ETH Price: $3,163.39 (+1.39%)
Gas: 2 Gwei

Contract Diff Checker

Contract Name:
SaffronPool

Contract Source Code:

File 1 of 1 : SaffronPool

// File: contracts/interfaces/ISaffronBase.sol

// SPDX-License-Identifier: MIT

pragma solidity ^0.7.1;

interface ISaffronBase {
  enum Tranche {S, AA, A}
  enum LPTokenType {dsec, principal}

  // Store values (balances, dsec, vdsec) with TrancheUint256
  struct TrancheUint256 {
    uint256 S;
    uint256 AA;
    uint256 A;
  }

  struct epoch_params {
    uint256 start_date;       // Time when the platform launched
    uint256 duration;         // Duration of epoch
  }
}

// File: contracts/interfaces/ISaffronStrategy.sol


pragma solidity ^0.7.1;


interface ISaffronStrategy is ISaffronBase{
  function deploy_all_capital() external;
  function select_adapter_for_liquidity_removal() external returns(address);
  function add_adapter(address adapter_address) external;
  function add_pool(address pool_address) external;
  function delete_adapters() external;
  function set_governance(address to) external;
  function get_adapter_address(uint256 adapter_index) external view returns(address);
}

// File: contracts/interfaces/ISaffronPool.sol


pragma solidity ^0.7.1;

interface ISaffronPool is ISaffronBase {
  function add_liquidity(uint256 amount, Tranche tranche) external;
  function remove_liquidity(address v1_dsec_token_address, uint256 dsec_amount, address v1_principal_token_address, uint256 principal_amount) external;
  function get_base_asset_address() external view returns(address);
  function hourly_strategy(address adapter_address) external;
  function wind_down_epoch(uint256 epoch, uint256 amount_sfi) external;
  function set_governance(address to) external;
  function get_epoch_cycle_params() external view returns (uint256, uint256);
  function shutdown() external;
}

// File: contracts/interfaces/ISaffronAdapter.sol


pragma solidity ^0.7.1;

interface ISaffronAdapter is ISaffronBase {
    function deploy_capital(uint256 amount) external;
    function return_capital(uint256 base_asset_amount, address to) external;
    function approve_transfer(address addr,uint256 amount) external;
    function get_base_asset_address() external view returns(address);
    function set_base_asset(address addr) external;
    function get_holdings() external returns(uint256);
    function get_interest(uint256 principal) external returns(uint256);
    function set_governance(address to) external;
}

// File: contracts/lib/SafeMath.sol


pragma solidity ^0.7.1;

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, "SafeMath: subtraction overflow");
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        uint256 c = a - b;

        return c;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");

        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold

        return c;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, "SafeMath: modulo by zero");
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts with custom message when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b != 0, errorMessage);
        return a % b;
    }
}

// File: contracts/lib/IERC20.sol


pragma solidity ^0.7.1;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

// File: contracts/lib/Context.sol


pragma solidity ^0.7.1;

/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address payable) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes memory) {
        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
        return msg.data;
    }
}

// File: contracts/lib/Address.sol


pragma solidity ^0.7.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize, which returns 0 for contracts in
        // construction, since the code is only stored at the end of the
        // constructor execution.

        uint256 size;
        // solhint-disable-next-line no-inline-assembly
        assembly { size := extcodesize(account) }
        return size > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
        (bool success, ) = recipient.call{ value: amount }("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain`call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.call{ value: value }(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.staticcall(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.3._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.3._
     */
    function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        require(isContract(target), "Address: delegate call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly

                // solhint-disable-next-line no-inline-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

// File: contracts/lib/ERC20.sol


pragma solidity ^0.7.1;





/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin guidelines: functions revert instead
 * of returning `false` on failure. This behavior is nonetheless conventional
 * and does not conflict with the expectations of ERC20 applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20 {
    using SafeMath for uint256;
    using Address for address;

    mapping (address => uint256) private _balances;

    mapping (address => mapping (address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;
    uint8 private _decimals;

    /**
     * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
     * a default value of 18.
     *
     * To select a different value for {decimals}, use {_setupDecimals}.
     *
     * All three of these values are immutable: they can only be set once during
     * construction.
     */
    constructor (string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
        _decimals = 18;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5,05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
     * called.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view returns (uint8) {
        return _decimals;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20};
     *
     * Requirements:
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
        _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
        return true;
    }

    /**
     * @dev Moves tokens `amount` from `sender` to `recipient`.
     *
     * This is internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(address sender, address recipient, uint256 amount) internal virtual {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(sender, recipient, amount);

