ETH Price: $2,524.31 (-0.05%)

Contract Diff Checker

Contract Name:
HomelessCard

Contract Source Code:

File 1 of 1 : HomelessCard

// Sources flattened with hardhat v2.12.3 https://hardhat.org

// File @openzeppelin/contracts/utils/introspection/[email protected]

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}


// File @solvprotocol/erc-3525/[email protected]

// 

pragma solidity ^0.8.1;

/** 
 * @title ERC-721 Non-Fungible Token Standard
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 *  Note: the ERC-165 identifier for this interface is 0x80ac58cd.
 */
interface IERC721 is IERC165 {
    /** 
     * @dev This emits when ownership of any NFT changes by any mechanism.
     *  This event emits when NFTs are created (`from` == 0) and destroyed
     *  (`to` == 0). Exception: during contract creation, any number of NFTs
     *  may be created and assigned without emitting Transfer. At the time of
     *  any transfer, the approved address for that NFT (if any) is reset to none.
     */
    event Transfer(address indexed _from, address indexed _to, uint256 indexed _tokenId);

    /**
     * @dev This emits when the approved address for an NFT is changed or
     *  reaffirmed. The zero address indicates there is no approved address.
     *  When a Transfer event emits, this also indicates that the approved
     *  address for that NFT (if any) is reset to none.
     */
    event Approval(address indexed _owner, address indexed _approved, uint256 indexed _tokenId);

    /**
     * @dev This emits when an operator is enabled or disabled for an owner.
     *  The operator can manage all NFTs of the owner.
     */
    event ApprovalForAll(address indexed _owner, address indexed _operator, bool _approved);

    /**
     * @notice Count all NFTs assigned to an owner
     * @dev NFTs assigned to the zero address are considered invalid, and this
     *  function throws for queries about the zero address.
     * @param _owner An address for whom to query the balance
     * @return The number of NFTs owned by `_owner`, possibly zero
     */
    function balanceOf(address _owner) external view returns (uint256);

    /**
     * @notice Find the owner of an NFT
     * @dev NFTs assigned to zero address are considered invalid, and queries
     *  about them do throw.
     * @param _tokenId The identifier for an NFT
     * @return The address of the owner of the NFT
     */
    function ownerOf(uint256 _tokenId) external view returns (address);

    /**
     * @notice Transfers the ownership of an NFT from one address to another address
     * @dev Throws unless `msg.sender` is the current owner, an authorized
     *  operator, or the approved address for this NFT. Throws if `_from` is
     *  not the current owner. Throws if `_to` is the zero address. Throws if
     *  `_tokenId` is not a valid NFT. When transfer is complete, this function
     *  checks if `_to` is a smart contract (code size > 0). If so, it calls
     *  `onERC721Received` on `_to` and throws if the return value is not
     *  `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`.
     * @param _from The current owner of the NFT
     * @param _to The new owner
     * @param _tokenId The NFT to transfer
     * @param data Additional data with no specified format, sent in call to `_to`
     */
    function safeTransferFrom(address _from, address _to, uint256 _tokenId, bytes calldata data) external payable;

    /**
     * @notice Transfers the ownership of an NFT from one address to another address
     * @dev This works identically to the other function with an extra data parameter,
     *  except this function just sets data to "".
     * @param _from The current owner of the NFT
     * @param _to The new owner
     * @param _tokenId The NFT to transfer
     */
    function safeTransferFrom(address _from, address _to, uint256 _tokenId) external payable;

    /**
     * @notice Transfer ownership of an NFT -- THE CALLER IS RESPONSIBLE
     *  TO CONFIRM THAT `_to` IS CAPABLE OF RECEIVING NFTS OR ELSE
     *  THEY MAY BE PERMANENTLY LOST
     * @dev Throws unless `msg.sender` is the current owner, an authorized
     *  operator, or the approved address for this NFT. Throws if `_from` is
     *  not the current owner. Throws if `_to` is the zero address. Throws if
     *  `_tokenId` is not a valid NFT.
     * @param _from The current owner of the NFT
     * @param _to The new owner
     * @param _tokenId The NFT to transfer
     */
    function transferFrom(address _from, address _to, uint256 _tokenId) external payable;

