Contract Name:
InfinityOrderBookComplication
Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity 0.8.14;
// external imports
import {Ownable} from '@openzeppelin/contracts/access/Ownable.sol';
import {EnumerableSet} from '@openzeppelin/contracts/utils/structs/EnumerableSet.sol';
// internal imports
import {SignatureChecker} from '../libs/SignatureChecker.sol';
import {OrderTypes} from '../libs/OrderTypes.sol';
import {IComplication} from '../interfaces/IComplication.sol';
/**
* @title InfinityOrderBookComplication
* @author nneverlander. Twitter @nneverlander
* @notice Complication to execute orderbook orders
*/
contract InfinityOrderBookComplication is IComplication, Ownable {
using EnumerableSet for EnumerableSet.AddressSet;
uint256 public constant PRECISION = 1e4; // precision for division; similar to bps
/// @dev WETH address of the chain being used
address public constant WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
// keccak256('Order(bool isSellOrder,address signer,uint256[] constraints,OrderItem[] nfts,address[] execParams,bytes extraParams)OrderItem(address collection,TokenInfo[] tokens)TokenInfo(uint256 tokenId,uint256 numTokens)')
bytes32 public constant ORDER_HASH = 0x7bcfb5a29031e6b8d34ca1a14dd0a1f5cb11b20f755bb2a31ee3c4b143477e4a;
// keccak256('OrderItem(address collection,TokenInfo[] tokens)TokenInfo(uint256 tokenId,uint256 numTokens)')
bytes32 public constant ORDER_ITEM_HASH = 0xf73f37e9f570369ceaab59cef16249ae1c0ad1afd592d656afac0be6f63b87e0;
// keccak256('TokenInfo(uint256 tokenId,uint256 numTokens)')
bytes32 public constant TOKEN_INFO_HASH = 0x88f0bd19d14f8b5d22c0605a15d9fffc285ebc8c86fb21139456d305982906f1;
/// @dev Used in order signing with EIP-712
bytes32 public immutable DOMAIN_SEPARATOR;
/// @dev Storage variable that keeps track of valid currencies used for payment (tokens)
EnumerableSet.AddressSet private _currencies;
event CurrencyAdded(address currency);
event CurrencyRemoved(address currency);
constructor() {
// Calculate the domain separator
DOMAIN_SEPARATOR = keccak256(
abi.encode(
keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'),
keccak256('InfinityComplication'),
keccak256(bytes('1')), // for versionId = 1
block.chainid,
address(this)
)
);
// add default currencies
_currencies.add(WETH);
_currencies.add(address(0)); // ETH
}
// ======================================================= EXTERNAL FUNCTIONS ==================================================
/**
* @notice Checks whether one to one matches can be executed
* @dev This function is called by the main exchange to check whether one to one matches can be executed.
It checks whether orders have the right constraints - i.e they have one specific NFT only, whether time is still valid,
prices are valid and whether the nfts intersect.
* @param makerOrder1 first makerOrder
* @param makerOrder2 second makerOrder
* @return returns whether the order can be executed, orderHashes and the execution price
*/
function canExecMatchOneToOne(OrderTypes.MakerOrder calldata makerOrder1, OrderTypes.MakerOrder calldata makerOrder2)
external
view
override
returns (
bool,
bytes32,
bytes32,
uint256
)
{
// check if the orders are valid
bytes32 sellOrderHash = _hash(makerOrder1);
bytes32 buyOrderHash = _hash(makerOrder2);
require(verifyMatchOneToOneOrders(sellOrderHash, buyOrderHash, makerOrder1, makerOrder2), 'order not verified');
// check constraints
bool numItemsValid = makerOrder2.constraints[0] == makerOrder1.constraints[0] &&
makerOrder2.constraints[0] == 1 &&
makerOrder2.nfts.length == 1 &&
makerOrder2.nfts[0].tokens.length == 1 &&
makerOrder1.nfts.length == 1 &&
makerOrder1.nfts[0].tokens.length == 1;
bool _isTimeValid = makerOrder2.constraints[3] <= block.timestamp &&
makerOrder2.constraints[4] >= block.timestamp &&
makerOrder1.constraints[3] <= block.timestamp &&
makerOrder1.constraints[4] >= block.timestamp;
bool _isPriceValid;
uint256 makerOrder1Price = _getCurrentPrice(makerOrder1);
uint256 makerOrder2Price = _getCurrentPrice(makerOrder2);
uint256 execPrice;
if (makerOrder1.isSellOrder) {
_isPriceValid = makerOrder2Price >= makerOrder1Price;
execPrice = makerOrder1Price;
} else {
_isPriceValid = makerOrder1Price >= makerOrder2Price;
execPrice = makerOrder2Price;
}
return (
numItemsValid && _isTimeValid && doItemsIntersect(makerOrder1.nfts, makerOrder2.nfts) && _isPriceValid,
sellOrderHash,
buyOrderHash,
execPrice
);
}
/**
* @notice Checks whether one to many matches can be executed
* @dev This function is called by the main exchange to check whether one to many matches can be executed.