        _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
        _balances[recipient] = _balances[recipient].add(amount);
        emit Transfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements
     *
     * - `to` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply = _totalSupply.add(amount);
        _balances[account] = _balances[account].add(amount);
        emit Transfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
        _totalSupply = _totalSupply.sub(amount);
        emit Transfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
     *
     * This is internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Sets {decimals} to a value other than the default one of 18.
     *
     * WARNING: This function should only be called from the constructor. Most
     * applications that interact with token contracts will not expect
     * {decimals} to ever change, and may work incorrectly if it does.
     */
    function _setupDecimals(uint8 decimals_) internal {
        _decimals = decimals_;
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be to transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}

// File: contracts/lib/SafeERC20.sol


pragma solidity ^0.7.1;




/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
  using SafeMath for uint256;
  using Address for address;

  function safeTransfer(IERC20 token, address to, uint256 value) internal {
    _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
  }

  function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
    _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
  }

  /**
   * @dev Deprecated. This function has issues similar to the ones found in
   * {IERC20-approve}, and its usage is discouraged.
   *
   * Whenever possible, use {safeIncreaseAllowance} and
   * {safeDecreaseAllowance} instead.
   */
  function safeApprove(IERC20 token, address spender, uint256 value) internal {
    // safeApprove should only be called when setting an initial allowance,
    // or when resetting it to zero. To increase and decrease it, use
    // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
    // solhint-disable-next-line max-line-length
    require((value == 0) || (token.allowance(address(this), spender) == 0),
      "SafeERC20: approve from non-zero to non-zero allowance"
    );
    _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
  }

  function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
    uint256 newAllowance = token.allowance(address(this), spender).add(value);
    _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
  }

  function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
    uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
    _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
  }

  /**
   * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
   * on the return value: the return value is optional (but if data is returned, it must not be false).
   * @param token The token targeted by the call.
   * @param data The call data (encoded using abi.encode or one of its variants).
   */
  function _callOptionalReturn(IERC20 token, bytes memory data) private {
    // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
    // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
    // the target address contains contract code and also asserts for success in the low-level call.

    bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
    if (returndata.length > 0) { // Return data is optional
      // solhint-disable-next-line max-line-length
      require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }
  }
}

// File: contracts/SFI.sol


pragma solidity ^0.7.1;



contract SFI is ERC20 {
  using SafeERC20 for IERC20;

  address public governance;
  address public SFI_minter;
  uint256 public MAX_TOKENS = 100000 ether;

  constructor (string memory name, string memory symbol) ERC20(name, symbol) {
    // Initial governance is Saffron Deployer
    governance = msg.sender;
  }

  function mint_SFI(address to, uint256 amount) public {
    require(msg.sender == SFI_minter, "must be SFI_minter");
    require(this.totalSupply() + amount < MAX_TOKENS, "cannot mint more than MAX_TOKENS");
    _mint(to, amount);
  }

  function set_minter(address to) external {
    require(msg.sender == governance, "must be governance");
    SFI_minter = to;
  }

  function set_governance(address to) external {
    require(msg.sender == governance, "must be governance");
    governance = to;
  }

  event ErcSwept(address who, address to, address token, uint256 amount);
  function erc_sweep(address _token, address _to) public {
    require(msg.sender == governance, "must be governance");

    IERC20 tkn = IERC20(_token);
    uint256 tBal = tkn.balanceOf(address(this));
    tkn.safeTransfer(_to, tBal);

    emit ErcSwept(msg.sender, _to, _token, tBal);
  }
}

// File: contracts/SaffronLPBalanceToken.sol


pragma solidity ^0.7.1;


contract SaffronLPBalanceToken is ERC20 {
  address public pool_address;

  constructor (string memory name, string memory symbol) ERC20(name, symbol) {
    // Set pool_address to saffron pool that created token
    pool_address = msg.sender;
  }

  // Allow creating new tranche tokens
  function mint(address to, uint256 amount) public {
    require(msg.sender == pool_address, "must be pool");
    _mint(to, amount);
  }

  function burn(address account, uint256 amount) public {
    require(msg.sender == pool_address, "must be pool");
    _burn(account, amount);
  }

  function set_governance(address to) external {
    require(msg.sender == pool_address, "must be pool");
    pool_address = to;
  }
}

// File: contracts/SaffronPool.sol


pragma solidity ^0.7.1;










contract SaffronPool is ISaffronPool {
  using SafeMath for uint256;
  using SafeERC20 for IERC20;

  address public governance;           // Governance (v3: add off-chain/on-chain governance)
  address public base_asset_address;   // Base asset managed by the pool (DAI, USDT, YFI...)
  address public SFI_address;          // SFI token
  uint256 public pool_principal;       // Current principal balance (added minus removed)
  uint256 public pool_interest;        // Current interest balance (redeemable by dsec tokens)
  uint256 public tranche_A_multiplier; // Current yield multiplier for tranche A
  uint256 public SFI_ratio;            // Ratio of base asset to SFI necessary to join tranche A

  bool public _shutdown = false;       // v0, v1: shutdown the pool after the final capital deploy to prevent burning funds

