
        }
      } else {
        revert MessageSendingFailed(_params.to);
      }
    }

    _messageSender = DEFAULT_SENDER_ADDRESS;

    emit MessageClaimed(messageLeafHash);
  }

  /**
   * @notice Claims and delivers a cross-chain message.
   * @dev _messageSender is set temporarily when claiming.
   */
  function sender() external view returns (address) {
    return _messageSender;
  }
}

// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.22;

import { IL1MessageManagerV1 } from "../../../interfaces/l1/IL1MessageManagerV1.sol";

/**
 * @title Contract to manage cross-chain message hashes storage and status on L1.
 * @author ConsenSys Software Inc.
 * @custom:security-contact [email protected]
 */
abstract contract L1MessageManagerV1 is IL1MessageManagerV1 {
  uint8 public constant INBOX_STATUS_UNKNOWN = 0;
  uint8 public constant INBOX_STATUS_RECEIVED = 1;

  uint8 public constant OUTBOX_STATUS_UNKNOWN = 0;
  uint8 public constant OUTBOX_STATUS_SENT = 1;
  uint8 public constant OUTBOX_STATUS_RECEIVED = 2;

  /// @dev Mapping to store L1->L2 message hashes status.
  /// @dev messageHash => messageStatus (0: unknown, 1: sent, 2: received).
  mapping(bytes32 messageHash => uint256 messageStatus) public outboxL1L2MessageStatus;

  /// @dev Mapping to store L2->L1 message hashes status.
  /// @dev messageHash => messageStatus (0: unknown, 1: received).
  mapping(bytes32 messageHash => uint256 messageStatus) public inboxL2L1MessageStatus;

  /// @dev Keep free storage slots for future implementation updates to avoid storage collision.
  // *******************************************************************************************
  // NB: THIS GAP HAS BEEN PUSHED OUT IN FAVOUR OF THE GAP INSIDE THE REENTRANCY CODE
  //uint256[50] private __gap;
  // NB: DO NOT USE THIS GAP
  // *******************************************************************************************

  /**
   * @notice Add cross-chain L2->L1 message hash in storage.
   * @dev Once the event is emitted, it should be ready for claiming (post block finalization).
   * @param  _messageHash Hash of the message.
   */
  function _addL2L1MessageHash(bytes32 _messageHash) internal {
    if (inboxL2L1MessageStatus[_messageHash] != INBOX_STATUS_UNKNOWN) {
      revert MessageAlreadyReceived(_messageHash);
    }

    inboxL2L1MessageStatus[_messageHash] = INBOX_STATUS_RECEIVED;

    emit L2L1MessageHashAddedToInbox(_messageHash);
  }

  /**
   * @notice Update the status of L2->L1 message when a user claims a message on L1.
   * @dev The L2->L1 message is removed from storage.
   * @dev Due to the nature of the rollup, we should not get a second entry of this.
   * @param  _messageHash Hash of the message.
   */
  function _updateL2L1MessageStatusToClaimed(bytes32 _messageHash) internal {
    if (inboxL2L1MessageStatus[_messageHash] != INBOX_STATUS_RECEIVED) {
      revert MessageDoesNotExistOrHasAlreadyBeenClaimed(_messageHash);
    }

    delete inboxL2L1MessageStatus[_messageHash];
  }

  /**
   * @notice Add L1->L2 message hash in storage when a message is sent on L1.
   * @param  _messageHash Hash of the message.
   */
  function _addL1L2MessageHash(bytes32 _messageHash) internal {
    outboxL1L2MessageStatus[_messageHash] = OUTBOX_STATUS_SENT;
  }

  /**
   * @notice Update the status of L1->L2 messages as received when messages have been stored on L2.
   * @dev The expectation here is that the rollup is limited to 100 hashes being added here - array is not open ended.
   * @param  _messageHashes List of message hashes.
   */
  function _updateL1L2MessageStatusToReceived(bytes32[] memory _messageHashes) internal {
    uint256 messageHashArrayLength = _messageHashes.length;

    for (uint256 i; i < messageHashArrayLength; ++i) {
      bytes32 messageHash = _messageHashes[i];
      uint256 existingStatus = outboxL1L2MessageStatus[messageHash];

      if (existingStatus == OUTBOX_STATUS_UNKNOWN) {
        revert L1L2MessageNotSent(messageHash);
      }

      if (existingStatus != OUTBOX_STATUS_RECEIVED) {
        outboxL1L2MessageStatus[messageHash] = OUTBOX_STATUS_RECEIVED;
      }
    }

    emit L1L2MessagesReceivedOnL2(_messageHashes);
  }
}

// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.22;

import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { ReentrancyGuardUpgradeable } from "@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol";
import { PauseManager } from "../../lib/PauseManager.sol";
import { RateLimiter } from "../../lib/RateLimiter.sol";
import { L1MessageManagerV1 } from "./L1MessageManagerV1.sol";
import { IMessageService } from "../../../interfaces/IMessageService.sol";

/**
 * @title Contract to manage cross-chain messaging on L1.
 * @author ConsenSys Software Inc.
 * @custom:security-contact [email protected]
 */
abstract contract L1MessageServiceV1 is
  Initializable,
  RateLimiter,
  L1MessageManagerV1,
  ReentrancyGuardUpgradeable,
  PauseManager,
  IMessageService
{
  // @dev This is initialised to save user cost with existing slot.
  uint256 public nextMessageNumber;

  address internal _messageSender;