It checks whether orders have the right constraints - i.e they have the right number of items, whether time is still valid,
prices are valid and whether the nfts intersect. All orders are expected to contain specific items.
* @param makerOrder the one makerOrder
* @param manyMakerOrders many maker orders
* @return returns whether the order can be executed and orderHash of the one side order
*/
function canExecMatchOneToMany(
OrderTypes.MakerOrder calldata makerOrder,
OrderTypes.MakerOrder[] calldata manyMakerOrders
) external view override returns (bool, bytes32) {
// check if makerOrder is valid
bytes32 makerOrderHash = _hash(makerOrder);
require(isOrderValid(makerOrder, makerOrderHash), 'invalid maker order');
// check the constraints of the 'one' maker order
uint256 numNftsInOneOrder;
for (uint256 i; i < makerOrder.nfts.length; ) {
numNftsInOneOrder = numNftsInOneOrder + makerOrder.nfts[i].tokens.length;
unchecked {
++i;
}
}
// check the constraints of many maker orders
uint256 totalNftsInManyOrders;
bool numNftsPerManyOrderValid = true;
bool isOrdersTimeValid = true;
bool itemsIntersect = true;
for (uint256 i; i < manyMakerOrders.length; ) {
uint256 nftsLength = manyMakerOrders[i].nfts.length;
uint256 numNftsPerOrder;
for (uint256 j; j < nftsLength; ) {
numNftsPerOrder = numNftsPerOrder + manyMakerOrders[i].nfts[j].tokens.length;
unchecked {
++j;
}
}
numNftsPerManyOrderValid = numNftsPerManyOrderValid && manyMakerOrders[i].constraints[0] == numNftsPerOrder;
totalNftsInManyOrders = totalNftsInManyOrders + numNftsPerOrder;
isOrdersTimeValid =
isOrdersTimeValid &&
manyMakerOrders[i].constraints[3] <= block.timestamp &&
manyMakerOrders[i].constraints[4] >= block.timestamp;
itemsIntersect = itemsIntersect && doItemsIntersect(makerOrder.nfts, manyMakerOrders[i].nfts);
if (!numNftsPerManyOrderValid) {
return (false, makerOrderHash); // short circuit
}
unchecked {
++i;
}
}
bool _isTimeValid = isOrdersTimeValid &&
makerOrder.constraints[3] <= block.timestamp &&
makerOrder.constraints[4] >= block.timestamp;
uint256 currentMakerOrderPrice = _getCurrentPrice(makerOrder);
uint256 sumCurrentOrderPrices = _sumCurrentPrices(manyMakerOrders);
bool _isPriceValid;
if (makerOrder.isSellOrder) {
_isPriceValid = sumCurrentOrderPrices >= currentMakerOrderPrice;
} else {
_isPriceValid = sumCurrentOrderPrices <= currentMakerOrderPrice;
}
return (
numNftsInOneOrder == makerOrder.constraints[0] &&
numNftsInOneOrder == totalNftsInManyOrders &&
_isTimeValid &&
itemsIntersect &&
_isPriceValid,
makerOrderHash
);
}
/**
* @notice Checks whether match orders with a higher level intent can be executed
* @dev This function is called by the main exchange to check whether one to one matches can be executed.
