ETH Price: $3,695.18 (+2.89%)

Contract Diff Checker

Contract Name:
CitizenZero

Contract Source Code:

File 1 of 1 : CitizenZero

//SPDX-License-Identifier: GPL 3
pragma solidity >=0.8.0 <0.9.0;

library Counters {
    struct Counter {
        uint256 _value;
    }

    function current(Counter storage counter) internal view returns (uint256) {
        return counter._value;
    }

    function increment(Counter storage counter) internal {
        unchecked {
            counter._value += 1;
        }
    }

    function decrement(Counter storage counter) internal {
        uint256 value = counter._value;
        require(value > 0, "Counter: decrement overflow");
        unchecked {
            counter._value = value - 1;
        }
    }

    function reset(Counter storage counter) internal {
        counter._value = 0;
    }
}

contract TokenAccessControl {
    bool public paused = false;
    address public owner;
    address public newContractOwner;
    mapping(address => bool) public authorizedContracts;

    event Pause();
    event OwnershipTransferred(
        address indexed previousOwner,
        address indexed newOwner
    );

    constructor() {
        owner = msg.sender;
    }

    modifier ifNotPaused() {
        require(!paused, "contract is paused");
        _;
    }

    modifier onlyOwner() {
        require(msg.sender == owner, "caller is not an owner");
        _;
    }

    modifier onlyAuthorizedUser() {
        require(
            authorizedContracts[msg.sender],
            "caller is not an authorized user"
        );
        _;
    }

    modifier onlyOwnerOrAuthorizedUser() {
        require(
            authorizedContracts[msg.sender] || msg.sender == owner,
            "caller is not an authorized user or an owner"
        );
        _;
    }

    function renounceOwnership() public virtual onlyOwner {
        emit OwnershipTransferred(owner, address(0));
        owner = address(0);
    }

    function transferOwnership(address _newOwner) public onlyOwner {
        require(_newOwner != address(0));
        newContractOwner = _newOwner;
    }

    function acceptOwnership() public ifNotPaused {
        require(msg.sender == newContractOwner);
        emit OwnershipTransferred(owner, newContractOwner);
        owner = newContractOwner;
        newContractOwner = address(0);
    }

    function setAuthorizedUser(address _operator, bool _approve)
        public
        onlyOwner
    {
        if (_approve) {
            authorizedContracts[_operator] = true;
        } else {
            delete authorizedContracts[_operator];
        }
    }

    function setPause(bool _paused) public onlyOwner {
        paused = _paused;
        if (paused) {
            emit Pause();
        }
    }
}

interface IERC20 {
    event Transfer(address indexed from, address indexed to, uint256 value);
    event Approval(
        address indexed owner,
        address indexed spender,
        uint256 value
    );

    function totalSupply() external view returns (uint256);

    function balanceOf(address account) external view returns (uint256);

    function transfer(address to, uint256 amount) external returns (bool);

    function allowance(address owner, address spender)
        external
        view
        returns (uint256);

    function approve(address spender, uint256 amount) external returns (bool);

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v5.0._
     */
    function tryAdd(uint256 a, uint256 b)
        internal
        pure
        returns (bool, uint256)
    {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v5.0._
     */
    function trySub(uint256 a, uint256 b)
        internal
        pure
        returns (bool, uint256)
    {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v5.0._
     */
    function tryMul(uint256 a, uint256 b)
        internal
        pure
        returns (bool, uint256)
    {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v5.0._
     */
    function tryDiv(uint256 a, uint256 b)
        internal
        pure
        returns (bool, uint256)
    {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v5.0._
     */
    function tryMod(uint256 a, uint256 b)
        internal
        pure
        returns (bool, uint256)
    {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding)
        internal
        pure
        returns (uint256)
    {
        unchecked {
            uint256 result = sqrt(a);
            return
                result +
                (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding)
        internal
        pure
        returns (uint256)
    {
        unchecked {
            uint256 result = log2(value);
            return
                result +
                (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding)
        internal
        pure
        returns (uint256)
    {
        unchecked {
            uint256 result = log10(value);
            return
                result +
                (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding)
        internal
        pure
        returns (uint256)
    {
        unchecked {
            uint256 result = log256(value);
            return
                result +
                (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return
            string(
                abi.encodePacked(
                    value < 0 ? "-" : "",
                    toString(SignedMath.abs(value))
                )
            );
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length)
        internal
        pure
        returns (string memory)
    {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b)
        internal
        pure
        returns (bool)
    {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

