Contract Name:
StableBPTOracle
Contract Source Code:
// SPDX-License-Identifier: MIT
/*
██████╗ ██╗ ██╗ ██╗███████╗██████╗ ███████╗██████╗ ██████╗ ██╗ ██╗
██╔══██╗██║ ██║ ██║██╔════╝██╔══██╗██╔════╝██╔══██╗██╔══██╗╚██╗ ██╔╝
██████╔╝██║ ██║ ██║█████╗ ██████╔╝█████╗ ██████╔╝██████╔╝ ╚████╔╝
██╔══██╗██║ ██║ ██║██╔══╝ ██╔══██╗██╔══╝ ██╔══██╗██╔══██╗ ╚██╔╝
██████╔╝███████╗╚██████╔╝███████╗██████╔╝███████╗██║ ██║██║ ██║ ██║
╚═════╝ ╚══════╝ ╚═════╝ ╚══════╝╚═════╝ ╚══════╝╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝
*/
pragma solidity 0.8.22;
import { FixedPoint } from "../libraries/balancer-v2/FixedPoint.sol";
import { VaultReentrancyLib } from "../libraries/balancer-v2/VaultReentrancyLib.sol";
import "../utils/BlueberryErrors.sol" as Errors;
import { UsingBaseOracle } from "./UsingBaseOracle.sol";
import { IBaseOracle } from "../interfaces/IBaseOracle.sol";
import { IBalancerV2StablePool } from "../interfaces/balancer-v2/IBalancerV2StablePool.sol";
import { IBalancerVault } from "../interfaces/balancer-v2/IBalancerVault.sol";
import { IRateProvider } from "../interfaces/balancer-v2/IRateProvider.sol";
/**
* @title StableBPTOracle
* @author BlueberryProtocol
* @notice Oracle contract which privides price feeds of Stable Balancer LP tokens
*/
contract StableBPTOracle is IBaseOracle, UsingBaseOracle {
using FixedPoint for uint256;
/*//////////////////////////////////////////////////////////////////////////
STRUCTS
//////////////////////////////////////////////////////////////////////////*/
/**
* @dev Struct to store token info related to Balancer Pool tokens
* @param tokens An array of tokens within the pool
* @param rateProviders An array of rate providers associated with the tokens in the pool
*/
struct TokenInfo {
address[] tokens;
address[] rateProviders;
}
/*//////////////////////////////////////////////////////////////////////////
STORAGE
//////////////////////////////////////////////////////////////////////////*/
/// @dev Address of the weighted pool oracle
IBaseOracle private _weightedPoolOracle;
/// @dev Address of the Balancer Vault
IBalancerVault private _vault;
/// @dev mapping of registered bpt tokens to their token info
mapping(address => TokenInfo) private _tokenInfo;
/*//////////////////////////////////////////////////////////////////////////
MODIFIERS
//////////////////////////////////////////////////////////////////////////*/
// Protects the oracle from being manipulated via read-only reentrancy
modifier balancerNonReentrant() {
VaultReentrancyLib.ensureNotInVaultContext(_vault);
_;
}
/*//////////////////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////////////////*/
/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {
_disableInitializers();
}
/*//////////////////////////////////////////////////////////////////////////
FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/**
* @notice Initializes the contract
* @param vault Instance of the Balancer V2 Vault
* @param base The base oracle instance.
* @param owner Address of the owner of the contract.
*/
function initialize(IBalancerVault vault, IBaseOracle base, address owner) external initializer {
__UsingBaseOracle_init(base, owner);
_vault = vault;
}
/// @inheritdoc IBaseOracle
function getPrice(address token) public override balancerNonReentrant returns (uint256) {
TokenInfo memory tokenInfo = getBptInfo(token);
uint256 tokenLength = tokenInfo.tokens.length;
if (tokenLength == 0) revert Errors.ORACLE_NOT_SUPPORT_LP(token);
uint256 minPrice = _getTokensMinPrice(tokenInfo.tokens, tokenInfo.rateProviders, tokenLength);
uint256 rate = IBalancerV2StablePool(token).getRate();
return minPrice.mulDown(rate);
}
/**
* @notice Register Balancer Pool token to oracle
* @dev Stores persistent data of Balancer Pool token
* @dev An oracle cannot be used for a LP token unless it is registered
* @param bpt Address of the Balancer Pool token to register
*/
function registerBpt(address bpt) external onlyOwner {
if (bpt == address(0)) revert Errors.ZERO_ADDRESS();
IBalancerV2StablePool pool = IBalancerV2StablePool(bpt);
(address[] memory tokens, , ) = _vault.getPoolTokens(pool.getPoolId());
address[] memory rateProviders = pool.getRateProviders();
uint256 tokenLength = tokens.length;
// Only ComposableStablePools return BPT within the array of tokens when calling `getPoolTokens`.
// In order to support all types of stable pools we need to encapsulate `getBPTIndex`
// in a try/catch block. If the pool is not a ComposableStablePool, we will just
// set the subTokens to the tokens array that we queried from the vault
try pool.getBptIndex() returns (uint256 bptIndex) {
address[] memory subTokens = new address[](tokenLength - 1);
address[] memory subRateProviders = new address[](tokenLength - 1);
uint256 index = 0;
for (uint256 i = 0; i < tokenLength; ++i) {
if (i != bptIndex) {
subTokens[index] = tokens[i];
subRateProviders[index] = rateProviders[i];
index++;
}
}
_tokenInfo[bpt] = TokenInfo(subTokens, subRateProviders);
} catch {
_tokenInfo[bpt] = TokenInfo(tokens, rateProviders);
}
emit RegisterLpToken(bpt);
}
/**
* @notice Set the weighted pool oracle
* @dev Only owner can set the weighted pool oracle
* @param oracle Address of the oracle to set as the weighted pool oracle
*/
function setWeightedPoolOracle(address oracle) external onlyOwner {
if (oracle == address(0)) revert Errors.ZERO_ADDRESS();
_weightedPoolOracle = IBaseOracle(oracle);
}
/**
* @notice Fetches the TokenInfo struct of a given LP token
* @param bpt Balancer Pool Token address
* @return TokenInfo struct of given LP token
*/
function getBptInfo(address bpt) public view returns (TokenInfo memory) {
return _tokenInfo[bpt];
}
/// @notice Returns the weighted pool oracle address
function getWeightedPoolOracle() external view returns (address) {
return address(_weightedPoolOracle);
}
/**
* @notice Returns the minimum price of a given array of tokens
* @param tokens An array of tokens within the pool
* @param rateProviders An array of rate providers associated with the tokens in the pool
* @param length The length of the array of tokens
* @return The minimum price of the given array of tokens
*/
function _getTokensMinPrice(
address[] memory tokens,
address[] memory rateProviders,
uint256 length
) internal returns (uint256) {
uint256 minPrice;
address minToken;
for (uint256 i = 0; i < length; ++i) {
address minCandidate = tokens[i];
IRateProvider rateProvider = IRateProvider(rateProviders[i]);
uint256 minCandidatePrice = _calculateMinCandidatePrice(rateProvider, minCandidate);
if (minCandidatePrice < minPrice || i == 0) {
minToken = minCandidate;
minPrice = minCandidatePrice;
}
}
return minPrice;
}
/**
* @notice Returns the price of a given token
* @param rateProvider The rate provider associated with the token
* @param minCandidate The token to calculate the minimum price for
* @return The price of the given token
*/
function _calculateMinCandidatePrice(IRateProvider rateProvider, address minCandidate) internal returns (uint256) {
uint256 minCandidatePrice = _getMarketPrice(minCandidate);
if (address(rateProvider) != address(0)) {
uint256 rateProviderPrice = rateProvider.getRate();
minCandidatePrice = minCandidatePrice.divDown(rateProviderPrice);
}
return minCandidatePrice;
}
/**
* @notice Returns the price of a given token
* @dev If the token is not supported by the base oracle, we assume that it is a nested pool
* and we will try to get the price from the weighted pool oracle or recursively
* @param token Address of the token to fetch the price for.
