ETH Price: $4,071.96 (+4.33%)

Contract Diff Checker

Contract Name:
SoundscapeAvatars

Contract Source Code:

// SPDX-License-Identifier: MIT
pragma solidity 0.8.22;

/**   ███████╗ ██████╗ ██╗   ██╗███╗   ██╗██████╗ ███████╗ ██████╗ █████╗ ██████╗ ███████╗
 *    ██╔════╝██╔═══██╗██║   ██║████╗  ██║██╔══██╗██╔════╝██╔════╝██╔══██╗██╔══██╗██╔════╝
 *    ███████╗██║   ██║██║   ██║██╔██╗ ██║██║  ██║███████╗██║     ███████║██████╔╝█████╗
 *    ╚════██║██║   ██║██║   ██║██║╚██╗██║██║  ██║╚════██║██║     ██╔══██║██╔═══╝ ██╔══╝
 *    ███████║╚██████╔╝╚██████╔╝██║ ╚████║██████╔╝███████║╚██████╗██║  ██║██║     ███████╗
 *    ╚══════╝ ╚═════╝  ╚═════╝ ╚═╝  ╚═══╝╚═════╝ ╚══════╝ ╚═════╝╚═╝  ╚═╝╚═╝     ╚══════╝
 *
 *                                       █████████████╗
 *                                       ╚════════════╝
 *                                        ███████████╗
 *                                        ╚══════════╝
 *                                     █████████████████╗
 *                                     ╚════════════════╝
 *
 *                  █████╗ ██╗   ██╗ █████╗ ████████╗ █████╗ ██████╗ ███████╗
 *                 ██╔══██╗██║   ██║██╔══██╗╚══██╔══╝██╔══██╗██╔══██╗██╔════╝
 *                 ███████║██║   ██║███████║   ██║   ███████║██████╔╝███████╗
 *                 ██╔══██║╚██╗ ██╔╝██╔══██║   ██║   ██╔══██║██╔══██╗╚════██║
 *                 ██║  ██║ ╚████╔╝ ██║  ██║   ██║   ██║  ██║██║  ██║███████║
 *                 ╚═╝  ╚═╝  ╚═══╝  ╚═╝  ╚═╝   ╚═╝   ╚═╝  ╚═╝╚═╝  ╚═╝╚══════╝
 */

import {AwaitingTheUNMUTOOOOR} from "./AwaitingTheUNMUTOOOOR.sol";
import {AvatarVolumeAndFrequency} from "./AvatarVolumeAndFrequency.sol";
import {StatefulSale} from "./StatefulSale.sol";
import {ERC2981Plus, ERC2981} from "./ERC2981Plus.sol";
import {ERC721Consecutive} from "lib/openzeppelin-contracts/contracts/token/ERC721/extensions/ERC721Consecutive.sol";
import {ERC721} from "lib/openzeppelin-contracts/contracts/token/ERC721/ERC721.sol";
import {Strings} from "lib/openzeppelin-contracts/contracts/utils/Strings.sol";
import {Ownable} from "lib/openzeppelin-contracts/contracts/access/Ownable.sol";
import {ISANPASS} from "./ISANPASS.sol";
import {ISANWEAR} from "./ISANWEAR.sol";

/**
 * @title Soundscape Avatars™ by SAN SOUND
 * @author Aaron Hanson <[email protected]> @CoffeeConverter
 * @notice https://sansound.io/
 */
contract SoundscapeAvatars is
    Ownable,
    ERC721Consecutive,
    StatefulSale,
    ERC2981Plus,
    AvatarVolumeAndFrequency,
    AwaitingTheUNMUTOOOOR
{
    error BurnsExceedMints();
    error ExceedsMaxSupply();
    error ExceedsMintAllocation();
    error ExceedsPaidMintsRemaining();
    error FailedToWithdraw();
    error InvalidPaymentAmount();
    error InvalidSignature();
    error SuncoreSecurityAlarm();
    error ZeroMints();

    using Strings for uint256;

    uint256 public totalSupply;
    uint256 public paidMintsRemaining = MAX_PAID_SUPPLY;

    ISANPASS public immutable SANPASS;
    ISANWEAR public immutable SANWEAR;

    string public contractURI;
    string public baseUri;
    bool public isRevealed;

    uint256[40] public tokenFactionBitmap;
    mapping(address => mapping(SaleState => uint256)) public userMinted;

    constructor(
        string memory _baseUri,
        string memory _contractUri,
        address _sanpass,
        address _sanwear,
        address _signer,
        address _initMintTo
    )
        ERC721("Soundscape Avatars by SAN SOUND", "SANAV")
        StatefulSale(_signer)
        Ownable(_msgSender())
    {
        _setBaseURI(_baseUri, false);
        contractURI = _contractUri;
        SANPASS = ISANPASS(_sanpass);
        SANWEAR = ISANWEAR(_sanwear);
        _setDefaultRoyalty(_initMintTo, INITIAL_ROYALTY_BPS);
        _mintConsecutive(_initMintTo, INITIAL_MINT_AMOUNT);
        totalSupply = INITIAL_MINT_AMOUNT;
        tokenFactionBitmap[0] = 0x468d8d1b1a36346c68d8d1b1a36346c68d8d1b1a36346c68d8d1b1a36346c688;
        tokenFactionBitmap[1] = 0x468d8d1b1a36346c68d8d1b1a36346c68d8d1b1a36346c68d8d1b1a36346c68d;
        tokenFactionBitmap[2] = 0x468d8d1b1a36346c68d8d1b1a36346c68d8d1b1a36346c68d8d1b1a36346c68d;
        tokenFactionBitmap[3] = 0x2c68d8d1b1a36346c68d8d1b1a36346c68d;
    }

    function ___3___(
        string memory ___
    )
        public
    {
        if (_msgSender() != address(this)) revert SuncoreSecurityAlarm();
        _setBaseURI(___, true);
    }

    function batchTransferFrom(
        address _from,
        address _to,
        uint256[] calldata _tokenIDs
    )
        external
    {
        for (uint256 i = 0; i < _tokenIDs.length; ++i) {
            transferFrom(_from, _to, _tokenIDs[i]);
        }
    }

    function batchSafeTransferFrom(
        address _from,
        address _to,
        uint256[] calldata _tokenIDs,
        bytes calldata _data
    )
        external
    {
        for (uint256 i = 0; i < _tokenIDs.length; ++i) {
            safeTransferFrom(_from, _to, _tokenIDs[i], _data);
        }
    }

    function mintMembersList(
        uint256[5] calldata _factionMints,
        uint256[7] calldata _sanpassBurns,
        uint256 _mintLimit,
        bytes calldata _signature
    )
        external
        payable
    {
        if (saleState != SaleState.MEMBERS_LIST) revert SaleStateNotActive();
        _mintPrivate(
            _factionMints,
            _sanpassBurns,
            _mintLimit,
            _signature
        );
    }

    function mintAllowList(
        uint256[5] calldata _factionMints,
        uint256[7] calldata _sanpassBurns,
        uint256 _mintLimit,
        bytes calldata _signature
    )
        external
        payable
    {
        if (saleState != SaleState.ALLOW_LIST) revert SaleStateNotActive();
        _mintPrivate(
            _factionMints,
            _sanpassBurns,
            _mintLimit,
            _signature
        );
    }

    function mintPublic(
        uint256[5] calldata _factionMints,
        uint256[7] calldata _sanpassBurns
    )
        external
        payable
    {
        if (saleState != SaleState.PUBLIC) revert SaleStateNotActive();
        _mintMain(
            _factionMints,
            _sanpassBurns,
            0,
            PRICE_FULL
        );
    }

    function _mintPrivate(
        uint256[5] calldata _factionMints,
        uint256[7] calldata _sanpassBurns,
        uint256 _mintLimit,
        bytes calldata _signature
    )
        private
    {
        if (false == isValidSignature(
            _signature,
            _msgSender(),
            block.chainid,
            address(this),
            saleState,
            _mintLimit
        )) revert InvalidSignature();

