ETH Price: $3,460.89 (+1.35%)
Gas: 28 Gwei

Contract Diff Checker

Contract Name:
KotoV2

Contract Source Code:

// SPDX-License-Identifier: MIT

///@title Koto ERC20 Token
///@author Izanagi Dev
///@notice A stripped down ERC20 tax token that implements automated and continious monetary policy decisions.
///@dev Bonds are the ERC20 token in exchange for Ether. Unsold bonds with automatically carry over to the next day.
/// The bonding schedule is set to attempt to sell all of the tokens held within the contract in 1 day intervals. Taking a snapshot
/// of the amount currently held within the contract at the start of the next internal period, using this amount as the capcipty to be sold.

/// Socials
/// Telegram: https://t.me/KotoPortal

pragma solidity =0.8.22;

import {PricingLibrary} from "./PricingLibrary.sol";
import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol";
import {FullMath} from "./libraries/FullMath.sol";
import {IERC20Minimal} from "./interfaces/IERC20Minimal.sol";

contract KotoV2 {
    // ========================== STORAGE ========================== \\

    mapping(address => uint256) private _balances;
    mapping(address => mapping(address => uint256)) private _allowances;
    mapping(address => bool) private _excluded;
    mapping(address => bool) private _amms;
    uint256 private _totalSupply;

    // ====================== ETH BOND STORAGE ===================== \\

    PricingLibrary.Adjustment private adjustment;
    PricingLibrary.Data private data;
    PricingLibrary.Market private market;
    PricingLibrary.Term private term;

    // ====================== LP BOND STORAGE ====================== \\

    PricingLibrary.Adjustment private lpAdjustment;
    PricingLibrary.Data private lpData;
    PricingLibrary.Market private lpMarket;
    PricingLibrary.Term private lpTerm;

    uint256 ethCapacityNext;
    uint256 lpCapacityNext;

    uint8 private locked;
    bool private launched;

    // =================== CONSTANTS / IMMUTABLES =================== \\

    string private constant NAME = "Koto V2";
    string private constant SYMBOL = "KOTOV2";
    uint8 private constant DECIMALS = 18;
    ///@dev flat 5% tax for buys and sells
    uint8 private constant FEE = 50;
    bool private immutable zeroForOne;
    address private constant UNISWAP_V2_ROUTER = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
    address private constant UNISWAP_V2_FACTORY = 0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f;
    address private constant WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
    address private constant OWNER = 0x946eF43867225695E29241813A8F41519634B36b;
    address private constant BOND_DEPOSITORY = 0x298ECA8683000B3911B2e7Dd07FD496D8019043E;
    address private immutable pair;
    address private immutable token0;
    address private immutable token1;
    uint256 private constant INTERVAL = 86400; // 1 day in seconds

    // ========================== MODIFIERS ========================== \\

    modifier lock() {
        if (locked == 2) revert Reentrancy();
        locked = 2;
        _;
        locked = 1;
    }

    // ========================= CONTRUCTOR ========================= \\

    constructor() {
        pair = _createUniswapV2Pair(address(this), WETH);
        _excluded[OWNER] = true;
        _excluded[BOND_DEPOSITORY] = true;
        _excluded[address(this)] = true;
        _amms[pair] = true;
        _mint(OWNER, 8_500_000e18); //
        (token0, token1) = _getTokens(pair);
        zeroForOne = address(this) == token0 ? true : false;
        _allowances[address(this)][UNISWAP_V2_ROUTER] = type(uint256).max;
        ///@dev set term conclusion to type uint48 max to prevent bonds being created before opening them to the public
        term.conclusion = type(uint48).max;
    }

    // ==================== EXTERNAL FUNCTIONS ===================== \\

    function transfer(address _to, uint256 _value) public returns (bool success) {
        if (_to == address(0) || _value == 0) revert InvalidTransfer();
        _transfer(msg.sender, _to, _value);
        return true;
    }

    function transferFrom(address _from, address _to, uint256 _value) public returns (bool success) {
        if (_to == address(0) || _value == 0) revert InvalidTransfer();
        if (_from != msg.sender) {
            if (_allowances[_from][msg.sender] < _value) revert InsufficentAllowance();
            _allowances[_from][msg.sender] -= _value;
        }
        _transfer(_from, _to, _value);
        return true;
    }

    function approve(address _spender, uint256 _value) public returns (bool success) {
        address owner = msg.sender;
        _allowances[owner][_spender] = _value;
        return true;
    }