  // Keep free storage slots for future implementation updates to avoid storage collision.
  uint256[50] private __gap;

  // @dev adding these should not affect storage as they are constants and are stored in bytecode.
  uint256 internal constant REFUND_OVERHEAD_IN_GAS = 48252;

  address internal constant DEFAULT_SENDER_ADDRESS = address(123456789);

  /**
   * @notice The unspent fee is refunded if applicable.
   * @param _feeInWei The fee paid for delivery in Wei.
   * @param _to The recipient of the message and gas refund.
   * @param _calldata The calldata of the message.
   */
  modifier distributeFees(
    uint256 _feeInWei,
    address _to,
    bytes calldata _calldata,
    address _feeRecipient
  ) {
    //pre-execution
    uint256 startingGas = gasleft();
    _;
    //post-execution

    // we have a fee
    if (_feeInWei > 0) {
      // default postman fee
      uint256 deliveryFee = _feeInWei;

      // do we have empty calldata?
      if (_calldata.length == 0) {
        bool isDestinationEOA;

        assembly {
          isDestinationEOA := iszero(extcodesize(_to))
        }

        // are we calling an EOA
        if (isDestinationEOA) {
          // initial + cost to call and refund minus gasleft
          deliveryFee = (startingGas + REFUND_OVERHEAD_IN_GAS - gasleft()) * tx.gasprice;

          if (_feeInWei > deliveryFee) {
            payable(_to).send(_feeInWei - deliveryFee);
          } else {
            deliveryFee = _feeInWei;
          }
        }
      }

      address feeReceiver = _feeRecipient == address(0) ? msg.sender : _feeRecipient;

      bool callSuccess = payable(feeReceiver).send(deliveryFee);
      if (!callSuccess) {
        revert FeePaymentFailed(feeReceiver);
      }
    }
  }

  /**
   * @notice Claims and delivers a cross-chain message.
   * @dev _feeRecipient can be set to address(0) to receive as msg.sender.
   * @dev _messageSender is set temporarily when claiming and reset post. Used in sender().
   * @dev _messageSender is reset to DEFAULT_SENDER_ADDRESS to be more gas efficient.
   * @param _from The address of the original sender.
   * @param _to The address the message is intended for.
   * @param _fee The fee being paid for the message delivery.
   * @param _value The value to be transferred to the destination address.
   * @param _feeRecipient The recipient for the fee.
   * @param _calldata The calldata to pass to the recipient.
   * @param _nonce The unique auto generated nonce used when sending the message.
   */
  function claimMessage(
    address _from,
    address _to,
    uint256 _fee,
    uint256 _value,
    address payable _feeRecipient,
    bytes calldata _calldata,
    uint256 _nonce
  ) external nonReentrant distributeFees(_fee, _to, _calldata, _feeRecipient) {
    _requireTypeAndGeneralNotPaused(L2_L1_PAUSE_TYPE);

    bytes32 messageHash = keccak256(abi.encode(_from, _to, _fee, _value, _nonce, _calldata));

    // @dev Status check and revert is in the message manager.
    _updateL2L1MessageStatusToClaimed(messageHash);

    _addUsedAmount(_fee + _value);

    _messageSender = _from;

    (bool callSuccess, bytes memory returnData) = _to.call{ value: _value }(_calldata);
    if (!callSuccess) {
      if (returnData.length > 0) {
        assembly {
          let data_size := mload(returnData)
          revert(add(32, returnData), data_size)
        }
      } else {
        revert MessageSendingFailed(_to);
      }
    }

    _messageSender = DEFAULT_SENDER_ADDRESS;

    emit MessageClaimed(messageHash);
  }
}

// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.19 <=0.8.22;

/**
 * @title Decoding functions for message service anchoring and bytes slicing.
 * @author ConsenSys Software Inc.
 * @notice You can use this to slice bytes and extract anchoring hashes from calldata.
 * @custom:security-contact [email protected]
 */
library CodecV2 {
  /**
   * @notice Decodes a collection of bytes32 (hashes) from the calldata of a transaction.
   * @dev Extracts and decodes skipping the function selector (selector is expected in the input).
   * @dev A check beforehand must be performed to confirm this is the correct type of transaction.
   * @dev NB: A memory manipulation strips out the function signature, do not reuse.
   * @param _calldataWithSelector The calldata for the transaction.
   * @return bytes32[] - array of message hashes.
   */
  function _extractXDomainAddHashes(bytes memory _calldataWithSelector) internal pure returns (bytes32[] memory) {
    assembly {
      let len := sub(mload(_calldataWithSelector), 4)
      _calldataWithSelector := add(_calldataWithSelector, 0x4)
      mstore(_calldataWithSelector, len)
    }

    return abi.decode(_calldataWithSelector, (bytes32[]));
  }
}

// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.19 <=0.8.22;

import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { AccessControlUpgradeable } from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";
import { IPauseManager } from "../../interfaces/IPauseManager.sol";