        _mintMain(
            _factionMints,
            _sanpassBurns,
            _mintLimit,
            PRICE_DISCOUNTED
        );
    }

    function setContractURI(
        string calldata _newContractURI
    )
        external
        onlyOwner
    {
        contractURI = _newContractURI;
    }

    function setBaseURI(
        string calldata _newBaseUri,
        bool _isRevealed
    )
        external
        onlyOwner
    {
        _setBaseURI(_newBaseUri, _isRevealed);
    }

    function withdrawAll()
        external
        onlyOwner
    {
        withdraw(address(this).balance);
    }

    function withdraw(
        uint256 _weiAmount
    )
        public
        onlyOwner
    {
        (bool success, ) = payable(_msgSender()).call{value: _weiAmount}("");
        if (!success) revert FailedToWithdraw();
    }

    function tokenFaction(
        uint256 _tokenId
    )
        external
        view
        returns (Faction)
    {
        _requireOwned(_tokenId);
        return Faction(
            tokenFactionBitmap[_tokenId / EIGHTY_FIVE] >> THREE * (_tokenId % EIGHTY_FIVE) & MASK_THREE_BITS
        );
    }

    function supportsInterface(bytes4 interfaceId)
        public
        view
        virtual
        override (ERC2981, ERC721)
        returns (bool)
    {
        return super.supportsInterface(interfaceId);
    }

    function tokenURI(
        uint256 _tokenId
    )
        public
        view
        override
        returns (string memory)
    {
        _requireOwned(_tokenId);
        string memory baseURI = _baseURI();
        return bytes(baseURI).length > 0
            ? (isRevealed
                ? string.concat(baseURI, _tokenId.toString(), ".json")
                : baseURI
            )
            : "";
    }

    function _setBaseURI(
        string memory _newBaseUri,
        bool _isRevealed
    )
        internal
    {
        baseUri = _newBaseUri;
        isRevealed = _isRevealed;
    }

    function _baseURI()
        internal
        view
        override
        returns (string memory)
    {
        return baseUri;
    }

    function _firstConsecutiveId()
        internal
        pure
        override
        returns (uint96)
    {
        return 1;
    }

    function _mintMain(
        uint256[5] calldata _factionMints,
        uint256[7] calldata _sanpassBurns,
        uint256 _mintLimit,
        uint256 _price
    )
        private
    {
        uint256[] memory factionIds;
        uint256[] memory factionAmts;
        uint256[] memory sanpassIds;
        uint256[] memory sanpassAmts;
        unchecked {
            uint256 factionIdCount;
            uint256 sanpassIdCount;
            for (uint i; i < 7; ++i) {
                if (i < 5) if (_factionMints[i] > 0) ++factionIdCount;
                if (_sanpassBurns[i] > 0) ++sanpassIdCount;
            }
            if (factionIdCount == 0) revert ZeroMints();
            factionIds = new uint256[](factionIdCount);
            factionAmts = new uint256[](factionIdCount);
            sanpassIds = new uint256[](sanpassIdCount);
            sanpassAmts = new uint256[](sanpassIdCount);
        }
        unchecked {
            uint256 mintCount;
            uint256 burnCount;
            uint256 factionIndex;
            uint256 sanpassIndex;
            for (uint i; i < 7; ++i) {
                uint256 burns = _sanpassBurns[i];
                if (burns > 0) {
                    burnCount += burns;
                    sanpassIds[sanpassIndex] = i + 1;
                    sanpassAmts[sanpassIndex++] = burns;
                }
                if (i > 4) continue;
                uint256 mints = _factionMints[i];
                if (burns > mints) revert BurnsExceedMints();
                if (mints > 0) {
                    mintCount += mints;
                    factionIds[factionIndex] = i + 1;
                    factionAmts[factionIndex++] = mints;
                }
            }

            if (burnCount > mintCount) revert BurnsExceedMints();
            uint256 paidCount = mintCount - burnCount;
            if (paidCount > 0) {
                if (msg.value != _price * paidCount) revert InvalidPaymentAmount();
                if (paidCount > paidMintsRemaining) revert ExceedsPaidMintsRemaining();
                paidMintsRemaining -= paidCount;
            }

            SaleState state = saleState;
            if (state < SaleState.PUBLIC) {
                uint256 userMintsInState = userMinted[_msgSender()][state] + mintCount;
                if (userMintsInState > _mintLimit) revert ExceedsMintAllocation();
                userMinted[_msgSender()][state] = userMintsInState;
            }

            if (sanpassIds.length > 0) SANPASS.burnBatch(_msgSender(), sanpassIds, sanpassAmts);
            _mintSanwear(factionIds, factionAmts);
            _mintAvatars(factionIds, factionAmts);
        }
    }

    function _mintSanwear(
        uint256[] memory _factionIds,
        uint256[] memory _amounts
    )
        private
    {
        _factionIds.length > 1
            ? SANWEAR.mintBatch(_msgSender(), _factionIds, _amounts)
            : SANWEAR.mint(_msgSender(), _factionIds[0], _amounts[0]);
    }

    function _mintAvatars(
        uint256[] memory _factionIds,
        uint256[] memory _amounts
    )
        private
    {
        unchecked {
            uint256 curSupply = totalSupply;
            uint256 facPageIdx = (curSupply + 1) / EIGHTY_FIVE;
            uint256 lastFacPageIdx = facPageIdx;
            uint256 facPage = tokenFactionBitmap[facPageIdx] | _factionIds[0] << THREE * ((curSupply + 1) % EIGHTY_FIVE);
            for (uint i; i < _factionIds.length; ++i) {
                uint256 amount = _amounts[i];
                for (uint j; j < amount; ++j) {
                    uint256 tokenId = ++curSupply;
                    if (i > 0 || j > 0) {
                        facPageIdx = tokenId / EIGHTY_FIVE;
                        if (facPageIdx > lastFacPageIdx) {
                            tokenFactionBitmap[lastFacPageIdx] = facPage;
                            facPage = tokenFactionBitmap[facPageIdx];
                            lastFacPageIdx = facPageIdx;
                        }
                        facPage |= _factionIds[i] << THREE * (tokenId % EIGHTY_FIVE);
                    }
                    _mint(_msgSender(), tokenId);
                }
            }
            tokenFactionBitmap[facPageIdx] = facPage;
            if (curSupply > MAX_SUPPLY) revert ExceedsMaxSupply();
            totalSupply = curSupply;
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.22;

import {Ownable} from "lib/openzeppelin-contracts/contracts/access/Ownable.sol";

abstract contract AwaitingTheUNMUTOOOOR is Ownable {
    error CallerIsNotTheUNMUTOOOOR();
    error SoundscapeAlreadyUnmuted();
    error UnmuteFailed();
    error ___0_0_0___();

    bool public _SOUNDSCAPE_MUTED_ = true;

    address public constant _THE_UNMUTOOOOR_ = 0x4832344Cf14896818229d81C44C2040AAf1F1a95;

    bytes private ___3_3_3___;

    function ___THESE_GO_TO_ELEVEN___()
        external
    {
        if (false == _SOUNDSCAPE_MUTED_) revert SoundscapeAlreadyUnmuted();
        if (_msgSender() != _THE_UNMUTOOOOR_) revert CallerIsNotTheUNMUTOOOOR();
        if (___3_3_3___.length == 0) revert ___0_0_0___();