  /**** ADAPTERS ****/
  address public best_adapter_address;              // Current best adapter selected by strategy
  uint256 public adapter_total_principal;           // v0, v1: only one adapter
  ISaffronAdapter[] private adapters;               // v2: list of adapters
  mapping(address=>uint256) private adapter_index;  // v1: adapter contract address lookup for array indexes

  /**** STRATEGY ****/
  address public strategy;

  /**** EPOCHS ****/
  epoch_params public epoch_cycle = epoch_params({
    start_date: 1604239200,   // 11/01/2020 @ 2:00pm (UTC)
    duration:   14 days       // 1210000 seconds
  });

  /**** EPOCH INDEXED STORAGE ****/
  uint256[] public epoch_principal;               // Total principal owned by the pool (all tranches)
  mapping(uint256=>bool) public epoch_wound_down; // True if epoch has been wound down already (governance)

  /**** EPOCH-TRANCHE INDEXED STORAGE ****/
  // Array of arrays, example: tranche_SFI_earned[epoch][Tranche.S]
  address[3][] public dsec_token_addresses;         // Address for each dsec token
  address[3][] public principal_token_addresses;    // Address for each principal token
  uint256[3][] public tranche_total_dsec;           // Total dsec (tokens + vdsec)
  uint256[3][] public tranche_total_principal;      // Total outstanding principal tokens
  uint256[3][] public tranche_total_utilized;       // Total utilized balance in each tranche
  uint256[3][] public tranche_total_unutilized;     // Total unutilized balance in each tranche
  uint256[3][] public tranche_S_virtual_utilized;   // Total utilized virtual balance taken from tranche S (first index unused)
  uint256[3][] public tranche_S_virtual_unutilized; // Total unutilized virtual balance taken from tranche S (first index unused)
  uint256[3][] public tranche_interest_earned;      // Interest earned (calculated at wind_down_epoch)
  uint256[3][] public tranche_SFI_earned;           // Total SFI earned (minted at wind_down_epoch)

  /**** SFI GENERATION ****/
  // v0: pool generates SFI based on subsidy schedule
  // v1: pool is distributed SFI generated by the strategy contract
  // v1: pools each get an amount of SFI generated depending on the total liquidity added within each interval
  TrancheUint256 public TRANCHE_SFI_MULTIPLIER = TrancheUint256({
    S:   90000,
    AA:  0,
    A:   10000
  });

  /**** TRANCHE BALANCES ****/
  // (v0 & v1: epochs are hard-forks)
  // (v2: epoch rollover implemented)
  // TrancheUint256 private eternal_unutilized_balances; // Unutilized balance (in base assets) for each tranche (assets held in this pool + assets held in platforms)
  // TrancheUint256 private eternal_utilized_balances;   // Balance for each tranche that is not held within this pool but instead held on a platform via an adapter

  /**** SAFFRON LP TOKENS ****/
  // If we just have a token address then we can look up epoch and tranche balance tokens using a mapping(address=>SaffronLPdsecInfo)
  // LP tokens are dsec (redeemable for interest+SFI) and principal (redeemable for base asset) tokens
  struct SaffronLPTokenInfo {
    bool        exists;
    uint256     epoch;
    Tranche     tranche;
    LPTokenType token_type;
  }
  mapping(address=>SaffronLPTokenInfo) private saffron_LP_token_info;

  constructor(address _strategy, address _base_asset, address _SFI_address, bool epoch_cycle_reset) {
    governance = msg.sender;
    base_asset_address = _base_asset;
    strategy = _strategy;
    SFI_address = _SFI_address;
    tranche_A_multiplier = 10; // v1: start enhanced yield at 10X
    SFI_ratio = 500;           // v1: constant ratio
    epoch_cycle.duration = (epoch_cycle_reset ? 20 minutes : 14 days); // Make testing previous epochs easier
    epoch_cycle.start_date = (epoch_cycle_reset ? (block.timestamp) - (3 * epoch_cycle.duration) : 1604239200); // Make testing previous epochs easier
  }

  function new_epoch(uint256 epoch, address[] memory saffron_LP_dsec_token_addresses, address[] memory saffron_LP_principal_token_addresses) public {
    require(tranche_total_principal.length == epoch, "improper new epoch");
    require(governance == msg.sender, "must be governance");