* @return The Market price of the given token
*/
function _getMarketPrice(address token) internal returns (uint256) {
try _base.getPrice(token) returns (uint256 price) {
return price;
} catch {
try _weightedPoolOracle.getPrice(token) returns (uint256 price) {
return price;
} catch {
return getPrice(token);
}
}
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.8.0;
import "./BalancerErrors.sol";
import "./LogExpMath.sol";
/* solhint-disable private-vars-leading-underscore */
/// forked from https://github.com/balancer-labs/balancer-v2-monorepo/blob/master/pkg/solidity-utils/contracts/math/FixedPoint.sol
/// Updated to solidity version 0.8.X
library FixedPoint {
uint256 internal constant ONE = 1e18; // 18 decimal places
uint256 internal constant TWO = 2 * ONE;
uint256 internal constant FOUR = 4 * ONE;
uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14)
// Minimum base for the power function when the exponent is 'free' (larger than ONE).
uint256 internal constant MIN_POW_BASE_FREE_EXPONENT = 0.7e18;
function add(uint256 a, uint256 b) internal pure returns (uint256) {
// Fixed Point addition is the same as regular checked addition
uint256 c = a + b;
_require(c >= a, BalancerErrors.ADD_OVERFLOW);
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
// Fixed Point addition is the same as regular checked addition
_require(b <= a, BalancerErrors.SUB_OVERFLOW);
uint256 c = a - b;
return c;
}
function mulDown(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 product = a * b;
_require(a == 0 || product / a == b, BalancerErrors.MUL_OVERFLOW);
return product / ONE;
}
function mulUp(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 product = a * b;
_require(a == 0 || product / a == b, BalancerErrors.MUL_OVERFLOW);
if (product == 0) {
return 0;
} else {
// The traditional divUp formula is:
// divUp(x, y) := (x + y - 1) / y
// To avoid intermediate overflow in the addition, we distribute the division and get:
// divUp(x, y) := (x - 1) / y + 1
// Note that this requires x != 0, which we already tested for.
return ((product - 1) / ONE) + 1;
}
}
function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
_require(b != 0, BalancerErrors.ZERO_DIVISION);
if (a == 0) {
return 0;
} else {
uint256 aInflated = a * ONE;
_require(aInflated / a == ONE, BalancerErrors.DIV_INTERNAL); // mul overflow
return aInflated / b;
}
}
function divUp(uint256 a, uint256 b) internal pure returns (uint256) {
_require(b != 0, BalancerErrors.ZERO_DIVISION);
if (a == 0) {
return 0;
} else {
uint256 aInflated = a * ONE;
_require(aInflated / a == ONE, BalancerErrors.DIV_INTERNAL); // mul overflow
// The traditional divUp formula is:
// divUp(x, y) := (x + y - 1) / y
// To avoid intermediate overflow in the addition, we distribute the division and get:
// divUp(x, y) := (x - 1) / y + 1
// Note that this requires x != 0, which we already tested for.
return ((aInflated - 1) / b) + 1;
}
}
/**
* @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above
* the true value (that is, the error function expected - actual is always positive).
*/
function powDown(uint256 x, uint256 y) internal pure returns (uint256) {
// Optimize for when y equals 1.0, 2.0 or 4.0, as those are very simple to implement and occur often in 50/50
// and 80/20 Weighted Pools
if (y == ONE) {
return x;
} else if (y == TWO) {
return mulDown(x, x);
} else if (y == FOUR) {
uint256 square = mulDown(x, x);
return mulDown(square, square);
} else {
uint256 raw = LogExpMath.pow(x, y);
uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1);
if (raw < maxError) {
return 0;
} else {
return sub(raw, maxError);
}
}
}
/**
* @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below
* the true value (that is, the error function expected - actual is always negative).
*/
function powUp(uint256 x, uint256 y) internal pure returns (uint256) {
// Optimize for when y equals 1.0, 2.0 or 4.0, as those are very simple to implement and occur often in 50/50
// and 80/20 Weighted Pools
if (y == ONE) {
return x;
} else if (y == TWO) {
return mulUp(x, x);
} else if (y == FOUR) {
uint256 square = mulUp(x, x);
return mulUp(square, square);
} else {
uint256 raw = LogExpMath.pow(x, y);
uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1);
return add(raw, maxError);
}
}
/**
* @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1.
*
* Useful when computing the complement for values with some level of relative error, as it strips this error and
* prevents intermediate negative values.
*/
function complement(uint256 x) internal pure returns (uint256) {
return (x < ONE) ? (ONE - x) : 0;
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// From https://github.com/balancer/balancer-v2-monorepo/blob/fc3e5735a07438ab506931f56adf64dede1441b1/pkg/pool-utils/contracts/lib/VaultReentrancyLib.sol
pragma solidity >=0.7.1 <0.9.0;
import "./BalancerErrors.sol";
import "../../interfaces/balancer-v2/IBalancerVault.sol";
library VaultReentrancyLib {
/**
* @dev Ensure we are not in a Vault context when this function is called, by attempting a no-op internal
* balance operation. If we are already in a Vault transaction (e.g., a swap, join, or exit), the Vault's
* reentrancy protection will cause this function to revert.
*
* The exact function call doesn't really matter: we're just trying to trigger the Vault reentrancy check
* (and not hurt anything in case it works). An empty operation array with no specific operation at all works
* for that purpose, and is also the least expensive in terms of gas and bytecode size.
*
* Call this at the top of any function that can cause a state change in a pool and is either public itself,
* or called by a public function *outside* a Vault operation (e.g., join, exit, or swap).
*
* If this is *not* called in functions that are vulnerable to the read-only reentrancy issue described
* here (https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345), those functions are unsafe,
* and subject to manipulation that may result in loss of funds.
*/
function ensureNotInVaultContext(IBalancerVault vault) internal view {
// Perform the following operation to trigger the Vault's reentrancy guard:
//
// IVault.UserBalanceOp[] memory noop = new IVault.UserBalanceOp[](0);
// _vault.manageUserBalance(noop);
//
// However, use a static call so that it can be a view function (even though the function is non-view).
// This allows the library to be used more widely, as some functions that need to be protected might be
// view.
//
// This staticcall always reverts, but we need to make sure it doesn't fail due to a re-entrancy attack.
// Staticcalls consume all gas forwarded to them on a revert caused by storage modification.
// By default, almost the entire available gas is forwarded to the staticcall,
// causing the entire call to revert with an 'out of gas' error.
//
// We set the gas limit to 10k for the staticcall to
// avoid wasting gas when it reverts due to storage modification.
// `manageUserBalance` is a non-reentrant function in the Vault, so calling it invokes `_enterNonReentrant`
// in the `ReentrancyGuard` contract, reproduced here:
//
// function _enterNonReentrant() private {
// // If the Vault is actually being reentered, it will revert in the first line, at the `_require` that
// // checks the reentrancy flag, with "BAL#400" (corresponding to BalancerErrors.REENTRANCY) in the revertData.