        _SOUNDSCAPE_MUTED_ = false;
        (bool success, ) = address(this).call(___3_3_3___);
        if (!success) revert UnmuteFailed();
    }

    function _THREE_THREE_THREE_(
        bytes calldata _3_3_3_
    )
        external
        onlyOwner
    {
        ___3_3_3___ = _3_3_3_;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.22;

import {Ownable} from "lib/openzeppelin-contracts/contracts/access/Ownable.sol";
import {AvatarConstants} from "./AvatarConstants.sol";
import {IAvatarVolumeAndFrequency} from "./IAvatarVolumeAndFrequency.sol";

abstract contract AvatarVolumeAndFrequency is Ownable, AvatarConstants, IAvatarVolumeAndFrequency {
    address public SANSWAP_ADDR;
    uint256[MAX_SUPPLY + 1] public avatarLevels;

    function levelUp(
        uint256 _tokenId,
        uint256 _levelIncreases
    )
        external
    {
        if (_msgSender() != SANSWAP_ADDR) revert CallerIsNotSanswap();
        _levelUp(_tokenId, _levelIncreases);
    }

    function levelUpBatch(
        uint256[] calldata _tokenIds,
        uint256[] calldata _levelIncreases
    )
        external
    {
        if (_msgSender() != SANSWAP_ADDR) revert CallerIsNotSanswap();
        for (uint i; i < _tokenIds.length; ++i) {
            _levelUp(_tokenIds[i], _levelIncreases[i]);
        }
    }

    function setSanswap(
        address _sanswap
    )
        external
        onlyOwner
    {
        SANSWAP_ADDR = _sanswap;
    }

    function getVolumeAndFrequency(
        uint256 _tokenId
    )
        public
        view
        returns (uint128 volume_, uint128 frequency_)
    {
        if (_tokenId == 0 || _tokenId > MAX_SUPPLY) revert InvalidTokenId();
        uint256 levels = avatarLevels[_tokenId];
        volume_ = uint128(levels);
        frequency_ = uint128(levels >> 128);
    }

    function _levelUp(
        uint256 _tokenId,
        uint256 _levelIncreases
    )
        private
    {
        if (_tokenId == 0 || _tokenId > MAX_SUPPLY) revert InvalidTokenId();
        uint256 newLevel = avatarLevels[_tokenId] += _levelIncreases;
        emit AvatarLevelUp(_tokenId, newLevel);
    }

}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.22;

import {Ownable} from "lib/openzeppelin-contracts/contracts/access/Ownable.sol";
import {ECDSA} from "lib/openzeppelin-contracts/contracts/utils/cryptography/ECDSA.sol";
import {MessageHashUtils} from "lib/openzeppelin-contracts/contracts/utils/cryptography/MessageHashUtils.sol";

abstract contract StatefulSale is Ownable {
    error SaleStateNotActive();

    enum SaleState {
        CLOSED,
        MEMBERS_LIST,
        ALLOW_LIST,
        PUBLIC
    }

    event SaleStateChanged(
        SaleState newSaleState
    );

    address public immutable SIGNER;

    SaleState public saleState;

    constructor(address _signer) {
        SIGNER = _signer;
    }

    function setSaleState(SaleState _state)
        external
        onlyOwner
    {
        saleState = _state;
        emit SaleStateChanged(_state);
    }

    function isValidSignature(
        bytes calldata _signature,
        address _sender,
        uint256 _chainId,
        address _contract,
        SaleState _state,
        uint256 _mintLimit
    )
        public
        view
        returns (bool)
    {
        bytes32 hash = MessageHashUtils.toEthSignedMessageHash(
            keccak256(
                abi.encode(
                    _sender,
                    _chainId,
                    _contract,
                    _state,
                    _mintLimit
                )
            )
        );
        return SIGNER == ECDSA.recover(hash, _signature);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.22;

import {Ownable} from "lib/openzeppelin-contracts/contracts/access/Ownable.sol";
import {ERC2981} from "lib/openzeppelin-contracts/contracts/token/common/ERC2981.sol";

abstract contract ERC2981Plus is Ownable, ERC2981 {
    event DefaultRoyaltySet(address recipient, uint16 bps);

    function setDefaultRoyalty(
        address _receiver,
        uint96 _feeNumerator
    )
        external
        onlyOwner
    {
        _setDefaultRoyalty(_receiver, _feeNumerator);
    }

    function _setDefaultRoyalty(
        address _receiver,
        uint96 _feeNumerator
    )
        internal
        override
    {
        super._setDefaultRoyalty(_receiver, _feeNumerator);
        emit DefaultRoyaltySet(_receiver, uint16(_feeNumerator));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/ERC721Consecutive.sol)

pragma solidity ^0.8.20;

import {ERC721} from "../ERC721.sol";
import {IERC2309} from "../../../interfaces/IERC2309.sol";
import {BitMaps} from "../../../utils/structs/BitMaps.sol";
import {Checkpoints} from "../../../utils/structs/Checkpoints.sol";

/**
 * @dev Implementation of the ERC2309 "Consecutive Transfer Extension" as defined in
 * https://eips.ethereum.org/EIPS/eip-2309[EIP-2309].
 *
 * This extension allows the minting of large batches of tokens, during contract construction only. For upgradeable
 * contracts this implies that batch minting is only available during proxy deployment, and not in subsequent upgrades.
 * These batches are limited to 5000 tokens at a time by default to accommodate off-chain indexers.
 *
 * Using this extension removes the ability to mint single tokens during contract construction. This ability is
 * regained after construction. During construction, only batch minting is allowed.
 *
 * IMPORTANT: This extension does not call the {_update} function for tokens minted in batch. Any logic added to this
 * function through overrides will not be triggered when token are minted in batch. You may want to also override
 * {_increaseBalance} or {_mintConsecutive} to account for these mints.
 *
 * IMPORTANT: When overriding {_mintConsecutive}, be careful about call ordering. {ownerOf} may return invalid
 * values during the {_mintConsecutive} execution if the super call is not called first. To be safe, execute the
 * super call before your custom logic.
 */
abstract contract ERC721Consecutive is IERC2309, ERC721 {
    using BitMaps for BitMaps.BitMap;
    using Checkpoints for Checkpoints.Trace160;

