ETH Price: $2,639.32 (+1.45%)
Gas: 3 Gwei

Contract Diff Checker

Contract Name:
GlitchGeneralMintSpots

Contract Source Code:

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Metadata is IERC721 {
    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.0;

import "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes calldata data
    ) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool _approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)

pragma solidity ^0.8.0;

/**
 * @title ERC721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.2) (token/ERC721/ERC721.sol)

pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import "@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol";
import "@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol";
import "@openzeppelin/contracts/utils/Address.sol";
import "@openzeppelin/contracts/utils/Context.sol";
import "@openzeppelin/contracts/utils/introspection/ERC165.sol";
import "../libraries/Strings.sol";

/**
 * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
 * the Metadata extension, but not including the Enumerable extension, which is available separately as
 * {ERC721Enumerable}.
 */
contract ERC721 is Context, ERC165, IERC721Metadata {
    using Address for address;
    using Strings for uint256;

    // Token name
    string internal _name;

    // Token symbol
    string private _symbol;

    // Mapping from token ID to owner address
    mapping(uint256 => address) private _owners;

    // Mapping owner address to token count
    mapping(address => uint256) private _balances;

    // Mapping from token ID to approved address
    mapping(uint256 => address) private _tokenApprovals;

    // Mapping from owner to operator approvals
    mapping(address => mapping(address => bool)) private _operatorApprovals;

    /**
     * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return
        interfaceId == type(IERC721).interfaceId ||
        interfaceId == type(IERC721Metadata).interfaceId ||
        super.supportsInterface(interfaceId);
    }

    /**
     * @dev See {IERC721-balanceOf}.
     */
    function balanceOf(address owner) public view virtual override returns (uint256) {
        require(owner != address(0), "ERC721: address zero is not a valid owner");
        return _balances[owner];
    }

    /**
     * @dev See {IERC721-ownerOf}.
     */
    function ownerOf(uint256 tokenId) public view virtual override returns (address) {
        address owner = _ownerOf(tokenId);
        require(owner != address(0), "ERC721: invalid token ID");
        return owner;
    }

    /**
     * @dev See {IERC721Metadata-name}.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev See {IERC721Metadata-symbol}.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev See {IERC721Metadata-tokenURI}.
     */
    function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
        _requireMinted(tokenId);

        string memory baseURI = _baseURI();
        return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : "";
    }

    /**
     * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
     * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
     * by default, can be overridden in child contracts.
     */
    function _baseURI() internal view virtual returns (string memory) {
        return "";
    }

    /**
     * @dev See {IERC721-approve}.
     */
    function approve(address to, uint256 tokenId) public virtual override {
        address owner = ERC721.ownerOf(tokenId);
        require(to != owner, "ERC721: approval to current owner");

        require(
            _msgSender() == owner || isApprovedForAll(owner, _msgSender()),
            "ERC721: approve caller is not token owner or approved for all"
        );

        _approve(to, tokenId);
    }

    /**
     * @dev See {IERC721-getApproved}.
     */
    function getApproved(uint256 tokenId) public view virtual override returns (address) {
        _requireMinted(tokenId);

        return _tokenApprovals[tokenId];
    }

    /**
     * @dev See {IERC721-setApprovalForAll}.
     */
    function setApprovalForAll(address operator, bool approved) public virtual override {
        _setApprovalForAll(_msgSender(), operator, approved);
    }

    /**
     * @dev See {IERC721-isApprovedForAll}.
     */
    function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
        return _operatorApprovals[owner][operator];
    }

    /**
     * @dev See {IERC721-transferFrom}.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) public virtual override {
        //solhint-disable-next-line max-line-length
        require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");

        _transfer(from, to, tokenId);
    }

    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) public virtual override {
        safeTransferFrom(from, to, tokenId, "");
    }

    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes memory data
    ) public virtual override {
        require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
        _safeTransfer(from, to, tokenId, data);
    }

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * `data` is additional data, it has no specified format and it is sent in call to `to`.
     *
     * This internal function is equivalent to {safeTransferFrom}, and can be used to e.g.
     * implement alternative mechanisms to perform token transfer, such as signature-based.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeTransfer(
        address from,
        address to,
        uint256 tokenId,
        bytes memory data
    ) internal virtual {
        _transfer(from, to, tokenId);
        require(_checkOnERC721Received(from, to, tokenId, data), "ERC721: transfer to non ERC721Receiver implementer");
    }

    /**
     * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
     */
    function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
        return _owners[tokenId];
    }

    /**
     * @dev Returns whether `tokenId` exists.
     *
     * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
     *
     * Tokens start existing when they are minted (`_mint`),
     * and stop existing when they are burned (`_burn`).
     */
    function _exists(uint256 tokenId) internal view virtual returns (bool) {
        return _ownerOf(tokenId) != address(0);
    }

