ETH Price: $3,384.34 (-1.55%)
Gas: 1 Gwei

Contract Diff Checker

Contract Name:
Token

Contract Source Code:

File 1 of 1 : Token

// SPDX-License-Identifier: MIT
//      _ __  __ __  __ __  __     _
//     | |  \/  |  \/  |  \/  |   (_)
//   __| | \  / | \  / | \  / |    _  ___
//  / _` | |\/| | |\/| | |\/| |   | |/ _ \
// | (_| | |  | | |  | | |  | |  _| | (_) |
//  \__,_|_|  |_|_|  |_|_|  |_| (_)_|\___/

// dMMM dApp: https://dMMM.io
// Official Website: http://d-mmm.github.io/
// Telegram Channel:  https://t.me/dMMM2020
// Github: https://github.com/d-mmm
// WhitePaper: https://dMMM.io/whitepaper

pragma solidity >=0.6.0;

// SPDX-License-Identifier: MIT



// SPDX-License-Identifier: MIT



/**
 * @dev Interface of the ERC777Token standard as defined in the EIP.
 *
 * This contract uses the
 * https://eips.ethereum.org/EIPS/eip-1820[ERC1820 registry standard] to let
 * token holders and recipients react to token movements by using setting implementers
 * for the associated interfaces in said registry. See {IERC1820Registry} and
 * {ERC1820Implementer}.
 */
interface IERC777 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the smallest part of the token that is not divisible. This
     * means all token operations (creation, movement and destruction) must have
     * amounts that are a multiple of this number.
     *
     * For most token contracts, this value will equal 1.
     */
    function granularity() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by an account (`owner`).
     */
    function balanceOf(address owner) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * If send or receive hooks are registered for the caller and `recipient`,
     * the corresponding functions will be called with `data` and empty
     * `operatorData`. See {IERC777Sender} and {IERC777Recipient}.
     *
     * Emits a {Sent} event.
     *
     * Requirements
     *
     * - the caller must have at least `amount` tokens.
     * - `recipient` cannot be the zero address.
     * - if `recipient` is a contract, it must implement the {IERC777Recipient}
     * interface.
     */
    function send(address recipient, uint256 amount, bytes calldata data) external;

    /**
     * @dev Destroys `amount` tokens from the caller's account, reducing the
     * total supply.
     *
     * If a send hook is registered for the caller, the corresponding function
     * will be called with `data` and empty `operatorData`. See {IERC777Sender}.
     *
     * Emits a {Burned} event.
     *
     * Requirements
     *
     * - the caller must have at least `amount` tokens.
     */
    function burn(uint256 amount, bytes calldata data) external;

    /**
     * @dev Returns true if an account is an operator of `tokenHolder`.
     * Operators can send and burn tokens on behalf of their owners. All
     * accounts are their own operator.
     *
     * See {operatorSend} and {operatorBurn}.
     */
    function isOperatorFor(address operator, address tokenHolder) external view returns (bool);

    /**
     * @dev Make an account an operator of the caller.
     *
     * See {isOperatorFor}.
     *
     * Emits an {AuthorizedOperator} event.
     *
     * Requirements
     *
     * - `operator` cannot be calling address.
     */
    function authorizeOperator(address operator) external;

    /**
     * @dev Revoke an account's operator status for the caller.
     *
     * See {isOperatorFor} and {defaultOperators}.
     *
     * Emits a {RevokedOperator} event.
     *
     * Requirements
     *
     * - `operator` cannot be calling address.
     */
    function revokeOperator(address operator) external;