interface IERC721Receiver {
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

interface IERC165 {
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

interface IERC2981 is IERC165 {
    function royaltyInfo(uint256 tokenId, uint256 salePrice)
        external
        view
        returns (address receiver, uint256 royaltyAmount);
}

abstract contract ERC165 is IERC165 {
    function supportsInterface(bytes4 interfaceId)
        public
        view
        virtual
        override
        returns (bool)
    {
        return interfaceId == type(IERC165).interfaceId;
    }
}

abstract contract ERC2981 is IERC2981, ERC165 {
    struct RoyaltyInfo {
        address receiver;
        uint96 royaltyFraction;
    }

    RoyaltyInfo private _defaultRoyaltyInfo;
    mapping(uint256 => RoyaltyInfo) private _tokenRoyaltyInfo;

    function supportsInterface(bytes4 interfaceId)
        public
        view
        virtual
        override(IERC165, ERC165)
        returns (bool)
    {
        return
            interfaceId == type(IERC2981).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    function royaltyInfo(uint256 tokenId, uint256 salePrice)
        public
        view
        virtual
        override
        returns (address, uint256)
    {
        RoyaltyInfo memory royalty = _tokenRoyaltyInfo[tokenId];

        if (royalty.receiver == address(0)) {
            royalty = _defaultRoyaltyInfo;
        }

        uint256 royaltyAmount = (salePrice * royalty.royaltyFraction) /
            _feeDenominator();

        return (royalty.receiver, royaltyAmount);
    }

    function _feeDenominator() internal pure virtual returns (uint96) {
        return 10000;
    }

    function _setDefaultRoyalty(address receiver, uint96 feeNumerator)
        internal
        virtual
    {
        require(
            feeNumerator <= _feeDenominator(),
            "ERC2981: royalty fee will exceed salePrice"
        );
        require(receiver != address(0), "ERC2981: invalid receiver");

        _defaultRoyaltyInfo = RoyaltyInfo(receiver, feeNumerator);
    }

    function _deleteDefaultRoyalty() internal virtual {
        delete _defaultRoyaltyInfo;
    }

    function _setTokenRoyalty(
        uint256 tokenId,
        address receiver,
        uint96 feeNumerator
    ) internal virtual {
        require(
            feeNumerator <= _feeDenominator(),
            "ERC2981: royalty fee will exceed salePrice"
        );
        require(receiver != address(0), "ERC2981: Invalid parameters");

        _tokenRoyaltyInfo[tokenId] = RoyaltyInfo(receiver, feeNumerator);
    }

    function _resetTokenRoyalty(uint256 tokenId) internal virtual {
        delete _tokenRoyaltyInfo[tokenId];
    }
}

interface IERC721 is IERC165 {
    event Transfer(
        address indexed from,
        address indexed to,
        uint256 indexed tokenId
    );
    event Approval(
        address indexed owner,
        address indexed approved,
        uint256 indexed tokenId
    );
    event ApprovalForAll(
        address indexed owner,
        address indexed operator,
        bool approved
    );

    function balanceOf(address owner) external view returns (uint256 balance);

    function ownerOf(uint256 tokenId) external view returns (address owner);

    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes calldata data
    ) external;