It checks whether orders have the right constraints - i.e they have the right number of items, whether time is still valid,
prices are valid and whether the nfts intersect
* @param sell sell order
* @param buy buy order
* @param constructedNfts - nfts constructed by the off chain matching engine
* @return returns whether the order can be execute, orderHashes and the execution price
*/
function canExecMatchOrder(
OrderTypes.MakerOrder calldata sell,
OrderTypes.MakerOrder calldata buy,
OrderTypes.OrderItem[] calldata constructedNfts
)
external
view
override
returns (
bool,
bytes32,
bytes32,
uint256
)
{
// check if orders are valid
bytes32 sellOrderHash = _hash(sell);
bytes32 buyOrderHash = _hash(buy);
require(verifyMatchOrders(sellOrderHash, buyOrderHash, sell, buy), 'order not verified');
(bool _isPriceValid, uint256 execPrice) = isPriceValid(sell, buy);
return (
isTimeValid(sell, buy) &&
_isPriceValid &&
areNumMatchItemsValid(sell, buy, constructedNfts) &&
doItemsIntersect(sell.nfts, constructedNfts) &&
doItemsIntersect(buy.nfts, constructedNfts),
sellOrderHash,
buyOrderHash,
execPrice
);
}
/**
* @notice Checks whether one to one taker orders can be executed
* @dev This function is called by the main exchange to check whether one to one taker orders can be executed.
It checks whether orders have the right constraints - i.e they have one NFT only and whether time is still valid
* @param makerOrder the makerOrder
* @return returns whether the order can be executed and makerOrderHash
*/
function canExecTakeOneOrder(OrderTypes.MakerOrder calldata makerOrder)
external
view
override
returns (bool, bytes32)
{
// check if makerOrder is valid
bytes32 makerOrderHash = _hash(makerOrder);
require(isOrderValid(makerOrder, makerOrderHash), 'invalid maker order');
bool numItemsValid = makerOrder.constraints[0] == 1 &&
makerOrder.nfts.length == 1 &&
makerOrder.nfts[0].tokens.length == 1;
bool _isTimeValid = makerOrder.constraints[3] <= block.timestamp && makerOrder.constraints[4] >= block.timestamp;
return (numItemsValid && _isTimeValid, makerOrderHash);
}
/**
* @notice Checks whether take orders with a higher level intent can be executed
* @dev This function is called by the main exchange to check whether take orders with a higher level intent can be executed.
It checks whether orders have the right constraints - i.e they have the right number of items, whether time is still valid
and whether the nfts intersect
* @param makerOrder the maker order
* @param takerItems the taker items specified by the taker
* @return returns whether order can be executed and the makerOrderHash
*/
function canExecTakeOrder(OrderTypes.MakerOrder calldata makerOrder, OrderTypes.OrderItem[] calldata takerItems)
external
view
override
returns (bool, bytes32)
{
// check if makerOrder is valid
bytes32 makerOrderHash = _hash(makerOrder);
require(isOrderValid(makerOrder, makerOrderHash), 'invalid maker order');
return (
makerOrder.constraints[3] <= block.timestamp &&
makerOrder.constraints[4] >= block.timestamp &&
areNumTakerItemsValid(makerOrder, takerItems) &&
doItemsIntersect(makerOrder.nfts, takerItems),
makerOrderHash
);
}
// ======================================================= PUBLIC FUNCTIONS ==================================================
/**
* @notice Checks whether orders are valid
* @dev Checks whether currencies match, sides match, complications match and if each order is valid (see isOrderValid)
* @param sellOrderHash hash of the sell order
* @param buyOrderHash hash of the buy order
* @param sell the sell order
* @param buy the buy order
* @return whether orders are valid
*/
function verifyMatchOneToOneOrders(
bytes32 sellOrderHash,
bytes32 buyOrderHash,
OrderTypes.MakerOrder calldata sell,
OrderTypes.MakerOrder calldata buy
) public view returns (bool) {