    epoch_principal.push(0);
    tranche_total_dsec.push([0,0,0]);
    tranche_total_principal.push([0,0,0]);
    tranche_total_utilized.push([0,0,0]);
    tranche_total_unutilized.push([0,0,0]);
    tranche_S_virtual_utilized.push([0,0,0]);
    tranche_S_virtual_unutilized.push([0,0,0]);
    tranche_interest_earned.push([0,0,0]);
    tranche_SFI_earned.push([0,0,0]);

    dsec_token_addresses.push([       // Address for each dsec token
      saffron_LP_dsec_token_addresses[uint256(Tranche.S)],
      saffron_LP_dsec_token_addresses[uint256(Tranche.AA)],
      saffron_LP_dsec_token_addresses[uint256(Tranche.A)]
    ]);

    principal_token_addresses.push([  // Address for each principal token
      saffron_LP_principal_token_addresses[uint256(Tranche.S)],
      saffron_LP_principal_token_addresses[uint256(Tranche.AA)],
      saffron_LP_principal_token_addresses[uint256(Tranche.A)]
    ]);

    // Token info for looking up epoch and tranche of dsec tokens by token contract address
    saffron_LP_token_info[saffron_LP_dsec_token_addresses[uint256(Tranche.S)]] = SaffronLPTokenInfo({
      exists: true,
      epoch: epoch,
      tranche: Tranche.S,
      token_type: LPTokenType.dsec
    });

    saffron_LP_token_info[saffron_LP_dsec_token_addresses[uint256(Tranche.AA)]] = SaffronLPTokenInfo({
      exists: true,
      epoch: epoch,
      tranche: Tranche.AA,
      token_type: LPTokenType.dsec
    });

    saffron_LP_token_info[saffron_LP_dsec_token_addresses[uint256(Tranche.A)]] = SaffronLPTokenInfo({
      exists: true,
      epoch: epoch,
      tranche: Tranche.A,
      token_type: LPTokenType.dsec
    });

    // for looking up epoch and tranche of PRINCIPAL tokens by token contract address
    saffron_LP_token_info[saffron_LP_principal_token_addresses[uint256(Tranche.S)]] = SaffronLPTokenInfo({
      exists: true,
      epoch: epoch,
      tranche: Tranche.S,
      token_type: LPTokenType.principal
    });

    saffron_LP_token_info[saffron_LP_principal_token_addresses[uint256(Tranche.AA)]] = SaffronLPTokenInfo({
      exists: true,
      epoch: epoch,
      tranche: Tranche.AA,
      token_type: LPTokenType.principal
    });

    saffron_LP_token_info[saffron_LP_principal_token_addresses[uint256(Tranche.A)]] = SaffronLPTokenInfo({
      exists: true,
      epoch: epoch,
      tranche: Tranche.A,
      token_type: LPTokenType.principal
    });
  }

  struct BalanceVars {
    // Tranche balance
    uint256 deposit;  // User deposit
    uint256 capacity; // Capacity for user's intended tranche
    uint256 change;   // Change from deposit - capacity

    // S tranche specific vars
    uint256 consumed; // Total consumed
    uint256 utilized_consumed;
    uint256 unutilized_consumed;
    uint256 available_utilized;
    uint256 available_unutilized;
  }
  event TrancheBalance(uint256 tranche, uint256 amount, uint256 deposit, uint256 capacity, uint256 change, uint256 consumed, uint256 utilized_consumed, uint256 unutilized_consumed, uint256 available_utilized, uint256 available_unutilized);
  event DsecGeneration(uint256 time_remaining, uint256 amount, uint256 dsec, address dsec_address, uint256 epoch, uint256 tranche, address user_address, address principal_token_addr);
  event AddLiquidity(uint256 new_pool_principal, uint256 new_epoch_principal, uint256 new_eternal_balance, uint256 new_tranche_principal, uint256 new_tranche_dsec);
  // LP user adds liquidity to the pool
  // Pre-requisite (front-end): have user approve transfer on front-end to base asset using our contract address
  function add_liquidity(uint256 amount, Tranche tranche) external override {
    require(!_shutdown, "pool shutdown");
    require(tranche == Tranche.S || tranche == Tranche.A, "v1: can't add_liquidity into AA tranche");
    uint256 epoch = get_current_epoch();
    require(amount != 0, "can't add 0");
    require(epoch == 3, "v1.3: must be epoch 3 only");
    BalanceVars memory bv = BalanceVars({
      deposit: 0, 
      capacity: 0,
      change: 0,  
      consumed: 0,
      utilized_consumed: 0,
      unutilized_consumed: 0,
      available_utilized: 0,
      available_unutilized: 0
    });
    (bv.available_utilized, bv.available_unutilized) = get_available_S_balances();