    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    function approve(address to, uint256 tokenId) external;

    function setApprovalForAll(address operator, bool approved) external;

    function getApproved(uint256 tokenId)
        external
        view
        returns (address operator);

    function isApprovedForAll(address owner, address operator)
        external
        view
        returns (bool);
}

interface IERC4906 is IERC165, IERC721 {
    event MetadataUpdate(uint256 _tokenId);
    event BatchMetadataUpdate(uint256 _fromTokenId, uint256 _toTokenId);
}

interface IERC721Metadata is IERC721 {
    function name() external view returns (string memory);

    function symbol() external view returns (string memory);

    function tokenURI(uint256 tokenId) external view returns (string memory);
}

contract ERC721 is ERC165, IERC721 {
    string private _name;
    string private _symbol;
    string private _baseURI;
    mapping(uint256 => address) private _owners;
    mapping(address => uint256) private _balances;
    mapping(uint256 => address) private _tokenApprovals;
    mapping(address => mapping(address => bool)) private _operatorApprovals;

    constructor(
        string memory name_,
        string memory symbol_,
        string memory baseURI_
    ) {
        _name = name_;
        _symbol = symbol_;
        _baseURI = baseURI_;
    }

    function supportsInterface(bytes4 interfaceId)
        public
        view
        virtual
        override(ERC165, IERC165)
        returns (bool)
    {
        return
            interfaceId == type(IERC721).interfaceId ||
            interfaceId == type(IERC721Metadata).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    function setBaseUri(string memory baseURI) internal virtual {
        _baseURI = baseURI;
    }

    function balanceOf(address owner)
        public
        view
        virtual
        override
        returns (uint256)
    {
        require(
            owner != address(0),
            "ERC721: address zero is not a valid owner"
        );
        return _balances[owner];
    }

    function ownerOf(uint256 tokenId)
        public
        view
        virtual
        override
        returns (address)
    {
        address owner = _ownerOf(tokenId);
        require(owner != address(0), "ERC721: invalid token ID");
        return owner;
    }

    function name() public view virtual returns (string memory) {
        return _name;
    }

    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    function tokenURI(uint256 tokenId)
        public
        view
        virtual
        returns (string memory)
    {
        _requireMinted(tokenId);
        return
            bytes(_baseURI).length > 0
                ? string(abi.encodePacked(_baseURI, Strings.toString(tokenId)))
                : "";
    }

    function approve(address to, uint256 tokenId) public virtual override {
        address owner = ERC721.ownerOf(tokenId);
        require(to != owner, "ERC721: approval to current owner");

        require(
            msg.sender == owner || isApprovedForAll(owner, msg.sender),
            "ERC721: approve caller is not token owner or approved for all"
        );

        _approve(to, tokenId);
    }

    function getApproved(uint256 tokenId)
        public
        view
        virtual
        override
        returns (address)
    {
        _requireMinted(tokenId);

        return _tokenApprovals[tokenId];
    }

    function setApprovalForAll(address operator, bool approved)
        public
        virtual
        override
    {
        _setApprovalForAll(msg.sender, operator, approved);
    }

    function isApprovedForAll(address owner, address operator)
        public
        view
        virtual
        override
        returns (bool)
    {
        return _operatorApprovals[owner][operator];
    }

    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) public virtual override {
        //solhint-disable-next-line max-line-length
        require(
            _isApprovedOrOwner(msg.sender, tokenId),
            "ERC721: caller is not token owner or approved"
        );

        _transfer(from, to, tokenId);
    }

    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) public virtual override {
        safeTransferFrom(from, to, tokenId, "");
    }