bool currenciesMatch = sell.execParams[1] == buy.execParams[1] ||
(sell.execParams[1] == address(0) && buy.execParams[1] == WETH);
return (sell.isSellOrder &&
!buy.isSellOrder &&
sell.execParams[0] == buy.execParams[0] &&
sell.signer != buy.signer &&
currenciesMatch &&
isOrderValid(sell, sellOrderHash) &&
isOrderValid(buy, buyOrderHash));
}
/**
* @notice Checks whether orders are valid
* @dev Checks whether currencies match, sides match, complications match and if each order is valid (see isOrderValid)
* @param sell the sell order
* @param buy the buy order
* @return whether orders are valid and orderHash
*/
function verifyMatchOneToManyOrders(
bool verifySellOrder,
OrderTypes.MakerOrder calldata sell,
OrderTypes.MakerOrder calldata buy
) public view override returns (bool, bytes32) {
bool currenciesMatch = sell.execParams[1] == buy.execParams[1] ||
(sell.execParams[1] == address(0) && buy.execParams[1] == WETH);
bool _orderValid;
bytes32 orderHash;
if (verifySellOrder) {
orderHash = _hash(sell);
_orderValid = isOrderValid(sell, orderHash);
} else {
orderHash = _hash(buy);
_orderValid = isOrderValid(buy, orderHash);
}
return (
sell.isSellOrder &&
!buy.isSellOrder &&
sell.execParams[0] == buy.execParams[0] &&
sell.signer != buy.signer &&
currenciesMatch &&
_orderValid,
orderHash
);
}
/**
* @notice Checks whether orders are valid
* @dev Checks whether currencies match, sides match, complications match and if each order is valid (see isOrderValid)
Also checks if the given complication can execute this order
* @param sellOrderHash hash of the sell order
* @param buyOrderHash hash of the buy order
* @param sell the sell order
* @param buy the buy order
* @return whether orders are valid
*/
function verifyMatchOrders(
bytes32 sellOrderHash,
bytes32 buyOrderHash,
OrderTypes.MakerOrder calldata sell,
OrderTypes.MakerOrder calldata buy
) public view returns (bool) {
bool currenciesMatch = sell.execParams[1] == buy.execParams[1] ||
(sell.execParams[1] == address(0) && buy.execParams[1] == WETH);
return (sell.isSellOrder &&
!buy.isSellOrder &&
sell.execParams[0] == buy.execParams[0] &&
sell.signer != buy.signer &&
currenciesMatch &&
isOrderValid(sell, sellOrderHash) &&
isOrderValid(buy, buyOrderHash));
}
/**
* @notice Verifies the validity of the order
* @dev checks if signature is valid and if the complication and currency are valid
* @param order the order
* @param orderHash computed hash of the order
* @return whether the order is valid
*/
function isOrderValid(OrderTypes.MakerOrder calldata order, bytes32 orderHash) public view returns (bool) {
// Verify the validity of the signature
(bytes32 r, bytes32 s, uint8 v) = abi.decode(order.sig, (bytes32, bytes32, uint8));
bool sigValid = SignatureChecker.verify(orderHash, order.signer, r, s, v, DOMAIN_SEPARATOR);
return (sigValid && order.execParams[0] == address(this) && _currencies.contains(order.execParams[1]));
}
/// @dev checks whether the orders are expired
function isTimeValid(OrderTypes.MakerOrder calldata sell, OrderTypes.MakerOrder calldata buy)
public
view
returns (bool)
{
return
sell.constraints[3] <= block.timestamp &&
sell.constraints[4] >= block.timestamp &&
buy.constraints[3] <= block.timestamp &&
buy.constraints[4] >= block.timestamp;
}
/// @dev checks whether the price is valid; a buy order should always have a higher price than a sell order
function isPriceValid(OrderTypes.MakerOrder calldata sell, OrderTypes.MakerOrder calldata buy)
public
view
returns (bool, uint256)
{
(uint256 currentSellPrice, uint256 currentBuyPrice) = (_getCurrentPrice(sell), _getCurrentPrice(buy));
return (currentBuyPrice >= currentSellPrice, currentSellPrice);
}
/// @dev sanity check to make sure the constructed nfts conform to the user signed constraints
function areNumMatchItemsValid(
OrderTypes.MakerOrder calldata sell,
OrderTypes.MakerOrder calldata buy,