    ///@notice exchange ETH for Koto tokens at the current bonding price
    ///@dev bonds are set on 1 day intervals with 4 hour deposit intervals and 30 minute tune intervals.
    function bond() public payable lock returns (uint256 payout) {
        // If the previous market has ended create a new market.
        if (block.timestamp > term.conclusion) {
            _create();
        }
        if (market.capacity != 0) {
            // Cache variables for later use to minimize storage calls
            PricingLibrary.Market memory _market = market;
            PricingLibrary.Term memory _term = term;
            PricingLibrary.Data memory _data = data;
            PricingLibrary.Adjustment memory adjustments = adjustment;
            uint256 _supply = _totalSupply;
            uint48 time = uint48(block.timestamp);

            // Can pass in structs here as nothing has been updated yet
            (_market, _data, _term, adjustments) = PricingLibrary.decay(data, _market, _term, adjustments);

            uint256 price = PricingLibrary.marketPrice(_term.controlVariable, _market.totalDebt, _supply);

            payout = (msg.value * 1e18 / price);
            if (payout > market.maxPayout) revert MaxPayout();

            // Update market variables
            _market.capacity -= uint96(payout);
            _market.purchased += uint96(msg.value);
            _market.sold += uint96(payout);
            _market.totalDebt += uint96(payout);

            bool success = _bond(msg.sender, payout);
            if (!success) revert BondFailed();
            emit Bond(msg.sender, payout, price);

            //Touches market, data, terms, and adjustments
            (_market, _term, _data, adjustments) =
                PricingLibrary.tune(time, _market, _term, _data, adjustments, _supply);

            // Write changes to storage.
            market = _market;
            term = _term;
            data = _data;
            adjustment = adjustments;
        } else {
            //If bonds are not available refund the eth sent to the contract
            SafeTransferLib.safeTransferETH(msg.sender, msg.value);
        }
    }

    function bondLp(uint256 _lpAmount) public lock returns (uint256 payout) {
        // If the previous market has ended create a new market.
        if (block.timestamp > term.conclusion) {
            _createLpMarket();
        }
        if (lpMarket.capacity != 0) {
            IERC20Minimal(pair).transferFrom(msg.sender, address(BOND_DEPOSITORY), _lpAmount);
            // Cache variables for later use to minimize storage calls
            PricingLibrary.Market memory _market = lpMarket;
            PricingLibrary.Term memory _term = lpTerm;
            PricingLibrary.Data memory _data = lpData;
            PricingLibrary.Adjustment memory adjustments = lpAdjustment;
            uint256 _supply = _totalSupply;
            uint48 time = uint48(block.timestamp);

            // Can pass in structs here as nothing has been updated yet
            (_market, _data, _term, adjustments) = PricingLibrary.decay(lpData, _market, _term, adjustments);

            uint256 price = PricingLibrary.marketPrice(_term.controlVariable, _market.totalDebt, _supply);

            payout = (_lpAmount * 1e18 / price);
            if (payout > lpMarket.maxPayout) revert MaxPayout();

            // Update market variables
            _market.capacity -= uint96(payout);
            _market.purchased += uint96(_lpAmount);
            _market.sold += uint96(payout);
            _market.totalDebt += uint96(payout);

            bool success = _bond(msg.sender, payout);
            if (!success) revert BondFailed();
            emit Bond(msg.sender, payout, price);

            //Touches market, data, terms, and adjustments
            (_market, _term, _data, adjustments) =
                PricingLibrary.tune(time, _market, _term, _data, adjustments, _supply);

            // Write changes to storage.
            lpMarket = _market;
            lpTerm = _term;
            lpData = _data;
            lpAdjustment = adjustments;
        }
    }

    ///@notice burn Koto tokens in exchange for a piece of the underlying reserves
    ///@param amount The amount of Koto tokens to redeem
    ///@return payout The amount of ETH received in exchange for the Koto tokens
    function redeem(uint256 amount) external returns (uint256 payout) {
        // Underlying reserves per token
        uint256 price = (address(this).balance * 1e18) / _totalSupply;
        payout = (price * amount) / 1e18;
        _burn(msg.sender, amount);
        SafeTransferLib.safeTransferETH(msg.sender, payout);
        emit Redeem(msg.sender, amount, payout, price);
    }

    ///@notice burn Koto tokens, without redemption
    ///@param amount the amount of Koto to burn
    function burn(uint256 amount) external returns (bool success) {
        _burn(msg.sender, amount);
        success = true;
        emit Transfer(msg.sender, address(0), amount);
    }