    /**
     * @dev Returns whether `spender` is allowed to manage `tokenId`.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) {
        address owner = ERC721.ownerOf(tokenId);
        return (spender == owner || isApprovedForAll(owner, spender) || getApproved(tokenId) == spender);
    }

    /**
     * @dev Safely mints `tokenId` and transfers it to `to`.
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeMint(address to, uint256 tokenId) internal virtual {
        _safeMint(to, tokenId, "");
    }

    /**
     * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
     * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
     */
    function _safeMint(
        address to,
        uint256 tokenId,
        bytes memory data
    ) internal virtual {
        _mint(to, tokenId);
        require(
            _checkOnERC721Received(address(0), to, tokenId, data),
            "ERC721: transfer to non ERC721Receiver implementer"
        );
    }

    /**
     * @dev Mints `tokenId` and transfers it to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - `to` cannot be the zero address.
     *
     * Emits a {Transfer} event.
     */
    function _mint(address to, uint256 tokenId) internal virtual {
        require(to != address(0), "ERC721: mint to the zero address");
        require(!_exists(tokenId), "ERC721: token already minted");

        _beforeTokenTransfer(address(0), to, tokenId, 1);

        // Check that tokenId was not minted by `_beforeTokenTransfer` hook
        require(!_exists(tokenId), "ERC721: token already minted");

        unchecked {
            // Will not overflow unless all 2**256 token ids are minted to the same owner.
            // Given that tokens are minted one by one, it is impossible in practice that
            // this ever happens. Might change if we allow batch minting.
            // The ERC fails to describe this case.
            _balances[to] += 1;
        }

        _owners[tokenId] = to;

        emit Transfer(address(0), to, tokenId);

        _afterTokenTransfer(address(0), to, tokenId, 1);
    }

    /**
     * @dev Destroys `tokenId`.
     * The approval is cleared when the token is burned.
     * This is an internal function that does not check if the sender is authorized to operate on the token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     *
     * Emits a {Transfer} event.
     */
    function _burn(uint256 tokenId) internal virtual {
        address owner = ERC721.ownerOf(tokenId);

        _beforeTokenTransfer(owner, address(0), tokenId, 1);

        // Update ownership in case tokenId was transferred by `_beforeTokenTransfer` hook
        owner = ERC721.ownerOf(tokenId);

        // Clear approvals
        delete _tokenApprovals[tokenId];

        unchecked {
            // Cannot overflow, as that would require more tokens to be burned/transferred
            // out than the owner initially received through minting and transferring in.
            _balances[owner] -= 1;
        }
        delete _owners[tokenId];

        emit Transfer(owner, address(0), tokenId);

        _afterTokenTransfer(owner, address(0), tokenId, 1);
    }

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *  As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     *
     * Emits a {Transfer} event.
     */
    function _transfer(
        address from,
        address to,
        uint256 tokenId
    ) internal virtual {
        require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
        require(to != address(0), "ERC721: transfer to the zero address");

        _beforeTokenTransfer(from, to, tokenId, 1);

        // Check that tokenId was not transferred by `_beforeTokenTransfer` hook
        require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");

        // Clear approvals from the previous owner
        delete _tokenApprovals[tokenId];

        unchecked {
            // `_balances[from]` cannot overflow for the same reason as described in `_burn`:
            // `from`'s balance is the number of token held, which is at least one before the current
            // transfer.
            // `_balances[to]` could overflow in the conditions described in `_mint`. That would require
            // all 2**256 token ids to be minted, which in practice is impossible.
            _balances[from] -= 1;
            _balances[to] += 1;
        }
        _owners[tokenId] = to;

        emit Transfer(from, to, tokenId);

        _afterTokenTransfer(from, to, tokenId, 1);
    }

    /**
     * @dev Approve `to` to operate on `tokenId`
     *
     * Emits an {Approval} event.
     */
    function _approve(address to, uint256 tokenId) internal virtual {
        _tokenApprovals[tokenId] = to;
        emit Approval(ERC721.ownerOf(tokenId), to, tokenId);
    }

    /**
     * @dev Approve `operator` to operate on all of `owner` tokens
     *
     * Emits an {ApprovalForAll} event.
     */
    function _setApprovalForAll(
        address owner,
        address operator,
        bool approved
    ) internal virtual {
        require(owner != operator, "ERC721: approve to caller");
        _operatorApprovals[owner][operator] = approved;
        emit ApprovalForAll(owner, operator, approved);
    }

    /**
     * @dev Reverts if the `tokenId` has not been minted yet.
     */
    function _requireMinted(uint256 tokenId) internal view virtual {
        require(_exists(tokenId), "ERC721: invalid token ID");
    }