    if (tranche == Tranche.S) {
      tranche_total_unutilized[epoch][uint256(Tranche.S)] = tranche_total_unutilized[epoch][uint256(Tranche.S)].add(amount);
      bv.deposit = amount;
    }
    // if (tranche == Tranche.AA) {} // v1: AA tranche disabled (S tranche is effectively AA)
    if (tranche == Tranche.A) {
      // Find capacity for S tranche to facilitate a deposit into A. Deposit is min(principal, capacity): restricted by the user's capital or S tranche capacity
      bv.capacity = (bv.available_utilized.add(bv.available_unutilized)).div(tranche_A_multiplier); 
      bv.deposit  = (amount < bv.capacity) ? amount : bv.capacity;
      bv.consumed = bv.deposit.mul(tranche_A_multiplier);
      if (bv.consumed <= bv.available_utilized) {
        // Take capacity from tranche S utilized first and give virtual utilized balance to AA
        bv.utilized_consumed = bv.consumed;
      } else {
        // Take capacity from tranche S utilized and tranche S unutilized and give virtual utilized/unutilized balances to AA
        bv.utilized_consumed = bv.available_utilized;
        bv.unutilized_consumed = bv.consumed.sub(bv.utilized_consumed);
        tranche_S_virtual_unutilized[epoch][uint256(Tranche.AA)] = tranche_S_virtual_unutilized[epoch][uint256(Tranche.AA)].add(bv.unutilized_consumed);
      }
      tranche_S_virtual_utilized[epoch][uint256(Tranche.AA)] = tranche_S_virtual_utilized[epoch][uint256(Tranche.AA)].add(bv.utilized_consumed);
      if (bv.deposit < amount) bv.change = amount.sub(bv.deposit);
    }

    // Calculate the dsec for deposited DAI
    uint256 dsec = bv.deposit.mul(get_seconds_until_epoch_end(epoch));

    // Update pool principal eternal and epoch state
    pool_principal = pool_principal.add(bv.deposit);                 // Add DAI to principal totals
    epoch_principal[epoch] = epoch_principal[epoch].add(bv.deposit); // Add DAI total balance for epoch

    // Update dsec and principal balance state
    tranche_total_dsec[epoch][uint256(tranche)] = tranche_total_dsec[epoch][uint256(tranche)].add(dsec);
    tranche_total_principal[epoch][uint256(tranche)] = tranche_total_principal[epoch][uint256(tranche)].add(bv.deposit);

    // Transfer DAI from LP to pool
    IERC20(base_asset_address).safeTransferFrom(msg.sender, address(this), bv.deposit);
    if (tranche == Tranche.A) IERC20(SFI_address).safeTransferFrom(msg.sender, address(this), bv.deposit / SFI_ratio);

    // Mint Saffron LP epoch 1 tranche dsec tokens and transfer them to sender
    SaffronLPBalanceToken(dsec_token_addresses[epoch][uint256(tranche)]).mint(msg.sender, dsec);

    // Mint Saffron LP epoch 1 tranche principal tokens and transfer them to sender
    SaffronLPBalanceToken(principal_token_addresses[epoch][uint256(tranche)]).mint(msg.sender, bv.deposit);

    emit TrancheBalance(uint256(tranche), bv.deposit, bv.deposit, bv.capacity, bv.change, bv.consumed, bv.utilized_consumed, bv.unutilized_consumed, bv.available_utilized, bv.available_unutilized);
    emit DsecGeneration(get_seconds_until_epoch_end(epoch), bv.deposit, dsec, dsec_token_addresses[epoch][uint256(tranche)], epoch, uint256(tranche), msg.sender, principal_token_addresses[epoch][uint256(tranche)]);
    emit AddLiquidity(pool_principal, epoch_principal[epoch], 0, tranche_total_principal[epoch][uint256(tranche)], tranche_total_dsec[epoch][uint256(tranche)]);
  }


  event WindDownEpochSFI(uint256 previous_epoch, uint256 S_SFI, uint256 AA_SFI, uint256 A_SFI);
  event WindDownEpochState(uint256 epoch, uint256 tranche_S_interest, uint256 tranche_AA_interest, uint256 tranche_A_interest, uint256 tranche_SFI_earnings_S, uint256 tranche_SFI_earnings_AA, uint256 tranche_SFI_earnings_A);
  struct WindDownVars {
    uint256 previous_epoch;
    uint256 epoch_interest;
    uint256 epoch_dsec;
    uint256 tranche_A_interest_ratio;
    uint256 tranche_A_interest;
    uint256 tranche_S_interest;
  }

  function wind_down_epoch(uint256 epoch, uint256 amount_sfi) public override {
    require(msg.sender == strategy, "must be strategy");
    require(!epoch_wound_down[epoch], "epoch already wound down");
    uint256 current_epoch = get_current_epoch();
    require(epoch < current_epoch, "cannot wind down future epoch");
    WindDownVars memory wind_down = WindDownVars({
      previous_epoch: 0,
      epoch_interest: 0,
      epoch_dsec: 0,
      tranche_A_interest_ratio: 0,
      tranche_A_interest: 0,
      tranche_S_interest: 0
    });
    wind_down.previous_epoch = current_epoch - 1;
    require(block.timestamp >= get_epoch_end(wind_down.previous_epoch), "can't call before epoch ended");

