Contract Source Code:
File 1 of 1 : Pyrotoken
// File: contracts/openzeppelin/IERC20.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.6;
interface IERC20 {
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function totalSupply() external view returns (uint256);
function balanceOf(address account) external view returns (uint256);
function decimals() external returns (uint8);
function transfer(address recipient, uint256 amount)
external
returns (bool);
function allowance(address owner, address spender)
external
view
returns (uint256);
function approve(address spender, uint256 amount) external returns (bool);
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
// File: contracts/openzeppelin/SafeMath.sol
// SPD: MIT
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
// File: contracts/Pyrotokens/Pyrotoken.sol
// SPD: MIT
abstract contract LiquidityReceiverFacade{
function drain(address pyroToken) public virtual;
}
abstract contract ERC20MetaData {
function symbol() public virtual returns (string memory);
function name() public virtual returns (string memory);
}
contract Pyrotoken is IERC20 {
event Mint(
address minter,
address baseToken,
address pyroToken,
uint256 redeemRate
);
event Redeem(
address redeemer,
address baseToken,
address pyroToken,
uint256 redeemRate
);
using SafeMath for uint256;
uint256 _totalSupply;
mapping(address => uint256) balances;
mapping(address => mapping(address => uint256)) allowances;
address public baseToken;
uint256 constant ONE = 1e18;
LiquidityReceiverFacade liquidityReceiver;
constructor(address _baseToken, address _liquidityReceiver) {
baseToken = _baseToken;
name = string(
abi.encodePacked("Pyro", ERC20MetaData(baseToken).name())
);
symbol = string(
abi.encodePacked("p", ERC20MetaData(baseToken).symbol())
);
decimals = 18;
liquidityReceiver = LiquidityReceiverFacade(_liquidityReceiver);
}
string public override name;
string public override symbol;
uint8 public override decimals;
modifier updateReserve {
liquidityReceiver.drain(address(this));
_;
}
function totalSupply() external view override returns (uint256) {
return _totalSupply;
}
function balanceOf(address account)
external
view
override
returns (uint256)
{
return balances[account];
}
function transfer(address recipient, uint256 amount)
external
override
returns (bool)
{
_transfer(msg.sender, recipient, amount);
return true;
}
function allowance(address owner, address spender)
external
view
override
returns (uint256)
{
return allowances[owner][spender];
}
function approve(address spender, uint256 amount)
external
override
returns (bool)
{
allowances[msg.sender][spender] = amount;
emit Approval(msg.sender, spender, amount);
return true;
}
function transferFrom(
address sender,
address recipient,
uint256 amount
) external override returns (bool) {
require(
allowances[sender][recipient] >= amount,
"ERC20: not approved to send"
);
_transfer(sender, recipient, amount);
return true;
}
function mint(uint256 baseTokenAmount) external updateReserve returns (uint) {
uint256 rate = redeemRate();
uint256 pyroTokensToMint = baseTokenAmount.mul(ONE).div(rate);
require(
IERC20(baseToken).transferFrom(
msg.sender,
address(this),
baseTokenAmount
),
"PYROTOKEN: baseToken transfer failed."
);
mint(msg.sender, pyroTokensToMint);
emit Mint(msg.sender, baseToken, address(this), rate);
return pyroTokensToMint;
}
function redeem(uint256 pyroTokenAmount) external updateReserve returns (uint) {
//no approval necessary
balances[msg.sender] = balances[msg.sender].sub(
pyroTokenAmount,
"PYROTOKEN: insufficient balance"
);
uint256 rate = redeemRate();
_totalSupply = _totalSupply.sub(pyroTokenAmount);
uint256 exitFee = pyroTokenAmount.mul(2).div(100); //2% burn on exit pushes up price for remaining hodlers
uint256 net = pyroTokenAmount.sub(exitFee);
uint256 baseTokensToRelease = rate.mul(net).div(ONE);
IERC20(baseToken).transfer(msg.sender, baseTokensToRelease);
emit Redeem(msg.sender, baseToken, address(this), rate);
return baseTokensToRelease;
}
function redeemRate() public view returns (uint256) {
uint256 balanceOfBase = IERC20(baseToken).balanceOf(address(this));
if (_totalSupply == 0 || balanceOfBase == 0) return ONE;
return balanceOfBase.mul(ONE).div(_totalSupply);
}
function mint(address recipient, uint256 amount) internal {
balances[recipient] = balances[recipient].add(amount);
_totalSupply = _totalSupply.add(amount);
}
function burn(uint256 amount) public {
balances[msg.sender] = balances[msg.sender].sub(amount);
_totalSupply = _totalSupply.sub(amount);
}
function _transfer(
address sender,
address recipient,
uint256 amount
) internal {
uint256 burnFee = amount.div(1000); //0.1%
balances[recipient] = balances[recipient].add(amount - burnFee);
balances[sender] = balances[sender].sub(amount);
_totalSupply = _totalSupply.sub(burnFee);
emit Transfer(sender, recipient, amount);
}
}