    /**
     * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
     * The call is not executed if the target address is not a contract.
     *
     * @param from address representing the previous owner of the given token ID
     * @param to target address that will receive the tokens
     * @param tokenId uint256 ID of the token to be transferred
     * @param data bytes optional data to send along with the call
     * @return bool whether the call correctly returned the expected magic value
     */
    function _checkOnERC721Received(
        address from,
        address to,
        uint256 tokenId,
        bytes memory data
    ) private returns (bool) {
        if (to.isContract()) {
            try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) {
                return retval == IERC721Receiver.onERC721Received.selector;
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    revert("ERC721: transfer to non ERC721Receiver implementer");
                } else {
                    /// @solidity memory-safe-assembly
                    assembly {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        } else {
            return true;
        }
    }

    /**
     * @dev Hook that is called before any token transfer. This includes minting and burning. If {ERC721Consecutive} is
     * used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, ``from``'s tokens will be transferred to `to`.
     * - When `from` is zero, the tokens will be minted for `to`.
     * - When `to` is zero, ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     * - `batchSize` is non-zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 firstTokenId,
        uint256 batchSize
    ) internal virtual {}

    /**
     * @dev Hook that is called after any token transfer. This includes minting and burning. If {ERC721Consecutive} is
     * used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, ``from``'s tokens were transferred to `to`.
     * - When `from` is zero, the tokens were minted for `to`.
     * - When `to` is zero, ``from``'s tokens were burned.
     * - `from` and `to` are never both zero.
     * - `batchSize` is non-zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(
        address from,
        address to,
        uint256 firstTokenId,
        uint256 batchSize
    ) internal virtual {}

    /**
     * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
     *
     * WARNING: Anyone calling this MUST ensure that the balances remain consistent with the ownership. The invariant
     * being that for any address `a` the value returned by `balanceOf(a)` must be equal to the number of tokens such
     * that `ownerOf(tokenId)` is `a`.
     */
    // solhint-disable-next-line func-name-mixedcase
    function __unsafe_increaseBalance(address account, uint256 amount) internal {
        _balances[account] += amount;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.9;

import "./ERC721.sol";
import "../util/OwnableAndAdministrable.sol";
import "../libraries/UriEncode.sol";

contract GlitchGeneralMintSpots is ERC721, OwnableAndAdministrable {
  using Strings for uint256;
  using UriEncode for string;

  /**
   * @dev Revert if the royalty basis points is greater than 10_000.
     */
  error InvalidRoyaltyBasisPoints(uint256 basisPoints);

  /**
   * @dev Revert if the royalty address is being set to the zero address.
     */
  error RoyaltyAddressCannotBeZeroAddress();

  /**
   * @dev Emit an event when the royalties info is updated.
   */
  event RoyaltyInfoUpdated(address receiver, uint256 bps);

  /**
   * @notice A struct defining royalty info for the contract.
   */
  struct RoyaltyInfo {
    address royaltyAddress;
    uint96 royaltyBps;
  }

  /// @notice Track the royalty info: address to receive royalties, and
  ///         royalty basis points.
  RoyaltyInfo _royaltyInfo;

  uint256 private _tokenIdCounter = 1;
  mapping(uint256 => uint256) private _tokenSize;

  event MetadataUpdate(uint256 _tokenId);

  address public darkEnergyContract;

  constructor() ERC721("Glitchs Army: The Generals mint spot", "GMS") {
    _setOwner(tx.origin);
    _setRole(tx.origin, 0, true);
    _setRole(msg.sender, 0, true);
    _royaltyInfo.royaltyBps = 500;
    _royaltyInfo.royaltyAddress = tx.origin;
    darkEnergyContract = msg.sender;
  }

  /**
   * @notice Returns whether the interface is supported.
   *
   * @param interfaceId The interface id to check against.
   */
  function supportsInterface(
    bytes4 interfaceId
  ) public view virtual override(ERC721) returns (bool) {
    return
    interfaceId == 0x01ffc9a7 || // ER165
    interfaceId == 0x80ac58cd || // ERC721
    interfaceId == 0x5b5e139f || // ERC721-Metadata
    interfaceId == 0x2a55205a;   // ERC2981
  }

  /**
   * @notice Sets the address and basis points for royalties.
   *
   * @param newInfo The struct to configure royalties.
   */
  function setRoyaltyInfo(RoyaltyInfo calldata newInfo) external {
    // Ensure the sender is only the owner or contract itself.
    _checkRoleOrOwner(msg.sender, 1);

    // Revert if the new royalty address is the zero address.
    if (newInfo.royaltyAddress == address(0)) {
      revert RoyaltyAddressCannotBeZeroAddress();
    }