    /**
     * @dev Returns the list of default operators. These accounts are operators
     * for all token holders, even if {authorizeOperator} was never called on
     * them.
     *
     * This list is immutable, but individual holders may revoke these via
     * {revokeOperator}, in which case {isOperatorFor} will return false.
     */
    function defaultOperators() external view returns (address[] memory);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient`. The caller must
     * be an operator of `sender`.
     *
     * If send or receive hooks are registered for `sender` and `recipient`,
     * the corresponding functions will be called with `data` and
     * `operatorData`. See {IERC777Sender} and {IERC777Recipient}.
     *
     * Emits a {Sent} event.
     *
     * Requirements
     *
     * - `sender` cannot be the zero address.
     * - `sender` must have at least `amount` tokens.
     * - the caller must be an operator for `sender`.
     * - `recipient` cannot be the zero address.
     * - if `recipient` is a contract, it must implement the {IERC777Recipient}
     * interface.
     */
    function operatorSend(
        address sender,
        address recipient,
        uint256 amount,
        bytes calldata data,
        bytes calldata operatorData
    ) external;

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the total supply.
     * The caller must be an operator of `account`.
     *
     * If a send hook is registered for `account`, the corresponding function
     * will be called with `data` and `operatorData`. See {IERC777Sender}.
     *
     * Emits a {Burned} event.
     *
     * Requirements
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     * - the caller must be an operator for `account`.
     */
    function operatorBurn(
        address account,
        uint256 amount,
        bytes calldata data,
        bytes calldata operatorData
    ) external;

    event Sent(
        address indexed operator,
        address indexed from,
        address indexed to,
        uint256 amount,
        bytes data,
        bytes operatorData
    );

    event Minted(address indexed operator, address indexed to, uint256 amount, bytes data, bytes operatorData);

    event Burned(address indexed operator, address indexed from, uint256 amount, bytes data, bytes operatorData);

    event AuthorizedOperator(address indexed operator, address indexed tokenHolder);

    event RevokedOperator(address indexed operator, address indexed tokenHolder);
}

// SPDX-License-Identifier: MIT



/**
 * @dev Interface of the ERC777TokensRecipient standard as defined in the EIP.
 *
 * Accounts can be notified of {IERC777} tokens being sent to them by having a
 * contract implement this interface (contract holders can be their own
 * implementer) and registering it on the
 * https://eips.ethereum.org/EIPS/eip-1820[ERC1820 global registry].
 *
 * See {IERC1820Registry} and {ERC1820Implementer}.
 */
interface IERC777Recipient {
    /**
     * @dev Called by an {IERC777} token contract whenever tokens are being
     * moved or created into a registered account (`to`). The type of operation
     * is conveyed by `from` being the zero address or not.
     *
     * This call occurs _after_ the token contract's state is updated, so
     * {IERC777-balanceOf}, etc., can be used to query the post-operation state.
     *
     * This function may revert to prevent the operation from being executed.
     */
    function tokensReceived(
        address operator,
        address from,
        address to,
        uint256 amount,
        bytes calldata userData,
        bytes calldata operatorData
    ) external;
}

// SPDX-License-Identifier: MIT



/**
 * @dev Interface of the ERC777TokensSender standard as defined in the EIP.
 *
 * {IERC777} Token holders can be notified of operations performed on their
 * tokens by having a contract implement this interface (contract holders can be
 *  their own implementer) and registering it on the
 * https://eips.ethereum.org/EIPS/eip-1820[ERC1820 global registry].
 *
 * See {IERC1820Registry} and {ERC1820Implementer}.
 */
interface IERC777Sender {
    /**
     * @dev Called by an {IERC777} token contract whenever a registered holder's
     * (`from`) tokens are about to be moved or destroyed. The type of operation
     * is conveyed by `to` being the zero address or not.
     *
     * This call occurs _before_ the token contract's state is updated, so
     * {IERC777-balanceOf}, etc., can be used to query the pre-operation state.
     *
     * This function may revert to prevent the operation from being executed.
     */
    function tokensToSend(
        address operator,
        address from,
        address to,
        uint256 amount,
        bytes calldata userData,
        bytes calldata operatorData
    ) external;
}

// SPDX-License-Identifier: MIT



/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

// SPDX-License-Identifier: MIT



/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, "SafeMath: subtraction overflow");
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        uint256 c = a - b;

        return c;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");

        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold

        return c;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, "SafeMath: modulo by zero");
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts with custom message when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b != 0, errorMessage);
        return a % b;
    }

    function per(uint256 a, uint256 base, uint256 percent) internal pure returns (uint256) {
        return div(mul(a,percent),base);
    }
}

