Contract Name:
SDAOLockedStaking
Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.25;
// Interface for holding and managing emission of rewards for single reward token
// - reward contract can collect accrued reward tokens
interface SDAOSimpleRewardAPI {
event UpdatedRewardEmission(uint256 amount, uint256 start, uint256 end);
event ReservedForUser(address user, address token, uint256 rewards);
event ClaimedByUser(address user, address token, uint256 amount);
event CommissionFromUser(address user, address token, uint256 amount);
struct UserInfo {
uint256 shares; // user shares
uint256 rewardFloor; // reward floor to calculate pending
uint256 reserved; // reserved for user
}
struct RewardTokenInfo {
address rewardToken; // token to be distributed as rewards
uint256 balance; // total claimed and held for reward contract to collect
uint256 totalAmount; // total amount to be distributed during emissionPeriod
uint256 emissionPeriod; // emission period in seconds to distribute these reward tokens
uint256 startOfEmission; // start time of emissions
uint256 endOfEmission; // last time when these rewards are emitted
uint256 lastClaim; // last time when rewards have been claimed
}
function depositContract() external view returns (address);
function rewardToken() external view returns (address);
function getRewardInfo() external view returns (RewardTokenInfo memory);
function changeUserShares(address _user, uint256 _newShares) external;
function pendingForUser(address _user) external view returns (uint256 pendingRewards);
function claimableForUser(address _user) external view returns (uint256 claimable);
function claimForUser(address _user) external returns (uint256 claimed);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.25;
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "./utils/Clonable.sol";
import "./rewards/SDAOSimpleRewardAPI.sol";
/*
* @title SDAO Locked Staking contract
* @notice requirements:
* 1. users lock their tokens for a certain period
* 2. users can extend their locking period to increase their score
* 3. users can withdraw after their tokens unlock or withdraw immediately deducting an early unlock fee
* 4. protocol should be able to query per wallet the score calculated by locked amount times locking period
* 5. users can claim rewards proportionaly in the ratio of their score in respect to totalScore
*/
contract SDAOLockedStaking is Clonable, ReentrancyGuard {
using SafeERC20 for IERC20;
uint256 constant public MAX_PERCENTAGE = 10000; // 100.00%
uint256 constant public MAX_EARLY_UNLOCK_FEE = 5000; // 50.00%
uint256 public MAX_LOCKING_PERIOD; // 360 days;
uint256 public MAX_EARLY_UNLOCK_FEE_PER_DAY; // 5 = 0.05%
// Info of each user.
struct UserInfo {
uint256 amount; // How many tokens the user has provided.
uint256 lockDate; // Last date when user locked funds
uint256 unlockDate; // Unlock date for user funds
uint256 score; // Aggregation of locked amount times locked days
}
// Info of each user that locks tokens.
mapping(address => UserInfo) public userInfo;
bool public depositsEnabled; // deposits are enabled
address public depositToken; // Address of deposit token contract.
address public rewardToken; // Address of reward token contract.
address public rewardsAPI; // Rewards API module
address public zapperContract; // Zapper contract allowed to deposit on behalf of a user
uint256 public totalScore; // total score of all users
uint256 public earlyUnlockFees; // accumulated fees for early withdrawals
uint256 public earlyUnlockFeePerDay; // Default unlockFeePerDay 0.05%
event Deposit(address indexed user, uint256 amount, uint256 lockingPeriod);
event Withdraw(address indexed user, uint256 amount);
event Claimed(address indexed user, uint256 claimed);
event PaidEarlyUnlockFee(address indexed user, uint256 fee, uint256 secondsUntilUnlock);
event CollectedFees(address admin, uint256 fees);
event SetDepositsEnabled(address admin, bool depositsEnabled);
event SetEarlyUnlockFeePerDay(address admin, uint256 earlyUnlockFeePerDay);
event SetZapperContract(address admin, address zapperContract);
error AlreadyInitialized();
error MissingToken();
error MissingAmount();
error MissingDepositToken();
error MissingRewardsAPI();
error MissingZapperContract();
error DepositsDisabled();
error DepositTokenRecoveryNotAllowed();
error SenderIsNotZapper(address sender, address zapper);
error ExceedsMaxEarlyUnlockFeePerDay(uint256 fee, uint maxFee);
error ExceedsMaxLockingPeriod(uint256 period, uint256 maxPeriod);
error WithdrawalRequestExceedsDeposited(uint256 requestedWithdrawal, uint256 currentBalance);
error RequestedUnlockDateBeforeCurrent(uint256 requestedUnlockDate, uint256 currentUnlockDate);
/*
* @dev initialize function to setup cloned instance
* @notice marked the initialize function as payable, because it costs less gas to execute,
* since the compiler does not have to add extra checks to ensure that a payment wasn't provided.
