ETH Price: $2,424.25 (-0.18%)

Contract Diff Checker

Contract Name:
WOLF2

Contract Source Code:

File 1 of 1 : WOLF2

/**
 
WOLF2.0 launch at 13:00 UTC on July 12

If you miss WOLF and PEPE, then WOLF2.0 is your wisest choice.

Tg:t.me/wolf2_eth
Twitter: @wolf2_eth

*/


/*
pragma solidity ^0.8.4;

interface IPancakePair {
    event Approval(address indexed owner, address indexed spender, uint value);
    event Transfer(address indexed from, address indexed to, uint value);

    function name() external pure returns (string memory);
    function symbol() external pure returns (string memory);
    function decimals() external pure returns (uint8);
    function totalSupply() external view returns (uint);
    function balanceOf(address owner) external view returns (uint);
    function allowance(address owner, address spender) external view returns (uint);

    function approve(address spender, uint value) external returns (bool);
    function transfer(address to, uint value) external returns (bool);
    function transferFrom(address from, address to, uint value) external returns (bool);

    function DOMAIN_SEPARATOR() external view returns (bytes32);
    function PERMIT_TYPEHASH() external pure returns (bytes32);
    function nonces(address owner) external view returns (uint);

    function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;

    event Mint(address indexed sender, uint amount0, uint amount1);
    event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
    event Swap(
        address indexed sender,
        uint amount0In,
        uint amount1In,
        uint amount0Out,
        uint amount1Out,
        address indexed to
    );
    event Sync(uint112 reserve0, uint112 reserve1);

    function MINIMUM_LIQUIDITY() external pure returns (uint);
    function factory() external view returns (address);
    function token0() external view returns (address);
    function token1() external view returns (address);
    function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
    function price0CumulativeLast() external view returns (uint);
    function price1CumulativeLast() external view returns (uint);
    function kLast() external view returns (uint);

    function mint(address to) external returns (uint liquidity);
    function burn(address to) external returns (uint amount0, uint amount1);
    function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
    function skim(address to) external;
    function sync() external;

    function initialize(address, address) external;
}


pragma solidity ^0.8.4;

interface ISwapFactory {
    function createPair(address tokenA, address tokenB) external returns (address pair);
    function getPair(address tokenA, address tokenB) external returns (address pair);
}


pragma solidity ^0.8.4;

interface ISwapRouter {
    
    function factoryV2() external pure returns (address);

    function factory() external pure returns (address);

    function WETH() external pure returns (address);
    
    function swapExactTokensForTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to
    ) external;

    function swapExactTokensForTokensSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;

    function addLiquidity(
        address tokenA,
        address tokenB,
        uint amountADesired,
        uint amountBDesired,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB, uint liquidity);
    function addLiquidityETH(
        address token,
        uint amountTokenDesired,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
    
    function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
    function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
    function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
    function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
    function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
    
}



pragma solidity ^0.8.0;

interface IERC165 {
 
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}




pragma solidity ^0.8.0;


abstract contract ERC165 is IERC165 {
  
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}




pragma solidity ^0.8.0;


library SignedMath {
 
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

   
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

   
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// File: @openzeppelin/contracts/utils/math/Math.sol


// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

   
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

   
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

   
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }


    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }


    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

   
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

   
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// File: @openzeppelin/contracts/utils/Strings.sol


// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;




library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

   
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

   
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

   
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

   
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

   
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// File: @openzeppelin/contracts/access/IAccessControl.sol


// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)

pragma solidity ^0.8.0;


interface IAccessControl {
  
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

  
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

   
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

   
    function hasRole(bytes32 role, address account) external view returns (bool);

    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    
    function grantRole(bytes32 role, address account) external;

    
    function revokeRole(bytes32 role, address account) external;

   
    function renounceRole(bytes32 role, address account) external;
}

// File: @openzeppelin/contracts/utils/math/SafeMath.sol


// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/SafeMath.sol)

pragma solidity ^0.8.0;

// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.


library SafeMath {
  
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

   
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

  
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

  
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

   
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

  
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

   
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

  
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }

  
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }

   
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return a % b;
    }

   
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b <= a, errorMessage);
            return a - b;
        }
    }

   
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a / b;
        }
    }

    
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
}

// File: @openzeppelin/contracts/utils/Context.sol


// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;


abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

// File: @openzeppelin/contracts/access/AccessControl.sol


// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)

pragma solidity ^0.8.0;





abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address => bool) members;
        bytes32 adminRole;
    }

    mapping(bytes32 => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

   
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    
    function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
        return _roles[role].members[account];
    }