    // Revert if the new basis points is greater than 10_000.
    if (newInfo.royaltyBps > 10_000) {
      revert InvalidRoyaltyBasisPoints(newInfo.royaltyBps);
    }

    // Set the new royalty info.
    _royaltyInfo = newInfo;

    // Emit an event with the updated params.
    emit RoyaltyInfoUpdated(newInfo.royaltyAddress, newInfo.royaltyBps);
  }

  /**
   * @notice Returns the address that receives royalties.
   */
  function royaltyAddress() external view returns (address) {
    return _royaltyInfo.royaltyAddress;
  }

  /**
   * @notice Returns the royalty basis points out of 10_000.
   */
  function royaltyBasisPoints() external view returns (uint256) {
    return _royaltyInfo.royaltyBps;
  }

  /**
   * @notice Called with the sale price to determine how much royalty
   *         is owed and to whom.
   *
   * @return receiver      Address of who should be sent the royalty payment.
   * @return royaltyAmount The royalty payment amount for _salePrice.
   */
  function royaltyInfo(
    uint256,
    uint256 _salePrice
  ) external view returns (address receiver, uint256 royaltyAmount) {
    royaltyAmount = (_salePrice * _royaltyInfo.royaltyBps) / 10_000;
    receiver = _royaltyInfo.royaltyAddress;
  }

  function adminMint(address to, uint256 tokenId, uint256 size) external {
    _checkRoleOrOwner(msg.sender, 0);
    if(tokenId == _tokenIdCounter) {
      _tokenIdCounter++;
    }
    _tokenSize[tokenId] = size;
    _safeMint(to, tokenId);
  }

  function adminBurn(uint256 tokenId) external {
    _checkRoleOrOwner(msg.sender, 0);
    _burn(tokenId);
  }

  function adminSetTokenSize(uint256 tokenId, uint256 size) external {
    _checkRoleOrOwner(msg.sender, 0);
    _requireMinted(tokenId);
    _tokenSize[tokenId] = size;
    emit MetadataUpdate(tokenId);
  }

  function nextId() external view returns(uint256) {
    return _tokenIdCounter;
  }

  function tokenURI(uint256 tokenId) public view override returns(string memory) {
    _requireMinted(tokenId);
    uint256 size = _tokenSize[tokenId];
    uint256 center = 500;
    bytes6 color = bytes6(bytes("DDC159"));
    bytes6 background = bytes6(bytes("0B0B0B"));

    string memory svgData = string(abi.encodePacked(
        "<svg viewBox='0 0 1e3 1e3' xmlns='http://www.w3.org/2000/svg'><defs><radialGradient id='a' cx='500' cy='",
        center.toString(),
        "' r='",
        size.toString(),
        "' gradientUnits='userSpaceOnUse'><stop stop-color='#fff' stop-opacity='.6' offset='.17'/><stop stop-color='#fff' stop-opacity='0' offset='1'/></radialGradient></defs><circle cx='500' cy='",
        center.toString(),
        "' r='",
        size.toString(),
        "' fill='#",
        color,
        "'/><circle id='cg' cx='500' cy='",
        center.toString(),
        "' r='",
        size.toString(),
        "' fill='url(#a)' opacity='0'/><style>svg{background:#",
        background,
        "}#cg{-webkit-animation:1.5s ease-in-out infinite alternate p;animation:1.5s ease-in-out infinite alternate p}@-webkit-keyframes p{to{opacity:1}}@keyframes p{to{opacity:1}}</style></svg>"
      ));

    return string(
      abi.encodePacked(
        'data:application/json,{"name":"Glitch\'s Army: The Generals mint spot #',
        tokenId.toString(),
        '","image_data":"',
        svgData,
        '"}'
      )
    ).uriEncode();
  }

  function contractURI() external pure returns(string memory) {
    return string(abi.encodePacked(
      'data:application/json,{"name": "Glitch\'s Army: The Generals mint spot"}'
    )).uriEncode();
  }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

library DarkEnergyPackedStruct {
    // =============================================================
    //                            Structs
    // =============================================================

    /// @dev All 256 bits from a PlayerData (from right to left)
    struct PlayerData {
        bool isHolder;
        int40 energyAmount;
        uint16 gamePasses;
        uint16 mintCount;
        uint16 mergeCount;
        uint16 noRiskPlayCount;
        uint16 noRiskWinCount;
        uint16 highStakesPlayCount;
        uint16 highStakesWinCount;
        uint16 highStakesLossCount;
        uint32 totalEarned;
        uint32 totalRugged;
        uint16 unused;
        bool flagA;
        bool flagB;
        bool flagC;
        bool flagD;
        bool flagE;
        bool flagF;
        bool flagG;
    }