    // ==================== EXTERNAL VIEW FUNCTIONS ===================== \\

    ///@notice get the tokens name
    function name() public pure returns (string memory) {
        return NAME;
    }

    ///@notice get the tokens symbol
    function symbol() public pure returns (string memory) {
        return SYMBOL;
    }

    ///@notice get the tokens decimals
    function decimals() public pure returns (uint8) {
        return DECIMALS;
    }

    ///@notice get the tokens total supply
    function totalSupply() public view returns (uint256) {
        return _totalSupply;
    }

    ///@notice get the current balance of a user
    ///@param _owner the user whos balance you want to check
    function balanceOf(address _owner) public view returns (uint256) {
        return _balances[_owner];
    }

    ///@notice get current approved amount for transfer from another party
    ///@param owner the current owner of the tokens
    ///@param spender the user who has approval (or not) to spend the owners tokens
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    ///@notice return the Uniswap V2 Pair address
    function pool() external view returns (address) {
        return pair;
    }

    ///@notice get the owner of the contract
    ///@dev ownership is nontransferable and limited to opening trade, exclusion / inclusion,s and increasing liquidity
    function ownership() external pure returns (address) {
        return OWNER;
    }

    ///@notice the current price a bond
    function bondPrice() external view returns (uint256) {
        return PricingLibrary.marketPrice(term.controlVariable, market.totalDebt, _totalSupply);
    }

    function bondPriceLp() external view returns (uint256) {
        return PricingLibrary.marketPrice(lpTerm.controlVariable, lpMarket.totalDebt, _totalSupply);
    }

    ///@notice return the current redemption price for 1 uint of Koto.
    function redemptionPrice() external view returns (uint256) {
        return ((address(this).balance * 1e18) / _totalSupply);
    }

    function marketInfo()
        external
        view
        returns (PricingLibrary.Market memory, PricingLibrary.Term memory, PricingLibrary.Data memory)
    {
        return (market, term, data);
    }

    function lpMarketInfo()
        external
        view
        returns (PricingLibrary.Market memory, PricingLibrary.Term memory, PricingLibrary.Data memory)
    {
        return (lpMarket, lpTerm, lpData);
    }

    function depository() external pure returns (address) {
        return BOND_DEPOSITORY;
    }

    // ========================= ADMIN FUNCTIONS ========================= \\

    ///@notice remove a given address from fees and limits
    ///@param user the user to exclude from fees
    ///@dev this is a one way street so once a user has been excluded they can not then be removed
    function exclude(address user) external {
        if (msg.sender != OWNER) revert OnlyOwner();
        _excluded[user] = true;
        emit UserExcluded(user);
    }

    ///@notice add a amm pool / pair
    ///@param _pool the address of the pool / pair to add
    function addAmm(address _pool) external {
        if (msg.sender != OWNER) revert OnlyOwner();
        _amms[_pool] = true;
        emit AmmAdded(_pool);
    }

    ///@notice seed the initial liquidity from this contract.
    function launch() external {
        if (msg.sender != OWNER) revert OnlyOwner();
        if (launched) revert AlreadyLaunched();
        _addInitialLiquidity();
        launched = true;
        emit Launched(block.timestamp);
    }

    ///@notice opens the bond market
    ///@dev the liquidity pool must already be launched and initialized. As well as tokens sent to this contract from
    /// the bond depository.
    function open() external {
        if (msg.sender != OWNER) revert OnlyOwner();
        _create();
        _createLpMarket();
        emit OpenBondMarket(block.timestamp);
    }

    ///TODO: change back to permissioned prior to launch.
    function create(uint256 ethBondAmount, uint256 lpBondAmount) external {
        if (msg.sender != OWNER && msg.sender != BOND_DEPOSITORY) revert InvalidSender();
        uint256 total = ethBondAmount + lpBondAmount;
        transferFrom(msg.sender, address(this), total);
        ethCapacityNext = ethBondAmount;
        lpCapacityNext = lpBondAmount;
    }