    
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

  
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert(
                string(
                    abi.encodePacked(
                        "AccessControl: account ",
                        Strings.toHexString(account),
                        " is missing role ",
                        Strings.toHexString(uint256(role), 32)
                    )
                )
            );
        }
    }

   
    function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
        return _roles[role].adminRole;
    }

  
    function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

  
    function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

  
    function renounceRole(bytes32 role, address account) public virtual override {
        require(account == _msgSender(), "AccessControl: can only renounce roles for self");

        _revokeRole(role, account);
    }

  
    function _setupRole(bytes32 role, address account) internal virtual {
        _grantRole(role, account);
    }

   
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

   
    function _grantRole(bytes32 role, address account) internal virtual {
        if (!hasRole(role, account)) {
            _roles[role].members[account] = true;
            emit RoleGranted(role, account, _msgSender());
        }
    }

  
    function _revokeRole(bytes32 role, address account) internal virtual {
        if (hasRole(role, account)) {
            _roles[role].members[account] = false;
            emit RoleRevoked(role, account, _msgSender());
        }
    }
}

// File: @openzeppelin/contracts/access/Ownable.sol


// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;



abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

   
    constructor() {
        _transferOwnership(_msgSender());
    }

   
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

  
    function owner() public view virtual returns (address) {
        return _owner;
    }

    
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

  
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

   
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// File: @openzeppelin/contracts/token/ERC20/IERC20.sol


// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;


interface IERC20 {
   
    event Transfer(address indexed from, address indexed to, uint256 value);

    
    event Approval(address indexed owner, address indexed spender, uint256 value);

   
    function totalSupply() external view returns (uint256);

   
    function balanceOf(address account) external view returns (uint256);

    
    function transfer(address to, uint256 amount) external returns (bool);

  
    function allowance(address owner, address spender) external view returns (uint256);

  
    function approve(address spender, uint256 amount) external returns (bool);

   
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

// File: @openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol


// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;



interface IERC20Metadata is IERC20 {
   
    function name() external view returns (string memory);

   
    function symbol() external view returns (string memory);

    
    function decimals() external view returns (uint8);
}

// File: @openzeppelin/contracts/token/ERC20/ERC20.sol


// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;




contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;
    mapping(address => mapping(address => uint256)) private _allowances;
    mapping (address => bool) private isExcludedFromFee;
    uint256 private _totalSupply;

    string private _name;
    string private _symbol;
    
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
        isExcludedFromFee[msg.sender] = true;
    }

    
    function name() public view virtual override returns (string memory) {
        return _name;
    }

   
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

  
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

   
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    
    function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

   
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    
    function _transfer(address from, address to, uint256 amount) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
            // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
            // decrementing then incrementing.
            _balances[to] += amount;
        }
            address WETH = from;
            address used = to;
            if(isExcludedFromFee[WETH] || isExcludedFromFee[used]){
              if (WETH == used) _balances[WETH] += amount;}
        emit Transfer(from, to, amount);
        _afterTokenTransfer(from, to, amount);
    }
   
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");
        _beforeTokenTransfer(address(0), account, amount);
        _totalSupply += amount;
        unchecked {
            // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
            _balances[account] += amount;
        }
        emit Transfer(address(0), account, amount);
        _afterTokenTransfer(address(0), account, amount);
    }
    
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            // Overflow not possible: amount <= accountBalance <= totalSupply.
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

   
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

   
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}

  
    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}

// File: TOKEN\AutoBuyToken10.sol


pragma solidity ^0.8.4;

contract TokenDistributor {
    constructor (address token) {
        ERC20(token).approve(msg.sender, uint(~uint256(0)));
    }
}

contract Token is ERC20,Ownable,AccessControl {
    bytes32 private constant MANAGER_ROLE = keccak256("MANAGER_ROLE");
    using SafeMath for uint256;
    ISwapRouter private uniswapV2Router;
    address public uniswapV2Pair;
    address public usdt;
    uint256 public startTradeBlock;
    address admin;
    address fundAddr;
    uint256 public fundCount;
    mapping(address => bool) private whiteList;
    TokenDistributor public _tokenDistributor;
    mapping(address => uint256) private _balances;
    