    /**
     * @notice Change or reaffirm the approved address for an NFT
     * @dev The zero address indicates there is no approved address.
     *  Throws unless `msg.sender` is the current NFT owner, or an authorized
     *  operator of the current owner.
     * @param _approved The new approved NFT controller
     * @param _tokenId The NFT to approve
     */
    function approve(address _approved, uint256 _tokenId) external payable;

    /**
     * @notice Enable or disable approval for a third party ("operator") to manage
     *  all of `msg.sender`'s assets
     * @dev Emits the ApprovalForAll event. The contract MUST allow
     *  multiple operators per owner.
     * @param _operator Address to add to the set of authorized operators
     * @param _approved True if the operator is approved, false to revoke approval
     */
    function setApprovalForAll(address _operator, bool _approved) external;

    /**
     * @notice Get the approved address for a single NFT
     * @dev Throws if `_tokenId` is not a valid NFT.
     * @param _tokenId The NFT to find the approved address for
     * @return The approved address for this NFT, or the zero address if there is none
     */
    function getApproved(uint256 _tokenId) external view returns (address);

    /**
     * @notice Query if an address is an authorized operator for another address
     * @param _owner The address that owns the NFTs
     * @param _operator The address that acts on behalf of the owner
     * @return True if `_operator` is an approved operator for `_owner`, false otherwise
     */
    function isApprovedForAll(address _owner, address _operator) external view returns (bool);
}


// File @solvprotocol/erc-3525/[email protected]

// 

pragma solidity ^0.8.0;


/**
 * @title ERC-3525 Semi-Fungible Token Standard
 * @dev See https://eips.ethereum.org/EIPS/eip-3525
 * Note: the ERC-165 identifier for this interface is 0xd5358140.
 */
interface IERC3525 is IERC165, IERC721 {
    /**
     * @dev MUST emit when value of a token is transferred to another token with the same slot,
     *  including zero value transfers (_value == 0) as well as transfers when tokens are created
     *  (`_fromTokenId` == 0) or destroyed (`_toTokenId` == 0).
     * @param _fromTokenId The token id to transfer value from
     * @param _toTokenId The token id to transfer value to
     * @param _value The transferred value
     */
    event TransferValue(uint256 indexed _fromTokenId, uint256 indexed _toTokenId, uint256 _value);

    /**
     * @dev MUST emits when the approval value of a token is set or changed.
     * @param _tokenId The token to approve
     * @param _operator The operator to approve for
     * @param _value The maximum value that `_operator` is allowed to manage
     */
    event ApprovalValue(uint256 indexed _tokenId, address indexed _operator, uint256 _value);

    /**
     * @dev MUST emit when the slot of a token is set or changed.
     * @param _tokenId The token of which slot is set or changed
     * @param _oldSlot The previous slot of the token
     * @param _newSlot The updated slot of the token
     */ 
    event SlotChanged(uint256 indexed _tokenId, uint256 indexed _oldSlot, uint256 indexed _newSlot);

    /**
     * @notice Get the number of decimals the token uses for value - e.g. 6, means the user
     *  representation of the value of a token can be calculated by dividing it by 1,000,000.
     *  Considering the compatibility with third-party wallets, this function is defined as
     *  `valueDecimals()` instead of `decimals()` to avoid conflict with ERC20 tokens.
     * @return The number of decimals for value
     */
    function valueDecimals() external view returns (uint8);

    /**
     * @notice Get the value of a token.
     * @param _tokenId The token for which to query the balance
     * @return The value of `_tokenId`
     */
    function balanceOf(uint256 _tokenId) external view returns (uint256);

    /**
     * @notice Get the slot of a token.
     * @param _tokenId The identifier for a token
     * @return The slot of the token
     */
    function slotOf(uint256 _tokenId) external view returns (uint256);

    /**
     * @notice Allow an operator to manage the value of a token, up to the `_value` amount.
     * @dev MUST revert unless caller is the current owner, an authorized operator, or the approved
     *  address for `_tokenId`.
     *  MUST emit ApprovalValue event.
     * @param _tokenId The token to approve
     * @param _operator The operator to be approved
     * @param _value The maximum value of `_toTokenId` that `_operator` is allowed to manage
     */
    function approve(
        uint256 _tokenId,
        address _operator,
        uint256 _value
    ) external payable;