    /// @dev All 256 bits from a GameRules (from right to left)
    struct GameRules {
        bool isActive;
        uint16 oddsNoRiskEarn100;
        uint16 oddsNoRiskEarn300;
        uint16 oddsNoRiskEarn500;
        uint16 oddsHighStakesWinOrdinal;
        uint16 oddsHighStakesLose100;
        uint16 oddsHighStakesLose300;
        uint16 oddsHighStakesLose500;
        uint16 oddsHighStakesLose1000;
        uint16 oddsHighStakesEarn100;
        uint16 oddsHighStakesEarn300;
        uint16 oddsHighStakesEarn500;
        uint16 oddsHighStakesEarn1000;
        uint16 oddsHighStakesDoubles;
        uint16 oddsHighStakesHalves;
        uint16 oddsGamePassOnMint;
        uint8 remainingOrdinals;
        bool flagA;
        bool flagB;
        bool flagC;
        bool flagD;
        bool flagE;
        bool flagF;
        bool flagG;
    }

    // =============================================================
    //                 Unpacking by type and offset
    // =============================================================

    /**
     * @dev unpack bit [offset] (bool)
     */
    function getBool(bytes32 p, uint8 offset) internal pure returns (bool r) {
        assembly {
            r := and(shr(offset, p), 1)
        }
    }

    /**
     * @dev unpack bits [offset..offset + 8]
     */
    function getUint8(bytes32 p, uint8 offset) internal pure returns (uint8 r) {
        assembly {
            r := and(shr(offset, p), 0xFF)
        }
    }

    /**
     * @dev unpack bits [offset..offset + 16]
     */
    function getUint16(
        bytes32 p,
        uint8 offset
    ) internal pure returns (uint16 r) {
        assembly {
            r := and(shr(offset, p), 0xFFFF)
        }
    }

    /**
     * @dev unpack bits [offset..offset + 32]
     */
    function getUint32(
        bytes32 p,
        uint8 offset
    ) internal pure returns (uint32 r) {
        assembly {
            r := and(shr(offset, p), 0xFFFFFFFF)
        }
    }

    /**
     * @dev unpack bits[offset..offset + 40]
     */
    function getInt40(bytes32 p, uint8 offset) internal pure returns (int40 r) {
        assembly {
            r := and(shr(offset, p), 0xFFFFFFFFFF)
        }
    }

    // =============================================================
    //                    Unpacking whole structs
    // =============================================================

    function playerData(bytes32 p) internal pure returns (PlayerData memory r) {
        return
            PlayerData({
                isHolder: getBool(p, 0),
                energyAmount: getInt40(p, 1),
                gamePasses: getUint16(p, 41),
                mintCount: getUint16(p, 57),
                mergeCount: getUint16(p, 73),
                noRiskPlayCount: getUint16(p, 89),
                noRiskWinCount: getUint16(p, 105),
                highStakesPlayCount: getUint16(p, 121),
                highStakesWinCount: getUint16(p, 137),
                highStakesLossCount: getUint16(p, 153),
                totalEarned: getUint32(p, 169),
                totalRugged: getUint32(p, 201),
                unused: getUint16(p, 169),
                flagA: getBool(p, 249),
                flagB: getBool(p, 250),
                flagC: getBool(p, 251),
                flagD: getBool(p, 252),
                flagE: getBool(p, 253),
                flagF: getBool(p, 254),
                flagG: getBool(p, 255)
        });
    }

    function gameRules(bytes32 p) internal pure returns (GameRules memory r) {
        return
            GameRules({
                isActive: getBool(p, 0),
                oddsNoRiskEarn100: getUint16(p, 1),
                oddsNoRiskEarn300: getUint16(p, 17),
                oddsNoRiskEarn500: getUint16(p, 33),
                oddsHighStakesWinOrdinal: getUint16(p, 49),
                oddsHighStakesLose100: getUint16(p, 65),
                oddsHighStakesLose300: getUint16(p, 81),
                oddsHighStakesLose500: getUint16(p, 97),
                oddsHighStakesLose1000: getUint16(p, 113),
                oddsHighStakesEarn100: getUint16(p, 129),
                oddsHighStakesEarn300: getUint16(p, 145),
                oddsHighStakesEarn500: getUint16(p, 161),
                oddsHighStakesEarn1000: getUint16(p, 177),
                oddsHighStakesDoubles: getUint16(p, 193),
                oddsHighStakesHalves: getUint16(p, 209),
                oddsGamePassOnMint: getUint16(p, 225),
                remainingOrdinals: getUint8(p, 241),
                flagA: getBool(p, 249),
                flagB: getBool(p, 250),
                flagC: getBool(p, 251),
                flagD: getBool(p, 252),
                flagE: getBool(p, 253),
                flagF: getBool(p, 254),
                flagG: getBool(p, 255)
            });
    }