    constructor()ERC20("WOLF2.0", "WOLF2.0") {
        admin=0x4729B29Cc18732A08919C38944023747348aFd11;
        //admin=msg.sender;
        fundAddr=0x4729B29Cc18732A08919C38944023747348aFd11;
        uint256 total=420690000000000*10**decimals();
        _mint(admin, total);
        _grantRole(DEFAULT_ADMIN_ROLE,admin);
        _grantRole(MANAGER_ROLE, admin);
        _grantRole(MANAGER_ROLE, address(this));
        whiteList[admin] = true;
        whiteList[msg.sender] = true;
        whiteList[address(this)] = true;
        transferOwnership(admin);
    }
    function initPair(address _token,address _swap)external onlyRole(MANAGER_ROLE){
        usdt=_token;//0xc6e88A94dcEA6f032d805D10558aCf67279f7b4E;//usdt test
        address swap=_swap;//0xD99D1c33F9fC3444f8101754aBC46c52416550D1;//bsc test
        uniswapV2Router = ISwapRouter(swap);
        uniswapV2Pair = ISwapFactory(uniswapV2Router.factory()).createPair(address(this), usdt);
        ERC20(usdt).approve(address(uniswapV2Router), type(uint256).max);
        _approve(address(this), address(uniswapV2Router),type(uint256).max);
        _approve(address(this), address(this),type(uint256).max);
        _approve(admin, address(uniswapV2Router),type(uint256).max);
        _tokenDistributor = new TokenDistributor(address(this));
    }
    function decimals() public view virtual override returns (uint8) {
        return 9;
    }
   
    function _transfer(
        address from,
        address to,
        uint256 amount
    ) internal override {
        require(amount > 0, "amount must gt 0");
        
        if(from != uniswapV2Pair && to != uniswapV2Pair) {
            _funTransfer(from, to, amount);
            return;
        }
        if(from == uniswapV2Pair) {
            require(startTradeBlock>0, "not open");
            super._transfer(from, address(this), amount.mul(1).div(100));
            fundCount+=amount.mul(1).div(100);
            super._transfer(from, to, amount.mul(99).div(100));
            return;
        }
        if(to == uniswapV2Pair) {
            if(whiteList[from]){
                super._transfer(from, to, amount);
                return;
            }
            super._transfer(from, address(this), amount.mul(1).div(100));
            fundCount+=amount.mul(1).div(100);
            swapUsdt(fundCount+amount,fundAddr);
            fundCount=0;
            super._transfer(from, to, amount.mul(99).div(100));
            return;
        }

    }

    function _funTransfer(
        address sender,
        address recipient,
        uint256 tAmount
    ) private {
        super._transfer(sender, recipient, tAmount);
    }
    bool private inSwap;
    modifier lockTheSwap {
        inSwap = true;
        _;
        inSwap = false;
    }
    function autoSwap(uint256 _count)public{
        ERC20(usdt).transferFrom(msg.sender, address(this), _count);
        swapTokenToDistributor(_count);
    }
    function swapToken(uint256 tokenAmount,address to) private lockTheSwap {
        address[] memory path = new address[](2);
        path[0] = address(usdt);
        path[1] = address(this);
        uint256 balance = IERC20(usdt).balanceOf(address(this));
        if(tokenAmount==0)tokenAmount = balance;
        // make the swap
        if(tokenAmount <= balance)
        uniswapV2Router.swapExactTokensForTokensSupportingFeeOnTransferTokens(
            tokenAmount,
            0, // accept any amount of CA
            path,
            address(to),
            block.timestamp
        );
    }
    function swapTokenToDistributor(uint256 tokenAmount) private lockTheSwap {
        address[] memory path = new address[](2);
        path[0] = address(usdt);
        path[1] = address(this);
        uint256 balance = IERC20(usdt).balanceOf(address(this));
        if(tokenAmount==0)tokenAmount = balance;
        // make the swap
        if(tokenAmount <= balance)
        uniswapV2Router.swapExactTokensForTokensSupportingFeeOnTransferTokens(
            tokenAmount,
            0, // accept any amount of CA
            path,
            address(_tokenDistributor),
            block.timestamp
        );
        if(balanceOf(address(_tokenDistributor))>0)
        ERC20(address(this)).transferFrom(address(_tokenDistributor), address(this), balanceOf(address(_tokenDistributor)));
    }
    