    // ========================= INTERNAL FUNCTIONS ========================= \\

    ///@notice create the Uniswap V2 Pair
    ///@param _token0 token 0 of the pair
    ///@param _token1 token 1 of the pair
    ///@return _pair the pair address
    function _createUniswapV2Pair(address _token0, address _token1) private returns (address _pair) {
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, 0xc9c6539600000000000000000000000000000000000000000000000000000000)
            mstore(add(ptr, 4), and(_token0, 0xffffffffffffffffffffffffffffffffffffffff))
            mstore(add(ptr, 36), and(_token1, 0xffffffffffffffffffffffffffffffffffffffff))
            let result := call(gas(), UNISWAP_V2_FACTORY, 0, ptr, 68, 0, 32)
            if iszero(result) { revert(0, 0) }
            _pair := mload(0x00)
        }
    }

    function _addInitialLiquidity() private {
        uint256 tokenAmount = _balances[address(this)];
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, 0xf305d71900000000000000000000000000000000000000000000000000000000)
            mstore(add(ptr, 4), and(address(), 0xffffffffffffffffffffffffffffffffffffffff))
            mstore(add(ptr, 36), tokenAmount)
            mstore(add(ptr, 68), 0)
            mstore(add(ptr, 100), 0)
            mstore(add(ptr, 132), BOND_DEPOSITORY)
            mstore(add(ptr, 164), timestamp())
            let result := call(gas(), UNISWAP_V2_ROUTER, balance(address()), ptr, 196, 0, 0)
            if iszero(result) { revert(0, 0) }
        }
    }

    ///@notice create the next bond market information
    ///@dev this is done automatically if the previous market conclusion has passed
    /// time check must be done elsewhere as the initial conclusion is set to uint48 max,
    /// tokens must also already be held within the contract or else the call will revert
    function _create() private {
        // Set the initial price to the current market price
        uint96 targetDebt = uint96(ethCapacityNext);
        if (ethCapacityNext > 0) {
            uint256 initialPrice = _getPrice();

            uint96 capacity = targetDebt;
            uint96 maxPayout = uint96(targetDebt * 14400 / INTERVAL);
            uint256 controlVariable = initialPrice * _totalSupply / targetDebt;
            bool policy = _policy(capacity, initialPrice);
            uint48 conclusion = uint48(block.timestamp + INTERVAL);

            if (policy) {
                market = PricingLibrary.Market(capacity, targetDebt, maxPayout, 0, 0);
                term = PricingLibrary.Term(conclusion, controlVariable);
                data =
                    PricingLibrary.Data(uint48(block.timestamp), uint48(block.timestamp), uint48(INTERVAL), 14400, 1800);
                emit CreateMarket(capacity, block.timestamp, conclusion);
            } else {
                _burn(address(this), capacity);
                // Set the markets so that they will be closed for the next interval. Important step to make sure
                // that if anyone accidently tries to buy a bond they get refunded their eth.
                term.conclusion = uint48(block.timestamp + INTERVAL);
                market.capacity = 0;
            }
        }
        ethCapacityNext = 0;
    }

    function _createLpMarket() private {
        uint96 targetDebt = uint96(lpCapacityNext);
        if (targetDebt > 0) {
            uint256 initialPrice = _getLpPrice();
            uint96 capacity = targetDebt;
            uint96 maxPayout = uint96(targetDebt * 14400 / INTERVAL);
            uint256 controlVariable = initialPrice * _totalSupply / targetDebt;
            bool policy = _policy(capacity, initialPrice);
            uint48 conclusion = uint48(block.timestamp + INTERVAL);

            if (policy) {
                lpMarket = PricingLibrary.Market(capacity, targetDebt, maxPayout, 0, 0);
                lpTerm = PricingLibrary.Term(conclusion, controlVariable);
                lpData =
                    PricingLibrary.Data(uint48(block.timestamp), uint48(block.timestamp), uint48(INTERVAL), 14400, 1800);
                emit CreateMarket(capacity, block.timestamp, conclusion);
            } else {
                _burn(address(this), capacity);
                // Set the markets so that they will be closed for the next interval. Important step to make sure
                // that if anyone accidently tries to buy a bond they get refunded their eth.
                lpTerm.conclusion = uint48(block.timestamp + INTERVAL);
                lpMarket.capacity = 0;
            }
        }
        lpCapacityNext = 0;
    }

    ///@notice determines if to sell the tokens available as bonds or to burn them instead
    ///@param capacity the amount of tokens that will be available within the next bonding cycle
    ///@param price the starting price of the bonds to sell
    ///@return decision the decision reached determining which is more valuable to sell the bonds (true) or to burn them (false)
    ///@dev the decision is made optimistically using the initial price as the selling price for the deicison. If selling the tokens all at the starting
    /// price does not increase relative reserves more than burning the tokens then they are burned. If they are equivilant burning wins out.
    function _policy(uint256 capacity, uint256 price) private view returns (bool decision) {
        uint256 supply = _totalSupply;
        uint256 burnRelative = (address(this).balance * 1e18) / (supply - capacity);
        uint256 bondRelative = ((address(this).balance * 1e18) + ((capacity * price))) / supply;
        decision = burnRelative >= bondRelative ? false : true;
    }