    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes memory data
    ) public virtual override {
        require(
            _isApprovedOrOwner(msg.sender, tokenId),
            "ERC721: caller is not token owner or approved"
        );
        _safeTransfer(from, to, tokenId, data);
    }

    function _safeTransfer(
        address from,
        address to,
        uint256 tokenId,
        bytes memory data
    ) internal virtual {
        _transfer(from, to, tokenId);
        require(
            _checkOnERC721Received(from, to, tokenId, data),
            "ERC721: transfer to non ERC721Receiver implementer"
        );
    }

    function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
        return _owners[tokenId];
    }

    function _exists(uint256 tokenId) internal view virtual returns (bool) {
        return _ownerOf(tokenId) != address(0);
    }

    function _isApprovedOrOwner(address spender, uint256 tokenId)
        internal
        view
        virtual
        returns (bool)
    {
        address owner = ERC721.ownerOf(tokenId);
        return (spender == owner ||
            isApprovedForAll(owner, spender) ||
            getApproved(tokenId) == spender);
    }

    function _safeMint(address to, uint256 tokenId) internal virtual {
        _safeMint(to, tokenId, "");
    }

    function _safeMint(
        address to,
        uint256 tokenId,
        bytes memory data
    ) internal virtual {
        _mint(to, tokenId);
        require(
            _checkOnERC721Received(address(0), to, tokenId, data),
            "ERC721: transfer to non ERC721Receiver implementer"
        );
    }

    function _mint(address to, uint256 tokenId) internal virtual {
        require(to != address(0), "ERC721: mint to the zero address");
        require(!_exists(tokenId), "ERC721: token already minted");

        _beforeTokenTransfer(address(0), to, tokenId, 1);

        require(!_exists(tokenId), "ERC721: token already minted");

        unchecked {
            _balances[to] += 1;
        }

        _owners[tokenId] = to;

        emit Transfer(address(0), to, tokenId);

        _afterTokenTransfer(address(0), to, tokenId, 1);
    }

    function _burn(uint256 tokenId) internal virtual {
        address owner = ERC721.ownerOf(tokenId);

        _beforeTokenTransfer(owner, address(0), tokenId, 1);
        owner = ERC721.ownerOf(tokenId);
        delete _tokenApprovals[tokenId];

        unchecked {
            _balances[owner] -= 1;
        }
        delete _owners[tokenId];

        emit Transfer(owner, address(0), tokenId);

        _afterTokenTransfer(owner, address(0), tokenId, 1);
    }

    function _transfer(
        address from,
        address to,
        uint256 tokenId
    ) internal virtual {
        require(
            ERC721.ownerOf(tokenId) == from,
            "ERC721: transfer from incorrect owner"
        );
        require(to != address(0), "ERC721: transfer to the zero address");

        _beforeTokenTransfer(from, to, tokenId, 1);
        require(
            ERC721.ownerOf(tokenId) == from,
            "ERC721: transfer from incorrect owner"
        );
        delete _tokenApprovals[tokenId];

        unchecked {
            _balances[from] -= 1;
            _balances[to] += 1;
        }
        _owners[tokenId] = to;

        emit Transfer(from, to, tokenId);

        _afterTokenTransfer(from, to, tokenId, 1);
    }

    function _approve(address to, uint256 tokenId) internal virtual {
        _tokenApprovals[tokenId] = to;
        emit Approval(ERC721.ownerOf(tokenId), to, tokenId);
    }

    function _setApprovalForAll(
        address owner,
        address operator,
        bool approved
    ) internal virtual {
        require(owner != operator, "ERC721: approve to caller");
        _operatorApprovals[owner][operator] = approved;
        emit ApprovalForAll(owner, operator, approved);
    }

    function _requireMinted(uint256 tokenId) internal view virtual {
        require(_exists(tokenId), "ERC721: invalid token ID");
    }

    function _checkOnERC721Received(
        address from,
        address to,
        uint256 tokenId,
        bytes memory data
    ) private returns (bool) {
        if (isContract(to)) {
            try
                IERC721Receiver(to).onERC721Received(
                    msg.sender,
                    from,
                    tokenId,
                    data
                )
            returns (bytes4 retval) {
                return retval == IERC721Receiver.onERC721Received.selector;
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    revert(
                        "ERC721: transfer to non ERC721Receiver implementer"
                    );
                } else {
                    /// @solidity memory-safe-assembly
                    assembly {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        } else {
            return true;
        }
    }