/**
 * @title Contract to manage cross-chain function pausing.
 * @author ConsenSys Software Inc.
 * @custom:security-contact [email protected]
 */
abstract contract PauseManager is Initializable, IPauseManager, AccessControlUpgradeable {
  bytes32 public constant PAUSE_MANAGER_ROLE = keccak256("PAUSE_MANAGER_ROLE");

  uint8 public constant GENERAL_PAUSE_TYPE = 1;
  uint8 public constant L1_L2_PAUSE_TYPE = 2;
  uint8 public constant L2_L1_PAUSE_TYPE = 3;
  uint8 public constant PROVING_SYSTEM_PAUSE_TYPE = 4;

  // @dev DEPRECATED. USE _pauseTypeStatusesBitMap INSTEAD
  mapping(bytes32 pauseType => bool pauseStatus) public pauseTypeStatuses;

  uint256 private _pauseTypeStatusesBitMap;
  uint256[9] private __gap;

  /**
   * @dev Modifier to make a function callable only when the specific and general types are not paused.
   * @param _pauseType The pause type value being checked.
   * Requirements:
   *
   * - The type must not be paused.
   */
  modifier whenTypeAndGeneralNotPaused(uint8 _pauseType) {
    _requireTypeAndGeneralNotPaused(_pauseType);
    _;
  }

  /**
   * @dev Modifier to make a function callable only when the type is not paused.
   * @param _pauseType The pause type value being checked.
   * Requirements:
   *
   * - The type must not be paused.
   */
  modifier whenTypeNotPaused(uint8 _pauseType) {
    _requireTypeNotPaused(_pauseType);
    _;
  }

  /**
   * @dev Throws if the specific or general types are paused.
   * @dev Checks the specific and general pause types.
   * @param _pauseType The pause type value being checked.
   */
  function _requireTypeAndGeneralNotPaused(uint8 _pauseType) internal view virtual {
    uint256 pauseBitMap = _pauseTypeStatusesBitMap;

    if (pauseBitMap & (1 << uint256(_pauseType)) != 0) {
      revert IsPaused(_pauseType);
    }

    if (pauseBitMap & (1 << uint256(GENERAL_PAUSE_TYPE)) != 0) {
      revert IsPaused(GENERAL_PAUSE_TYPE);
    }
  }

  /**
   * @dev Throws if the type is paused.
   * @dev Checks the specific pause type.
   * @param _pauseType The pause type value being checked.
   */
  function _requireTypeNotPaused(uint8 _pauseType) internal view virtual {
    if (isPaused(_pauseType)) {
      revert IsPaused(_pauseType);
    }
  }

  /**
   * @notice Pauses functionality by specific type.
   * @dev Requires PAUSE_MANAGER_ROLE.
   * @param _pauseType The pause type value.
   */
  function pauseByType(uint8 _pauseType) external onlyRole(PAUSE_MANAGER_ROLE) {
    if (isPaused(_pauseType)) {
      revert IsPaused(_pauseType);
    }

    _pauseTypeStatusesBitMap |= 1 << uint256(_pauseType);
    emit Paused(_msgSender(), _pauseType);
  }

  /**
   * @notice Unpauses functionality by specific type.
   * @dev Requires PAUSE_MANAGER_ROLE.
   * @param _pauseType The pause type value.
   */
  function unPauseByType(uint8 _pauseType) external onlyRole(PAUSE_MANAGER_ROLE) {
    if (!isPaused(_pauseType)) {
      revert IsNotPaused(_pauseType);
    }

    _pauseTypeStatusesBitMap &= ~(1 << uint256(_pauseType));
    emit UnPaused(_msgSender(), _pauseType);
  }

  /**
   * @notice Check if a pause type is enabled.
   * @param _pauseType The pause type value.
   * @return boolean True if the pause type if enabled, false otherwise.
   */
  function isPaused(uint8 _pauseType) public view returns (bool) {
    return (_pauseTypeStatusesBitMap & (1 << uint256(_pauseType))) != 0;
  }
}

// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.19 <=0.8.22;

import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { AccessControlUpgradeable } from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";
import { IRateLimiter } from "../../interfaces/IRateLimiter.sol";

/**
 * @title Rate Limiter by period and amount using the block timestamp.
 * @author ConsenSys Software Inc.
 * @notice You can use this control numeric limits over a period using timestamp.
 * @custom:security-contact [email protected]
 */
contract RateLimiter is Initializable, IRateLimiter, AccessControlUpgradeable {
  bytes32 public constant RATE_LIMIT_SETTER_ROLE = keccak256("RATE_LIMIT_SETTER_ROLE");

  uint256 public periodInSeconds; // how much time before limit resets.
  uint256 public limitInWei; // max ether to withdraw per period.