    function _transfer(address from, address to, uint256 _value) private {
        if (_value > _balances[from]) revert InsufficentBalance();
        bool fees;
        if (_amms[to] || _amms[from]) {
            if (_excluded[to] || _excluded[from]) {
                fees = false;
            } else {
                fees = true;
            }
        }
        if (fees) {
            uint256 fee = (_value * FEE) / 1000;

            unchecked {
                _balances[from] -= _value;
                _balances[BOND_DEPOSITORY] += fee;
            }
            _value -= fee;
            unchecked {
                _balances[to] += _value;
            }
        } else {
            unchecked {
                _balances[from] -= _value;
                _balances[to] += _value;
            }
        }
        emit Transfer(from, to, _value);
    }

    ///@notice mint new koto tokens
    ///@param to the user who will receive the tokens
    ///@param value the amount of tokens to mint
    ///@dev this function is used once, during the creation of the contract and is then
    /// not callable
    function _mint(address to, uint256 value) private {
        unchecked {
            _balances[to] += value;
            _totalSupply += value;
        }
        emit Transfer(address(0), to, value);
    }

    ///@notice burn koto tokens
    ///@param from the user to burn the tokens from
    ///@param value the amount of koto tokens to burn
    function _burn(address from, uint256 value) private {
        if (_balances[from] < value) revert InsufficentBalance();
        unchecked {
            _balances[from] -= value;
            _totalSupply -= value;
        }
        emit Transfer(from, address(0), value);
    }

    ///@notice send the user the correct amount of tokens after the have bought a bond
    ///@param to the user to send the tokens to
    ///@param value the amount of koto tokens to send
    ///@dev bonds are not subject to taxes
    function _bond(address to, uint256 value) private returns (bool success) {
        if (value > _balances[address(this)]) revert InsufficentBondsAvailable();
        unchecked {
            _balances[to] += value;
            _balances[address(this)] -= value;
        }
        success = true;
        emit Transfer(address(this), to, value);
    }

    ///@notice calculate the current market price based on the reserves of the Uniswap Pair
    ///@dev price is returned as the amount of ETH you would get back for 1 full (1e18) Koto tokens
    function _getPrice() private view returns (uint256 price) {
        address _pair = pair;
        uint112 reserve0;
        uint112 reserve1;
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, 0x0902f1ac00000000000000000000000000000000000000000000000000000000)
            let success := staticcall(gas(), _pair, ptr, 4, 0, 0)
            if iszero(success) { revert(0, 0) }
            returndatacopy(0x00, 0, 32)
            returndatacopy(0x20, 0x20, 32)
            reserve0 := mload(0x00)
            reserve1 := mload(0x20)
        }

        if (zeroForOne) {
            price = (uint256(reserve1) * 1e18) / uint256(reserve0);
        } else {
            price = (uint256(reserve0) * 1e18) / uint256(reserve1);
        }
    }

    function _getLpPrice() private view returns (uint256 _lpPrice) {
        address _pair = pair;
        uint112 reserve0;
        uint112 reserve1;
        uint256 lpTotalSupply;
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, 0x0902f1ac00000000000000000000000000000000000000000000000000000000)
            let success := staticcall(gas(), _pair, ptr, 4, 0, 0)
            if iszero(success) { revert(0, 0) }
            returndatacopy(0x00, 0, 32)
            returndatacopy(0x20, 0x20, 32)
            reserve0 := mload(0x00)
            reserve1 := mload(0x20)
            mstore(add(ptr, 0x20), 0x18160ddd00000000000000000000000000000000000000000000000000000000)
            let result := staticcall(gas(), _pair, add(ptr, 0x20), 4, 0, 32)
            lpTotalSupply := mload(0x00)
        }
        ///@dev with uniswap v2 we simply treat the other token total as equal value to simplify the pricing mechanism
        if (zeroForOne) {
            _lpPrice = FullMath.mulDiv(reserve0 * 2, 1e18, lpTotalSupply);
        } else {
            _lpPrice = FullMath.mulDiv(reserve1 * 2, 1e18, lpTotalSupply);
        }
    }

    function _getTokens(address _pair) private view returns (address _token0, address _token1) {
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, 0x0dfe168100000000000000000000000000000000000000000000000000000000)
            let resultToken0 := staticcall(gas(), _pair, ptr, 4, 0, 32)
            mstore(add(ptr, 4), 0xd21220a700000000000000000000000000000000000000000000000000000000)
            let resultToken1 := staticcall(gas(), _pair, add(ptr, 4), 4, 32, 32)
            if or(iszero(resultToken0), iszero(resultToken1)) { revert(0, 0) }
            _token0 := mload(0x00)
            _token1 := mload(0x20)
        }
    }

