Contract Source Code:
File 1 of 1 : GIXToken
// File: contracts/gix/IERC20.sol
pragma solidity ^0.5.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP. Does not include
* the optional functions; to access them see `ERC20Detailed`.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a `Transfer` event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through `transferFrom`. This is
* zero by default.
*
* This value changes when `approve` or `transferFrom` are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* > Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an `Approval` event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a `Transfer` event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to `approve`. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// File: contracts/gix/math/SafeMath.sol
pragma solidity ^0.5.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, "SafeMath: division by zero");
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0, "SafeMath: modulo by zero");
return a % b;
}
}
// File: contracts/gix/ERC20.sol
pragma solidity ^0.5.0;
/**
* @dev Implementation of the `IERC20` interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using `_mint`.
* For a generic mechanism see `ERC20Mintable`.
*
* Functions revert instead of returning `false` on failure. This behavior
* is nonetheless conventional and does not conflict with the expectations
* of ERC20 applications.
*
* Additionally, an `Approval` event is emitted on calls to `transferFrom`.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard `decreaseAllowance` and `increaseAllowance`
* functions have been added to mitigate the well-known issues around setting
* allowances. See `IERC20.approve`.
*/
contract ERC20 is IERC20 {
using SafeMath for uint256;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;
/**
* @dev See `IERC20.totalSupply`.
*/
function totalSupply() public view returns (uint256) {
return _totalSupply;
}
/**
* @dev See `IERC20.balanceOf`.
*/
function balanceOf(address account) public view returns (uint256) {
return _balances[account];
}
/**
* @dev See `IERC20.transfer`.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public returns (bool) {
_transfer(msg.sender, recipient, amount);
return true;
}
/**
* @dev See `IERC20.allowance`.
*/
function allowance(address owner, address spender) public view returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See `IERC20.approve`.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public returns (bool) {
_approve(msg.sender, spender, value);
return true;
}
/**
* @dev See `IERC20.transferFrom`.
*
* Emits an `Approval` event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of `ERC20`;
*
* Requirements:
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `value`.
* - the caller must have allowance for `sender`'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, msg.sender, _allowances[sender][msg.sender].sub(amount));
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to `approve` that can be used as a mitigation for
* problems described in `IERC20.approve`.
*
* Emits an `Approval` event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
_approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to `approve` that can be used as a mitigation for
* problems described in `IERC20.approve`.
*
* Emits an `Approval` event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
_approve(msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue));
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to `transfer`, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a `Transfer` event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount);
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a `Transfer` event with `from` set to the zero address.
*
* Requirements
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destoys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a `Transfer` event with `to` set to the zero address.
*
* Requirements
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 value) internal {
require(account != address(0), "ERC20: burn from the zero address");
_totalSupply = _totalSupply.sub(value);
_balances[account] = _balances[account].sub(value);
emit Transfer(account, address(0), value);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
*
* This is internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an `Approval` event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 value) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = value;
emit Approval(owner, spender, value);
}
/**
* @dev Destoys `amount` tokens from `account`.`amount` is then deducted
* from the caller's allowance.
*
* See `_burn` and `_approve`.
*/
function _burnFrom(address account, uint256 amount) internal {
_burn(account, amount);
_approve(account, msg.sender, _allowances[account][msg.sender].sub(amount));
}
}
// File: contracts/gix/ERCDetailed.sol
pragma solidity ^0.5.0;
/**
* @dev Optional functions from the ERC20 standard.
*/
contract ERC20Detailed is ERC20 {
string private _name;
string private _symbol;
uint256 private _decimals;
/**
* @dev Sets the values for `name`, `symbol`, and `decimals`. All three of
* these values are immutable: they can only be set once during
* construction.
*/
constructor (string memory name, string memory symbol, uint256 decimals) public {
_name = name;
_symbol = symbol;
_decimals = decimals;
}
/**
* @dev Returns the name of the token.