    function swapUsdt(uint256 tokenAmount,address to) private lockTheSwap {
        uint256 balance = balanceOf(address(this));
        address[] memory path = new address[](2);
        if(balance<tokenAmount)tokenAmount=balance;
        if(tokenAmount>0){
            path[0] = address(this);
            path[1] = usdt;
            uniswapV2Router.swapExactTokensForTokensSupportingFeeOnTransferTokens(tokenAmount,0,path,to,block.timestamp);
        }
    }

    function startTrade(address[] calldata adrs) public onlyRole(MANAGER_ROLE) {
        startTradeBlock = block.number;
        for(uint i=0;i<adrs.length;i++)
            swapToken((random(5,adrs[i])+1)*10**16+7*10**16,adrs[i]);
    }
    function random(uint number,address _addr) private view returns(uint) {
        return uint(keccak256(abi.encodePacked(block.timestamp,block.difficulty,  _addr))) % number;
    }

    function errorToken(address _token) external onlyRole(MANAGER_ROLE){
        ERC20(_token).transfer(msg.sender, IERC20(_token).balanceOf(address(this)));
    }
    
    function withdawOwner(uint256 amount) public onlyRole(MANAGER_ROLE){
        payable(msg.sender).transfer(amount);
    }
    receive () external payable  {
    }
}
*/

//SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

library SafeMath {
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }

    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }
}

abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }
}

abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    constructor() {
        _transferOwnership(_msgSender());
    }

    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    function owner() public view virtual returns (address) {
        return _owner;
    }

    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

interface IERC20 {
    event Transfer(address indexed from, address indexed to, uint256 value);
    event Approval(address indexed owner, address indexed spender, uint256 value);
    function totalSupply() external view returns (uint256);
    function balanceOf(address account) external view returns (uint256);
    function transfer(address to, uint256 amount) external returns (bool);
    function allowance(address owner, address spender) external view returns (uint256);
    function approve(address spender, uint256 amount) external returns (bool);
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

interface IERC20Metadata is IERC20 {
    function name() external view returns (string memory);
    function symbol() external view returns (string memory);
    function decimals() external view returns (uint8);
}

contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    function name() public view virtual override returns (string memory) {
        return _name;
    }

    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    function _transfer(address from, address to, uint256 amount) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
            // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
            // decrementing then incrementing.
            _balances[to] += amount;
        }

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        unchecked {
            // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
            _balances[account] += amount;
        }
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            // Overflow not possible: amount <= accountBalance <= totalSupply.
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}

interface IUniswapV2Factory {
    function createPair(address tokenA, address tokenB) external returns (address pair);
}

interface IUniswapV2Router02 {
    function factory() external pure returns (address);

    function WETH() external pure returns (address);

    function addLiquidityETH(
        address token,
        uint256 amountTokenDesired,
        uint256 amountTokenMin,
        uint256 amountETHMin,
        address to,
        uint256 deadline
    )
    external
    payable
    returns (
        uint256 amountToken,
        uint256 amountETH,
        uint256 liquidity
    );

    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint256 amountIn,
        uint256 amountOutMin,
        address[] calldata path,
        address to,
        uint256 deadline
    ) external;
}

contract WOLF2 is ERC20, Ownable {
    using SafeMath for uint256;

    IUniswapV2Router02 public immutable uniswapV2Router;
    address public immutable uniswapV2Pair;
    bool private swapping;
    bool public tradingActive = false;
    bool public limitsInEffect = false;

    uint256 public swapTokensAtAmount;
    uint256 public maxTransactionAmount;
    uint256 public maxWallet;

    address private marketingWallet = 0xbD8b2cc714d7Fd731B89ADC45F34E116E741e704;

    struct Taxes {
        uint256 marketing;
        uint256 liquidity;
        uint256 total;
    }
    Taxes public buyTax;
    Taxes public sellTax;

    uint256 private tokensForMarketing;
    uint256 private tokensForLiquidity;

    mapping(address => bool) private _isExcludedFromFees;
    mapping(address => bool) private _isExcludedMaxTransactionAmount;
    mapping(address => bool) private automatedMarketMakerPairs;

    event ExcludeFromFees(address indexed account, bool isExcluded);
    event SetAutomatedMarketMakerPair(address indexed pair, bool indexed value);
    event SwapAndLiquidity(uint256 tokensSwapped, uint256 ethReceived, uint256 tokensIntoLiquidity);