    // Calculate SFI earnings per tranche
    tranche_SFI_earned[epoch][uint256(Tranche.S)]  = TRANCHE_SFI_MULTIPLIER.S.mul(amount_sfi).div(100000);
    tranche_SFI_earned[epoch][uint256(Tranche.AA)] = TRANCHE_SFI_MULTIPLIER.AA.mul(amount_sfi).div(100000);
    tranche_SFI_earned[epoch][uint256(Tranche.A)]  = TRANCHE_SFI_MULTIPLIER.A.mul(amount_sfi).div(100000);

    emit WindDownEpochSFI(wind_down.previous_epoch, tranche_SFI_earned[epoch][uint256(Tranche.S)], tranche_SFI_earned[epoch][uint256(Tranche.AA)], tranche_SFI_earned[epoch][uint256(Tranche.A)]);
    // Calculate interest earnings per tranche
    // Wind down will calculate interest and SFI earned by each tranche for the epoch which has ended
    // Liquidity cannot be removed until wind_down_epoch is called and epoch_wound_down[epoch] is set to true

    // Calculate pool_interest
    // v0, v1: we only have one adapter

    ISaffronAdapter adapter = ISaffronAdapter(best_adapter_address);
    wind_down.epoch_interest = adapter.get_interest(adapter_total_principal);
    pool_interest = pool_interest.add(wind_down.epoch_interest);

    // Total dsec
    // TODO: assert (dsec.totalSupply == epoch_dsec)
    wind_down.epoch_dsec = tranche_total_dsec[epoch][uint256(Tranche.S)].add(tranche_total_dsec[epoch][uint256(Tranche.A)]);
    wind_down.tranche_A_interest_ratio = tranche_total_dsec[epoch][uint256(Tranche.A)].mul(1 ether).div(wind_down.epoch_dsec);

    // Calculate tranche share of interest
    wind_down.tranche_A_interest = (wind_down.epoch_interest.mul(wind_down.tranche_A_interest_ratio).div(1 ether)).mul(tranche_A_multiplier);
    wind_down.tranche_S_interest = wind_down.epoch_interest.sub(wind_down.tranche_A_interest);

    // Update state for remove_liquidity
    tranche_interest_earned[epoch][uint256(Tranche.S)]  = wind_down.tranche_S_interest;
    tranche_interest_earned[epoch][uint256(Tranche.AA)] = 0;
    tranche_interest_earned[epoch][uint256(Tranche.A)]  = wind_down.tranche_A_interest;

    // Distribute SFI earnings to S tranche based on S tranche % share of dsec via vdsec
    emit WindDownEpochState(epoch, wind_down.tranche_S_interest, 0, wind_down.tranche_A_interest, uint256(tranche_SFI_earned[epoch][uint256(Tranche.S)]), uint256(tranche_SFI_earned[epoch][uint256(Tranche.AA)]), uint256(tranche_SFI_earned[epoch][uint256(Tranche.A)]));
    epoch_wound_down[epoch] = true;
    delete wind_down;
  }

  event RemoveLiquidityDsec(uint256 dsec_percent, uint256 interest_owned, uint256 SFI_owned);
  event RemoveLiquidityPrincipal(uint256 principal);
  function remove_liquidity(address dsec_token_address, uint256 dsec_amount, address principal_token_address, uint256 principal_amount) external override {
    require(dsec_amount > 0 || principal_amount > 0, "can't remove 0");
    ISaffronAdapter best_adapter = ISaffronAdapter(best_adapter_address);
    uint256 interest_owned;
    uint256 SFI_earn;
    uint256 SFI_return;
    uint256 dsec_percent;

    // Update state for removal via dsec token
    if (dsec_token_address != address(0x0) && dsec_amount > 0) {
      // Get info about the v1 dsec token from its address and check that it exists
      SaffronLPTokenInfo memory token_info = saffron_LP_token_info[dsec_token_address];
      require(token_info.exists, "balance token lookup failed");
      SaffronLPBalanceToken sbt = SaffronLPBalanceToken(dsec_token_address);
      require(sbt.balanceOf(msg.sender) >= dsec_amount, "insufficient dsec balance");

      // Token epoch must be a past epoch
      uint256 token_epoch = token_info.epoch;
      require(token_info.token_type == LPTokenType.dsec, "bad dsec address");
      require(token_epoch == 3, "v1.3: bal token epoch must be 3");
      require(epoch_wound_down[token_epoch], "can't remove from wound up epoch");
      uint256 tranche_dsec = tranche_total_dsec[token_epoch][uint256(token_info.tranche)];