OrderTypes.OrderItem[] calldata constructedNfts
) public pure returns (bool) {
uint256 numConstructedItems;
for (uint256 i; i < constructedNfts.length; ) {
unchecked {
numConstructedItems = numConstructedItems + constructedNfts[i].tokens.length;
++i;
}
}
return numConstructedItems >= buy.constraints[0] && numConstructedItems <= sell.constraints[0];
}
/// @dev sanity check to make sure that a taker is specifying the right number of items
function areNumTakerItemsValid(OrderTypes.MakerOrder calldata makerOrder, OrderTypes.OrderItem[] calldata takerItems)
public
pure
returns (bool)
{
uint256 numTakerItems;
for (uint256 i; i < takerItems.length; ) {
unchecked {
numTakerItems = numTakerItems + takerItems[i].tokens.length;
++i;
}
}
return makerOrder.constraints[0] == numTakerItems;
}
/**
* @notice Checks whether nfts intersect
* @dev This function checks whether there are intersecting nfts between two orders
* @param order1Nfts nfts in the first order
* @param order2Nfts nfts in the second order
* @return returns whether items intersect
*/
function doItemsIntersect(OrderTypes.OrderItem[] calldata order1Nfts, OrderTypes.OrderItem[] calldata order2Nfts)
public
pure
returns (bool)
{
uint256 order1NftsLength = order1Nfts.length;
uint256 order2NftsLength = order2Nfts.length;
// case where maker/taker didn't specify any items
if (order1NftsLength == 0 || order2NftsLength == 0) {
return true;
}
uint256 numCollsMatched;
unchecked {
for (uint256 i; i < order2NftsLength; ) {
for (uint256 j; j < order1NftsLength; ) {
if (order1Nfts[j].collection == order2Nfts[i].collection) {
// increment numCollsMatched
++numCollsMatched;
// check if tokenIds intersect
bool tokenIdsIntersect = doTokenIdsIntersect(order1Nfts[j], order2Nfts[i]);
require(tokenIdsIntersect, 'tokenIds dont intersect');
// short circuit
break;
}
++j;
}
++i;
}
}
return numCollsMatched == order2NftsLength;
}
/**
* @notice Checks whether tokenIds intersect
* @dev This function checks whether there are intersecting tokenIds between two order items
* @param item1 first item
* @param item2 second item
* @return returns whether tokenIds intersect
*/
function doTokenIdsIntersect(OrderTypes.OrderItem calldata item1, OrderTypes.OrderItem calldata item2)
public
pure
returns (bool)
{
uint256 item1TokensLength = item1.tokens.length;
uint256 item2TokensLength = item2.tokens.length;
// case where maker/taker didn't specify any tokenIds for this collection
if (item1TokensLength == 0 || item2TokensLength == 0) {
return true;
}
uint256 numTokenIdsPerCollMatched;
unchecked {
for (uint256 k; k < item2TokensLength; ) {
for (uint256 l; l < item1TokensLength; ) {
if (item1.tokens[l].tokenId == item2.tokens[k].tokenId) {
// increment numTokenIdsPerCollMatched
++numTokenIdsPerCollMatched;
// short circuit
break;
}
++l;
}
++k;
}
}
return numTokenIdsPerCollMatched == item2TokensLength;
}
// ======================================================= UTILS ============================================================
/// @dev hashes the given order with the help of _nftsHash and _tokensHash
function _hash(OrderTypes.MakerOrder calldata order) internal pure returns (bytes32) {
return
keccak256(
abi.encode(
ORDER_HASH,
order.isSellOrder,
order.signer,
keccak256(abi.encodePacked(order.constraints)),
_nftsHash(order.nfts),
keccak256(abi.encodePacked(order.execParams)),
keccak256(order.extraParams)
)
);
}
function _nftsHash(OrderTypes.OrderItem[] calldata nfts) internal pure returns (bytes32) {
bytes32[] memory hashes = new bytes32[](nfts.length);
for (uint256 i; i < nfts.length; ) {
bytes32 hash = keccak256(abi.encode(ORDER_ITEM_HASH, nfts[i].collection, _tokensHash(nfts[i].tokens)));
hashes[i] = hash;
unchecked {
++i;
}
}
bytes32 nftsHash = keccak256(abi.encodePacked(hashes));
return nftsHash;
}