  // @dev Public for ease of consumption.
  // @notice The time at which the current period ends at.
  uint256 public currentPeriodEnd;

  // @dev Public for ease of consumption.
  // @notice Amounts already withdrawn this period.
  uint256 public currentPeriodAmountInWei;

  uint256[10] private __gap;

  /**
   * @notice Initialises the limits and period for the rate limiter.
   * @param _periodInSeconds The length of the period in seconds.
   * @param _limitInWei The limit allowed in the period in Wei.
   */
  function __RateLimiter_init(uint256 _periodInSeconds, uint256 _limitInWei) internal onlyInitializing {
    if (_periodInSeconds == 0) {
      revert PeriodIsZero();
    }

    if (_limitInWei == 0) {
      revert LimitIsZero();
    }

    periodInSeconds = _periodInSeconds;
    limitInWei = _limitInWei;
    currentPeriodEnd = block.timestamp + _periodInSeconds;

    emit RateLimitInitialized(periodInSeconds, limitInWei, currentPeriodEnd);
  }

  /**
   * @notice Increments the amount used in the period.
   * @dev The amount determining logic is external to this (e.g. fees are included when calling here).
   * @dev Reverts if the limit is breached.
   * @param _usedAmount The amount used to be added.
   */
  function _addUsedAmount(uint256 _usedAmount) internal {
    uint256 currentPeriodAmountTemp;

    if (currentPeriodEnd < block.timestamp) {
      currentPeriodEnd = block.timestamp + periodInSeconds;
      currentPeriodAmountTemp = _usedAmount;
    } else {
      currentPeriodAmountTemp = currentPeriodAmountInWei + _usedAmount;
    }

    if (currentPeriodAmountTemp > limitInWei) {
      revert RateLimitExceeded();
    }

    currentPeriodAmountInWei = currentPeriodAmountTemp;
  }

  /**
   * @notice Resets the rate limit amount.
   * @dev If the used amount is higher, it is set to the limit to avoid confusion/issues.
   * @dev Only the RATE_LIMIT_SETTER_ROLE is allowed to execute this function.
   * @dev Emits the LimitAmountChanged event.
   * @dev usedLimitAmountToSet will use the default value of zero if period has expired
   * @param _amount The amount to reset the limit to.
   */
  function resetRateLimitAmount(uint256 _amount) external onlyRole(RATE_LIMIT_SETTER_ROLE) {
    uint256 usedLimitAmountToSet;
    bool amountUsedLoweredToLimit;
    bool usedAmountResetToZero;

    if (currentPeriodEnd < block.timestamp) {
      currentPeriodEnd = block.timestamp + periodInSeconds;
      usedAmountResetToZero = true;
    } else {
      if (_amount < currentPeriodAmountInWei) {
        usedLimitAmountToSet = _amount;
        amountUsedLoweredToLimit = true;
      }
    }

    limitInWei = _amount;

    if (usedAmountResetToZero || amountUsedLoweredToLimit) {
      currentPeriodAmountInWei = usedLimitAmountToSet;
    }

    emit LimitAmountChanged(_msgSender(), _amount, amountUsedLoweredToLimit, usedAmountResetToZero);
  }

  /**
   * @notice Resets the amount used to zero.
   * @dev Only the RATE_LIMIT_SETTER_ROLE is allowed to execute this function.
   * @dev Emits the AmountUsedInPeriodReset event.
   */
  function resetAmountUsedInPeriod() external onlyRole(RATE_LIMIT_SETTER_ROLE) {
    currentPeriodAmountInWei = 0;

    emit AmountUsedInPeriodReset(_msgSender());
  }
}

// SPDX-License-Identifier: Apache-2.0

/**
 * @author Hamdi Allam [email protected]
 * @notice Please reach out with any questions or concerns.
 * @custom:security-contact [email protected]
 */
pragma solidity 0.8.22;

error NotList();
error WrongBytesLength();
error NoNext();
error MemoryOutOfBounds(uint256 inde);

library RLPReader {
  uint8 internal constant STRING_SHORT_START = 0x80;
  uint8 internal constant STRING_LONG_START = 0xb8;
  uint8 internal constant LIST_SHORT_START = 0xc0;
  uint8 internal constant LIST_LONG_START = 0xf8;
  uint8 internal constant LIST_SHORT_START_MAX = 0xf7;
  uint8 internal constant WORD_SIZE = 32;

  struct RLPItem {
    uint256 len;
    uint256 memPtr;
  }

  struct Iterator {
    RLPItem item; // Item that's being iterated over.
    uint256 nextPtr; // Position of the next item in the list.
  }

  /**
   * @dev Returns the next element in the iteration. Reverts if it has no next element.
   * @param _self The iterator.
   * @return nextItem The next element in the iteration.
   */
  function _next(Iterator memory _self) internal pure returns (RLPItem memory nextItem) {
    if (!_hasNext(_self)) {
      revert NoNext();
    }

    uint256 ptr = _self.nextPtr;
    uint256 itemLength = _itemLength(ptr);
    _self.nextPtr = ptr + itemLength;

    nextItem.len = itemLength;
    nextItem.memPtr = ptr;
  }

  /**
   * @dev Returns the number 'skiptoNum' element in the iteration.
   * @param _self The iterator.
   * @param _skipToNum Element position in the RLP item iterator to return.
   * @return item The number 'skipToNum' element in the iteration.
   */
  function _skipTo(Iterator memory _self, uint256 _skipToNum) internal pure returns (RLPItem memory item) {
    uint256 lenX;
    uint256 memPtrStart = _self.item.memPtr;
    uint256 endPtr;
    uint256 byte0;
    uint256 byteLen;

    assembly {
      // get first byte to know if it is a short/long list
      byte0 := byte(0, mload(memPtrStart))