    Checkpoints.Trace160 private _sequentialOwnership;
    BitMaps.BitMap private _sequentialBurn;

    /**
     * @dev Batch mint is restricted to the constructor.
     * Any batch mint not emitting the {IERC721-Transfer} event outside of the constructor
     * is non-ERC721 compliant.
     */
    error ERC721ForbiddenBatchMint();

    /**
     * @dev Exceeds the max amount of mints per batch.
     */
    error ERC721ExceededMaxBatchMint(uint256 batchSize, uint256 maxBatch);

    /**
     * @dev Individual minting is not allowed.
     */
    error ERC721ForbiddenMint();

    /**
     * @dev Batch burn is not supported.
     */
    error ERC721ForbiddenBatchBurn();

    /**
     * @dev Maximum size of a batch of consecutive tokens. This is designed to limit stress on off-chain indexing
     * services that have to record one entry per token, and have protections against "unreasonably large" batches of
     * tokens.
     *
     * NOTE: Overriding the default value of 5000 will not cause on-chain issues, but may result in the asset not being
     * correctly supported by off-chain indexing services (including marketplaces).
     */
    function _maxBatchSize() internal view virtual returns (uint96) {
        return 5000;
    }

    /**
     * @dev See {ERC721-_ownerOf}. Override that checks the sequential ownership structure for tokens that have
     * been minted as part of a batch, and not yet transferred.
     */
    function _ownerOf(uint256 tokenId) internal view virtual override returns (address) {
        address owner = super._ownerOf(tokenId);

        // If token is owned by the core, or beyond consecutive range, return base value
        if (owner != address(0) || tokenId > type(uint96).max || tokenId < _firstConsecutiveId()) {
            return owner;
        }

        // Otherwise, check the token was not burned, and fetch ownership from the anchors
        // Note: no need for safe cast, we know that tokenId <= type(uint96).max
        return _sequentialBurn.get(tokenId) ? address(0) : address(_sequentialOwnership.lowerLookup(uint96(tokenId)));
    }

    /**
     * @dev Mint a batch of tokens of length `batchSize` for `to`. Returns the token id of the first token minted in the
     * batch; if `batchSize` is 0, returns the number of consecutive ids minted so far.
     *
     * Requirements:
     *
     * - `batchSize` must not be greater than {_maxBatchSize}.
     * - The function is called in the constructor of the contract (directly or indirectly).
     *
     * CAUTION: Does not emit a `Transfer` event. This is ERC721 compliant as long as it is done inside of the
     * constructor, which is enforced by this function.
     *
     * CAUTION: Does not invoke `onERC721Received` on the receiver.
     *
     * Emits a {IERC2309-ConsecutiveTransfer} event.
     */
    function _mintConsecutive(address to, uint96 batchSize) internal virtual returns (uint96) {
        uint96 next = _nextConsecutiveId();

        // minting a batch of size 0 is a no-op
        if (batchSize > 0) {
            if (address(this).code.length > 0) {
                revert ERC721ForbiddenBatchMint();
            }
            if (to == address(0)) {
                revert ERC721InvalidReceiver(address(0));
            }

            uint256 maxBatchSize = _maxBatchSize();
            if (batchSize > maxBatchSize) {
                revert ERC721ExceededMaxBatchMint(batchSize, maxBatchSize);
            }

            // push an ownership checkpoint & emit event
            uint96 last = next + batchSize - 1;
            _sequentialOwnership.push(last, uint160(to));

            // The invariant required by this function is preserved because the new sequentialOwnership checkpoint
            // is attributing ownership of `batchSize` new tokens to account `to`.
            _increaseBalance(to, batchSize);

            emit ConsecutiveTransfer(next, last, address(0), to);
        }

        return next;
    }

    /**
     * @dev See {ERC721-_update}. Override version that restricts normal minting to after construction.
     *
     * WARNING: Using {ERC721Consecutive} prevents minting during construction in favor of {_mintConsecutive}.
     * After construction, {_mintConsecutive} is no longer available and minting through {_update} becomes available.
     */
    function _update(address to, uint256 tokenId, address auth) internal virtual override returns (address) {
        address previousOwner = super._update(to, tokenId, auth);

        // only mint after construction
        if (previousOwner == address(0) && address(this).code.length == 0) {
            revert ERC721ForbiddenMint();
        }

        // record burn
        if (
            to == address(0) && // if we burn
            tokenId < _nextConsecutiveId() && // and the tokenId was minted in a batch
            !_sequentialBurn.get(tokenId) // and the token was never marked as burnt
        ) {
            _sequentialBurn.set(tokenId);
        }

        return previousOwner;
    }

    /**
     * @dev Used to offset the first token id in {_nextConsecutiveId}
     */
    function _firstConsecutiveId() internal view virtual returns (uint96) {
        return 0;
    }

    /**
     * @dev Returns the next tokenId to mint using {_mintConsecutive}. It will return {_firstConsecutiveId}
     * if no consecutive tokenId has been minted before.
     */
    function _nextConsecutiveId() private view returns (uint96) {
        (bool exists, uint96 latestId, ) = _sequentialOwnership.latestCheckpoint();
        return exists ? latestId + 1 : _firstConsecutiveId();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/ERC721.sol)

pragma solidity ^0.8.20;

import {IERC721} from "./IERC721.sol";
import {IERC721Receiver} from "./IERC721Receiver.sol";
import {IERC721Metadata} from "./extensions/IERC721Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {Strings} from "../../utils/Strings.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
import {IERC721Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
 * the Metadata extension, but not including the Enumerable extension, which is available separately as
 * {ERC721Enumerable}.
 */
abstract contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Errors {
    using Strings for uint256;

    // Token name
    string private _name;

    // Token symbol
    string private _symbol;

    mapping(uint256 tokenId => address) private _owners;

    mapping(address owner => uint256) private _balances;

    mapping(uint256 tokenId => address) private _tokenApprovals;

    mapping(address owner => mapping(address operator => bool)) private _operatorApprovals;

    /**
     * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return
            interfaceId == type(IERC721).interfaceId ||
            interfaceId == type(IERC721Metadata).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    /**
     * @dev See {IERC721-balanceOf}.
     */
    function balanceOf(address owner) public view virtual returns (uint256) {
        if (owner == address(0)) {
            revert ERC721InvalidOwner(address(0));
        }
        return _balances[owner];
    }

    /**
     * @dev See {IERC721-ownerOf}.
     */
    function ownerOf(uint256 tokenId) public view virtual returns (address) {
        return _requireOwned(tokenId);
    }

    /**
     * @dev See {IERC721Metadata-name}.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev See {IERC721Metadata-symbol}.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev See {IERC721Metadata-tokenURI}.
     */
    function tokenURI(uint256 tokenId) public view virtual returns (string memory) {
        _requireOwned(tokenId);

        string memory baseURI = _baseURI();
        return bytes(baseURI).length > 0 ? string.concat(baseURI, tokenId.toString()) : "";
    }

    /**
     * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
     * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
     * by default, can be overridden in child contracts.
     */
    function _baseURI() internal view virtual returns (string memory) {
        return "";
    }

    /**
     * @dev See {IERC721-approve}.
     */
    function approve(address to, uint256 tokenId) public virtual {
        _approve(to, tokenId, _msgSender());
    }