    // =============================================================
    //                         Setting Bits
    // =============================================================

    /**
     * @dev set bit [{offset}] to {value}
     */
    function setBit(
        bytes32 p,
        uint8 offset,
        bool value
    ) internal pure returns (bytes32 np) {
        assembly {
            np := or(
                and(
                    p,
                    xor(
                        0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,
                        shl(offset, 1)
                    )
                ),
                shl(offset, value)
            )
        }
    }

    /**
     * @dev set 8 bits to {value} at [{offset}]
     */
    function setUint8(
        bytes32 p,
        uint8 offset,
        uint8 value
    ) internal pure returns (bytes32 np) {
        assembly {
            np := or(
                and(
                    p,
                    xor(
                        0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,
                        shl(offset, 0xFF)
                    )
                ),
                shl(offset, and(value, 0xFF))
            )
        }
    }

    /**
     * @dev set 16 bits to {value} at [{offset}]
     */
    function setUint16(
        bytes32 p,
        uint8 offset,
        uint16 value
    ) internal pure returns (bytes32 np) {
        assembly {
            np := or(
                and(
                    p,
                    xor(
                        0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,
                        shl(offset, 0xFFFF)
                    )
                ),
                shl(offset, and(value, 0xFFFF))
            )
        }
    }

    /**
     * @dev set 32 bits to {value} at [{offset}]
     */
    function setUint32(
        bytes32 p,
        uint8 offset,
        uint32 value
    ) internal pure returns (bytes32 np) {
        assembly {
            np := or(
                and(
                    p,
                    xor(
                        0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,
                        shl(offset, 0xFFFFFFFF)
                    )
                ),
                shl(offset, and(value, 0xFFFFFFFF))
            )
        }
    }

    /**
     * @dev set 40 bits to {value} at [{offset}]
     */
    function setInt40(
        bytes32 p,
        uint8 offset,
        int40 value
    ) internal pure returns (bytes32 np) {
        assembly {
            np := or(
                and(
                    p,
                    xor(
                        0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,
                        shl(offset, 0xFFFFFFFFFF)
                    )
                ),
                shl(offset, and(value, 0xFFFFFFFFFF))
            )
        }
    }

    // =============================================================
    //                         DarkEnergy-specific
    // =============================================================

    /**
     * @dev get _playerData.isHolder
     */
    function isHolder(bytes32 p) internal pure returns (bool) {
        return getBool(p, 0);
    }

    /**
     * @dev get _playerData.energyAmount
     */
    function getEnergy(bytes32 p) internal pure returns (int40) {
        return getInt40(p, 1);
    }

    /**
     * @dev get _playerData.gamePasses
     */
    function getGamePasses(bytes32 p) internal pure returns (uint16) {
        return getUint16(p, 41);
    }

    /**
     * @dev get _playerData.mintCount
     */
    function getMintCount(bytes32 p) internal pure returns (uint16) {
        return getUint16(p, 57);
    }

    /**
     * @dev get _playerData.mergeCount
     */
    function getMergeCount(bytes32 p) internal pure returns (uint16) {
        return getUint16(p, 73);
    }

    /**
     * @dev get _playerData.noRiskPlayCount
     */
    function getNoRiskPlayCount(bytes32 p) internal pure returns (uint16) {
        return getUint16(p, 89);
    }

    /**
     * @dev get _playerData.noRiskWinCount
     */
    function getNoRiskWinCount(bytes32 p) internal pure returns (uint16) {
        return getUint16(p, 105);
    }

    /**
     * @dev get _playerData.highStakesPlayCount
     */
    function getHighStakesPlayCount(bytes32 p) internal pure returns (uint16) {
        return getUint16(p, 121);
    }

    /**
     * @dev get _playerData.highStakesWinCount
     */
    function getHighStakesWinCount(bytes32 p) internal pure returns (uint16) {
        return getUint16(p, 137);
    }

    /**
     * @dev get _playerData.highStakesLossCount
     */
    function getHighStakesLossCount(bytes32 p) internal pure returns (uint16) {
        return getUint16(p, 153);
    }

    /**
     * @dev get _playerData.totalEarned
     */
    function getTotalEarned(bytes32 p) internal pure returns (uint32) {
        return getUint32(p, 169);
    }

    /**
     * @dev get _playerData.totalRugged
     */
    function getTotalRugged(bytes32 p) internal pure returns (uint32) {
        return getUint32(p, 201);
    }

    /**
     * @dev sets _playerData.isHolder
     */
    function setHolder(bytes32 p, bool status) internal pure returns (bytes32 np) {
        return setBit(p, 0, status);
    }