    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 firstTokenId,
        uint256 batchSize
    ) internal virtual {}

    function _afterTokenTransfer(
        address from,
        address to,
        uint256 firstTokenId,
        uint256 batchSize
    ) internal virtual {}

    function __unsafe_increaseBalance(address account, uint256 amount)
        internal
    {
        _balances[account] += amount;
    }

    function isContract(address account) internal view returns (bool) {
        return account.code.length > 0;
    }
}

contract CitizenZero is ERC721, TokenAccessControl, ERC2981, IERC4906 {
    using Counters for Counters.Counter;
    string private _contractURI;
    uint256 public mintLimit;
    uint64 public whitelistMintStart;
    uint64 public fcfsMintStart;
    uint64 public publicMintStart;
    uint64 public mintEnd;
    Counters.Counter private _tokenIdCounter;
    Counters.Counter private _orderCounter;
    mapping(uint256 => CitizenZeroData) private _citizenZeroData;
    mapping(address => bool) private _whitelist;
    mapping(address => bool) private _fcfs;
    mapping(address => uint16) private _mintedAmount;

    struct CitizenZeroData {
        string secretPhrase;
        uint256 orderNumber;
        uint16[] achievements;
    }

    constructor(
        string memory name_,
        string memory symbol_,
        string memory baseURI_,
        string memory contractURI_,
        uint64 whitelistMintStart_,
        uint64 fcfsMintStart_,
        uint64 publicMintStart_,
        uint64 mintEnd_,
        uint256 mintLimit_,
        address royaltyReceiver_,
        uint96 royaltyFeeNumerator_
    ) ERC721(name_, symbol_, baseURI_) {
        _contractURI = contractURI_;
        whitelistMintStart = whitelistMintStart_;
        fcfsMintStart = fcfsMintStart_;
        publicMintStart = publicMintStart_;
        mintEnd = mintEnd_;
        mintLimit = mintLimit_;
        _setDefaultRoyalty(royaltyReceiver_, royaltyFeeNumerator_);
        _mintCitizenZero(msg.sender);
    }

    function supportsInterface(bytes4 interfaceId)
        public
        view
        virtual
        override(ERC721, ERC2981, IERC165)
        returns (bool)
    {
        return
            ERC721.supportsInterface(interfaceId) ||
            ERC2981.supportsInterface(interfaceId) ||
            interfaceId == bytes4(0x49064906);
    }

    function batchMetadataUpdate(uint256 fromTokenId, uint256 toTokenId)
        public
        onlyOwnerOrAuthorizedUser
    {
        emit BatchMetadataUpdate(fromTokenId, toTokenId);
    }

    function metadataUpdate(uint256 tokenId) public {
        emit MetadataUpdate(tokenId);
    }

    function setDefaultRoyalty(address receiver, uint96 feeNumerator)
        public
        onlyOwner
    {
        _setDefaultRoyalty(receiver, feeNumerator);
    }

    function setWhitelistAddresses(
        address[] memory whitelistAddresses,
        bool approval
    ) public onlyOwnerOrAuthorizedUser {
        for (uint256 i = 0; i < whitelistAddresses.length; ++i) {
            _whitelist[whitelistAddresses[i]] = approval;
        }
    }

    function setFcfsAddresses(address[] memory fcfsAddresses, bool approval)
        public
        onlyOwnerOrAuthorizedUser
    {
        for (uint256 i = 0; i < fcfsAddresses.length; ++i) {
            _fcfs[fcfsAddresses[i]] = approval;
        }
    }

    function setUri(string memory baseURI) public onlyOwner {
        setBaseUri(baseURI);
    }