    /**
     * @dev See {IERC721-getApproved}.
     */
    function getApproved(uint256 tokenId) public view virtual returns (address) {
        _requireOwned(tokenId);

        return _getApproved(tokenId);
    }

    /**
     * @dev See {IERC721-setApprovalForAll}.
     */
    function setApprovalForAll(address operator, bool approved) public virtual {
        _setApprovalForAll(_msgSender(), operator, approved);
    }

    /**
     * @dev See {IERC721-isApprovedForAll}.
     */
    function isApprovedForAll(address owner, address operator) public view virtual returns (bool) {
        return _operatorApprovals[owner][operator];
    }

    /**
     * @dev See {IERC721-transferFrom}.
     */
    function transferFrom(address from, address to, uint256 tokenId) public virtual {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        // Setting an "auth" arguments enables the `_isAuthorized` check which verifies that the token exists
        // (from != 0). Therefore, it is not needed to verify that the return value is not 0 here.
        address previousOwner = _update(to, tokenId, _msgSender());
        if (previousOwner != from) {
            revert ERC721IncorrectOwner(from, tokenId, previousOwner);
        }
    }

    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) public {
        safeTransferFrom(from, to, tokenId, "");
    }

    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual {
        transferFrom(from, to, tokenId);
        _checkOnERC721Received(from, to, tokenId, data);
    }

    /**
     * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
     *
     * IMPORTANT: Any overrides to this function that add ownership of tokens not tracked by the
     * core ERC721 logic MUST be matched with the use of {_increaseBalance} to keep balances
     * consistent with ownership. The invariant to preserve is that for any address `a` the value returned by
     * `balanceOf(a)` must be equal to the number of tokens such that `_ownerOf(tokenId)` is `a`.
     */
    function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
        return _owners[tokenId];
    }

    /**
     * @dev Returns the approved address for `tokenId`. Returns 0 if `tokenId` is not minted.
     */
    function _getApproved(uint256 tokenId) internal view virtual returns (address) {
        return _tokenApprovals[tokenId];
    }

    /**
     * @dev Returns whether `spender` is allowed to manage `owner`'s tokens, or `tokenId` in
     * particular (ignoring whether it is owned by `owner`).
     *
     * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
     * assumption.
     */
    function _isAuthorized(address owner, address spender, uint256 tokenId) internal view virtual returns (bool) {
        return
            spender != address(0) &&
            (owner == spender || isApprovedForAll(owner, spender) || _getApproved(tokenId) == spender);
    }

    /**
     * @dev Checks if `spender` can operate on `tokenId`, assuming the provided `owner` is the actual owner.
     * Reverts if `spender` does not have approval from the provided `owner` for the given token or for all its assets
     * the `spender` for the specific `tokenId`.
     *
     * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
     * assumption.
     */
    function _checkAuthorized(address owner, address spender, uint256 tokenId) internal view virtual {
        if (!_isAuthorized(owner, spender, tokenId)) {
            if (owner == address(0)) {
                revert ERC721NonexistentToken(tokenId);
            } else {
                revert ERC721InsufficientApproval(spender, tokenId);
            }
        }
    }

    /**
     * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
     *
     * NOTE: the value is limited to type(uint128).max. This protect against _balance overflow. It is unrealistic that
     * a uint256 would ever overflow from increments when these increments are bounded to uint128 values.
     *
     * WARNING: Increasing an account's balance using this function tends to be paired with an override of the
     * {_ownerOf} function to resolve the ownership of the corresponding tokens so that balances and ownership
     * remain consistent with one another.
     */
    function _increaseBalance(address account, uint128 value) internal virtual {
        unchecked {
            _balances[account] += value;
        }
    }

    /**
     * @dev Transfers `tokenId` from its current owner to `to`, or alternatively mints (or burns) if the current owner
     * (or `to`) is the zero address. Returns the owner of the `tokenId` before the update.
     *
     * The `auth` argument is optional. If the value passed is non 0, then this function will check that
     * `auth` is either the owner of the token, or approved to operate on the token (by the owner).
     *
     * Emits a {Transfer} event.
     *
     * NOTE: If overriding this function in a way that tracks balances, see also {_increaseBalance}.
     */
    function _update(address to, uint256 tokenId, address auth) internal virtual returns (address) {
        address from = _ownerOf(tokenId);

        // Perform (optional) operator check
        if (auth != address(0)) {
            _checkAuthorized(from, auth, tokenId);
        }

        // Execute the update
        if (from != address(0)) {
            // Clear approval. No need to re-authorize or emit the Approval event
            _approve(address(0), tokenId, address(0), false);

            unchecked {
                _balances[from] -= 1;
            }
        }

        if (to != address(0)) {
            unchecked {
                _balances[to] += 1;
            }
        }

        _owners[tokenId] = to;

        emit Transfer(from, to, tokenId);

        return from;
    }

    /**
     * @dev Mints `tokenId` and transfers it to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - `to` cannot be the zero address.
     *
     * Emits a {Transfer} event.
     */
    function _mint(address to, uint256 tokenId) internal {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        address previousOwner = _update(to, tokenId, address(0));
        if (previousOwner != address(0)) {
            revert ERC721InvalidSender(address(0));
        }
    }

    /**
     * @dev Mints `tokenId`, transfers it to `to` and checks for `to` acceptance.
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeMint(address to, uint256 tokenId) internal {
        _safeMint(to, tokenId, "");
    }

    /**
     * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
     * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
     */
    function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
        _mint(to, tokenId);
        _checkOnERC721Received(address(0), to, tokenId, data);
    }

    /**
     * @dev Destroys `tokenId`.
     * The approval is cleared when the token is burned.
     * This is an internal function that does not check if the sender is authorized to operate on the token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     *
     * Emits a {Transfer} event.
     */
    function _burn(uint256 tokenId) internal {
        address previousOwner = _update(address(0), tokenId, address(0));
        if (previousOwner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        }
    }

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *  As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     *
     * Emits a {Transfer} event.
     */
    function _transfer(address from, address to, uint256 tokenId) internal {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        address previousOwner = _update(to, tokenId, address(0));
        if (previousOwner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        } else if (previousOwner != from) {
            revert ERC721IncorrectOwner(from, tokenId, previousOwner);
        }
    }

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking that contract recipients
     * are aware of the ERC721 standard to prevent tokens from being forever locked.
     *
     * `data` is additional data, it has no specified format and it is sent in call to `to`.
     *
     * This internal function is like {safeTransferFrom} in the sense that it invokes
     * {IERC721Receiver-onERC721Received} on the receiver, and can be used to e.g.
     * implement alternative mechanisms to perform token transfer, such as signature-based.
     *
     * Requirements:
     *
     * - `tokenId` token must exist and be owned by `from`.
     * - `to` cannot be the zero address.
     * - `from` cannot be the zero address.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeTransfer(address from, address to, uint256 tokenId) internal {
        _safeTransfer(from, to, tokenId, "");
    }

    /**
     * @dev Same as {xref-ERC721-_safeTransfer-address-address-uint256-}[`_safeTransfer`], with an additional `data` parameter which is
     * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
     */
    function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
        _transfer(from, to, tokenId);
        _checkOnERC721Received(from, to, tokenId, data);
    }