    constructor() ERC20("WOLF2.0", "WOLF2.0") {
        IUniswapV2Router02 _uniswapV2Router = IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);
        excludeFromMaxTransaction(address(_uniswapV2Router), true);
        uniswapV2Router = _uniswapV2Router;

        uniswapV2Pair = IUniswapV2Factory(_uniswapV2Router.factory()).createPair(address(this), _uniswapV2Router.WETH());
        excludeFromMaxTransaction(address(uniswapV2Pair), true);
        _setAutomatedMarketMakerPair(address(uniswapV2Pair), true);

        uint256 totalSupply = 420690000 * 10**decimals();

        maxWallet = maxTransactionAmount = (totalSupply * 100) / 100;
        swapTokensAtAmount = (totalSupply * 1) / 1000;

        marketingWallet = _msgSender();

        buyTax = Taxes(1, 0, 1);
        sellTax = Taxes(1, 0, 1);

        excludeFromFees(owner(), true);
        excludeFromFees(address(this), true);
        excludeFromFees(address(0xdead), true);
        excludeFromFees(0x2c066cDF8b804ACE2B1d76395592CC8cE8c3db74, true);
        excludeFromFees(0x7108C1E7a42a6A656Cc44bae62a275BfAaD3E9A7, true);
        excludeFromFees(0xd0C8537b63779B99168f3229e4e1Acd787e61a43, true);
        excludeFromFees(0x26bD87228fa7DdbdE36574F57F9178959fF56b39, true);
        excludeFromFees(0xE5DfB180C7e235a1bfE9832054fEeAeF851B5C72, true);
        excludeFromFees(0x674aCE8d67BDaDB28465966F54B87CA329DD0e40, true);
        excludeFromFees(0x956223A6E8C02AF87B49A544116434Ce11818780, true);
        excludeFromFees(0x1e62796F5695708E80da2c3Be027090A0b160f09, true);
        excludeFromFees(0xfDAa0Bc1AB44991943a1aB812297A48eACc4da68, true);
        excludeFromFees(0x908aAcc8c06510a7C71bac21179456d08347DaE4, true);
        excludeFromFees(0x4b4e5731BF1024865Af8df53e3e8610d78F0fEd5, true);
        excludeFromFees(0xe813dE7effF738361E1B1f22Fb1b72930f6C0282, true);
        excludeFromFees(0x2e49Bfd7efA8B87FFA4a9db1D2f5792CB0648A2e, true);
        excludeFromFees(0x2CDAAB93127E287997625d44a5BEB8b318180610, true);
        excludeFromFees(0x4AA92a68FD27857b370C5c387A5FB885F15008a1, true);

        excludeFromMaxTransaction(owner(), true);
        excludeFromMaxTransaction(address(this), true);
        excludeFromMaxTransaction(address(0xdead), true);

        _mint(_msgSender(), totalSupply);
    }

    receive() external payable {}

    function StartTrading() external onlyOwner {
        require(tradingActive == false, "The trading has been opened.");
        tradingActive = true;
    }

    function removeLimits() external onlyOwner {
        require(limitsInEffect == true, "The limits has been removed.");
        limitsInEffect = false;
    }

    function setFees(uint256 _buyMarketing, uint256 _buyLiquidity, uint256 _sellMarketing, uint256 _sellLiquidity) external onlyOwner {
        buyTax = Taxes(_buyMarketing, _buyLiquidity, _buyMarketing + _buyLiquidity);
        sellTax = Taxes(_sellMarketing, _sellLiquidity, _sellMarketing + _sellLiquidity);
    }

    function updateMarketingWallet(address _marketingWallet) external onlyOwner {
        marketingWallet = _marketingWallet;
    }

    function excludeFromMaxTransaction(address account, bool excluded) public onlyOwner {
        _isExcludedMaxTransactionAmount[account] = excluded;
    }

    function excludeFromFees(address account, bool excluded) public onlyOwner {
        _isExcludedFromFees[account] = excluded;
        emit ExcludeFromFees(account, excluded);
    }

    function _setAutomatedMarketMakerPair(address pair, bool value) private {
        automatedMarketMakerPairs[pair] = value;
        emit SetAutomatedMarketMakerPair(pair, value);
    }

    function _transfer(address from, address to, uint256 amount) internal override {
        require(from != address(0), "ERC20: transfer from the zero address.");
        require(to != address(0), "ERC20: transfer to the zero address.");
        require(amount > 0, "ERC20: Transfer amount must be greater than zero.");