// // The full revertData will be: `abi.encodeWithSignature("Error(string)", "BAL#400")`.
// _require(_status != _ENTERED, BalancerErrors.REENTRANCY);
//
// // If the Vault is not being reentered, the check above will pass: but it will *still* revert,
// // because the next line attempts to modify storage during a staticcall. However, this type of
// // failure results in empty revertData.
// _status = _ENTERED;
// }
//
// So based on this analysis, there are only two possible revertData values: empty, or abi.encoded BAL#400.
//
// It is of course much more bytecode and gas efficient to check for zero-length revertData than to compare it
// to the encoded REENTRANCY revertData.
//
// While it should be impossible for the call to fail in any other way (especially since it reverts before
// `manageUserBalance` even gets called), any other error would generate non-zero revertData, so checking for
// empty data guards against this case too.
(, bytes memory revertData) = address(vault).staticcall{ gas: 10_000 }(
abi.encodeWithSelector(vault.manageUserBalance.selector, 0)
);
_require(revertData.length == 0, BalancerErrors.REENTRANCY);
}
}
// SPDX-License-Identifier: MIT
/*
██████╗ ██╗ ██╗ ██╗███████╗██████╗ ███████╗██████╗ ██████╗ ██╗ ██╗
██╔══██╗██║ ██║ ██║██╔════╝██╔══██╗██╔════╝██╔══██╗██╔══██╗╚██╗ ██╔╝
██████╔╝██║ ██║ ██║█████╗ ██████╔╝█████╗ ██████╔╝██████╔╝ ╚████╔╝
██╔══██╗██║ ██║ ██║██╔══╝ ██╔══██╗██╔══╝ ██╔══██╗██╔══██╗ ╚██╔╝
██████╔╝███████╗╚██████╔╝███████╗██████╔╝███████╗██║ ██║██║ ██║ ██║
╚═════╝ ╚══════╝ ╚═════╝ ╚══════╝╚═════╝ ╚══════╝╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝
*/
/**
* @title BlueberryErrors
* @author BlueberryProtocol
* @notice containing all errors used in Blueberry protocol
*/
/// title BlueberryErrors
/// @notice containing all errors used in Blueberry protocol
pragma solidity 0.8.22;
/*//////////////////////////////////////////////////////////////////////////
COMMON ERRORS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Thrown when an action involves zero amount of tokens.
error ZERO_AMOUNT();
/// @notice Thrown when the address provided is the zero address.
error ZERO_ADDRESS();
/// @notice Thrown when the lengths of input arrays do not match.
error INPUT_ARRAY_MISMATCH();
/// @notice Thrown when the caller is not authorized to call the function.
error UNAUTHORIZED();
/*//////////////////////////////////////////////////////////////////////////
ORACLE ERRORS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Thrown when the delay time exceeds allowed limits.
error TOO_LONG_DELAY(uint256 delayTime);
/// @notice Thrown when there's no maximum delay set for a token.
error NO_MAX_DELAY(address token);
/// @notice Thrown when the price information for a token is outdated.
error PRICE_OUTDATED(address token);
/// @notice Thrown when the price obtained is negative.
error PRICE_NEGATIVE(address token);
/// @notice Thrown when the sequencer is offline
error SEQUENCER_DOWN(address sequencer);
/// @notice Thrown when the grace period for a sequencer is not over yet.
error SEQUENCER_GRACE_PERIOD_NOT_OVER(address sequencer);
/// @notice Thrown when the price deviation exceeds allowed limits.
error OUT_OF_DEVIATION_CAP(uint256 deviation);
/// @notice Thrown when the number of sources exceeds the allowed length.
error EXCEED_SOURCE_LEN(uint256 length);
/// @notice Thrown when no primary source is available for the token.
error NO_PRIMARY_SOURCE(address token);
/// @notice Thrown when no valid price source is available for the token.
error NO_VALID_SOURCE(address token);
/// @notice Thrown when the deviation value exceeds the threshold.
error EXCEED_DEVIATION();
/// @notice Thrown when the mean price is below the acceptable threshold.
error TOO_LOW_MEAN(uint256 mean);
/// @notice Thrown when no mean price is set for the token.
error NO_MEAN(address token);
/// @notice Thrown when no stable pool exists for the token.
error NO_STABLEPOOL(address token);
/// @notice Thrown when the price fetch process fails for a token.
error PRICE_FAILED(address token);
/// @notice Thrown when the liquidation threshold is set too high.
error LIQ_THRESHOLD_TOO_HIGH(uint256 threshold);
/// @notice Thrown when the liquidation threshold is set too low.
error LIQ_THRESHOLD_TOO_LOW(uint256 threshold);
/// @notice Thrown when the oracle doesn't support a specific token.
error ORACLE_NOT_SUPPORT(address token);
/// @notice Thrown when the oracle doesn't support a specific LP pair token.
error ORACLE_NOT_SUPPORT_LP(address lp);
/// @notice Thrown when the oracle doesn't support a specific wToken.
error ORACLE_NOT_SUPPORT_WTOKEN(address wToken);
/// @notice Thrown when there is no route to fetch data for the oracle
error NO_ORACLE_ROUTE(address token);
/// @notice Thrown when a value is out of an acceptable range.
error VALUE_OUT_OF_RANGE();
/// @notice Thrown when specified limits are incorrect.
error INCORRECT_LIMITS();
/// @notice Thrown when Curve LP is already registered.
error CRV_LP_ALREADY_REGISTERED(address lp);
/*//////////////////////////////////////////////////////////////////////////
GENERAL SPELL ERRORS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Thrown when the caller isn't recognized as a bank.
error NOT_BANK(address caller);
/// @notice Thrown when the collateral doesn't exist for a strategy.
error COLLATERAL_NOT_EXIST(uint256 strategyId, address colToken);
/// @notice Thrown when the strategy ID doesn't correspond to an existing strategy.
error STRATEGY_NOT_EXIST(address spell, uint256 strategyId);
/// @notice Thrown when the position size exceeds maximum limits.
error EXCEED_MAX_POS_SIZE(uint256 strategyId);
/// @notice Thrown when the position size is below minimum requirements.
error EXCEED_MIN_POS_SIZE(uint256 strategyId);
/// @notice Thrown when the loan-to-value ratio exceeds allowed maximum.
error EXCEED_MAX_LTV();
/// @notice Thrown when the strategy ID provided is incorrect.
error INCORRECT_STRATEGY_ID(uint256 strategyId);
/// @notice Thrown when the position size is invalid.
error INVALID_POS_SIZE();
/// @notice Thrown when an incorrect liquidity pool token is provided.
error INCORRECT_LP(address lpToken);
/// @notice Thrown when an incorrect pool ID is provided.
error INCORRECT_PID(uint256 pid);
/// @notice Thrown when an incorrect collateral token is provided.
error INCORRECT_COLTOKEN(address colToken);
/// @notice Thrown when an incorrect underlying token is provided.
error INCORRECT_UNDERLYING(address uToken);
/// @notice Thrown when an incorrect debt token is provided.
error INCORRECT_DEBT(address debtToken);
/// @notice Thrown when a swap fails.
error SWAP_FAILED(address swapToken);
/*//////////////////////////////////////////////////////////////////////////
VAULT ERRORS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Thrown when borrowing from the vault fails.