    /**
     * @dev Approve `to` to operate on `tokenId`
     *
     * The `auth` argument is optional. If the value passed is non 0, then this function will check that `auth` is
     * either the owner of the token, or approved to operate on all tokens held by this owner.
     *
     * Emits an {Approval} event.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address to, uint256 tokenId, address auth) internal {
        _approve(to, tokenId, auth, true);
    }

    /**
     * @dev Variant of `_approve` with an optional flag to enable or disable the {Approval} event. The event is not
     * emitted in the context of transfers.
     */
    function _approve(address to, uint256 tokenId, address auth, bool emitEvent) internal virtual {
        // Avoid reading the owner unless necessary
        if (emitEvent || auth != address(0)) {
            address owner = _requireOwned(tokenId);

            // We do not use _isAuthorized because single-token approvals should not be able to call approve
            if (auth != address(0) && owner != auth && !isApprovedForAll(owner, auth)) {
                revert ERC721InvalidApprover(auth);
            }

            if (emitEvent) {
                emit Approval(owner, to, tokenId);
            }
        }

        _tokenApprovals[tokenId] = to;
    }

    /**
     * @dev Approve `operator` to operate on all of `owner` tokens
     *
     * Requirements:
     * - operator can't be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
        if (operator == address(0)) {
            revert ERC721InvalidOperator(operator);
        }
        _operatorApprovals[owner][operator] = approved;
        emit ApprovalForAll(owner, operator, approved);
    }

    /**
     * @dev Reverts if the `tokenId` doesn't have a current owner (it hasn't been minted, or it has been burned).
     * Returns the owner.
     *
     * Overrides to ownership logic should be done to {_ownerOf}.
     */
    function _requireOwned(uint256 tokenId) internal view returns (address) {
        address owner = _ownerOf(tokenId);
        if (owner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        }
        return owner;
    }

    /**
     * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target address. This will revert if the
     * recipient doesn't accept the token transfer. The call is not executed if the target address is not a contract.
     *
     * @param from address representing the previous owner of the given token ID
     * @param to target address that will receive the tokens
     * @param tokenId uint256 ID of the token to be transferred
     * @param data bytes optional data to send along with the call
     */
    function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory data) private {
        if (to.code.length > 0) {
            try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) {
                if (retval != IERC721Receiver.onERC721Received.selector) {
                    revert ERC721InvalidReceiver(to);
                }
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    revert ERC721InvalidReceiver(to);
                } else {
                    /// @solidity memory-safe-assembly
                    assembly {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.22;

interface ISANPASS {
    function burn(address account, uint256 id, uint256 value) external;
    function burnBatch(address account, uint256[] memory ids, uint256[] memory values) external;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.22;

interface ISANWEAR {
    error ArrayLengthMismatch();
    error ClaimAmountZero();
    error ClaimInactive();
    error InvalidTokenId();

    function mint(address _to, uint256 _id, uint256 _amount) external;
    function mintBatch(address _to, uint256[] calldata _ids, uint256[] calldata _amounts) external;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.22;

abstract contract AvatarConstants {
    uint256 public constant MAX_SUPPLY = 3_333;
    uint256 public constant MAX_PAID_SUPPLY = 1_100;
    uint256 public constant PRICE_FULL = 0.3 ether;
    uint256 public constant PRICE_DISCOUNTED = 0.2 ether;

    uint96 internal constant INITIAL_ROYALTY_BPS = 250;
    uint96 internal constant INITIAL_MINT_AMOUNT = 300;
    uint256 internal constant THREE = 3;
    uint256 internal constant EIGHTY_FIVE = 85;
    uint256 internal constant MASK_THREE_BITS = 2**THREE - 1;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.22;

interface IAvatarVolumeAndFrequency {
    error CallerIsNotSanswap();
    error InvalidTokenId();

    enum Faction {
        UNUSED,
        Chi,
        Umi,
        Sora,
        Mecha,
        Nomad
    }

    event AvatarLevelUp (
        uint256 indexed tokenId,
        uint256 level
    );

    function levelUp(
        uint256 _tokenId,
        uint256 _levelIncreases
    ) external;

    function levelUpBatch(
        uint256[] calldata _tokenIds,
        uint256[] calldata _levelIncreases
    ) external;

    function getVolumeAndFrequency(
        uint256 _tokenId
    ) external view returns (uint128 volume_, uint128 frequency_);

    function tokenFaction(
        uint256 _tokenId
    ) external view returns (Faction);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError, bytes32) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/common/ERC2981.sol)

pragma solidity ^0.8.20;

import {IERC2981} from "../../interfaces/IERC2981.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";

/**
 * @dev Implementation of the NFT Royalty Standard, a standardized way to retrieve royalty payment information.
 *
 * Royalty information can be specified globally for all token ids via {_setDefaultRoyalty}, and/or individually for
 * specific token ids via {_setTokenRoyalty}. The latter takes precedence over the first.
 *
 * Royalty is specified as a fraction of sale price. {_feeDenominator} is overridable but defaults to 10000, meaning the
 * fee is specified in basis points by default.
 *
 * IMPORTANT: ERC-2981 only specifies a way to signal royalty information and does not enforce its payment. See
 * https://eips.ethereum.org/EIPS/eip-2981#optional-royalty-payments[Rationale] in the EIP. Marketplaces are expected to
 * voluntarily pay royalties together with sales, but note that this standard is not yet widely supported.
 */
abstract contract ERC2981 is IERC2981, ERC165 {
    struct RoyaltyInfo {
        address receiver;
        uint96 royaltyFraction;
    }

    RoyaltyInfo private _defaultRoyaltyInfo;
    mapping(uint256 tokenId => RoyaltyInfo) private _tokenRoyaltyInfo;

    /**
     * @dev The default royalty set is invalid (eg. (numerator / denominator) >= 1).
     */
    error ERC2981InvalidDefaultRoyalty(uint256 numerator, uint256 denominator);

    /**
     * @dev The default royalty receiver is invalid.
     */
    error ERC2981InvalidDefaultRoyaltyReceiver(address receiver);

    /**
     * @dev The royalty set for an specific `tokenId` is invalid (eg. (numerator / denominator) >= 1).
     */
    error ERC2981InvalidTokenRoyalty(uint256 tokenId, uint256 numerator, uint256 denominator);

    /**
     * @dev The royalty receiver for `tokenId` is invalid.
     */
    error ERC2981InvalidTokenRoyaltyReceiver(uint256 tokenId, address receiver);

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC165) returns (bool) {
        return interfaceId == type(IERC2981).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @inheritdoc IERC2981
     */
    function royaltyInfo(uint256 tokenId, uint256 salePrice) public view virtual returns (address, uint256) {
        RoyaltyInfo memory royalty = _tokenRoyaltyInfo[tokenId];

        if (royalty.receiver == address(0)) {
            royalty = _defaultRoyaltyInfo;
        }

        uint256 royaltyAmount = (salePrice * royalty.royaltyFraction) / _feeDenominator();

        return (royalty.receiver, royaltyAmount);
    }

    /**
     * @dev The denominator with which to interpret the fee set in {_setTokenRoyalty} and {_setDefaultRoyalty} as a
     * fraction of the sale price. Defaults to 10000 so fees are expressed in basis points, but may be customized by an
     * override.
     */
    function _feeDenominator() internal pure virtual returns (uint96) {
        return 10000;
    }