    /**
     * @dev sets _playerData.energyAmount
     */
    function setEnergy(bytes32 p, int40 value) internal pure returns (bytes32 np) {
        return setInt40(p, 1, value);
    }

    /**
     * @dev sets _playerData.gamePasses
     */
    function setGamePasses(bytes32 p, uint16 value) internal pure returns (bytes32 np) {
        return setUint16(p, 41, value);
    }

    /**
     * @dev sets _playerData.mintCount
     */
    function setMintCount(bytes32 p, uint16 value) internal pure returns (bytes32 np) {
        return setUint16(p, 57, value);
    }

    /**
     * @dev sets _playerData.mergeCount
     */
    function setMergeCount(bytes32 p, uint16 value) internal pure returns (bytes32 np) {
        return setUint16(p, 73, value);
    }

    /**
     * @dev sets _playerData.noRiskPlayCount
     */
    function setNoRiskPlayCount(bytes32 p, uint16 value) internal pure returns (bytes32 np) {
        return setUint16(p, 89, value);
    }

    /**
     * @dev sets _playerData.noRiskWinCount
     */
    function setNoRiskWinCount(bytes32 p, uint16 value) internal pure returns (bytes32 np) {
        return setUint16(p, 105, value);
    }

    /**
     * @dev sets _playerData.highStakesPlayCount
     */
    function setHighStakesPlayCount(bytes32 p, uint16 value) internal pure returns (bytes32 np) {
        return setUint16(p, 121, value);
    }

    /**
     * @dev sets _playerData.highStakesWinCount
     */
    function setHighStakesWinCount(bytes32 p, uint16 value) internal pure returns (bytes32 np) {
        return setUint16(p, 137, value);
    }

    /**
     * @dev sets _playerData.highStakesLossCount
     */
    function setHighStakesLossCount(bytes32 p, uint16 value) internal pure returns (bytes32 np) {
        return setUint16(p, 153, value);
    }

    /**
     * @dev sets _playerData.totalEarned
     */
    function setTotalEarned(bytes32 p, uint32 value) internal pure returns (bytes32 np) {
        return setUint32(p, 169, value);
    }

    /**
     * @dev sets _playerData.totalRugged
     */
    function setTotalRugged(bytes32 p, uint32 value) internal pure returns (bytes32 np) {
        return setUint32(p, 201, value);
    }

    /**
     * @dev Clears the last 57 bits (isHolder, energyAmount, gamePasses)
     */
    function clearHoldingData(bytes32 p) internal pure returns (bytes32 np) {
        assembly {
            np := and(
                p,
                0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE00000000000000
            )
        }
    }

    /**
     * @dev Replace the last 57 bits (isHolder, energyAmount, gamePasses) from
     *      another packed bytes variable (to be used for transfers)
     */
    function setHoldingData(
        bytes32 p,
        bytes32 q
    ) internal pure returns (bytes32 np) {
        assembly {
            np := or(
                and(
                    p,
                    0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE00000000000000
                ),
                and(q, 0x1FFFFFFFFFFFFFF)
            )
        }
    }

    /**
     * @dev tight-pack a GameRules struct into a uint256
     */
    function packGameRules(
        GameRules calldata
    ) internal pure returns (bytes32 result) {
        assembly {
            result := calldataload(4)
            result := or(result, shl(1, calldataload(36)))
            result := or(result, shl(17, calldataload(68)))
            result := or(result, shl(33, calldataload(100)))
            result := or(result, shl(49, calldataload(132)))
            result := or(result, shl(65, calldataload(164)))
            result := or(result, shl(81, calldataload(196)))
            result := or(result, shl(97, calldataload(228)))
            result := or(result, shl(113, calldataload(260)))
            result := or(result, shl(129, calldataload(292)))
            result := or(result, shl(145, calldataload(324)))
            result := or(result, shl(161, calldataload(356)))
            result := or(result, shl(177, calldataload(388)))
            result := or(result, shl(193, calldataload(420)))
            result := or(result, shl(209, calldataload(452)))
            result := or(result, shl(225, calldataload(484)))
            result := or(result, shl(241, calldataload(516)))
            result := or(result, shl(249, calldataload(548)))
            result := or(result, shl(250, calldataload(580)))
            result := or(result, shl(251, calldataload(612)))
            result := or(result, shl(252, calldataload(644)))
            result := or(result, shl(253, calldataload(676)))
            result := or(result, shl(254, calldataload(708)))
            result := or(result, shl(255, calldataload(740)))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
// Added support for int256

pragma solidity ^0.8.0;

import "@openzeppelin/contracts/utils/math/Math.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        if (value >= 0) {
            return toString(uint256(value));
        }
        return
            string(
                abi.encodePacked(
                    "-",
                    toString(uint256(-value))
                )
            );
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(
        uint256 value,
        uint256 length
    ) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

library UriEncode {
    string internal constant _TABLE = "0123456789abcdef";

    function uriEncode(
        string memory uri
    ) internal pure returns (string memory) {
        bytes memory bytesUri = bytes(uri);

        string memory table = _TABLE;