    // ========================= EVENTS ========================= \\

    event AmmAdded(address poolAdded);
    event Approval(address indexed _owner, address indexed _spender, uint256 _value);
    event Bond(address indexed buyer, uint256 amount, uint256 bondPrice);
    event CreateMarket(uint256 bonds, uint256 start, uint48 end);
    event IncreaseLiquidity(uint256 kotoAdded, uint256 ethAdded);
    event Launched(uint256 time);
    event LimitsRemoved(uint256 time);
    event OpenBondMarket(uint256 openingTime);
    event Redeem(address indexed sender, uint256 burned, uint256 payout, uint256 floorPrice);
    event Transfer(address indexed _from, address indexed _to, uint256 _value);
    event UserExcluded(address indexed userToExclude);

    // ========================= ERRORS ========================= \\

    error AlreadyLaunched();
    error BondFailed();
    error InsufficentAllowance();
    error InsufficentBalance();
    error InsufficentBondsAvailable();
    error InvalidSender();
    error InvalidTransfer();
    error LimitsReached();
    error MarketClosed();
    error MaxPayout();
    error OnlyOwner();
    error RedeemFailed();
    error Reentrancy();

    receive() external payable {}
}

// SPDX-License-Identifier: MIT

pragma solidity =0.8.22;

library PricingLibrary {
    // 1 Slot
    struct Data {
        uint48 lastTune;
        uint48 lastDecay; // last timestamp when market was created and debt was decayed
        uint48 length; // time from creation to conclusion. used as speed to decay debt.
        uint48 depositInterval; // target frequency of deposits
        uint48 tuneInterval; // frequency of tuning
    }

    // 2 Storage slots
    struct Market {
        uint96 capacity; // capacity remaining
        uint96 totalDebt; // total debt from market
        uint96 maxPayout; // max tokens in/out
        uint96 sold; // Koto out
        uint96 purchased; // Eth in
    }

    // 1 Storage Slot
    struct Adjustment {
        uint128 change;
        uint48 lastAdjustment;
        uint48 timeToAdjusted;
        bool active;
    }

    // 2 Storage slots
    struct Term {
        uint48 conclusion; // timestamp when the current market will end
        uint256 controlVariable; // scaling variable for price
    }

    function decay(Data memory data, Market memory market, Term memory terms, Adjustment memory adjustments)
        internal
        view
        returns (Market memory, Data memory, Term memory, Adjustment memory)
    {
        uint48 time = uint48(block.timestamp);
        market.totalDebt -= debtDecay(data, market);
        data.lastDecay = time;

        if (adjustments.active) {
            (uint128 adjustby, uint48 dt, bool stillActive) = controlDecay(adjustments);
            terms.controlVariable -= adjustby;
            if (stillActive) {
                adjustments.change -= adjustby;
                adjustments.timeToAdjusted -= dt;
                adjustments.lastAdjustment = time;
            } else {
                adjustments.active = false;
            }
        }
        return (market, data, terms, adjustments);
    }

    function controlDecay(Adjustment memory info) internal view returns (uint128, uint48, bool) {
        if (!info.active) return (0, 0, false);

        uint48 secondsSince = uint48(block.timestamp) - info.lastAdjustment;
        bool active = secondsSince < info.timeToAdjusted;
        uint128 _decay = active ? (info.change * secondsSince) / info.timeToAdjusted : info.change;
        return (_decay, secondsSince, active);
    }

    function marketPrice(uint256 _controlVariable, uint256 _totalDebt, uint256 _totalSupply)
        internal
        pure
        returns (uint256)
    {
        return ((_controlVariable * debtRatio(_totalDebt, _totalSupply)) / 1e18);
    }

    function debtRatio(uint256 _totalDebt, uint256 _totalSupply) internal pure returns (uint256) {
        return ((_totalDebt * 1e18) / _totalSupply);
    }

    function debtDecay(Data memory data, Market memory market) internal view returns (uint64) {
        uint256 secondsSince = block.timestamp - data.lastDecay;
        return uint64((market.totalDebt * secondsSince) / data.length);
    }

    struct TuneCache {
        uint256 remaining;
        uint256 price;
        uint256 capacity;
        uint256 targetDebt;
        uint256 ncv;
    }