function _tokensHash(OrderTypes.TokenInfo[] calldata tokens) internal pure returns (bytes32) {
bytes32[] memory hashes = new bytes32[](tokens.length);
for (uint256 i; i < tokens.length; ) {
bytes32 hash = keccak256(abi.encode(TOKEN_INFO_HASH, tokens[i].tokenId, tokens[i].numTokens));
hashes[i] = hash;
unchecked {
++i;
}
}
bytes32 tokensHash = keccak256(abi.encodePacked(hashes));
return tokensHash;
}
/// @dev returns the sum of current order prices; used in match one to many orders
function _sumCurrentPrices(OrderTypes.MakerOrder[] calldata orders) internal view returns (uint256) {
uint256 sum;
uint256 ordersLength = orders.length;
for (uint256 i; i < ordersLength; ) {
sum = sum + _getCurrentPrice(orders[i]);
unchecked {
++i;
}
}
return sum;
}
/// @dev Gets current order price for orders that vary in price over time (dutch and reverse dutch auctions)
function _getCurrentPrice(OrderTypes.MakerOrder calldata order) internal view returns (uint256) {
(uint256 startPrice, uint256 endPrice) = (order.constraints[1], order.constraints[2]);
if (startPrice == endPrice) {
return startPrice;
}
uint256 duration = order.constraints[4] - order.constraints[3];
if (duration == 0) {
return startPrice;
}
uint256 elapsedTime = block.timestamp - order.constraints[3];
unchecked {
uint256 portionBps = elapsedTime > duration ? PRECISION : ((elapsedTime * PRECISION) / duration);
if (startPrice > endPrice) {
uint256 priceDiff = ((startPrice - endPrice) * portionBps) / PRECISION;
return startPrice - priceDiff;
} else {
uint256 priceDiff = ((endPrice - startPrice) * portionBps) / PRECISION;
return startPrice + priceDiff;
}
}
}
// ======================================================= OWNER FUNCTIONS ============================================================
/// @dev adds a new transaction currency to the exchange
function addCurrency(address _currency) external onlyOwner {
_currencies.add(_currency);
emit CurrencyAdded(_currency);
}
/// @dev removes a transaction currency from the exchange
function removeCurrency(address _currency) external onlyOwner {
_currencies.remove(_currency);
emit CurrencyRemoved(_currency);
}
// ======================================================= VIEW FUNCTIONS ============================================================
/// @notice returns the number of currencies supported by the exchange
function numCurrencies() external view returns (uint256) {
return _currencies.length();
}
/// @notice returns the currency at the given index
function getCurrencyAt(uint256 index) external view returns (address) {
return _currencies.at(index);
}
/// @notice returns whether a given currency is valid
function isValidCurrency(address currency) external view returns (bool) {
return _currencies.contains(currency);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/structs/EnumerableSet.sol)
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastvalue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastvalue;
// Update the index for the moved value
set._indexes[lastvalue] = valueIndex; // Replace lastvalue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
return _values(set._inner);
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
assembly {
result := store
}
return result;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.14;
import {Address} from '@openzeppelin/contracts/utils/Address.sol';
import {IERC1271} from '@openzeppelin/contracts/interfaces/IERC1271.sol';
/**
* @title SignatureChecker
* @notice This library allows verification of signatures for both EOAs and contracts
*/
library SignatureChecker {
/**
* @notice Recovers the signer of a signature (for EOA)
* @param hashed hash containing the signed message
* @param r parameter
* @param s parameter
* @param v parameter (27 or 28). This prevents malleability since the public key recovery equation has two possible solutions.