        // Max size is worse case all chars need to be encoded
        bytes memory result = new bytes(3 * bytesUri.length);

        /// @solidity memory-safe-assembly
        assembly {
            // Get the lookup table
            let tablePtr := add(table, 1)

            // Prepare result pointer, jump over length
            let resultPtr := add(result, 32)

            // Keep track of the final result size string length
            let resultSize := 0

            for {
                let dataPtr := bytesUri
                let endPtr := add(bytesUri, mload(bytesUri))
            } lt(dataPtr, endPtr) {

            } {
                // advance 1 byte
                dataPtr := add(dataPtr, 1)
                // bytemask out a char
                let char := and(mload(dataPtr), 255)

                // Check if is valid URI character
                let isInvalidUriChar := or(
                    or(
                        lt(char, 33), // lower than "!"
                        gt(char, 122) // higher than "z"
                    ),
                    or(
                        or(
                            eq(char, 37), // "%"
                            or(
                                eq(char, 60), // "<"
                                eq(char, 62) // ">"
                            )
                        ),
                        or(
                            and(gt(char, 90), lt(char, 95)), // "[\]^"
                            eq(char, 96) // "`"
                        )
                    )
                )
                if eq(char, 35) { isInvalidUriChar := 1 }

                switch isInvalidUriChar
                // If is valid uri character copy character over and increment the result
                case 0 {
                    mstore8(resultPtr, char)
                    resultPtr := add(resultPtr, 1)
                    resultSize := add(resultSize, 1)
                }
                // If the char is not a valid uri character, uriencode the character
                case 1 {
                    mstore8(resultPtr, 37)
                    resultPtr := add(resultPtr, 1)
                    // table[character >> 4] (take the last 4 bits)
                    mstore8(resultPtr, mload(add(tablePtr, shr(4, char))))
                    resultPtr := add(resultPtr, 1)
                    // table & 15 (take the first 4 bits)
                    mstore8(resultPtr, mload(add(tablePtr, and(char, 15))))
                    resultPtr := add(resultPtr, 1)
                    resultSize := add(resultSize, 3)
                }
            }

            // Set size of result string in memory
            mstore(result, resultSize)
        }

        return string(result);
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.19;

import "../libraries/DarkEnergyPackedStruct.sol";

contract OwnableAndAdministrable {
    using DarkEnergyPackedStruct for bytes32;

    error MissingRole(address user, uint256 role);
    error NotOwner(address user);

    event OwnershipTransferred(address indexed user, address indexed newOwner);
    event RoleUpdated(address indexed user, uint256 indexed role, bool indexed status);

    /**
     * @dev There is a maximum of 256 roles: each bit says if the role is on or off
     */
    mapping(address => bytes32) private _addressRoles;

    /**
     * @dev There is one owner
     */
    address internal _owner;

    function _isOwner(address sender) internal view returns(bool) {
        return (sender == _owner || sender == address(this));
    }

    function _hasRole(address sender, uint8 role) internal view returns(bool) {
        bytes32 roles = _addressRoles[sender];
        return roles.getBool(role);
    }

    function _checkOwner(address sender) internal virtual view {
        if (!_isOwner(sender)) {
            revert NotOwner(sender);
        }
    }

    function _checkRoleOrOwner(address sender, uint8 role) internal virtual view {
        if (_isOwner(sender)) return;
        _checkRole(sender, role);
    }

    function _checkRole(address sender, uint8 role) internal virtual view {
        if (sender == address(this)) return;
        bytes32 roles = _addressRoles[sender];
        bool allowed = roles.getBool(role);
        if (!allowed) {
            revert MissingRole(sender, role);
        }
    }

    function _setOwner(address newOwner) internal virtual {
        _owner = newOwner;
        emit OwnershipTransferred(_owner, newOwner);
    }

    function _setRole(address user, uint8 role, bool status) internal virtual {
        _addressRoles[user] = _addressRoles[user].setBit(role, status);
        emit RoleUpdated(user, role, status);
    }

    function setRole(address user, uint8 role, bool status) external virtual {
        _checkOwner(msg.sender);
        _setRole(user, role, status);
    }

    function transferOwnership(address newOwner) external virtual {
        _checkOwner(msg.sender);
        _setOwner(newOwner);
    }

    function owner() external virtual view returns(address) {
        return _owner;
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):