      // yul has no if/else so if it a short list ( < long list start )
      switch lt(byte0, LIST_LONG_START)
      case 1 {
        // the length is just the difference in bytes
        lenX := sub(byte0, 0xc0)
      }
      case 0 {
        // at this point we care only about lists, so this is the default
        // get how many next bytes indicate the list length
        byteLen := sub(byte0, 0xf7)

        // move one over to the list length start
        memPtrStart := add(memPtrStart, 1)

        // shift over grabbing the bytelen elements
        lenX := div(mload(memPtrStart), exp(256, sub(32, byteLen)))
      }

      // get the end
      endPtr := add(memPtrStart, lenX)
    }

    uint256 ptr = _self.nextPtr;
    uint256 itemLength = _itemLength(ptr);
    _self.nextPtr = ptr + itemLength;

    for (uint256 i; i < _skipToNum - 1; ) {
      ptr = _self.nextPtr;
      if (ptr > endPtr) revert MemoryOutOfBounds(endPtr);
      itemLength = _itemLength(ptr);
      _self.nextPtr = ptr + itemLength;

      unchecked {
        i++;
      }
    }

    item.len = itemLength;
    item.memPtr = ptr;
  }

  /**
   * @dev Returns true if the iteration has more elements.
   * @param _self The iterator.
   * @return True if the iteration has more elements.
   */
  function _hasNext(Iterator memory _self) internal pure returns (bool) {
    RLPItem memory item = _self.item;
    return _self.nextPtr < item.memPtr + item.len;
  }

  /**
   * @param item RLP encoded bytes.
   * @return newItem The RLP item.
   */
  function _toRlpItem(bytes memory item) internal pure returns (RLPItem memory newItem) {
    uint256 memPtr;

    assembly {
      memPtr := add(item, 0x20)
    }

    newItem.len = item.length;
    newItem.memPtr = memPtr;
  }

  /**
   * @dev Creates an iterator. Reverts if item is not a list.
   * @param _self The RLP item.
   * @return iterator 'Iterator' over the item.
   */
  function _iterator(RLPItem memory _self) internal pure returns (Iterator memory iterator) {
    if (!_isList(_self)) {
      revert NotList();
    }

    uint256 ptr = _self.memPtr + _payloadOffset(_self.memPtr);
    iterator.item = _self;
    iterator.nextPtr = ptr;
  }

  /**
   * @param _item The RLP item.
   * @return (memPtr, len) Tuple: Location of the item's payload in memory.
   */
  function _payloadLocation(RLPItem memory _item) internal pure returns (uint256, uint256) {
    uint256 offset = _payloadOffset(_item.memPtr);
    uint256 memPtr = _item.memPtr + offset;
    uint256 len = _item.len - offset; // data length
    return (memPtr, len);
  }

  /**
   * @param _item The RLP item.
   * @return Indicator whether encoded payload is a list.
   */
  function _isList(RLPItem memory _item) internal pure returns (bool) {
    if (_item.len == 0) return false;

    uint8 byte0;
    uint256 memPtr = _item.memPtr;
    assembly {
      byte0 := byte(0, mload(memPtr))
    }

    if (byte0 < LIST_SHORT_START) return false;
    return true;
  }

  /**
   * @param _item The RLP item.
   * @return result Returns the item as an address.
   */
  function _toAddress(RLPItem memory _item) internal pure returns (address) {
    // 1 byte for the length prefix
    if (_item.len != 21) {
      revert WrongBytesLength();
    }

    return address(uint160(_toUint(_item)));
  }

  /**
   * @param _item The RLP item.
   * @return result Returns the item as a uint256.
   */
  function _toUint(RLPItem memory _item) internal pure returns (uint256 result) {
    if (_item.len == 0 || _item.len > 33) {
      revert WrongBytesLength();
    }

    (uint256 memPtr, uint256 len) = _payloadLocation(_item);

    assembly {
      result := mload(memPtr)

      // Shfit to the correct location if neccesary.
      if lt(len, 32) {
        result := div(result, exp(256, sub(32, len)))
      }
    }
  }

  /**
   * @param _item The RLP item.
   * @return result Returns the item as bytes.
   */
  function _toBytes(RLPItem memory _item) internal pure returns (bytes memory result) {
    if (_item.len == 0) {
      revert WrongBytesLength();
    }

    (uint256 memPtr, uint256 len) = _payloadLocation(_item);
    result = new bytes(len);

    uint256 destPtr;
    assembly {
      destPtr := add(0x20, result)
    }

    _copy(memPtr, destPtr, len);
  }

  /**
   * Private Helpers
   */

  /**
   * @param _memPtr Item memory pointer.
   * @return Entire RLP item byte length.
   */
  function _itemLength(uint256 _memPtr) private pure returns (uint256) {
    uint256 itemLen;
    uint256 dataLen;
    uint256 byte0;
    assembly {
      byte0 := byte(0, mload(_memPtr))
    }

    if (byte0 < STRING_SHORT_START) itemLen = 1;
    else if (byte0 < STRING_LONG_START) itemLen = byte0 - STRING_SHORT_START + 1;
    else if (byte0 < LIST_SHORT_START) {
      assembly {
        let byteLen := sub(byte0, 0xb7) // # Of bytes the actual length is.
        _memPtr := add(_memPtr, 1) // Skip over the first byte.