*/
function initialize(
address _depositToken,
address _rewardsAPI,
uint256 maxLockingPeriodInDays,
uint256 maxEarlyUnlockFeePerDay
) external payable onlyOwner {
if (depositToken != address(0)) {
revert AlreadyInitialized();
}
if (_depositToken == address(0)) {
revert MissingDepositToken();
}
if (_rewardsAPI == address(0)) {
revert MissingRewardsAPI();
}
require(
maxLockingPeriodInDays > 0 && maxEarlyUnlockFeePerDay > 0,
"maxLockingPeriodInDays and maxEarlyUnlockFeePerDay must be > 0"
);
MAX_LOCKING_PERIOD = maxLockingPeriodInDays * 1 days;
MAX_EARLY_UNLOCK_FEE_PER_DAY = maxEarlyUnlockFeePerDay;
depositToken = _depositToken;
rewardsAPI = _rewardsAPI;
rewardToken = SDAOSimpleRewardAPI(_rewardsAPI).rewardToken();
earlyUnlockFeePerDay = 5;
}
/*
* @dev Deposit tokens
*/
function deposit(uint256 _amount, uint256 _lockingPeriod) external nonReentrant {
uint256 _tokens_deposited = _deposit(_amount, msg.sender, msg.sender, _lockingPeriod);
emit Deposit(msg.sender, _tokens_deposited, _lockingPeriod);
}
/*
* @dev Deposit tokens from zapper contract on behalf of the user
*/
function depositFor(address _recipient, uint256 _amount, uint256 _lockingPeriod) external nonReentrant {
if (msg.sender != zapperContract) {
revert SenderIsNotZapper(msg.sender, zapperContract);
}
uint256 _tokens_deposited = _deposit(_amount, msg.sender, _recipient, _lockingPeriod);
emit Deposit(msg.sender, _tokens_deposited, _lockingPeriod);
}
/*
* @dev Withdraw tokens
*/
function withdraw(uint256 _amount) external nonReentrant {
_withdraw(_amount, msg.sender);
emit Withdraw(msg.sender, _amount);
}
/*
* @dev Pending rewards
*/
function pending() external view returns(uint256) {
return SDAOSimpleRewardAPI(rewardsAPI).claimableForUser(msg.sender);
}
/*
* @dev Pending rewards for user
*/
function pendingFor(address _user) external view returns(uint256) {
return SDAOSimpleRewardAPI(rewardsAPI).claimableForUser(_user);
}
/*
* @dev Claim rewards
*/
function claim() external {
uint256 _claimed = SDAOSimpleRewardAPI(rewardsAPI).claimForUser(msg.sender);
emit Claimed(msg.sender, _claimed);
}
/*
* @dev withdraw and claim in one transaction
*/
function withdrawAndClaim(uint256 _amount) external nonReentrant {
_withdraw(_amount, msg.sender);
emit Withdraw(msg.sender, _amount);
SDAOSimpleRewardAPI(rewardsAPI).claimForUser(msg.sender);
}
/*
* @dev enable/disable new deposits
*/
function setDepositsEnabled(bool _depositsEnabled) external onlyOwner {
depositsEnabled = _depositsEnabled;
emit SetDepositsEnabled(msg.sender, _depositsEnabled);
}
/**
* @dev change earlyUnlockFeePerDay
*/
function setEarlyUnlockFeePerDay(uint256 _earlyUnlockFeePerDay) external onlyOwner {
if (_earlyUnlockFeePerDay > MAX_EARLY_UNLOCK_FEE_PER_DAY) {
revert ExceedsMaxEarlyUnlockFeePerDay(_earlyUnlockFeePerDay, MAX_EARLY_UNLOCK_FEE_PER_DAY);
}
earlyUnlockFeePerDay = _earlyUnlockFeePerDay;
emit SetEarlyUnlockFeePerDay(msg.sender, _earlyUnlockFeePerDay);
}
/*
* @dev Register zapper contract
*/
function setZapperContract(address _zapperContract) external onlyOwner {
if (_zapperContract == address(0)) {
revert MissingZapperContract();
}
zapperContract = _zapperContract;
emit SetZapperContract(msg.sender, _zapperContract);
}
/**
* @dev recover unsupported tokens
*/
function recoverUnsupportedTokens(address _token, uint256 amount, address to) external onlyOwner {
if (_token == address(0)) {
revert MissingToken();
}
if (_token == depositToken) {
revert DepositTokenRecoveryNotAllowed();
}
IERC20(_token).safeTransfer(to, amount);
}
/**
* @dev collect accumulated early unlock fees
*/
function collectFees() external onlyOwner {
uint256 fees = earlyUnlockFees;
earlyUnlockFees = 0;
IERC20(depositToken).safeTransfer(msg.sender, fees);
emit CollectedFees(msg.sender, fees);
}
/*
* @dev internal deposit function
*/
function _deposit(uint256 _amount,
address _depositor,
address _recipient,
uint256 _lockingPeriod) internal returns (uint256 tokensDeposited) {
if (_lockingPeriod > MAX_LOCKING_PERIOD) {
revert ExceedsMaxLockingPeriod(_lockingPeriod, MAX_LOCKING_PERIOD);
}
if (!depositsEnabled) {
revert DepositsDisabled();
}
UserInfo memory user = userInfo[_recipient];
if (_amount == 0 && user.amount == 0) {
revert MissingAmount();
}
uint256 newEndPeriod = block.timestamp + _lockingPeriod;
if (newEndPeriod < user.unlockDate) {