error BORROW_FAILED(uint256 amount);
/// @notice Thrown when repaying to the vault fails.
error REPAY_FAILED(uint256 amount);
/// @notice Thrown when lending to the vault fails.
error LEND_FAILED(uint256 amount);
/// @notice Thrown when redeeming from the vault fails.
error REDEEM_FAILED(uint256 amount);
/*//////////////////////////////////////////////////////////////////////////
WRAPPER ERRORS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Thrown when a duplicate tokenId is added.
error DUPLICATE_TOKEN_ID(uint256 tokenId);
/// @notice Thrown when an invalid token ID is provided.
error INVALID_TOKEN_ID(uint256 tokenId);
/// @notice Thrown when an incorrect pool ID is provided.
error BAD_PID(uint256 pid);
/// @notice Thrown when a mismatch in reward per share is detected.
error BAD_REWARD_PER_SHARE(uint256 rewardPerShare);
/*//////////////////////////////////////////////////////////////////////////
BANK ERRORS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Thrown when a function is called without a required execution flag.
error NOT_UNDER_EXECUTION();
/// @notice Thrown when a transaction isn't initiated by the expected spell.
error NOT_FROM_SPELL(address from);
/// @notice Thrown when the sender is not the owner of a given position ID.
error NOT_FROM_OWNER(uint256 positionId, address sender);
/// @notice Thrown when a spell address isn't whitelisted.
error SPELL_NOT_WHITELISTED(address spell);
/// @notice Thrown when a token isn't whitelisted.
error TOKEN_NOT_WHITELISTED(address token);
/// @notice Thrown when a bank isn't listed for a given token.
error BANK_NOT_LISTED(address token);
/// @notice Thrown when a bank doesn't exist for an index.
error BANK_NOT_EXIST(uint8 index);
/// @notice Thrown when a bank is already listed for a given token.
error BANK_ALREADY_LISTED();
/// @notice Thrown when the bank limit is reached.
error BANK_LIMIT();
/// @notice Thrown when the BTOKEN is already added.
error BTOKEN_ALREADY_ADDED();
/// @notice Thrown when the lending action isn't allowed.
error LEND_NOT_ALLOWED();
/// @notice Thrown when the borrowing action isn't allowed.
error BORROW_NOT_ALLOWED();
/// @notice Thrown when the repaying action isn't allowed.
error REPAY_NOT_ALLOWED();
/// @notice Thrown when the redeeming action isn't allowed.
error WITHDRAW_LEND_NOT_ALLOWED();
/// @notice Thrown when certain actions are locked.
error LOCKED();
/// @notice Thrown when an action isn't executed.
error NOT_IN_EXEC();
/// @notice Thrown when the repayment allowance hasn't been warmed up.
error REPAY_ALLOW_NOT_WARMED_UP();
/// @notice Thrown when a different collateral type exists.
error DIFF_COL_EXIST(address collToken);
/// @notice Thrown when a position is not eligible for liquidation.
error NOT_LIQUIDATABLE(uint256 positionId);
/// @notice Thrown when a position is flagged as bad or invalid.
error BAD_POSITION(uint256 posId);
/// @notice Thrown when collateral for a specific position is flagged as bad or invalid.
error BAD_COLLATERAL(uint256 positionId);
/// @notice Thrown when there's insufficient collateral for an operation.
error INSUFFICIENT_COLLATERAL();
/// @notice Thrown when an attempted repayment exceeds the actual debt.
error REPAY_EXCEEDS_DEBT(uint256 repay, uint256 debt);
/// @notice Thrown when an invalid utility token is provided.
error INVALID_UTOKEN(address uToken);
/// @notice Thrown when a borrow operation results in zero shares.
error BORROW_ZERO_SHARE(uint256 borrowAmount);
/*//////////////////////////////////////////////////////////////////////////
CONFIGURATION ERRORS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Thrown when a certain ratio is too high for an operation.
error RATIO_TOO_HIGH(uint256 ratio);
/// @notice Thrown when an invalid fee distribution is detected.
error INVALID_FEE_DISTRIBUTION();
/// @notice Thrown when no treasury is set for fee distribution.
error NO_TREASURY_SET();
/// @notice Thrown when a fee window has already started.
error FEE_WINDOW_ALREADY_STARTED();
/// @notice Thrown when a fee window duration is too long.
error FEE_WINDOW_TOO_LONG(uint256 windowTime);
/*//////////////////////////////////////////////////////////////////////////
UTILITY ERRORS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Thrown when an operation has surpassed its deadline.
error EXPIRED(uint256 deadline);
// SPDX-License-Identifier: MIT
/*
██████╗ ██╗ ██╗ ██╗███████╗██████╗ ███████╗██████╗ ██████╗ ██╗ ██╗
██╔══██╗██║ ██║ ██║██╔════╝██╔══██╗██╔════╝██╔══██╗██╔══██╗╚██╗ ██╔╝
██████╔╝██║ ██║ ██║█████╗ ██████╔╝█████╗ ██████╔╝██████╔╝ ╚████╔╝
██╔══██╗██║ ██║ ██║██╔══╝ ██╔══██╗██╔══╝ ██╔══██╗██╔══██╗ ╚██╔╝
██████╔╝███████╗╚██████╔╝███████╗██████╔╝███████╗██║ ██║██║ ██║ ██║
╚═════╝ ╚══════╝ ╚═════╝ ╚══════╝╚═════╝ ╚══════╝╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝
*/
pragma solidity 0.8.22;
import { Ownable2StepUpgradeable } from "@openzeppelin/contracts-upgradeable/access/Ownable2StepUpgradeable.sol";
import { IBaseOracle } from "../interfaces/IBaseOracle.sol";
/**
* @title UsingBaseOracle
* @author BlueberryProtocol
* @dev This contract serves as a base for other contracts that need access
* to an external oracle service. It provides an immutable reference to a
* specified oracle source.
*/
abstract contract UsingBaseOracle is Ownable2StepUpgradeable {
/// @dev Base oracle source
IBaseOracle internal _base;
/*//////////////////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////////////////*/
/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {
_disableInitializers();
}
/*//////////////////////////////////////////////////////////////////////////
FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/* solhint-disable func-name-mixedcase */
/**
* @dev Initializes the Base oracle source.
* @param base Address of the Base oracle source.
* @param owner Address of the owner.
*/
function __UsingBaseOracle_init(IBaseOracle base, address owner) internal onlyInitializing {
_base = base;
__Ownable2Step_init();
_transferOwnership(owner);
}
/* solhint-enable func-name-mixedcase */
/// @notice Returns the address of the Base oracle source.
function getBaseOracle() public view returns (IBaseOracle) {
return _base;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[10] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.22;
/**
* @title IBaseOracle
* @author BlueberryProtocol
* @notice Interface for a basic oracle that provides price data for assets.
*/
interface IBaseOracle {
/**
* @notice Event emitted when a new LP token is registered within its respective implementation.
* @param token Address of the LP token being registered
*/
event RegisterLpToken(address token);
/**
* @notice Fetches the price of the given token in USD with 18 decimals precision.
* @param token Address of the ERC-20 token for which the price is requested.
* @return The USD price of the given token, multiplied by 10**18.