// SPDX-License-Identifier: MIT



/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
        // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
        // for accounts without code, i.e. `keccak256('')`
        bytes32 codehash;
        bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
        // solhint-disable-next-line no-inline-assembly
        assembly { codehash := extcodehash(account) }
        return (codehash != accountHash && codehash != 0x0);
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
        (bool success, ) = recipient.call{ value: amount }("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain`call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
      return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        return _functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        return _functionCallWithValue(target, data, value, errorMessage);
    }

    function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
        require(isContract(target), "Address: call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly

                // solhint-disable-next-line no-inline-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

// SPDX-License-Identifier: MIT



/**
 * @dev Interface of the global ERC1820 Registry, as defined in the
 * https://eips.ethereum.org/EIPS/eip-1820[EIP]. Accounts may register
 * implementers for interfaces in this registry, as well as query support.
 *
 * Implementers may be shared by multiple accounts, and can also implement more
 * than a single interface for each account. Contracts can implement interfaces
 * for themselves, but externally-owned accounts (EOA) must delegate this to a
 * contract.
 *
 * {IERC165} interfaces can also be queried via the registry.
 *
 * For an in-depth explanation and source code analysis, see the EIP text.
 */
interface IERC1820Registry {
    /**
     * @dev Sets `newManager` as the manager for `account`. A manager of an
     * account is able to set interface implementers for it.
     *
     * By default, each account is its own manager. Passing a value of `0x0` in
     * `newManager` will reset the manager to this initial state.
     *
     * Emits a {ManagerChanged} event.
     *
     * Requirements:
     *
     * - the caller must be the current manager for `account`.
     */
    function setManager(address account, address newManager) external;

    /**
     * @dev Returns the manager for `account`.
     *
     * See {setManager}.
     */
    function getManager(address account) external view returns (address);

    /**
     * @dev Sets the `implementer` contract as ``account``'s implementer for
     * `interfaceHash`.
     *
     * `account` being the zero address is an alias for the caller's address.
     * The zero address can also be used in `implementer` to remove an old one.
     *
     * See {interfaceHash} to learn how these are created.
     *
     * Emits an {InterfaceImplementerSet} event.
     *
     * Requirements:
     *
     * - the caller must be the current manager for `account`.
     * - `interfaceHash` must not be an {IERC165} interface id (i.e. it must not
     * end in 28 zeroes).
     * - `implementer` must implement {IERC1820Implementer} and return true when
     * queried for support, unless `implementer` is the caller. See
     * {IERC1820Implementer-canImplementInterfaceForAddress}.
     */
    function setInterfaceImplementer(address account, bytes32 interfaceHash, address implementer) external;

    /**
     * @dev Returns the implementer of `interfaceHash` for `account`. If no such
     * implementer is registered, returns the zero address.
     *
     * If `interfaceHash` is an {IERC165} interface id (i.e. it ends with 28
     * zeroes), `account` will be queried for support of it.
     *
     * `account` being the zero address is an alias for the caller's address.
     */
    function getInterfaceImplementer(address account, bytes32 interfaceHash) external view returns (address);

    /**
     * @dev Returns the interface hash for an `interfaceName`, as defined in the
     * corresponding
     * https://eips.ethereum.org/EIPS/eip-1820#interface-name[section of the EIP].
     */
    function interfaceHash(string calldata interfaceName) external pure returns (bytes32);

    /**
     *  @notice Updates the cache with whether the contract implements an ERC165 interface or not.
     *  @param account Address of the contract for which to update the cache.
     *  @param interfaceId ERC165 interface for which to update the cache.
     */
    function updateERC165Cache(address account, bytes4 interfaceId) external;

    /**
     *  @notice Checks whether a contract implements an ERC165 interface or not.
     *  If the result is not cached a direct lookup on the contract address is performed.
     *  If the result is not cached or the cached value is out-of-date, the cache MUST be updated manually by calling
     *  {updateERC165Cache} with the contract address.
     *  @param account Address of the contract to check.
     *  @param interfaceId ERC165 interface to check.
     *  @return True if `account` implements `interfaceId`, false otherwise.
     */
    function implementsERC165Interface(address account, bytes4 interfaceId) external view returns (bool);