        /* 32 byte word size */
        dataLen := div(mload(_memPtr), exp(256, sub(32, byteLen))) // Right shifting to get the len.
        itemLen := add(dataLen, add(byteLen, 1))
      }
    } else if (byte0 < LIST_LONG_START) {
      itemLen = byte0 - LIST_SHORT_START + 1;
    } else {
      assembly {
        let byteLen := sub(byte0, 0xf7)
        _memPtr := add(_memPtr, 1)

        dataLen := div(mload(_memPtr), exp(256, sub(32, byteLen))) // Right shifting to the correct length.
        itemLen := add(dataLen, add(byteLen, 1))
      }
    }

    return itemLen;
  }

  /**
   * @param _memPtr Item memory pointer.
   * @return Number of bytes until the data.
   */
  function _payloadOffset(uint256 _memPtr) private pure returns (uint256) {
    uint256 byte0;
    assembly {
      byte0 := byte(0, mload(_memPtr))
    }

    if (byte0 < STRING_SHORT_START) return 0;
    else if (byte0 < STRING_LONG_START || (byte0 >= LIST_SHORT_START && byte0 < LIST_LONG_START)) return 1;
    else if (byte0 < LIST_SHORT_START)
      // being explicit
      return byte0 - (STRING_LONG_START - 1) + 1;
    else return byte0 - (LIST_LONG_START - 1) + 1;
  }

  /**
   * @param _src Pointer to source.
   * @param _dest Pointer to destination.
   * @param _len Amount of memory to copy from the source.
   */
  function _copy(uint256 _src, uint256 _dest, uint256 _len) private pure {
    if (_len == 0) return;

    // copy as many word sizes as possible
    for (; _len >= WORD_SIZE; _len -= WORD_SIZE) {
      assembly {
        mstore(_dest, mload(_src))
      }

      _src += WORD_SIZE;
      _dest += WORD_SIZE;
    }

    if (_len > 0) {
      // Left over bytes. Mask is used to remove unwanted bytes from the word.
      uint256 mask = 256 ** (WORD_SIZE - _len) - 1;
      assembly {
        let srcpart := and(mload(_src), not(mask)) // Zero out src.
        let destpart := and(mload(_dest), mask) // Retrieve the bytes.
        mstore(_dest, or(destpart, srcpart))
      }
    }
  }
}

// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.22;

/**
 * @title Library to verify sparse merkle proofs and to get the leaf hash value
 * @author ConsenSys Software Inc.
 * @custom:security-contact [email protected]
 */
library SparseMerkleTreeVerifier {
  /**
   * @notice Verify merkle proof
   * @param _leafHash Leaf hash.
   * @param _proof Sparse merkle tree proof.
   * @param _leafIndex Index of the leaf.
   * @param _root Merkle root.
   */
  function _verifyMerkleProof(
    bytes32 _leafHash,
    bytes32[] calldata _proof,
    uint32 _leafIndex,
    bytes32 _root
  ) internal pure returns (bool) {
    bytes32 node = _leafHash;

    for (uint256 height; height < _proof.length; ++height) {
      if (((_leafIndex >> height) & 1) == 1) {
        node = _efficientKeccak(_proof[height], node);
      } else {
        node = _efficientKeccak(node, _proof[height]);
      }
    }
    return node == _root;
  }

  /**
   * @notice Performs a gas optimized keccak hash
   * @param _left Left value.
   * @param _right Right value.
   */
  function _efficientKeccak(bytes32 _left, bytes32 _right) internal pure returns (bytes32 value) {
    assembly {
      mstore(0x00, _left)
      mstore(0x20, _right)
      value := keccak256(0x00, 0x40)
    }
  }
}

// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.19 <=0.8.22;

import { RLPReader } from "./Rlp.sol";

using RLPReader for RLPReader.RLPItem;
using RLPReader for RLPReader.Iterator;
using RLPReader for bytes;

/**
 * dev Thrown when the transaction data length is too short.
 */
error TransactionShort();

/**
 * dev Thrown when the transaction type is unknown.
 */
error UnknownTransactionType(bytes1 versionByte);

/**
 * @title Contract to decode RLP formatted transactions.
 * @author ConsenSys Software Inc.
 * @custom:security-contact [email protected]
 */
library TransactionDecoder {
  /**
   * @notice Decodes the transaction extracting the calldata.
   * @param _transaction The RLP transaction.
   * @return data Returns the transaction calldata as bytes.
   */
  function decodeTransaction(bytes calldata _transaction) internal pure returns (bytes memory) {
    if (_transaction.length < 1) {
      revert TransactionShort();
    }

    bytes1 version = _transaction[0];

    if (version == 0x01) {
      return _decodeEIP2930Transaction(_transaction);
    }

    if (version == 0x02) {
      return _decodeEIP1559Transaction(_transaction);
    }

    if (version >= 0xc0) {
      return _decodeLegacyTransaction(_transaction);
    }

    revert UnknownTransactionType(version);
  }

  /**
   * @notice Decodes the EIP1559 transaction extracting the calldata.
   * @param _transaction The RLP transaction.
   * @return data Returns the transaction calldata as bytes.
   */
  function _decodeEIP1559Transaction(bytes calldata _transaction) private pure returns (bytes memory data) {
    bytes memory txData = _transaction[1:]; // skip the version byte