*/
function getPrice(address token) external returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.22;
import { IBalancerV2Pool } from "./IBalancerV2Pool.sol";
interface IBalancerV2StablePool is IBalancerV2Pool {
function getRate() external view returns (uint256);
function getBptIndex() external view returns (uint256);
function getRateProviders() external view returns (address[] memory);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.22;
import { IAsset } from "./IAsset.sol";
interface IBalancerVault {
enum UserBalanceOpKind {
DEPOSIT_INTERNAL,
WITHDRAW_INTERNAL,
TRANSFER_INTERNAL,
TRANSFER_EXTERNAL
}
/**
* @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received
without manual WETH wrapping or unwrapping.
*/
struct UserBalanceOp {
UserBalanceOpKind kind;
IAsset asset;
uint256 amount;
address sender;
address payable recipient;
}
struct JoinPoolRequest {
address[] assets;
uint256[] maxAmountsIn;
bytes userData;
bool fromInternalBalance;
}
struct ExitPoolRequest {
address[] assets;
uint256[] minAmountsOut;
bytes userData;
bool toInternalBalance;
}
function joinPool(
bytes32 poolId,
address sender,
address recipient,
JoinPoolRequest memory request
) external payable;
function exitPool(bytes32 poolId, address sender, address recipient, ExitPoolRequest memory request) external;
function getPoolTokens(
bytes32 poolId
) external view returns (address[] memory tokens, uint256[] memory balances, uint256 lastChangedBlock);
function getPool(bytes32 pid) external view returns (address pool, uint256 poolType);
function manageUserBalance(UserBalanceOp[] memory ops) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.22;
interface IRateProvider {
function getRate() external view returns (uint256);
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.8.0;
/// Forked from https://github.com/balancer-labs/balancer-v2-monorepo/blob/3703c43c89dc693b918d20ebb0d9e4b205d31c2c/contracts/lib/helpers/BalancerErrors.sol
/// Updated solidity version to 0.8.X
// solhint-disable
/**
* @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are
* supported.
* Uses the default 'BAL' prefix for the error code
*/
function _require(bool condition, uint256 errorCode) pure {
if (!condition) _revert(errorCode);
}
/**
* @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are
* supported.
*/
function _require(bool condition, uint256 errorCode, bytes3 prefix) pure {
if (!condition) _revert(errorCode, prefix);
}
/**
* @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported.
* Uses the default 'BAL' prefix for the error code
*/
function _revert(uint256 errorCode) pure {
_revert(errorCode, 0x42414c); // This is the raw byte representation of "BAL"
}
/**
* @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported.
*/
function _revert(uint256 errorCode, bytes3 prefix) pure {
uint256 prefixUint = uint256(uint24(prefix));
// We're going to dynamically create a revert string based on the error code, with the following format:
// 'BAL#{errorCode}'
// where the code is left-padded with zeroes to three digits (so they range from 000 to 999).
//
// We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a
// number (8 to 16 bits) than the individual string characters.
//
// The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a
// much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a
// safe place to rely on it without worrying about how its usage might affect e.g. memory contents.
assembly {
// First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999
// range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for
// the '0' character.
let units := add(mod(errorCode, 10), 0x30)
errorCode := div(errorCode, 10)
let tenths := add(mod(errorCode, 10), 0x30)
errorCode := div(errorCode, 10)
let hundreds := add(mod(errorCode, 10), 0x30)
// With the individual characters, we can now construct the full string.
// We first append the '#' character (0x23) to the prefix. In the case of 'BAL', it results in 0x42414c23 ('BAL#')
// Then, we shift this by 24 (to provide space for the 3 bytes of the error code), and add the
// characters to it, each shifted by a multiple of 8.
// The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits
// per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte
// array).
let formattedPrefix := shl(24, add(0x23, shl(8, prefixUint)))
let revertReason := shl(200, add(formattedPrefix, add(add(units, shl(8, tenths)), shl(16, hundreds))))
// We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded
// message will have the following layout:
// [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ]
// The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We
// also write zeroes to the next 28 bytes of memory, but those are about to be overwritten.
mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
// Next is the offset to the location of the string, which will be placed immediately after (20 bytes away).
mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020)
// The string length is fixed: 7 characters.
mstore(0x24, 7)
// Finally, the string itself is stored.
mstore(0x44, revertReason)
// Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of
// the encoded message is therefore 4 + 32 + 32 + 32 = 100.
revert(0, 100)
}
}
library BalancerErrors {
// Math
uint256 internal constant ADD_OVERFLOW = 0;
uint256 internal constant SUB_OVERFLOW = 1;
uint256 internal constant SUB_UNDERFLOW = 2;
uint256 internal constant MUL_OVERFLOW = 3;
uint256 internal constant ZERO_DIVISION = 4;
uint256 internal constant DIV_INTERNAL = 5;
uint256 internal constant X_OUT_OF_BOUNDS = 6;
uint256 internal constant Y_OUT_OF_BOUNDS = 7;
uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8;
uint256 internal constant INVALID_EXPONENT = 9;
// Input
uint256 internal constant OUT_OF_BOUNDS = 100;
uint256 internal constant UNSORTED_ARRAY = 101;
uint256 internal constant UNSORTED_TOKENS = 102;
uint256 internal constant INPUT_LENGTH_MISMATCH = 103;
uint256 internal constant ZERO_TOKEN = 104;
// Shared pools
uint256 internal constant MIN_TOKENS = 200;
uint256 internal constant MAX_TOKENS = 201;
uint256 internal constant MAX_SWAP_FEE_PERCENTAGE = 202;
uint256 internal constant MIN_SWAP_FEE_PERCENTAGE = 203;
uint256 internal constant MINIMUM_BPT = 204;
uint256 internal constant CALLER_NOT_VAULT = 205;
uint256 internal constant UNINITIALIZED = 206;
uint256 internal constant BPT_IN_MAX_AMOUNT = 207;
uint256 internal constant BPT_OUT_MIN_AMOUNT = 208;
uint256 internal constant EXPIRED_PERMIT = 209;
uint256 internal constant NOT_TWO_TOKENS = 210;
uint256 internal constant DISABLED = 211;
// Pools
uint256 internal constant MIN_AMP = 300;
uint256 internal constant MAX_AMP = 301;
uint256 internal constant MIN_WEIGHT = 302;
uint256 internal constant MAX_STABLE_TOKENS = 303;
uint256 internal constant MAX_IN_RATIO = 304;
uint256 internal constant MAX_OUT_RATIO = 305;
uint256 internal constant MIN_BPT_IN_FOR_TOKEN_OUT = 306;
uint256 internal constant MAX_OUT_BPT_FOR_TOKEN_IN = 307;
uint256 internal constant NORMALIZED_WEIGHT_INVARIANT = 308;
uint256 internal constant INVALID_TOKEN = 309;
uint256 internal constant UNHANDLED_JOIN_KIND = 310;