    function tune(
        uint48 time,
        Market memory market,
        Term memory term,
        Data memory data,
        Adjustment memory adjustment,
        uint256 _totalSupply
    ) internal pure returns (Market memory, Term memory, Data memory, Adjustment memory) {
        TuneCache memory cache;
        if (time >= data.lastTune + data.tuneInterval) {
            cache.remaining = term.conclusion - time;
            cache.price = marketPrice(term.controlVariable, market.totalDebt, _totalSupply);
            cache.capacity = market.capacity;
            market.maxPayout = uint96((cache.capacity * data.depositInterval / cache.remaining));
            cache.targetDebt = cache.capacity * data.length / cache.remaining;
            cache.ncv = (cache.price * _totalSupply) / cache.targetDebt;

            if (cache.ncv < term.controlVariable) {
                uint128 change = uint128(term.controlVariable - cache.ncv);
                adjustment = Adjustment(change, time, data.tuneInterval, true);
            } else {
                term.controlVariable = cache.ncv;
            }
            data.lastTune = time;
        }
        return (market, term, data, adjustment);
    }
}

// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

import {ERC20} from "../tokens/ERC20.sol";

/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
/// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller.
library SafeTransferLib {
    /*//////////////////////////////////////////////////////////////
                             ETH OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function safeTransferETH(address to, uint256 amount) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Transfer the ETH and store if it succeeded or not.
            success := call(gas(), to, amount, 0, 0, 0, 0)
        }

        require(success, "ETH_TRANSFER_FAILED");
    }

    /*//////////////////////////////////////////////////////////////
                            ERC20 OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function safeTransferFrom(
        ERC20 token,
        address from,
        address to,
        uint256 amount
    ) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from" argument.
            mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
            mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.

            success := and(
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data.
                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                // Counterintuitively, this call must be positioned second to the or() call in the
                // surrounding and() call or else returndatasize() will be zero during the computation.
                call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)
            )
        }

        require(success, "TRANSFER_FROM_FAILED");
    }

    function safeTransfer(
        ERC20 token,
        address to,
        uint256 amount
    ) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
            mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.

            success := and(
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data.
                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                // Counterintuitively, this call must be positioned second to the or() call in the
                // surrounding and() call or else returndatasize() will be zero during the computation.
                call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
            )
        }

        require(success, "TRANSFER_FAILED");
    }

    function safeApprove(
        ERC20 token,
        address to,
        uint256 amount
    ) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
            mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.

            success := and(
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data.
                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                // Counterintuitively, this call must be positioned second to the or() call in the
                // surrounding and() call or else returndatasize() will be zero during the computation.
                call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
            )
        }

        require(success, "APPROVE_FAILED");
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
    /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @param denominator The divisor
    /// @return result The 256-bit result
    /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
    function mulDiv(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = a * b
            // Compute the product mod 2**256 and mod 2**256 - 1
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2**256 + prod0
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(a, b, not(0))
                prod0 := mul(a, b)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division
            if (prod1 == 0) {
                require(denominator > 0);
                assembly {
                    result := div(prod0, denominator)
                }
                return result;
            }

            // Make sure the result is less than 2**256.
            // Also prevents denominator == 0
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0]
            // Compute remainder using mulmod
            uint256 remainder;
            assembly {
                remainder := mulmod(a, b, denominator)
            }
            // Subtract 256 bit number from 512 bit number
            assembly {
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator
            // Compute largest power of two divisor of denominator.
            // Always >= 1.
            uint256 twos = (0 - denominator) & denominator;
            // Divide denominator by power of two
            assembly {
                denominator := div(denominator, twos)
            }

            // Divide [prod1 prod0] by the factors of two
            assembly {
                prod0 := div(prod0, twos)
            }
            // Shift in bits from prod1 into prod0. For this we need
            // to flip `twos` such that it is 2**256 / twos.
            // If twos is zero, then it becomes one
            assembly {
                twos := add(div(sub(0, twos), twos), 1)
            }
            prod0 |= prod1 * twos;

            // Invert denominator mod 2**256
            // Now that denominator is an odd number, it has an inverse
            // modulo 2**256 such that denominator * inv = 1 mod 2**256.
            // Compute the inverse by starting with a seed that is correct
            // correct for four bits. That is, denominator * inv = 1 mod 2**4
            uint256 inv = (3 * denominator) ^ 2;
            // Now use Newton-Raphson iteration to improve the precision.
            // Thanks to Hensel's lifting lemma, this also works in modular
            // arithmetic, doubling the correct bits in each step.
            inv *= 2 - denominator * inv; // inverse mod 2**8
            inv *= 2 - denominator * inv; // inverse mod 2**16
            inv *= 2 - denominator * inv; // inverse mod 2**32
            inv *= 2 - denominator * inv; // inverse mod 2**64
            inv *= 2 - denominator * inv; // inverse mod 2**128
            inv *= 2 - denominator * inv; // inverse mod 2**256