    /**
     * @dev Sets the royalty information that all ids in this contract will default to.
     *
     * Requirements:
     *
     * - `receiver` cannot be the zero address.
     * - `feeNumerator` cannot be greater than the fee denominator.
     */
    function _setDefaultRoyalty(address receiver, uint96 feeNumerator) internal virtual {
        uint256 denominator = _feeDenominator();
        if (feeNumerator > denominator) {
            // Royalty fee will exceed the sale price
            revert ERC2981InvalidDefaultRoyalty(feeNumerator, denominator);
        }
        if (receiver == address(0)) {
            revert ERC2981InvalidDefaultRoyaltyReceiver(address(0));
        }

        _defaultRoyaltyInfo = RoyaltyInfo(receiver, feeNumerator);
    }

    /**
     * @dev Removes default royalty information.
     */
    function _deleteDefaultRoyalty() internal virtual {
        delete _defaultRoyaltyInfo;
    }

    /**
     * @dev Sets the royalty information for a specific token id, overriding the global default.
     *
     * Requirements:
     *
     * - `receiver` cannot be the zero address.
     * - `feeNumerator` cannot be greater than the fee denominator.
     */
    function _setTokenRoyalty(uint256 tokenId, address receiver, uint96 feeNumerator) internal virtual {
        uint256 denominator = _feeDenominator();
        if (feeNumerator > denominator) {
            // Royalty fee will exceed the sale price
            revert ERC2981InvalidTokenRoyalty(tokenId, feeNumerator, denominator);
        }
        if (receiver == address(0)) {
            revert ERC2981InvalidTokenRoyaltyReceiver(tokenId, address(0));
        }

        _tokenRoyaltyInfo[tokenId] = RoyaltyInfo(receiver, feeNumerator);
    }

    /**
     * @dev Resets royalty information for the token id back to the global default.
     */
    function _resetTokenRoyalty(uint256 tokenId) internal virtual {
        delete _tokenRoyaltyInfo[tokenId];
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC2309.sol)

pragma solidity ^0.8.20;

/**
 * @dev ERC-2309: ERC-721 Consecutive Transfer Extension.
 */
interface IERC2309 {
    /**
     * @dev Emitted when the tokens from `fromTokenId` to `toTokenId` are transferred from `fromAddress` to `toAddress`.
     */
    event ConsecutiveTransfer(
        uint256 indexed fromTokenId,
        uint256 toTokenId,
        address indexed fromAddress,
        address indexed toAddress
    );
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/BitMaps.sol)
pragma solidity ^0.8.20;

/**
 * @dev Library for managing uint256 to bool mapping in a compact and efficient way, provided the keys are sequential.
 * Largely inspired by Uniswap's https://github.com/Uniswap/merkle-distributor/blob/master/contracts/MerkleDistributor.sol[merkle-distributor].
 *
 * BitMaps pack 256 booleans across each bit of a single 256-bit slot of `uint256` type.
 * Hence booleans corresponding to 256 _sequential_ indices would only consume a single slot,
 * unlike the regular `bool` which would consume an entire slot for a single value.
 *
 * This results in gas savings in two ways:
 *
 * - Setting a zero value to non-zero only once every 256 times
 * - Accessing the same warm slot for every 256 _sequential_ indices
 */
library BitMaps {
    struct BitMap {
        mapping(uint256 bucket => uint256) _data;
    }

    /**
     * @dev Returns whether the bit at `index` is set.
     */
    function get(BitMap storage bitmap, uint256 index) internal view returns (bool) {
        uint256 bucket = index >> 8;
        uint256 mask = 1 << (index & 0xff);
        return bitmap._data[bucket] & mask != 0;
    }

    /**
     * @dev Sets the bit at `index` to the boolean `value`.
     */
    function setTo(BitMap storage bitmap, uint256 index, bool value) internal {
        if (value) {
            set(bitmap, index);
        } else {
            unset(bitmap, index);
        }
    }

    /**
     * @dev Sets the bit at `index`.
     */
    function set(BitMap storage bitmap, uint256 index) internal {
        uint256 bucket = index >> 8;
        uint256 mask = 1 << (index & 0xff);
        bitmap._data[bucket] |= mask;
    }

    /**
     * @dev Unsets the bit at `index`.
     */
    function unset(BitMap storage bitmap, uint256 index) internal {
        uint256 bucket = index >> 8;
        uint256 mask = 1 << (index & 0xff);
        bitmap._data[bucket] &= ~mask;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/Checkpoints.sol)
// This file was procedurally generated from scripts/generate/templates/Checkpoints.js.

pragma solidity ^0.8.20;

import {Math} from "../math/Math.sol";

/**
 * @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in
 * time, and later looking up past values by block number. See {Votes} as an example.
 *
 * To create a history of checkpoints define a variable type `Checkpoints.Trace*` in your contract, and store a new
 * checkpoint for the current transaction block using the {push} function.
 */
library Checkpoints {
    /**
     * @dev A value was attempted to be inserted on a past checkpoint.
     */
    error CheckpointUnorderedInsertion();

    struct Trace224 {
        Checkpoint224[] _checkpoints;
    }

    struct Checkpoint224 {
        uint32 _key;
        uint224 _value;
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into a Trace224 so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     *
     * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint32).max` key set will disable the
     * library.
     */
    function push(Trace224 storage self, uint32 key, uint224 value) internal returns (uint224, uint224) {
        return _insert(self._checkpoints, key, value);
    }

    /**
     * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
     * there is none.
     */
    function lowerLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
        return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
     * keys).
     */
    function upperLookupRecent(Trace224 storage self, uint32 key) internal view returns (uint224) {
        uint256 len = self._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);

        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(Trace224 storage self) internal view returns (uint224) {
        uint256 pos = self._checkpoints.length;
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(Trace224 storage self) internal view returns (bool exists, uint32 _key, uint224 _value) {
        uint256 pos = self._checkpoints.length;
        if (pos == 0) {
            return (false, 0, 0);
        } else {
            Checkpoint224 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
            return (true, ckpt._key, ckpt._value);
        }
    }

    /**
     * @dev Returns the number of checkpoint.
     */
    function length(Trace224 storage self) internal view returns (uint256) {
        return self._checkpoints.length;
    }

    /**
     * @dev Returns checkpoint at given position.
     */
    function at(Trace224 storage self, uint32 pos) internal view returns (Checkpoint224 memory) {
        return self._checkpoints[pos];
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
     * or by updating the last one.
     */
    function _insert(Checkpoint224[] storage self, uint32 key, uint224 value) private returns (uint224, uint224) {
        uint256 pos = self.length;

        if (pos > 0) {
            // Copying to memory is important here.
            Checkpoint224 memory last = _unsafeAccess(self, pos - 1);

            // Checkpoint keys must be non-decreasing.
            if (last._key > key) {
                revert CheckpointUnorderedInsertion();
            }