    RLPReader.RLPItem memory rlp = txData._toRlpItem();
    RLPReader.Iterator memory it = rlp._iterator();

    data = it._skipTo(8)._toBytes();
  }

  /**
   * @notice Decodes the EIP2930 transaction extracting the calldata.
   * @param _transaction The RLP transaction.
   * @return data Returns the transaction calldata as bytes.
   */
  function _decodeEIP2930Transaction(bytes calldata _transaction) private pure returns (bytes memory data) {
    bytes memory txData = _transaction[1:]; // skip the version byte

    RLPReader.RLPItem memory rlp = txData._toRlpItem();
    RLPReader.Iterator memory it = rlp._iterator();

    data = it._skipTo(7)._toBytes();
  }

  /**
   * @notice Decodes the legacy transaction extracting the calldata.
   * @param _transaction The RLP transaction.
   * @return data Returns the transaction calldata as bytes.
   */
  function _decodeLegacyTransaction(bytes calldata _transaction) private pure returns (bytes memory data) {
    bytes memory txData = _transaction;

    RLPReader.RLPItem memory rlp = txData._toRlpItem();
    RLPReader.Iterator memory it = rlp._iterator();

    data = it._skipTo(6)._toBytes();
  }
}

// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.22;

import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { AccessControlUpgradeable } from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";
import { L1MessageServiceV1 } from "./messageService/l1/v1/L1MessageServiceV1.sol";
import { IZkEvmV2 } from "./interfaces/l1/IZkEvmV2.sol";
import { TransactionDecoder } from "./messageService/lib/TransactionDecoder.sol";
import { CodecV2 } from "./messageService/lib/Codec.sol";
import { IPlonkVerifier } from "./interfaces/l1/IPlonkVerifier.sol";

/**
 * @title Contract to manage cross-chain messaging on L1 and rollup proving.
 * @author ConsenSys Software Inc.
 * @custom:security-contact [email protected]
 */
abstract contract ZkEvmV2 is Initializable, AccessControlUpgradeable, L1MessageServiceV1, IZkEvmV2 {
  using TransactionDecoder for *;
  using CodecV2 for *;

  uint256 internal constant MODULO_R = 21888242871839275222246405745257275088548364400416034343698204186575808495617;
  bytes32 public constant OPERATOR_ROLE = keccak256("OPERATOR_ROLE");

  uint256 public currentTimestamp;
  uint256 public currentL2BlockNumber;

  mapping(uint256 blockNumber => bytes32 stateRootHash) public stateRootHashes;
  mapping(uint256 proofType => address verifierAddress) public verifiers;

  uint256[50] private __gap;

  /**
   * @notice Finalizes blocks without using a proof.
   * @dev DEFAULT_ADMIN_ROLE is required to execute.
   * @dev _blocksData[0].fromAddresses is a temporary workaround to pass bytes calldata.
   * @param _blocksData The full BlockData collection - block, transaction and log data.
   */
  function finalizeBlocksWithoutProof(
    BlockData[] calldata _blocksData
  ) external whenTypeNotPaused(GENERAL_PAUSE_TYPE) onlyRole(DEFAULT_ADMIN_ROLE) {
    _finalizeBlocks(_blocksData, _blocksData[0].fromAddresses, 0, bytes32(0), false);
  }

  /**
   * @notice Finalizes blocks using a proof.
   * @dev OPERATOR_ROLE is required to execute.
   * @dev If the verifier based on proof type is not found, it reverts.
   * @param _blocksData The full BlockData collection - block, transaction and log data.
   * @param _proof The proof to be verified with the proof type verifier contract.
   * @param _proofType The proof type to determine which verifier contract to use.
   * @param _parentStateRootHash The starting roothash for the last known block.
   */
  function finalizeBlocks(
    BlockData[] calldata _blocksData,
    bytes calldata _proof,
    uint256 _proofType,
    bytes32 _parentStateRootHash
  ) external whenTypeAndGeneralNotPaused(PROVING_SYSTEM_PAUSE_TYPE) onlyRole(OPERATOR_ROLE) {
    if (stateRootHashes[currentL2BlockNumber] != _parentStateRootHash) {
      revert StartingRootHashDoesNotMatch();
    }

    _finalizeBlocks(_blocksData, _proof, _proofType, _parentStateRootHash, true);
  }

  /**
   * @notice Finalizes blocks with or without using a proof depending on _withProof.
   * @dev OPERATOR_ROLE is required to execute.
   * @dev If the verifier based on proof type is not found, it reverts.
   * @param _blocksData The full BlockData collection - block, transaction and log data.
   * @param _proof The proof to be verified with the proof type verifier contract.
   * @param _proofType The proof type to determine which verifier contract to use.
   * @param _parentStateRootHash The starting roothash for the last known block.
   */
  function _finalizeBlocks(
    BlockData[] calldata _blocksData,
    bytes calldata _proof,
    uint256 _proofType,
    bytes32 _parentStateRootHash,
    bool _withProof
  ) private {
    if (_blocksData.length == 0) {
      revert EmptyBlockDataArray();
    }

    uint256 currentBlockNumberTemp = currentL2BlockNumber;