    function setContractUri(string memory contractUri) public onlyOwner {
        _contractURI = contractUri;
    }

    function contractURI() public view returns (string memory) {
        return _contractURI;
    }

    function totalSupply() public view virtual returns (uint256) {
        return _tokenIdCounter.current();
    }

    function mintedAmount(address account) public view returns (uint16) {
        return _mintedAmount[account];
    }

    function burn(uint256 tokenId) public virtual {
        require(
            _isApprovedOrOwner(msg.sender, tokenId),
            "ERC721: caller is not token owner or approved"
        );
        _burn(tokenId);
    }

    function addAchievement(uint256 tokenId, uint16 achievementId)
        public
        onlyOwnerOrAuthorizedUser
    {
        _requireMinted(tokenId);
        _citizenZeroData[tokenId].achievements.push(achievementId);
        emit MetadataUpdate(tokenId);
    }

    function setSecretPhrase(uint256 tokenId, string memory secretPhrase)
        public
        onlyOwnerOrAuthorizedUser
    {
        _requireMinted(tokenId);
        _orderCounter.increment();
        _citizenZeroData[tokenId] = CitizenZeroData(
            secretPhrase,
            _orderCounter.current(),
            _citizenZeroData[tokenId].achievements
        );
        emit MetadataUpdate(tokenId);
    }

    function setMintTimes(
        uint64 _whitelistMintStart,
        uint64 _fcfsMintStart,
        uint64 _publicMintStart,
        uint64 _mintEnd
    ) public onlyOwner {
        whitelistMintStart = _whitelistMintStart;
        fcfsMintStart = _fcfsMintStart;
        publicMintStart = _publicMintStart;
        mintEnd = _mintEnd;
    }

    function getCitizenZeroData(uint256 tokenId)
        public
        view
        returns (
            string memory secretPhrase,
            uint256 orderNumber,
            uint16[] memory achievements
        )
    {
        _requireMinted(tokenId);
        return (
            _citizenZeroData[tokenId].secretPhrase,
            _citizenZeroData[tokenId].orderNumber,
            _citizenZeroData[tokenId].achievements
        );
    }

    function _mintCitizenZero(address to) internal {
        _tokenIdCounter.increment();
        _mint(to, _tokenIdCounter.current());
    }

    function mint() public ifNotPaused {
        require(
            block.timestamp < mintEnd,
            "CitizenZero: Mint has already ended!"
        );
        require(
            this.totalSupply() < mintLimit,
            "CitizenZero: Mint limit reached!"
        );
        require(
            _mintedAmount[msg.sender] < 1,
            "CitizenZero: Mint limit already reached for this wallet!"
        );
        require(
            msg.sender == tx.origin,
            "CitizenZero: Mint is allowed only for wallets!"
        );
        _mintedAmount[msg.sender]++;
        if (block.timestamp > publicMintStart) {
            _mintCitizenZero(msg.sender);
        } else if (
            block.timestamp > fcfsMintStart && _fcfs[msg.sender] == true
        ) {
            _mintCitizenZero(msg.sender);
        } else if (
            block.timestamp > whitelistMintStart &&
            _whitelist[msg.sender] == true
        ) {
            _mintCitizenZero(msg.sender);
        } else {
            revert("CitizenZero: You are not eligible for mint!");
        }
    }

    function isWhitelisted(address account) public view returns (bool) {
        return _whitelist[account];
    }

    function isFcfs(address account) public view returns (bool) {
        return _fcfs[account];
    }

    function withdraw(address contractAddress, uint256 amount)
        public
        onlyOwner
    {
        if (contractAddress == address(0)) {
            payable(msg.sender).transfer(amount);
        } else {
            if (amount == 0)
                amount = IERC20(contractAddress).balanceOf(address(this));
            IERC20(contractAddress).transfer(msg.sender, amount);
        }
    }

    receive() external payable {}

    fallback() external payable {}
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):