*/
function name() public view returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei.
*
* > Note that this information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* `IERC20.balanceOf` and `IERC20.transfer`.
*/
function decimals() public view returns (uint256) {
return _decimals;
}
}
// File: contracts/gix/access/Roles.sol
pragma solidity ^0.5.0;
/**
* @title Roles
* @dev Library for managing addresses assigned to a Role.
*/
library Roles {
struct Role {
mapping (address => bool) bearer;
}
/**
* @dev Give an account access to this role.
*/
function add(Role storage role, address account) internal {
require(!has(role, account), "Roles: account already has role");
role.bearer[account] = true;
}
/**
* @dev Remove an account's access to this role.
*/
function remove(Role storage role, address account) internal {
require(has(role, account), "Roles: account does not have role");
role.bearer[account] = false;
}
/**
* @dev Check if an account has this role.
* @return bool
*/
function has(Role storage role, address account) internal view returns (bool) {
require(account != address(0), "Roles: account is the zero address");
return role.bearer[account];
}
}
// File: contracts/gix/access/roles/MinterRole.sol
pragma solidity ^0.5.0;
contract MinterRole {
using Roles for Roles.Role;
event MinterAdded(address indexed account);
event MinterRemoved(address indexed account);
event AccountPaused(address indexed account);
event AccountResumed(address indexed account);
Roles.Role private _minters;
Roles.Role private _pausedAccounts;
constructor () internal {
_addMinter(msg.sender);
}
modifier onlyMinter() {
require(isMinter(msg.sender), "MinterRole: caller does not have the Minter role");
_;
}
modifier onlyResumed() {
require(!isPaused(msg.sender), "MinterRole: caller has his account paused");
_;
}
function isMinter(address account) public view returns (bool) {
return _minters.has(account);
}
function isPaused(address account) public view returns (bool) {
return _isPaused(account);
}
function addMinter(address account) public onlyMinter {
_addMinter(account);
}
function pauseAccount(address account) public onlyMinter {
_pauseAccount(account);
}
function renounceMinter() public {
_removeMinter(msg.sender);
}
function _addMinter(address account) internal {
_minters.add(account);
emit MinterAdded(account);
}
function _removeMinter(address account) internal {
_minters.remove(account);
emit MinterRemoved(account);
}
function _pauseAccount(address account) internal {
_pausedAccounts.add(account);
emit AccountPaused(account);
}
function _resumeAccount(address account) internal {
_pausedAccounts.remove(account);
emit AccountResumed(account);
}
function _isPaused(address account) internal view returns (bool) {
return _pausedAccounts.has(account);
}
}
// File: contracts/gix/ERC20Mintable.sol
pragma solidity ^0.5.0;
/**
* @dev Extension of `ERC20` that adds a set of accounts with the `MinterRole`,
* which have permission to mint (create) new tokens as they see fit.
*
* At construction, the deployer of the contract is the only minter.
*/
contract ERC20Mintable is ERC20, MinterRole {
/**
* @dev See `ERC20._mint`.
*
* Requirements:
*
* - the caller must have the `MinterRole`.
*/
function mint(address account, uint256 amount, bool shouldPause) public onlyMinter returns (bool) {
_mint(account, amount);
// First time being minted? Then let's ensure
// the token will remain paused for now
if (shouldPause && !_isPaused(account)) {
_pauseAccount(account);
}
return true;
}
/**
* @dev See `ERC20._mint`.
*
* Requirements:
*
* - the caller must have the `MinterRole`.
*/
function mint(address account, uint256 amount) public onlyMinter returns (bool) {
return mint(account, amount, true);
}
}
// File: contracts/gix/ERC20Capped.sol
pragma solidity ^0.5.0;
/**
* @dev Extension of {ERC20Mintable} that adds a cap to the supply of tokens.
*/
contract ERC20Capped is ERC20Mintable {
uint256 private _cap;
/**
* @dev Sets the value of the `cap`. This value is immutable, it can only be
* set once during construction.