            // Update or push new checkpoint
            if (last._key == key) {
                _unsafeAccess(self, pos - 1)._value = value;
            } else {
                self.push(Checkpoint224({_key: key, _value: value}));
            }
            return (last._value, value);
        } else {
            self.push(Checkpoint224({_key: key, _value: value}));
            return (0, value);
        }
    }

    /**
     * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _upperBinaryLookup(
        Checkpoint224[] storage self,
        uint32 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key > key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }
        return high;
    }

    /**
     * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
     * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
     * exclusive `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _lowerBinaryLookup(
        Checkpoint224[] storage self,
        uint32 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key < key) {
                low = mid + 1;
            } else {
                high = mid;
            }
        }
        return high;
    }

    /**
     * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
     */
    function _unsafeAccess(
        Checkpoint224[] storage self,
        uint256 pos
    ) private pure returns (Checkpoint224 storage result) {
        assembly {
            mstore(0, self.slot)
            result.slot := add(keccak256(0, 0x20), pos)
        }
    }

    struct Trace208 {
        Checkpoint208[] _checkpoints;
    }

    struct Checkpoint208 {
        uint48 _key;
        uint208 _value;
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into a Trace208 so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     *
     * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the
     * library.
     */
    function push(Trace208 storage self, uint48 key, uint208 value) internal returns (uint208, uint208) {
        return _insert(self._checkpoints, key, value);
    }

    /**
     * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
     * there is none.
     */
    function lowerLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
        return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
     * keys).
     */
    function upperLookupRecent(Trace208 storage self, uint48 key) internal view returns (uint208) {
        uint256 len = self._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);

        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(Trace208 storage self) internal view returns (uint208) {
        uint256 pos = self._checkpoints.length;
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(Trace208 storage self) internal view returns (bool exists, uint48 _key, uint208 _value) {
        uint256 pos = self._checkpoints.length;
        if (pos == 0) {
            return (false, 0, 0);
        } else {
            Checkpoint208 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
            return (true, ckpt._key, ckpt._value);
        }
    }

    /**
     * @dev Returns the number of checkpoint.
     */
    function length(Trace208 storage self) internal view returns (uint256) {
        return self._checkpoints.length;
    }

    /**
     * @dev Returns checkpoint at given position.
     */
    function at(Trace208 storage self, uint32 pos) internal view returns (Checkpoint208 memory) {
        return self._checkpoints[pos];
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
     * or by updating the last one.
     */
    function _insert(Checkpoint208[] storage self, uint48 key, uint208 value) private returns (uint208, uint208) {
        uint256 pos = self.length;

        if (pos > 0) {
            // Copying to memory is important here.
            Checkpoint208 memory last = _unsafeAccess(self, pos - 1);

            // Checkpoint keys must be non-decreasing.
            if (last._key > key) {
                revert CheckpointUnorderedInsertion();
            }

            // Update or push new checkpoint
            if (last._key == key) {
                _unsafeAccess(self, pos - 1)._value = value;
            } else {
                self.push(Checkpoint208({_key: key, _value: value}));
            }
            return (last._value, value);
        } else {
            self.push(Checkpoint208({_key: key, _value: value}));
            return (0, value);
        }
    }

    /**
     * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _upperBinaryLookup(
        Checkpoint208[] storage self,
        uint48 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key > key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }
        return high;
    }

    /**
     * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
     * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
     * exclusive `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _lowerBinaryLookup(
        Checkpoint208[] storage self,
        uint48 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key < key) {
                low = mid + 1;
            } else {
                high = mid;
            }
        }
        return high;
    }

    /**
     * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
     */
    function _unsafeAccess(
        Checkpoint208[] storage self,
        uint256 pos
    ) private pure returns (Checkpoint208 storage result) {
        assembly {
            mstore(0, self.slot)
            result.slot := add(keccak256(0, 0x20), pos)
        }
    }

    struct Trace160 {
        Checkpoint160[] _checkpoints;
    }

    struct Checkpoint160 {
        uint96 _key;
        uint160 _value;
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into a Trace160 so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     *
     * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint96).max` key set will disable the
     * library.
     */
    function push(Trace160 storage self, uint96 key, uint160 value) internal returns (uint160, uint160) {
        return _insert(self._checkpoints, key, value);
    }

    /**
     * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
     * there is none.
     */
    function lowerLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
        return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
     * keys).
     */
    function upperLookupRecent(Trace160 storage self, uint96 key) internal view returns (uint160) {
        uint256 len = self._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);

        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(Trace160 storage self) internal view returns (uint160) {
        uint256 pos = self._checkpoints.length;
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(Trace160 storage self) internal view returns (bool exists, uint96 _key, uint160 _value) {
        uint256 pos = self._checkpoints.length;
        if (pos == 0) {
            return (false, 0, 0);
        } else {
            Checkpoint160 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
            return (true, ckpt._key, ckpt._value);
        }
    }

    /**
     * @dev Returns the number of checkpoint.
     */
    function length(Trace160 storage self) internal view returns (uint256) {
        return self._checkpoints.length;
    }

    /**
     * @dev Returns checkpoint at given position.
     */
    function at(Trace160 storage self, uint32 pos) internal view returns (Checkpoint160 memory) {
        return self._checkpoints[pos];
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
     * or by updating the last one.
     */
    function _insert(Checkpoint160[] storage self, uint96 key, uint160 value) private returns (uint160, uint160) {
        uint256 pos = self.length;

        if (pos > 0) {
            // Copying to memory is important here.
            Checkpoint160 memory last = _unsafeAccess(self, pos - 1);

            // Checkpoint keys must be non-decreasing.
            if (last._key > key) {
                revert CheckpointUnorderedInsertion();
            }

            // Update or push new checkpoint
            if (last._key == key) {
                _unsafeAccess(self, pos - 1)._value = value;
            } else {
                self.push(Checkpoint160({_key: key, _value: value}));
            }
            return (last._value, value);
        } else {
            self.push(Checkpoint160({_key: key, _value: value}));
            return (0, value);
        }
    }

    /**
     * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _upperBinaryLookup(
        Checkpoint160[] storage self,
        uint96 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key > key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }
        return high;
    }

    /**
     * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
     * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
     * exclusive `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _lowerBinaryLookup(
        Checkpoint160[] storage self,
        uint96 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key < key) {
                low = mid + 1;
            } else {
                high = mid;
            }
        }
        return high;
    }

    /**
     * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
     */
    function _unsafeAccess(
        Checkpoint160[] storage self,
        uint256 pos
    ) private pure returns (Checkpoint160 storage result) {
        assembly {
            mstore(0, self.slot)
            result.slot := add(keccak256(0, 0x20), pos)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
     *   {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721Receiver.sol)

pragma solidity ^0.8.20;

/**
 * @title ERC721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
     * reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol)

pragma solidity ^0.8.20;

import {IERC721} from "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Metadata is IERC721 {
    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC2981.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

/**
 * @dev Interface for the NFT Royalty Standard.
 *
 * A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal
 * support for royalty payments across all NFT marketplaces and ecosystem participants.
 */
interface IERC2981 is IERC165 {
    /**
     * @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of
     * exchange. The royalty amount is denominated and should be paid in that same unit of exchange.
     */
    function royaltyInfo(
        uint256 tokenId,
        uint256 salePrice
    ) external view returns (address receiver, uint256 royaltyAmount);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):