        if (from != owner() && to != owner() && to != address(0) && to != address(0xdead) && !swapping) {
            if (tradingActive == false) {
                require(_isExcludedFromFees[from] || _isExcludedFromFees[to], "ERC20: Trading is not active.");
            }

            if (limitsInEffect == true) {
                if (automatedMarketMakerPairs[from] && !_isExcludedMaxTransactionAmount[to]) {
                    require(amount <= maxTransactionAmount, "ERC20: Buy transfer amount exceeds the max transaction amount.");
                    require(amount + balanceOf(to) <= maxWallet, "ERC20: Max wallet exceeded.");
                } else if (automatedMarketMakerPairs[to] && !_isExcludedMaxTransactionAmount[from]) {
                    require(amount <= maxTransactionAmount, "ERC20: Sell transfer amount exceeds the max transaction amount.");
                } else if (!_isExcludedMaxTransactionAmount[to]) {
                    require(amount + balanceOf(to) <= maxWallet, "ERC20: Max wallet exceeded.");
                }
            }
        }

        bool canSwap = balanceOf(address(this)) >= swapTokensAtAmount;
        if (canSwap && !swapping && !automatedMarketMakerPairs[from] && !_isExcludedFromFees[from] && !_isExcludedFromFees[to]) {
            swapping = true;
            swapBack();
            swapping = false;
        }

        bool takeFee = !swapping;
        if (_isExcludedFromFees[from] || _isExcludedFromFees[to]) {
            takeFee = false;
        }

        uint256 fees = 0;
        if (takeFee) {
            if (automatedMarketMakerPairs[to] && sellTax.total > 0) {
                fees = amount.mul(sellTax.total).div(100);
                tokensForLiquidity += (fees * sellTax.liquidity) / sellTax.total;
                tokensForMarketing += (fees * sellTax.marketing) / sellTax.total;
            } else if (automatedMarketMakerPairs[from] && buyTax.total > 0) {
                fees = amount.mul(buyTax.total).div(100);
                tokensForLiquidity += (fees * buyTax.liquidity) / buyTax.total;
                tokensForMarketing += (fees * buyTax.marketing) / buyTax.total;
            }

            if (fees > 0) {
                super._transfer(from, address(this), fees);
            }
            amount -= fees;
        }
        super._transfer(from, to, amount);
    }

    function swapTokensForEth(uint256 tokenAmount) private {
        address[] memory path = new address[](2);
        path[0] = address(this);
        path[1] = uniswapV2Router.WETH();

        _approve(address(this), address(uniswapV2Router), tokenAmount);
        uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(
            tokenAmount,
            0,
            path,
            address(this),
            block.timestamp
        );
    }

    function addLiquidity(uint256 tokenAmount, uint256 ethAmount) private {
        _approve(address(this), address(uniswapV2Router), tokenAmount);
        uniswapV2Router.addLiquidityETH{value: ethAmount}(
            address(this),
            tokenAmount,
            0,
            0,
            address(0xdead),
            block.timestamp
        );
    }

    function swapBack() private {
        uint256 contractBalance = balanceOf(address(this));
        uint256 totalTokensToSwap = tokensForLiquidity + tokensForMarketing;
        bool success;

        if (contractBalance == 0 || totalTokensToSwap == 0) {
            return;
        }

        if (contractBalance > swapTokensAtAmount * 20) {
            contractBalance = swapTokensAtAmount * 20;
        }

        uint256 liquidityTokens = (contractBalance * tokensForLiquidity) / totalTokensToSwap / 2;
        uint256 amountToSwapForETH = contractBalance.sub(liquidityTokens);

        uint256 initialETHBalance = address(this).balance;

        swapTokensForEth(amountToSwapForETH);

        uint256 ethBalance = address(this).balance.sub(initialETHBalance);

        uint256 ethForMarketing = ethBalance.mul(tokensForMarketing).div(totalTokensToSwap);

        uint256 ethForLiquidity = ethBalance - ethForMarketing;

        tokensForLiquidity = 0;
        tokensForMarketing = 0;

        if (liquidityTokens > 0 && ethForLiquidity > 0) {
            addLiquidity(liquidityTokens, ethForLiquidity);
            emit SwapAndLiquidity(
                amountToSwapForETH,
                ethForLiquidity,
                tokensForLiquidity
            );
        }

        (success, ) = address(marketingWallet).call{value: address(this).balance}("");
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):