    /**
     *  @notice Checks whether a contract implements an ERC165 interface or not without using nor updating the cache.
     *  @param account Address of the contract to check.
     *  @param interfaceId ERC165 interface to check.
     *  @return True if `account` implements `interfaceId`, false otherwise.
     */
    function implementsERC165InterfaceNoCache(address account, bytes4 interfaceId) external view returns (bool);

    event InterfaceImplementerSet(address indexed account, bytes32 indexed interfaceHash, address indexed implementer);

    event ManagerChanged(address indexed account, address indexed newManager);
}


/**
 * @dev Implementation of the {IERC777} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * Support for ERC20 is included in this contract, as specified by the EIP: both
 * the ERC777 and ERC20 interfaces can be safely used when interacting with it.
 * Both {IERC777-Sent} and {IERC20-Transfer} events are emitted on token
 * movements.
 *
 * Additionally, the {IERC777-granularity} value is hard-coded to `1`, meaning that there
 * are no special restrictions in the amount of tokens that created, moved, or
 * destroyed. This makes integration with ERC20 applications seamless.
 */
contract ERC777 is IERC777, IERC20 {
    using SafeMath for uint256;
    using Address for address;

    IERC1820Registry constant internal _ERC1820_REGISTRY = IERC1820Registry(0x1820a4B7618BdE71Dce8cdc73aAB6C95905faD24);

    mapping(address => uint256) private _balances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    // We inline the result of the following hashes because Solidity doesn't resolve them at compile time.
    // See https://github.com/ethereum/solidity/issues/4024.

    // keccak256("ERC777TokensSender")
    bytes32 constant private _TOKENS_SENDER_INTERFACE_HASH =
        0x29ddb589b1fb5fc7cf394961c1adf5f8c6454761adf795e67fe149f658abe895;

    // keccak256("ERC777TokensRecipient")
    bytes32 constant private _TOKENS_RECIPIENT_INTERFACE_HASH =
        0xb281fc8c12954d22544db45de3159a39272895b169a852b314f9cc762e44c53b;

    // This isn't ever read from - it's only used to respond to the defaultOperators query.
    address[] private _defaultOperatorsArray;

    // Immutable, but accounts may revoke them (tracked in __revokedDefaultOperators).
    mapping(address => bool) private _defaultOperators;

    // For each account, a mapping of its operators and revoked default operators.
    mapping(address => mapping(address => bool)) private _operators;
    mapping(address => mapping(address => bool)) private _revokedDefaultOperators;

    // ERC20-allowances
    mapping (address => mapping (address => uint256)) private _allowances;

    /**
     * @dev `defaultOperators` may be an empty array.
     */
    constructor(
        string memory name,
        string memory symbol,
        address[] memory defaultOperators
    ) public {
        _name = name;
        _symbol = symbol;

        _defaultOperatorsArray = defaultOperators;
        for (uint256 i = 0; i < _defaultOperatorsArray.length; i++) {
            _defaultOperators[_defaultOperatorsArray[i]] = true;
        }

        // register interfaces
        _ERC1820_REGISTRY.setInterfaceImplementer(address(this), keccak256("ERC777Token"), address(this));
        _ERC1820_REGISTRY.setInterfaceImplementer(address(this), keccak256("ERC20Token"), address(this));
    }

    /**
     * @dev See {IERC777-name}.
     */
    function name() public view override returns (string memory) {
        return _name;
    }

    /**
     * @dev See {IERC777-symbol}.
     */
    function symbol() public view override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev See {ERC20-decimals}.
     *
     * Always returns 18, as per the
     * [ERC777 EIP](https://eips.ethereum.org/EIPS/eip-777#backward-compatibility).
     */
    function decimals() public pure returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC777-granularity}.
     *
     * This implementation always returns `1`.
     */
    function granularity() public view override returns (uint256) {
        return 1;
    }