revert RequestedUnlockDateBeforeCurrent(newEndPeriod, user.unlockDate);
}
uint256 deltaScore;
if (_amount > 0) {
IERC20 _depositToken = IERC20(depositToken);
uint256 _before = _depositToken.balanceOf(address(this));
_depositToken.safeTransferFrom(_depositor, address(this), _amount);
tokensDeposited = _depositToken.balanceOf(address(this)) - _before;
}
if (user.amount > 0) {
// extend unlock date
uint256 extensionPeriod = newEndPeriod - user.unlockDate;
deltaScore += user.amount * extensionPeriod;
}
// handle new deposit
deltaScore += tokensDeposited * _lockingPeriod;
totalScore += deltaScore;
user.score += deltaScore;
SDAOSimpleRewardAPI(rewardsAPI).changeUserShares(_recipient, user.score);
user.amount += tokensDeposited;
user.lockDate = block.timestamp;
user.unlockDate = newEndPeriod;
userInfo[_recipient] = user;
}
/*
* @dev internal withdraw function
*/
function _withdraw(uint256 _amount, address _user) internal {
UserInfo storage user = userInfo[_user];
if (user.amount < _amount) {
revert WithdrawalRequestExceedsDeposited(_amount, user.amount);
}
if (_amount == 0) {
revert MissingAmount();
}
uint256 originalUnlockDate = user.unlockDate;
uint256 deltaScore;
// when unlock date has passed
if (originalUnlockDate < block.timestamp) {
// extend unlock date
uint256 extensionPeriod = block.timestamp - originalUnlockDate;
deltaScore = user.amount * extensionPeriod;
totalScore += deltaScore;
user.score += deltaScore;
user.unlockDate = block.timestamp;
}
uint256 withdrawalAmount = _amount;
// score will be reduced proportional to the amount withdrawn
deltaScore = user.score * withdrawalAmount / user.amount;
// apply withdrawal amount
user.amount -= withdrawalAmount;
// update scores
totalScore -= deltaScore;
user.score -= deltaScore;
SDAOSimpleRewardAPI(rewardsAPI).changeUserShares(_user, user.score);
// when not yet completely unlocked, apply early unlock fee
if (user.unlockDate > block.timestamp) {
uint256 earlyUnlockFee = withdrawalAmount * (originalUnlockDate - block.timestamp) * earlyUnlockFeePerDay
/ 1 days / MAX_PERCENTAGE;
earlyUnlockFees += earlyUnlockFee;
withdrawalAmount -= earlyUnlockFee;
emit PaidEarlyUnlockFee(_user, earlyUnlockFee, originalUnlockDate - block.timestamp);
}
// when completely withdrawn, reset unlockdate
if (user.amount == 0) {
user.unlockDate = block.timestamp;
}
IERC20(depositToken).safeTransfer(_user, withdrawalAmount);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.25;
contract Clonable {
address private _owner;
event Cloned(address newInstance);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
error CallerIsNotOwner();
error AlreadyInitializedOwner();
error MissingOwner();
/*
* @notice marked the constructor function as payable, because it costs less gas to execute,
* since the compiler does not have to add extra checks to ensure that a payment wasn't provided.
* A constructor can safely be marked as payable, since only the deployer would be able to pass funds,
* and the project itself would not pass any funds.
*/
constructor() payable {
_owner = msg.sender;
}
function owner() external view returns(address) {
return _owner;
}
modifier onlyOwner() {
if (_owner != msg.sender) {
revert CallerIsNotOwner();
}
_;
}
function setOwnerAfterClone(address initialOwner) external {
if (_owner != address(0)) {
revert AlreadyInitializedOwner();
}
_owner = initialOwner;
emit OwnershipTransferred(address(0), initialOwner);
}
function transferOwnership(address newOwner) external onlyOwner {
if (newOwner == address(0)) {
revert MissingOwner();
}
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
function clone(address newOwner) public returns (address newInstance){
if (newOwner == address(0)) {
revert MissingOwner();
}
// Copied from https://github.com/optionality/clone-factory/blob/master/contracts/CloneFactory.sol
bytes20 addressBytes = bytes20(address(this));
assembly {
// EIP-1167 bytecode
let clone_code := mload(0x40)
mstore(clone_code, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000)
mstore(add(clone_code, 0x14), addressBytes)
mstore(add(clone_code, 0x28), 0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000)
newInstance := create(0, clone_code, 0x37)
}
emit Cloned(newInstance);
Clonable(newInstance).setOwnerAfterClone(newOwner);
}
function getClone() external returns (address) {
return clone(msg.sender);
}
}