            // Because the division is now exact we can divide by multiplying
            // with the modular inverse of denominator. This will give us the
            // correct result modulo 2**256. Since the precoditions guarantee
            // that the outcome is less than 2**256, this is the final result.
            // We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inv;
            return result;
        }
    }

    /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @param denominator The divisor
    /// @return result The 256-bit result
    function mulDivRoundingUp(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            result = mulDiv(a, b, denominator);
            if (mulmod(a, b, denominator) > 0) {
                require(result < type(uint256).max);
                result++;
            }
        }
    }
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.22;

interface IERC20Minimal {
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
/// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
abstract contract ERC20 {
    /*//////////////////////////////////////////////////////////////
                                 EVENTS
    //////////////////////////////////////////////////////////////*/

    event Transfer(address indexed from, address indexed to, uint256 amount);

    event Approval(address indexed owner, address indexed spender, uint256 amount);

    /*//////////////////////////////////////////////////////////////
                            METADATA STORAGE
    //////////////////////////////////////////////////////////////*/

    string public name;

    string public symbol;

    uint8 public immutable decimals;

    /*//////////////////////////////////////////////////////////////
                              ERC20 STORAGE
    //////////////////////////////////////////////////////////////*/

    uint256 public totalSupply;

    mapping(address => uint256) public balanceOf;

    mapping(address => mapping(address => uint256)) public allowance;

    /*//////////////////////////////////////////////////////////////
                            EIP-2612 STORAGE
    //////////////////////////////////////////////////////////////*/

    uint256 internal immutable INITIAL_CHAIN_ID;

    bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;

    mapping(address => uint256) public nonces;

    /*//////////////////////////////////////////////////////////////
                               CONSTRUCTOR
    //////////////////////////////////////////////////////////////*/

    constructor(
        string memory _name,
        string memory _symbol,
        uint8 _decimals
    ) {
        name = _name;
        symbol = _symbol;
        decimals = _decimals;

        INITIAL_CHAIN_ID = block.chainid;
        INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
    }

    /*//////////////////////////////////////////////////////////////
                               ERC20 LOGIC
    //////////////////////////////////////////////////////////////*/

    function approve(address spender, uint256 amount) public virtual returns (bool) {
        allowance[msg.sender][spender] = amount;

        emit Approval(msg.sender, spender, amount);

        return true;
    }

    function transfer(address to, uint256 amount) public virtual returns (bool) {
        balanceOf[msg.sender] -= amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(msg.sender, to, amount);

        return true;
    }

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual returns (bool) {
        uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.

        if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;

        balanceOf[from] -= amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(from, to, amount);

        return true;
    }

    /*//////////////////////////////////////////////////////////////
                             EIP-2612 LOGIC
    //////////////////////////////////////////////////////////////*/

    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");

        // Unchecked because the only math done is incrementing
        // the owner's nonce which cannot realistically overflow.
        unchecked {
            address recoveredAddress = ecrecover(
                keccak256(
                    abi.encodePacked(
                        "\x19\x01",
                        DOMAIN_SEPARATOR(),
                        keccak256(
                            abi.encode(
                                keccak256(
                                    "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                                ),
                                owner,
                                spender,
                                value,
                                nonces[owner]++,
                                deadline
                            )
                        )
                    )
                ),
                v,
                r,
                s
            );

            require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");

            allowance[recoveredAddress][spender] = value;
        }

        emit Approval(owner, spender, value);
    }

    function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
        return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
    }

    function computeDomainSeparator() internal view virtual returns (bytes32) {
        return
            keccak256(
                abi.encode(
                    keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                    keccak256(bytes(name)),
                    keccak256("1"),
                    block.chainid,
                    address(this)
                )
            );
    }

    /*//////////////////////////////////////////////////////////////
                        INTERNAL MINT/BURN LOGIC
    //////////////////////////////////////////////////////////////*/

    function _mint(address to, uint256 amount) internal virtual {
        totalSupply += amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(address(0), to, amount);
    }

    function _burn(address from, uint256 amount) internal virtual {
        balanceOf[from] -= amount;

        // Cannot underflow because a user's balance
        // will never be larger than the total supply.
        unchecked {
            totalSupply -= amount;
        }

        emit Transfer(from, address(0), amount);
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):