*/
function recover(
bytes32 hashed,
bytes32 r,
bytes32 s,
uint8 v
) internal pure returns (address) {
// https://ethereum.stackexchange.com/questions/83174/is-it-best-practice-to-check-signature-malleability-in-ecrecover
// https://crypto.iacr.org/2019/affevents/wac/medias/Heninger-BiasedNonceSense.pdf
require(
uint256(s) <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0,
'Signature: Invalid s parameter'
);
require(v == 27 || v == 28, 'Signature: Invalid v parameter');
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hashed, v, r, s);
require(signer != address(0), 'Signature: Invalid signer');
return signer;
}
/**
* @notice Returns whether the signer matches the signed message
* @param orderHash the hash containing the signed message
* @param signer the signer address to confirm message validity
* @param r parameter
* @param s parameter
* @param v parameter (27 or 28) this prevents malleability since the public key recovery equation has two possible solutions
* @param domainSeparator parameter to prevent signature being executed in other chains and environments
* @return true --> if valid // false --> if invalid
*/
function verify(
bytes32 orderHash,
address signer,
bytes32 r,
bytes32 s,
uint8 v,
bytes32 domainSeparator
) internal view returns (bool) {
// \x19\x01 is the standardized encoding prefix
// https://eips.ethereum.org/EIPS/eip-712#specification
bytes32 digest = keccak256(abi.encodePacked('\x19\x01', domainSeparator, orderHash));
if (Address.isContract(signer)) {
// 0x1626ba7e is the interfaceId for signature contracts (see IERC1271)
return IERC1271(signer).isValidSignature(digest, abi.encodePacked(r, s, v)) == 0x1626ba7e;
} else {
return recover(digest, r, s, v) == signer;
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.14;
/**
* @title OrderTypes
* @author nneverlander. Twitter @nneverlander
* @notice This library contains the order types used by the main exchange and complications
*/
library OrderTypes {
/// @dev the tokenId and numTokens (==1 for ERC721)
struct TokenInfo {
uint256 tokenId;
uint256 numTokens;
}
/// @dev an order item is a collection address and tokens from that collection
struct OrderItem {
address collection;
TokenInfo[] tokens;
}
struct MakerOrder {
///@dev is order sell or buy
bool isSellOrder;
///@dev signer of the order (maker address)
address signer;
///@dev Constraints array contains the order constraints. Total constraints: 7. In order:
// numItems - min (for buy orders) / max (for sell orders) number of items in the order
// start price in wei
// end price in wei
// start time in block.timestamp
// end time in block.timestamp
// nonce of the order
// max tx.gasprice in wei that a user is willing to pay for gas
uint256[] constraints;
///@dev nfts array contains order items where each item is a collection and its tokenIds
OrderItem[] nfts;
///@dev address of complication for trade execution (e.g. InfinityOrderBookComplication), address of the currency (e.g., WETH)
address[] execParams;
///@dev additional parameters like traits for trait orders, private sale buyer for OTC orders etc
bytes extraParams;
///@dev the order signature uint8 v: parameter (27 or 28), bytes32 r, bytes32 s
bytes sig;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.14;
import {OrderTypes} from '../libs/OrderTypes.sol';
/**
* @title IComplication
* @author nneverlander. Twitter @nneverlander
* @notice Complication interface that must be implemented by all complications (execution strategies)
*/
interface IComplication {
function canExecMatchOneToOne(OrderTypes.MakerOrder calldata makerOrder1, OrderTypes.MakerOrder calldata makerOrder2)
external
view
returns (
bool,
bytes32,
bytes32,
uint256
);
function canExecMatchOneToMany(
OrderTypes.MakerOrder calldata makerOrder,
OrderTypes.MakerOrder[] calldata manyMakerOrders
) external view returns (bool, bytes32);
function canExecMatchOrder(
OrderTypes.MakerOrder calldata sell,
OrderTypes.MakerOrder calldata buy,
OrderTypes.OrderItem[] calldata constructedNfts
)
external
view
returns (
bool,
bytes32,
bytes32,
uint256
);
function canExecTakeOneOrder(OrderTypes.MakerOrder calldata makerOrder) external view returns (bool, bytes32);
function canExecTakeOrder(OrderTypes.MakerOrder calldata makerOrder, OrderTypes.OrderItem[] calldata takerItems)
external
view
returns (bool, bytes32);
function verifyMatchOneToManyOrders(
bool verifySellOrder,
OrderTypes.MakerOrder calldata sell,
OrderTypes.MakerOrder calldata buy
) external view returns (bool, bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC1271 standard signature validation method for
* contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
*
* _Available since v4.1._
*/
interface IERC1271 {
/**
* @dev Should return whether the signature provided is valid for the provided data
* @param hash Hash of the data to be signed
* @param signature Signature byte array associated with _data
*/
function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}