uint256 internal constant ZERO_INVARIANT = 311;
uint256 internal constant ORACLE_INVALID_SECONDS_QUERY = 312;
uint256 internal constant ORACLE_NOT_INITIALIZED = 313;
uint256 internal constant ORACLE_QUERY_TOO_OLD = 314;
uint256 internal constant ORACLE_INVALID_INDEX = 315;
uint256 internal constant ORACLE_BAD_SECS = 316;
uint256 internal constant AMP_END_TIME_TOO_CLOSE = 317;
uint256 internal constant AMP_ONGOING_UPDATE = 318;
uint256 internal constant AMP_RATE_TOO_HIGH = 319;
uint256 internal constant AMP_NO_ONGOING_UPDATE = 320;
uint256 internal constant STABLE_INVARIANT_DIDNT_CONVERGE = 321;
uint256 internal constant STABLE_GET_BALANCE_DIDNT_CONVERGE = 322;
uint256 internal constant RELAYER_NOT_CONTRACT = 323;
uint256 internal constant BASE_POOL_RELAYER_NOT_CALLED = 324;
uint256 internal constant REBALANCING_RELAYER_REENTERED = 325;
uint256 internal constant GRADUAL_UPDATE_TIME_TRAVEL = 326;
uint256 internal constant SWAPS_DISABLED = 327;
uint256 internal constant CALLER_IS_NOT_LBP_OWNER = 328;
uint256 internal constant PRICE_RATE_OVERFLOW = 329;
uint256 internal constant INVALID_JOIN_EXIT_KIND_WHILE_SWAPS_DISABLED = 330;
uint256 internal constant WEIGHT_CHANGE_TOO_FAST = 331;
uint256 internal constant LOWER_GREATER_THAN_UPPER_TARGET = 332;
uint256 internal constant UPPER_TARGET_TOO_HIGH = 333;
uint256 internal constant UNHANDLED_BY_LINEAR_POOL = 334;
uint256 internal constant OUT_OF_TARGET_RANGE = 335;
uint256 internal constant UNHANDLED_EXIT_KIND = 336;
uint256 internal constant UNAUTHORIZED_EXIT = 337;
uint256 internal constant MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE = 338;
uint256 internal constant UNHANDLED_BY_MANAGED_POOL = 339;
uint256 internal constant UNHANDLED_BY_PHANTOM_POOL = 340;
uint256 internal constant TOKEN_DOES_NOT_HAVE_RATE_PROVIDER = 341;
uint256 internal constant INVALID_INITIALIZATION = 342;
uint256 internal constant OUT_OF_NEW_TARGET_RANGE = 343;
uint256 internal constant FEATURE_DISABLED = 344;
uint256 internal constant UNINITIALIZED_POOL_CONTROLLER = 345;
uint256 internal constant SET_SWAP_FEE_DURING_FEE_CHANGE = 346;
uint256 internal constant SET_SWAP_FEE_PENDING_FEE_CHANGE = 347;
uint256 internal constant CHANGE_TOKENS_DURING_WEIGHT_CHANGE = 348;
uint256 internal constant CHANGE_TOKENS_PENDING_WEIGHT_CHANGE = 349;
uint256 internal constant MAX_WEIGHT = 350;
uint256 internal constant UNAUTHORIZED_JOIN = 351;
uint256 internal constant MAX_MANAGEMENT_AUM_FEE_PERCENTAGE = 352;
uint256 internal constant FRACTIONAL_TARGET = 353;
// Lib
uint256 internal constant REENTRANCY = 400;
uint256 internal constant SENDER_NOT_ALLOWED = 401;
uint256 internal constant PAUSED = 402;
uint256 internal constant PAUSE_WINDOW_EXPIRED = 403;
uint256 internal constant MAX_PAUSE_WINDOW_DURATION = 404;
uint256 internal constant MAX_BUFFER_PERIOD_DURATION = 405;
uint256 internal constant INSUFFICIENT_BALANCE = 406;
uint256 internal constant INSUFFICIENT_ALLOWANCE = 407;
uint256 internal constant ERC20_TRANSFER_FROM_ZERO_ADDRESS = 408;
uint256 internal constant ERC20_TRANSFER_TO_ZERO_ADDRESS = 409;
uint256 internal constant ERC20_MINT_TO_ZERO_ADDRESS = 410;
uint256 internal constant ERC20_BURN_FROM_ZERO_ADDRESS = 411;
uint256 internal constant ERC20_APPROVE_FROM_ZERO_ADDRESS = 412;
uint256 internal constant ERC20_APPROVE_TO_ZERO_ADDRESS = 413;
uint256 internal constant ERC20_TRANSFER_EXCEEDS_ALLOWANCE = 414;
uint256 internal constant ERC20_DECREASED_ALLOWANCE_BELOW_ZERO = 415;
uint256 internal constant ERC20_TRANSFER_EXCEEDS_BALANCE = 416;
uint256 internal constant ERC20_BURN_EXCEEDS_ALLOWANCE = 417;
uint256 internal constant SAFE_ERC20_CALL_FAILED = 418;
uint256 internal constant ADDRESS_INSUFFICIENT_BALANCE = 419;
uint256 internal constant ADDRESS_CANNOT_SEND_VALUE = 420;
uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_INT256 = 421;
uint256 internal constant GRANT_SENDER_NOT_ADMIN = 422;
uint256 internal constant REVOKE_SENDER_NOT_ADMIN = 423;
uint256 internal constant RENOUNCE_SENDER_NOT_ALLOWED = 424;
uint256 internal constant BUFFER_PERIOD_EXPIRED = 425;
uint256 internal constant CALLER_IS_NOT_OWNER = 426;
uint256 internal constant NEW_OWNER_IS_ZERO = 427;
uint256 internal constant CODE_DEPLOYMENT_FAILED = 428;
uint256 internal constant CALL_TO_NON_CONTRACT = 429;
uint256 internal constant LOW_LEVEL_CALL_FAILED = 430;
uint256 internal constant NOT_PAUSED = 431;
uint256 internal constant ADDRESS_ALREADY_ALLOWLISTED = 432;
uint256 internal constant ADDRESS_NOT_ALLOWLISTED = 433;
uint256 internal constant ERC20_BURN_EXCEEDS_BALANCE = 434;
uint256 internal constant INVALID_OPERATION = 435;
uint256 internal constant CODEC_OVERFLOW = 436;
uint256 internal constant IN_RECOVERY_MODE = 437;
uint256 internal constant NOT_IN_RECOVERY_MODE = 438;
uint256 internal constant INDUCED_FAILURE = 439;
uint256 internal constant EXPIRED_SIGNATURE = 440;
uint256 internal constant MALFORMED_SIGNATURE = 441;
uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_UINT64 = 442;
uint256 internal constant UNHANDLED_FEE_TYPE = 443;
// Vault
uint256 internal constant INVALID_POOL_ID = 500;
uint256 internal constant CALLER_NOT_POOL = 501;
uint256 internal constant SENDER_NOT_ASSET_MANAGER = 502;
uint256 internal constant USER_DOESNT_ALLOW_RELAYER = 503;
uint256 internal constant INVALID_SIGNATURE = 504;
uint256 internal constant EXIT_BELOW_MIN = 505;
uint256 internal constant JOIN_ABOVE_MAX = 506;
uint256 internal constant SWAP_LIMIT = 507;
uint256 internal constant SWAP_DEADLINE = 508;
uint256 internal constant CANNOT_SWAP_SAME_TOKEN = 509;
uint256 internal constant UNKNOWN_AMOUNT_IN_FIRST_SWAP = 510;
uint256 internal constant MALCONSTRUCTED_MULTIHOP_SWAP = 511;
uint256 internal constant INTERNAL_BALANCE_OVERFLOW = 512;
uint256 internal constant INSUFFICIENT_INTERNAL_BALANCE = 513;
uint256 internal constant INVALID_ETH_INTERNAL_BALANCE = 514;
uint256 internal constant INVALID_POST_LOAN_BALANCE = 515;
uint256 internal constant INSUFFICIENT_ETH = 516;
uint256 internal constant UNALLOCATED_ETH = 517;
uint256 internal constant ETH_TRANSFER = 518;
uint256 internal constant CANNOT_USE_ETH_SENTINEL = 519;
uint256 internal constant TOKENS_MISMATCH = 520;
uint256 internal constant TOKEN_NOT_REGISTERED = 521;
uint256 internal constant TOKEN_ALREADY_REGISTERED = 522;
uint256 internal constant TOKENS_ALREADY_SET = 523;
uint256 internal constant TOKENS_LENGTH_MUST_BE_2 = 524;
uint256 internal constant NONZERO_TOKEN_BALANCE = 525;
uint256 internal constant BALANCE_TOTAL_OVERFLOW = 526;
uint256 internal constant POOL_NO_TOKENS = 527;
uint256 internal constant INSUFFICIENT_FLASH_LOAN_BALANCE = 528;
// Fees
uint256 internal constant SWAP_FEE_PERCENTAGE_TOO_HIGH = 600;
uint256 internal constant FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH = 601;
uint256 internal constant INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT = 602;
uint256 internal constant AUM_FEE_PERCENTAGE_TOO_HIGH = 603;
// Misc
uint256 internal constant UNIMPLEMENTED = 998;
uint256 internal constant SHOULD_NOT_HAPPEN = 999;
}
// SPDX-License-Identifier: MIT
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.
// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
pragma solidity ^0.8.0;
import "./BalancerErrors.sol";
/* solhint-disable */
/// Forked from https://github.com/balancer-labs/balancer-v2-monorepo/blob/master/pkg/solidity-utils/contracts/math/LogExpMath.sol
/// updated to solidity version 0.8.x
/**
* @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
*
* Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
* exponentiation and logarithm (where the base is Euler's number).
*
* @author Fernando Martinelli - @fernandomartinelli
* @author Sergio Yuhjtman - @sergioyuhjtman
* @author Daniel Fernandez - @dmf7z
*/
library LogExpMath {
// All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
// two numbers, and multiply by ONE when dividing them.
// All arguments and return values are 18 decimal fixed point numbers.
int256 constant ONE_18 = 1e18;
// Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
// case of ln36, 36 decimals.
int256 constant ONE_20 = 1e20;
int256 constant ONE_36 = 1e36;
// The domain of natural exponentiation is bound by the word size and number of decimals used.
//
// Because internally the result will be stored using 20 decimals, the largest possible result is
// (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
// The smallest possible result is 10^(-18), which makes largest negative argument
// ln(10^(-18)) = -41.446531673892822312.
// We use 130.0 and -41.0 to have some safety margin.
int256 constant MAX_NATURAL_EXPONENT = 130e18;
int256 constant MIN_NATURAL_EXPONENT = -41e18;
// Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
// 256 bit integer.
int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;
uint256 constant MILD_EXPONENT_BOUND = 2**254 / uint256(ONE_20);
// 18 decimal constants
int256 constant x0 = 128000000000000000000; // 2ˆ7
int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
int256 constant x1 = 64000000000000000000; // 2ˆ6
int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)
// 20 decimal constants
int256 constant x2 = 3200000000000000000000; // 2ˆ5
int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
int256 constant x3 = 1600000000000000000000; // 2ˆ4
int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
int256 constant x4 = 800000000000000000000; // 2ˆ3
int256 constant a4 = 298095798704172827474000; // eˆ(x4)
int256 constant x5 = 400000000000000000000; // 2ˆ2
int256 constant a5 = 5459815003314423907810; // eˆ(x5)
int256 constant x6 = 200000000000000000000; // 2ˆ1
int256 constant a6 = 738905609893065022723; // eˆ(x6)
int256 constant x7 = 100000000000000000000; // 2ˆ0
int256 constant a7 = 271828182845904523536; // eˆ(x7)
int256 constant x8 = 50000000000000000000; // 2ˆ-1
int256 constant a8 = 164872127070012814685; // eˆ(x8)
int256 constant x9 = 25000000000000000000; // 2ˆ-2
int256 constant a9 = 128402541668774148407; // eˆ(x9)
int256 constant x10 = 12500000000000000000; // 2ˆ-3
int256 constant a10 = 113314845306682631683; // eˆ(x10)
int256 constant x11 = 6250000000000000000; // 2ˆ-4
int256 constant a11 = 106449445891785942956; // eˆ(x11)
/**
* @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
*
* Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
*/
function pow(uint256 x, uint256 y) internal pure returns (uint256) {
if (y == 0) {
// We solve the 0^0 indetermination by making it equal one.
return uint256(ONE_18);
}
if (x == 0) {
return 0;
}
// Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
// arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
// x^y = exp(y * ln(x)).
// The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
_require(x >> 255 == 0, BalancerErrors.X_OUT_OF_BOUNDS);
int256 x_int256 = int256(x);
// We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
// both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.
// This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
_require(y < MILD_EXPONENT_BOUND, BalancerErrors.Y_OUT_OF_BOUNDS);
int256 y_int256 = int256(y);
int256 logx_times_y;
if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
int256 ln_36_x = _ln_36(x_int256);
// ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
// bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
// multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
// (downscaled) last 18 decimals.
logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18);
} else {
logx_times_y = _ln(x_int256) * y_int256;
}
logx_times_y /= ONE_18;
// Finally, we compute exp(y * ln(x)) to arrive at x^y
_require(
MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT,
BalancerErrors.PRODUCT_OUT_OF_BOUNDS
);
return uint256(exp(logx_times_y));
}
/**
* @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
*
* Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
*/
function exp(int256 x) internal pure returns (int256) {
_require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, BalancerErrors.INVALID_EXPONENT);
if (x < 0) {
// We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
// fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
// Fixed point division requires multiplying by ONE_18.
return ((ONE_18 * ONE_18) / exp(-x));
}
// First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
// where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
// because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
// decomposition.
// At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
// decomposition, which will be lower than the smallest x_n.
// exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
// We mutate x by subtracting x_n, making it the remainder of the decomposition.
// The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
// intermediate overflows. Instead we store them as plain integers, with 0 decimals.
// Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
// decomposition.
// For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
// it and compute the accumulated product.
int256 firstAN;
if (x >= x0) {
x -= x0;
firstAN = a0;
} else if (x >= x1) {
x -= x1;
firstAN = a1;
} else {
firstAN = 1; // One with no decimal places
}
// We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
// smaller terms.
x *= 100;
// `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
// one. Recall that fixed point multiplication requires dividing by ONE_20.
int256 product = ONE_20;
if (x >= x2) {
x -= x2;
product = (product * a2) / ONE_20;
}
if (x >= x3) {
x -= x3;
product = (product * a3) / ONE_20;
}
if (x >= x4) {
x -= x4;
product = (product * a4) / ONE_20;
}
if (x >= x5) {
x -= x5;
product = (product * a5) / ONE_20;
}
if (x >= x6) {
x -= x6;
product = (product * a6) / ONE_20;
}
if (x >= x7) {
x -= x7;
product = (product * a7) / ONE_20;
}
if (x >= x8) {
x -= x8;
product = (product * a8) / ONE_20;
}
if (x >= x9) {
x -= x9;
product = (product * a9) / ONE_20;
}
// x10 and x11 are unnecessary here since we have high enough precision already.
// Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
// expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).
int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
int256 term; // Each term in the sum, where the nth term is (x^n / n!).