    uint256 firstBlockNumber;
    unchecked {
      firstBlockNumber = currentBlockNumberTemp + 1;
    }

    uint256[] memory timestamps = new uint256[](_blocksData.length);
    bytes32[] memory blockHashes = new bytes32[](_blocksData.length);
    bytes32[] memory rootHashes;

    unchecked {
      rootHashes = new bytes32[](_blocksData.length + 1);
    }

    rootHashes[0] = _parentStateRootHash;

    bytes32 hashOfTxHashes;
    bytes32 hashOfMessageHashes;

    for (uint256 i; i < _blocksData.length; ++i) {
      BlockData calldata blockInfo = _blocksData[i];

      if (blockInfo.l2BlockTimestamp >= block.timestamp) {
        revert BlockTimestampError(blockInfo.l2BlockTimestamp, block.timestamp);
      }

      hashOfTxHashes = _processBlockTransactions(blockInfo.transactions, blockInfo.batchReceptionIndices);
      hashOfMessageHashes = _processMessageHashes(blockInfo.l2ToL1MsgHashes);
      unchecked {
        ++currentBlockNumberTemp;
      }
      blockHashes[i] = keccak256(
        abi.encodePacked(
          hashOfTxHashes,
          hashOfMessageHashes,
          keccak256(abi.encodePacked(blockInfo.batchReceptionIndices)),
          keccak256(blockInfo.fromAddresses)
        )
      );

      timestamps[i] = blockInfo.l2BlockTimestamp;
      unchecked {
        rootHashes[i + 1] = blockInfo.blockRootHash;
      }
      emit BlockFinalized(currentBlockNumberTemp, blockInfo.blockRootHash, _withProof);
    }

    unchecked {
      uint256 arrayIndex = _blocksData.length - 1;
      stateRootHashes[currentBlockNumberTemp] = _blocksData[arrayIndex].blockRootHash;
      currentTimestamp = _blocksData[arrayIndex].l2BlockTimestamp;
      currentL2BlockNumber = currentBlockNumberTemp;
    }

    if (_withProof) {
      uint256 publicInput = uint256(
        keccak256(
          abi.encode(
            keccak256(abi.encodePacked(blockHashes)),
            firstBlockNumber,
            keccak256(abi.encodePacked(timestamps)),
            keccak256(abi.encodePacked(rootHashes))
          )
        )
      );

      assembly {
        publicInput := mod(publicInput, MODULO_R)
      }

      _verifyProof(publicInput, _proofType, _proof, _parentStateRootHash);
    }
  }

  /**
   * @notice Hashes all transactions individually and then hashes the packed hash array.
   * @dev Updates the outbox status on L1 as received.
   * @param _transactions The transactions in a particular block.
   * @param _batchReceptionIndices The indexes where the transaction type is the L1->L2 anchoring message hashes transaction.
   */
  function _processBlockTransactions(
    bytes[] calldata _transactions,
    uint16[] calldata _batchReceptionIndices
  ) internal returns (bytes32 hashOfTxHashes) {
    bytes32[] memory transactionHashes = new bytes32[](_transactions.length);

    if (_transactions.length == 0) {
      revert EmptyBlock();
    }

    for (uint256 i; i < _batchReceptionIndices.length; ++i) {
      _updateL1L2MessageStatusToReceived(
        TransactionDecoder.decodeTransaction(_transactions[_batchReceptionIndices[i]])._extractXDomainAddHashes()
      );
    }

    for (uint256 i; i < _transactions.length; ++i) {
      transactionHashes[i] = keccak256(_transactions[i]);
    }
    hashOfTxHashes = keccak256(abi.encodePacked(transactionHashes));
  }

  /**
   * @notice Anchors message hashes and hashes the packed hash array.
   * @dev Also adds L2->L1 sent message hashes for later claiming.
   * @param _messageHashes The hashes in the message sent event logs.
   */
  function _processMessageHashes(bytes32[] calldata _messageHashes) internal returns (bytes32 hashOfLogHashes) {
    for (uint256 i; i < _messageHashes.length; ++i) {
      _addL2L1MessageHash(_messageHashes[i]);
    }
    hashOfLogHashes = keccak256(abi.encodePacked(_messageHashes));
  }

  /**
   * @notice Verifies the proof with locally computed public inputs.
   * @dev If the verifier based on proof type is not found, it reverts with InvalidProofType.
   * @param _publicInputHash The full BlockData collection - block, transaction and log data.
   * @param _proofType The proof type to determine which verifier contract to use.
   * @param _proof The proof to be verified with the proof type verifier contract.
   * @param _parentStateRootHash The beginning roothash to start with.
   */
  function _verifyProof(
    uint256 _publicInputHash,
    uint256 _proofType,
    bytes calldata _proof,
    bytes32 _parentStateRootHash
  ) internal {
    uint256[] memory input = new uint256[](1);
    input[0] = _publicInputHash;

    address verifierToUse = verifiers[_proofType];

    if (verifierToUse == address(0)) {
      revert InvalidProofType();
    }

    bool success = IPlonkVerifier(verifierToUse).Verify(_proof, input);
    if (!success) {
      revert InvalidProof();
    }

    emit BlocksVerificationDone(currentL2BlockNumber, _parentStateRootHash, stateRootHashes[currentL2BlockNumber]);
  }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):