      // Dsec gives user claim over a tranche's earned SFI and interest
      dsec_percent = (tranche_dsec == 0) ? 0 : dsec_amount.mul(1 ether).div(tranche_dsec);
      interest_owned = tranche_interest_earned[token_epoch][uint256(token_info.tranche)].mul(dsec_percent) / 1 ether;
      SFI_earn = tranche_SFI_earned[token_epoch][uint256(token_info.tranche)].mul(dsec_percent) / 1 ether;

      tranche_interest_earned[token_epoch][uint256(token_info.tranche)] = tranche_interest_earned[token_epoch][uint256(token_info.tranche)].sub(interest_owned);
      tranche_SFI_earned[token_epoch][uint256(token_info.tranche)] = tranche_SFI_earned[token_epoch][uint256(token_info.tranche)].sub(SFI_earn);
      tranche_total_dsec[token_epoch][uint256(token_info.tranche)] = tranche_total_dsec[token_epoch][uint256(token_info.tranche)].sub(dsec_amount);
      pool_interest = pool_interest.sub(interest_owned);
    }

    // Update state for removal via principal token
    if (principal_token_address != address(0x0) && principal_amount > 0) {
      // Get info about the v1 dsec token from its address and check that it exists
      SaffronLPTokenInfo memory token_info = saffron_LP_token_info[principal_token_address];
      require(token_info.exists, "balance token info lookup failed");
      SaffronLPBalanceToken sbt = SaffronLPBalanceToken(principal_token_address);
      require(sbt.balanceOf(msg.sender) >= principal_amount, "insufficient principal balance");

      // Token epoch must be a past epoch
      uint256 token_epoch = token_info.epoch;
      require(token_info.token_type == LPTokenType.principal, "bad balance token address");
      require(token_epoch == 3, "v1.3: bal token epoch must be 3");
      require(epoch_wound_down[token_epoch], "can't remove from wound up epoch");

      tranche_total_principal[token_epoch][uint256(token_info.tranche)] = tranche_total_principal[token_epoch][uint256(token_info.tranche)].sub(principal_amount);
      epoch_principal[token_epoch] = epoch_principal[token_epoch].sub(principal_amount);
      pool_principal = pool_principal.sub(principal_amount);
      adapter_total_principal = adapter_total_principal.sub(principal_amount);
      if (token_info.tranche == Tranche.A) SFI_return = principal_amount / SFI_ratio;
    }

    // Transfer
    if (dsec_token_address != address(0x0) && dsec_amount > 0) {
      SaffronLPBalanceToken sbt = SaffronLPBalanceToken(dsec_token_address);
      require(sbt.balanceOf(msg.sender) >= dsec_amount, "insufficient dsec balance");
      sbt.burn(msg.sender, dsec_amount);
      best_adapter.return_capital(interest_owned, msg.sender);
      IERC20(SFI_address).safeTransfer(msg.sender, SFI_earn);
      emit RemoveLiquidityDsec(dsec_percent, interest_owned, SFI_earn);
    }
    if (principal_token_address != address(0x0) && principal_amount > 0) {
      SaffronLPBalanceToken sbt = SaffronLPBalanceToken(principal_token_address);
      require(sbt.balanceOf(msg.sender) >= principal_amount, "insufficient principal balance");
      sbt.burn(msg.sender, principal_amount);
      best_adapter.return_capital(principal_amount, msg.sender);
      IERC20(SFI_address).safeTransfer(msg.sender, SFI_return);
      emit RemoveLiquidityPrincipal(principal_amount);
    }

    require((dsec_token_address != address(0x0) && dsec_amount > 0) || (principal_token_address != address(0x0) && principal_amount > 0), "no action performed");
  }

  // Strategy contract calls this to deploy capital to platforms
  event StrategicDeploy(address adapter_address, uint256 amount, uint256 epoch);
  function hourly_strategy(address adapter_address) external override {
    require(msg.sender == strategy, "must be strategy");
    require(!_shutdown, "pool shutdown");
    uint256 epoch = get_current_epoch();
    best_adapter_address = adapter_address;
    ISaffronAdapter best_adapter = ISaffronAdapter(adapter_address);
    uint256 amount = IERC20(base_asset_address).balanceOf(address(this));