    /**
     * @dev See {IERC777-totalSupply}.
     */
    function totalSupply() public view override(IERC20, IERC777) returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev Returns the amount of tokens owned by an account (`tokenHolder`).
     */
    function balanceOf(address tokenHolder) public view override(IERC20, IERC777) returns (uint256) {
        return _balances[tokenHolder];
    }

    /**
     * @dev See {IERC777-send}.
     *
     * Also emits a {IERC20-Transfer} event for ERC20 compatibility.
     */
    function send(address recipient, uint256 amount, bytes memory data) public override  {
        _send(msg.sender, recipient, amount, data, "", true);
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Unlike `send`, `recipient` is _not_ required to implement the {IERC777Recipient}
     * interface if it is a contract.
     *
     * Also emits a {Sent} event.
     */
    function transfer(address recipient, uint256 amount) public override returns (bool) {
        require(recipient != address(0), "ERC777: transfer to the zero address");

        address from = msg.sender;

        _callTokensToSend(from, from, recipient, amount, "", "");

        _move(from, from, recipient, amount, "", "");

        _callTokensReceived(from, from, recipient, amount, "", "", false);

        return true;
    }

    /**
     * @dev See {IERC777-burn}.
     *
     * Also emits a {IERC20-Transfer} event for ERC20 compatibility.
     */
    function burn(uint256 amount, bytes memory data) public override  {
        _burn(msg.sender, amount, data, "");
    }

    /**
     * @dev See {IERC777-isOperatorFor}.
     */
    function isOperatorFor(
        address operator,
        address tokenHolder
    ) public view override returns (bool) {
        return operator == tokenHolder ||
            (_defaultOperators[operator] && !_revokedDefaultOperators[tokenHolder][operator]) ||
            _operators[tokenHolder][operator];
    }

    /**
     * @dev See {IERC777-authorizeOperator}.
     */
    function authorizeOperator(address operator) public override  {
        require(msg.sender != operator, "ERC777: authorizing self as operator");

        if (_defaultOperators[operator]) {
            delete _revokedDefaultOperators[msg.sender][operator];
        } else {
            _operators[msg.sender][operator] = true;
        }

        emit AuthorizedOperator(operator, msg.sender);
    }

    /**
     * @dev See {IERC777-revokeOperator}.
     */
    function revokeOperator(address operator) public override  {
        require(operator != msg.sender, "ERC777: revoking self as operator");

        if (_defaultOperators[operator]) {
            _revokedDefaultOperators[msg.sender][operator] = true;
        } else {
            delete _operators[msg.sender][operator];
        }

        emit RevokedOperator(operator, msg.sender);
    }

    /**
     * @dev See {IERC777-defaultOperators}.
     */
    function defaultOperators() public view override returns (address[] memory) {
        return _defaultOperatorsArray;
    }

    /**
     * @dev See {IERC777-operatorSend}.
     *
     * Emits {Sent} and {IERC20-Transfer} events.
     */
    function operatorSend(
        address sender,
        address recipient,
        uint256 amount,
        bytes memory data,
        bytes memory operatorData
    )
    public override
    {
        require(isOperatorFor(msg.sender, sender), "ERC777: caller is not an operator for holder");
        _send(sender, recipient, amount, data, operatorData, true);
    }

    /**
     * @dev See {IERC777-operatorBurn}.
     *
     * Emits {Burned} and {IERC20-Transfer} events.
     */
    function operatorBurn(address account, uint256 amount, bytes memory data, bytes memory operatorData) public override {
        require(isOperatorFor(msg.sender, account), "ERC777: caller is not an operator for holder");
        _burn(account, amount, data, operatorData);
    }

    /**
     * @dev See {IERC20-allowance}.
     *
     * Note that operator and allowance concepts are orthogonal: operators may
     * not have allowance, and accounts with allowance may not be operators
     * themselves.
     */
    function allowance(address holder, address spender) public view override returns (uint256) {
        return _allowances[holder][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Note that accounts cannot have allowance issued by their operators.
     */
    function approve(address spender, uint256 value) public override returns (bool) {
        address holder = msg.sender;
        _approve(holder, spender, value);
        return true;
    }