// The first term is simply x.
term = x;
seriesSum += term;
// Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
// multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.
term = ((term * x) / ONE_20) / 2;
seriesSum += term;
term = ((term * x) / ONE_20) / 3;
seriesSum += term;
term = ((term * x) / ONE_20) / 4;
seriesSum += term;
term = ((term * x) / ONE_20) / 5;
seriesSum += term;
term = ((term * x) / ONE_20) / 6;
seriesSum += term;
term = ((term * x) / ONE_20) / 7;
seriesSum += term;
term = ((term * x) / ONE_20) / 8;
seriesSum += term;
term = ((term * x) / ONE_20) / 9;
seriesSum += term;
term = ((term * x) / ONE_20) / 10;
seriesSum += term;
term = ((term * x) / ONE_20) / 11;
seriesSum += term;
term = ((term * x) / ONE_20) / 12;
seriesSum += term;
// 12 Taylor terms are sufficient for 18 decimal precision.
// We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
// approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
// all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
// and then drop two digits to return an 18 decimal value.
return (((product * seriesSum) / ONE_20) * firstAN) / 100;
}
/**
* @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument.
*/
function log(int256 arg, int256 base) internal pure returns (int256) {
// This performs a simple base change: log(arg, base) = ln(arg) / ln(base).
// Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by
// upscaling.
int256 logBase;
if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) {
logBase = _ln_36(base);
} else {
logBase = _ln(base) * ONE_18;
}
int256 logArg;
if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) {
logArg = _ln_36(arg);
} else {
logArg = _ln(arg) * ONE_18;
}
// When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places
return (logArg * ONE_18) / logBase;
}
/**
* @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
*/
function ln(int256 a) internal pure returns (int256) {
// The real natural logarithm is not defined for negative numbers or zero.
_require(a > 0, BalancerErrors.OUT_OF_BOUNDS);
if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
return _ln_36(a) / ONE_18;
} else {
return _ln(a);
}
}
/**
* @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
*/
function _ln(int256 a) private pure returns (int256) {
if (a < ONE_18) {
// Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
// than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
// Fixed point division requires multiplying by ONE_18.
return (-_ln((ONE_18 * ONE_18) / a));
}
// First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
// we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
// ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
// be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
// At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
// decomposition, which will be lower than the smallest a_n.
// ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
// We mutate a by subtracting a_n, making it the remainder of the decomposition.
// For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
// numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
// ONE_18 to convert them to fixed point.
// For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
// by it and compute the accumulated sum.
int256 sum = 0;
if (a >= a0 * ONE_18) {
a /= a0; // Integer, not fixed point division
sum += x0;
}
if (a >= a1 * ONE_18) {
a /= a1; // Integer, not fixed point division
sum += x1;
}
// All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
sum *= 100;
a *= 100;
// Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.
if (a >= a2) {
a = (a * ONE_20) / a2;
sum += x2;
}
if (a >= a3) {
a = (a * ONE_20) / a3;
sum += x3;
}
if (a >= a4) {
a = (a * ONE_20) / a4;
sum += x4;
}
if (a >= a5) {
a = (a * ONE_20) / a5;
sum += x5;
}
if (a >= a6) {
a = (a * ONE_20) / a6;
sum += x6;
}
if (a >= a7) {
a = (a * ONE_20) / a7;
sum += x7;
}
if (a >= a8) {
a = (a * ONE_20) / a8;
sum += x8;
}
if (a >= a9) {
a = (a * ONE_20) / a9;
sum += x9;
}
if (a >= a10) {
a = (a * ONE_20) / a10;
sum += x10;
}
if (a >= a11) {
a = (a * ONE_20) / a11;
sum += x11;
}
// a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
// that converges rapidly for values of `a` close to one - the same one used in ln_36.
// Let z = (a - 1) / (a + 1).
// ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))
// Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
// division by ONE_20.
int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
int256 z_squared = (z * z) / ONE_20;
// num is the numerator of the series: the z^(2 * n + 1) term
int256 num = z;
// seriesSum holds the accumulated sum of each term in the series, starting with the initial z
int256 seriesSum = num;
// In each step, the numerator is multiplied by z^2
num = (num * z_squared) / ONE_20;
seriesSum += num / 3;
num = (num * z_squared) / ONE_20;
seriesSum += num / 5;
num = (num * z_squared) / ONE_20;
seriesSum += num / 7;
num = (num * z_squared) / ONE_20;
seriesSum += num / 9;
num = (num * z_squared) / ONE_20;
seriesSum += num / 11;
// 6 Taylor terms are sufficient for 36 decimal precision.
// Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
seriesSum *= 2;
// We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
// with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
// value.
return (sum + seriesSum) / 100;
}
/**
* @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
* for x close to one.
*
* Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
*/
function _ln_36(int256 x) private pure returns (int256) {
// Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
// worthwhile.
// First, we transform x to a 36 digit fixed point value.
x *= ONE_18;
// We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
// ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))
// Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
// division by ONE_36.
int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
int256 z_squared = (z * z) / ONE_36;
// num is the numerator of the series: the z^(2 * n + 1) term
int256 num = z;
// seriesSum holds the accumulated sum of each term in the series, starting with the initial z
int256 seriesSum = num;
// In each step, the numerator is multiplied by z^2
num = (num * z_squared) / ONE_36;
seriesSum += num / 3;
num = (num * z_squared) / ONE_36;
seriesSum += num / 5;
num = (num * z_squared) / ONE_36;
seriesSum += num / 7;
num = (num * z_squared) / ONE_36;
seriesSum += num / 9;
num = (num * z_squared) / ONE_36;
seriesSum += num / 11;
num = (num * z_squared) / ONE_36;
seriesSum += num / 13;
num = (num * z_squared) / ONE_36;
seriesSum += num / 15;
// 8 Taylor terms are sufficient for 36 decimal precision.
// All that remains is multiplying by 2 (non fixed point).
return seriesSum * 2;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.0;
import "./OwnableUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2StepUpgradeable is Initializable, OwnableUpgradeable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
function __Ownable2Step_init() internal onlyInitializing {
__Ownable_init_unchained();
}
function __Ownable2Step_init_unchained() internal onlyInitializing {
}
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
_transferOwnership(sender);
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.22;
interface IBalancerV2Pool {
function getVault() external view returns (address);
function getPoolId() external view returns (bytes32);
function totalSupply() external view returns (uint256);
function getActualSupply() external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.22;
interface IAsset {
// solhint-disable-previous-line no-empty-blocks
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
function __Ownable_init() internal onlyInitializing {
__Ownable_init_unchained();
}
function __Ownable_init_unchained() internal onlyInitializing {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.2;
import "../../utils/AddressUpgradeable.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
* @custom:oz-retyped-from bool
*/
uint8 private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint8 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
* constructor.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
bool isTopLevelCall = !_initializing;
require(
(isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
"Initializable: contract is already initialized"
);
_initialized = 1;
if (isTopLevelCall) {
_initializing = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: setting the version to 255 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint8 version) {
require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
_initialized = version;
_initializing = true;
_;
_initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
require(_initializing, "Initializable: contract is not initializing");
_;
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
require(!_initializing, "Initializable: contract is initializing");
if (_initialized != type(uint8).max) {
_initialized = type(uint8).max;
emit Initialized(type(uint8).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint8) {
return _initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _initializing;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
pragma solidity ^0.8.0;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal onlyInitializing {
}
function __Context_init_unchained() internal onlyInitializing {
}
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library AddressUpgradeable {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}