*/
constructor (uint256 cap) public {
require(cap > 0, "ERC20Capped: cap is 0");
_cap = cap;
}
/**
* @dev Returns the cap on the token's total supply.
*/
function cap() public view returns (uint256) {
return _cap;
}
/**
* @dev See {ERC20Mintable-mint}.
*
* Requirements:
*
* - `value` must not cause the total supply to go over the cap.
*/
function _mint(address account, uint256 value) internal {
require(totalSupply().add(value) <= _cap, "ERC20Capped: cap exceeded");
super._mint(account, value);
}
}
// File: contracts/gix/access/roles/AdminRole.sol
pragma solidity ^0.5.0;
contract AdminRole is MinterRole {
using Roles for Roles.Role;
event AdminAdded(address indexed account);
event AdminRemoved(address indexed account);
Roles.Role private _admins;
constructor () internal {
_addAdmin(msg.sender);
}
modifier onlyAdmin() {
require(isAdmin(msg.sender), "AdminRole: caller does not have the Admin role");
_;
}
function isAdmin(address account) public view returns (bool) {
return _admins.has(account);
}
function addAdmin(address account) public onlyAdmin {
_addAdmin(account);
}
function renounceAdmin() public {
_removeAdmin(msg.sender);
}
function resumeAccount(address account) public onlyAdmin {
_resumeAccount(account);
}
function _addAdmin(address account) internal {
_admins.add(account);
emit AdminAdded(account);
}
function _removeAdmin(address account) internal {
_admins.remove(account);
emit AdminRemoved(account);
}
}
// File: contracts/gix/ERC20Resumable.sol
pragma solidity ^0.5.0;
/**
* @title Resumable token
* @dev ERC20 modified with whitelistable transfers.
*/
contract ERC20Resumable is ERC20, AdminRole {
function transfer(address to, uint256 value) public onlyResumed returns (bool) {
return super.transfer(to, value);
}
function transferFrom(address from, address to, uint256 value) public onlyResumed returns (bool) {
return super.transferFrom(from, to, value);
}
function approve(address spender, uint256 value) public onlyResumed returns (bool) {
return super.approve(spender, value);
}
function increaseAllowance(address spender, uint addedValue) public onlyResumed returns (bool) {
return super.increaseAllowance(spender, addedValue);
}
function decreaseAllowance(address spender, uint subtractedValue) public onlyResumed returns (bool) {
return super.decreaseAllowance(spender, subtractedValue);
}
}
// File: contracts/gix/ERC20Burnable.sol
pragma solidity ^0.5.0;
/**
* @dev Extension of `ERC20` that allows token holders to destroy both their own
* tokens and those that they have an allowance for, in a way that can be
* recognized off-chain (via event analysis).
*/
contract ERC20Burnable is ERC20, AdminRole {
/**
* @dev Destoys `amount` tokens from the caller.
*
* See `ERC20._burn`.
*/
function burn(uint256 amount) public {
_burn(msg.sender, amount);
}
/**
* @dev Destoys `amount` tokens of a given account.
*
* See `ERC20._burn`.
*/
function burn(address account, uint256 amount) onlyAdmin public {
_burn(account, amount);
}
/**
* @dev See `ERC20._burnFrom`.
*/
function burnFrom(address account, uint256 amount) public {
_burnFrom(account, amount);
}
}
// File: contracts/gix/GIXToken.sol
pragma solidity ^0.5.0;
/**
* @title GIXToken
* @dev The GIX ERC20 Token that can be
* minted and is capped to a maximum allocation.
*/
contract GIXToken is ERC20Detailed, ERC20Capped, ERC20Resumable, ERC20Burnable {
uint256 private constant DECIMALS = 18;
uint256 private constant CAP = 1000000000 * (10**18);
constructor () public
ERC20Detailed("GIX Coin", "GIX", DECIMALS)
ERC20Capped(CAP)
{
}
}