   /**
    * @dev See {IERC20-transferFrom}.
    *
    * Note that operator and allowance concepts are orthogonal: operators cannot
    * call `transferFrom` (unless they have allowance), and accounts with
    * allowance cannot call `operatorSend` (unless they are operators).
    *
    * Emits {Sent}, {IERC20-Transfer} and {IERC20-Approval} events.
    */
    function transferFrom(address holder, address recipient, uint256 amount) public override returns (bool) {
        require(recipient != address(0), "ERC777: transfer to the zero address");
        require(holder != address(0), "ERC777: transfer from the zero address");

        address spender = msg.sender;

        _callTokensToSend(spender, holder, recipient, amount, "", "");

        _move(spender, holder, recipient, amount, "", "");
        _approve(holder, spender, _allowances[holder][spender].sub(amount, "ERC777: transfer amount exceeds allowance"));

        _callTokensReceived(spender, holder, recipient, amount, "", "", false);

        return true;
    }

    /**
     * @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * If a send hook is registered for `account`, the corresponding function
     * will be called with `operator`, `data` and `operatorData`.
     *
     * See {IERC777Sender} and {IERC777Recipient}.
     *
     * Emits {Minted} and {IERC20-Transfer} events.
     *
     * Requirements
     *
     * - `account` cannot be the zero address.
     * - if `account` is a contract, it must implement the {IERC777Recipient}
     * interface.
     */
    function _mint(
        address account,
        uint256 amount,
        bytes memory userData,
        bytes memory operatorData
    )
    internal virtual
    {
        require(account != address(0), "ERC777: mint to the zero address");

        address operator = msg.sender;

        _beforeTokenTransfer(operator, address(0), account, amount);

        // Update state variables
        _totalSupply = _totalSupply.add(amount);
        _balances[account] = _balances[account].add(amount);

        _callTokensReceived(operator, address(0), account, amount, userData, operatorData, true);

        emit Minted(operator, account, amount, userData, operatorData);
        emit Transfer(address(0), account, amount);
    }

    /**
     * @dev Send tokens
     * @param from address token holder address
     * @param to address recipient address
     * @param amount uint256 amount of tokens to transfer
     * @param userData bytes extra information provided by the token holder (if any)
     * @param operatorData bytes extra information provided by the operator (if any)
     * @param requireReceptionAck if true, contract recipients are required to implement ERC777TokensRecipient
     */
    function _send(
        address from,
        address to,
        uint256 amount,
        bytes memory userData,
        bytes memory operatorData,
        bool requireReceptionAck
    )
        internal
    {
        require(from != address(0), "ERC777: send from the zero address");
        require(to != address(0), "ERC777: send to the zero address");

        address operator = msg.sender;

        _callTokensToSend(operator, from, to, amount, userData, operatorData);

        _move(operator, from, to, amount, userData, operatorData);

        _callTokensReceived(operator, from, to, amount, userData, operatorData, requireReceptionAck);
    }

    /**
     * @dev Burn tokens
     * @param from address token holder address
     * @param amount uint256 amount of tokens to burn
     * @param data bytes extra information provided by the token holder
     * @param operatorData bytes extra information provided by the operator (if any)
     */
    function _burn(
        address from,
        uint256 amount,
        bytes memory data,
        bytes memory operatorData
    )
        internal virtual
    {
        require(from != address(0), "ERC777: burn from the zero address");

        address operator = msg.sender;

        _beforeTokenTransfer(operator, from, address(0), amount);

        _callTokensToSend(operator, from, address(0), amount, data, operatorData);

        // Update state variables
        _balances[from] = _balances[from].sub(amount, "ERC777: burn amount exceeds balance");
        _totalSupply = _totalSupply.sub(amount);

        emit Burned(operator, from, amount, data, operatorData);
        emit Transfer(from, address(0), amount);
    }

    function _move(
        address operator,
        address from,
        address to,
        uint256 amount,
        bytes memory userData,
        bytes memory operatorData
    )
        private
    {
        _beforeTokenTransfer(operator, from, to, amount);