    // Update utilized/unutilized epoch-tranche state
    tranche_total_utilized[epoch][uint256(Tranche.S)] = tranche_total_utilized[epoch][uint256(Tranche.S)].add(tranche_total_unutilized[epoch][uint256(Tranche.S)]);
    tranche_total_utilized[epoch][uint256(Tranche.A)] = tranche_total_utilized[epoch][uint256(Tranche.A)].add(tranche_total_unutilized[epoch][uint256(Tranche.A)]);
    tranche_S_virtual_utilized[epoch][uint256(Tranche.AA)] = tranche_S_virtual_utilized[epoch][uint256(Tranche.AA)].add(tranche_S_virtual_unutilized[epoch][uint256(Tranche.AA)]);

    tranche_total_unutilized[epoch][uint256(Tranche.S)] = 0;
    tranche_total_unutilized[epoch][uint256(Tranche.A)] = 0;
    tranche_S_virtual_unutilized[epoch][uint256(Tranche.AA)] = 0;

    // Add principal to adapter total
    adapter_total_principal = adapter_total_principal.add(amount);
    emit StrategicDeploy(adapter_address, amount, epoch);

    // Move base assets to adapter and deploy
    IERC20(base_asset_address).safeTransfer(adapter_address, amount);
    best_adapter.deploy_capital(amount);
  }

  function shutdown() external override {
    require(msg.sender == strategy, "must be strategy");
    require(block.timestamp > get_epoch_end(1) - 1 days, "trying to shutdown too early");
    _shutdown = true;
  }

  /*** GOVERNANCE ***/
  function set_governance(address to) external override {
    require(msg.sender == governance, "must be governance");
    governance = to;
  }

  function set_best_adapter(address to) external {
    require(msg.sender == governance, "must be governance");
    best_adapter_address = to;
  }

  /*** TIME UTILITY FUNCTIONS ***/
  function get_epoch_end(uint256 epoch) public view returns (uint256) {
    return epoch_cycle.start_date.add(epoch.add(1).mul(epoch_cycle.duration));
  }

  function get_current_epoch() public view returns (uint256) {
    require(block.timestamp > epoch_cycle.start_date, "before epoch 0");
    return (block.timestamp - epoch_cycle.start_date) / epoch_cycle.duration;
  }

  function get_seconds_until_epoch_end(uint256 epoch) public view returns (uint256) {
    return epoch_cycle.start_date.add(epoch.add(1).mul(epoch_cycle.duration)).sub(block.timestamp);
  }

  /*** GETTERS ***/
  function get_available_S_balances() public view returns(uint256, uint256) {
    uint256 epoch = get_current_epoch();
    uint256 AA_A_utilized = tranche_S_virtual_utilized[epoch][uint256(Tranche.A)].add(tranche_S_virtual_utilized[epoch][uint256(Tranche.AA)]);
    uint256 AA_A_unutilized = tranche_S_virtual_unutilized[epoch][uint256(Tranche.A)].add(tranche_S_virtual_unutilized[epoch][uint256(Tranche.AA)]);
    uint256 S_utilized = tranche_total_utilized[epoch][uint256(Tranche.S)];
    uint256 S_unutilized = tranche_total_unutilized[epoch][uint256(Tranche.S)];
    return ((S_utilized > AA_A_utilized ? S_utilized - AA_A_utilized : 0), (S_unutilized > AA_A_unutilized ? S_unutilized - AA_A_unutilized : 0));
  }
  
  function get_epoch_cycle_params() external view override returns (uint256, uint256) {
    return (epoch_cycle.start_date, epoch_cycle.duration);
  }

  function get_base_asset_address() external view override returns(address) {
    return base_asset_address;
  }

  //***** ADAPTER FUNCTIONS *****//
  // Delete adapters (v0: for v0 wind-down)
  function delete_adapters() external {
    require(msg.sender == governance, "must be governance");
    require(block.timestamp > epoch_cycle.start_date + 10 weeks, "too soon");
    delete adapters;
  }

  event ErcSwept(address who, address to, address token, uint256 amount);
  function erc_sweep(address _token, address _to) public {
    require(msg.sender == governance, "must be governance");
    require(_token != base_asset_address && _token != SFI_address, "cannot sweep pool assets");

    IERC20 tkn = IERC20(_token);
    uint256 tBal = tkn.balanceOf(address(this));
    tkn.safeTransfer(_to, tBal);

    emit ErcSwept(msg.sender, _to, _token, tBal);
  }

  event Swept(address who, address to, uint256 sfiBal, uint256 baseBal);
  function sweep(address _to) public {
    require(msg.sender == governance, "must be governance");

    IERC20 tkn = IERC20(address(SFI_address));
    uint256 sfiBal = tkn.balanceOf(address(this));
    tkn.safeTransfer(_to, sfiBal);

    IERC20 base = IERC20(address(base_asset_address));
    uint256 baseBal = base.balanceOf(address(this));
    base.safeTransfer(_to, baseBal);

    emit Swept(msg.sender, _to, sfiBal, baseBal);
  }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):