        _balances[from] = _balances[from].sub(amount, "ERC777: transfer amount exceeds balance");
        _balances[to] = _balances[to].add(amount);

        emit Sent(operator, from, to, amount, userData, operatorData);
        emit Transfer(from, to, amount);
    }

    /**
     * @dev See {ERC20-_approve}.
     *
     * Note that accounts cannot have allowance issued by their operators.
     */
    function _approve(address holder, address spender, uint256 value) internal {
        require(holder != address(0), "ERC777: approve from the zero address");
        require(spender != address(0), "ERC777: approve to the zero address");

        _allowances[holder][spender] = value;
        emit Approval(holder, spender, value);
    }

    /**
     * @dev Call from.tokensToSend() if the interface is registered
     * @param operator address operator requesting the transfer
     * @param from address token holder address
     * @param to address recipient address
     * @param amount uint256 amount of tokens to transfer
     * @param userData bytes extra information provided by the token holder (if any)
     * @param operatorData bytes extra information provided by the operator (if any)
     */
    function _callTokensToSend(
        address operator,
        address from,
        address to,
        uint256 amount,
        bytes memory userData,
        bytes memory operatorData
    )
        private
    {
        address implementer = _ERC1820_REGISTRY.getInterfaceImplementer(from, _TOKENS_SENDER_INTERFACE_HASH);
        if (implementer != address(0)) {
            IERC777Sender(implementer).tokensToSend(operator, from, to, amount, userData, operatorData);
        }
    }

    /**
     * @dev Call to.tokensReceived() if the interface is registered. Reverts if the recipient is a contract but
     * tokensReceived() was not registered for the recipient
     * @param operator address operator requesting the transfer
     * @param from address token holder address
     * @param to address recipient address
     * @param amount uint256 amount of tokens to transfer
     * @param userData bytes extra information provided by the token holder (if any)
     * @param operatorData bytes extra information provided by the operator (if any)
     * @param requireReceptionAck if true, contract recipients are required to implement ERC777TokensRecipient
     */
    function _callTokensReceived(
        address operator,
        address from,
        address to,
        uint256 amount,
        bytes memory userData,
        bytes memory operatorData,
        bool requireReceptionAck
    )
        private
    {
        address implementer = _ERC1820_REGISTRY.getInterfaceImplementer(to, _TOKENS_RECIPIENT_INTERFACE_HASH);
        if (implementer != address(0)) {
            IERC777Recipient(implementer).tokensReceived(operator, from, to, amount, userData, operatorData);
        } else if (requireReceptionAck) {
            require(!to.isContract(), "ERC777: token recipient contract has no implementer for ERC777TokensRecipient");
        }
    }

    /**
     * @dev Hook that is called before any token transfer. This includes
     * calls to {send}, {transfer}, {operatorSend}, minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be to transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address operator, address from, address to, uint256 amount) internal virtual { }
}

// SPDX-License-Identifier: MIT



/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
contract Ownable {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor () internal {
        address msgSender = msg.sender;
        _owner = msgSender;
        emit OwnershipTransferred(address(0), msgSender);
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(_owner == msg.sender, "Ownable: caller is not the owner");
        _;
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        emit OwnershipTransferred(_owner, address(0));
        _owner = address(0);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        emit OwnershipTransferred(_owner, newOwner);
        _owner = newOwner;
    }
}


contract Token is ERC777, Ownable {
    uint256 public constant _maxSupply = 5 * (10**8) * (10**18);

    modifier noOverflow(uint256 _amt) {
        require(_maxSupply >= totalSupply().add(_amt), "totalSupply overflow");
        _;
    }

    constructor() public ERC777("dMMM", "dMMM", new address[](0)) {
        return;
    }

    function mint(address _address, uint256 _amount)
        public
        noOverflow(_amount)
        onlyOwner
    {
        _mint(_address, _amount, "", "");
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):