    /**
     * @notice Get the maximum value of a token that an operator is allowed to manage.
     * @param _tokenId The token for which to query the allowance
     * @param _operator The address of an operator
     * @return The current approval value of `_tokenId` that `_operator` is allowed to manage
     */
    function allowance(uint256 _tokenId, address _operator) external view returns (uint256);

    /**
     * @notice Transfer value from a specified token to another specified token with the same slot.
     * @dev Caller MUST be the current owner, an authorized operator or an operator who has been
     *  approved the whole `_fromTokenId` or part of it.
     *  MUST revert if `_fromTokenId` or `_toTokenId` is zero token id or does not exist.
     *  MUST revert if slots of `_fromTokenId` and `_toTokenId` do not match.
     *  MUST revert if `_value` exceeds the balance of `_fromTokenId` or its allowance to the
     *  operator.
     *  MUST emit `TransferValue` event.
     * @param _fromTokenId The token to transfer value from
     * @param _toTokenId The token to transfer value to
     * @param _value The transferred value
     */
    function transferFrom(
        uint256 _fromTokenId,
        uint256 _toTokenId,
        uint256 _value
    ) external payable;

    /**
     * @notice Transfer value from a specified token to an address. The caller should confirm that
     *  `_to` is capable of receiving ERC3525 tokens.
     * @dev This function MUST create a new ERC3525 token with the same slot for `_to` to receive
     *  the transferred value.
     *  MUST revert if `_fromTokenId` is zero token id or does not exist.
     *  MUST revert if `_to` is zero address.
     *  MUST revert if `_value` exceeds the balance of `_fromTokenId` or its allowance to the
     *  operator.
     *  MUST emit `Transfer` and `TransferValue` events.
     * @param _fromTokenId The token to transfer value from
     * @param _to The address to transfer value to
     * @param _value The transferred value
     * @return ID of the new token created for `_to` which receives the transferred value
     */
    function transferFrom(
        uint256 _fromTokenId,
        address _to,
        uint256 _value
    ) external payable returns (uint256);
}


// File @solvprotocol/erc-3525/[email protected]

// 

pragma solidity ^0.8.1;

/**
 * @title EIP-3525 token receiver interface
 * @dev Interface for a smart contract that wants to be informed by EIP-3525 contracts when 
 *  receiving values from ANY addresses or EIP-3525 tokens.
 * Note: the EIP-165 identifier for this interface is 0x009ce20b.
 */
interface IERC3525Receiver {
    /**
     * @notice Handle the receipt of an EIP-3525 token value.
     * @dev An EIP-3525 smart contract MUST check whether this function is implemented by the 
     *  recipient contract, if the recipient contract implements this function, the EIP-3525 
     *  contract MUST call this function after a value transfer (i.e. `transferFrom(uint256,
     *  uint256,uint256,bytes)`).
     *  MUST return 0x009ce20b (i.e. `bytes4(keccak256('onERC3525Received(address,uint256,uint256,
     *  uint256,bytes)'))`) if the transfer is accepted.
     *  MUST revert or return any value other than 0x009ce20b if the transfer is rejected.
     * @param _operator The address which triggered the transfer
     * @param _fromTokenId The token id to transfer value from
     * @param _toTokenId The token id to transfer value to
     * @param _value The transferred value
     * @param _data Additional data with no specified format
     * @return `bytes4(keccak256('onERC3525Received(address,uint256,uint256,uint256,bytes)'))` 
     *  unless the transfer is rejected.
     */
    function onERC3525Received(address _operator, uint256 _fromTokenId, uint256 _toTokenId, uint256 _value, bytes calldata _data) external returns (bytes4);

}


// File @solvprotocol/erc-3525/[email protected]

// 

pragma solidity ^0.8.1;

/**
 * @title ERC721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers from ERC721 asset contracts.
 *  Note: the ERC-165 identifier for this interface is 0x150b7a02.
 */
interface IERC721Receiver {
    /** 
     * @notice Handle the receipt of an NFT
     * @dev The ERC721 smart contract calls this function on the recipient
     *  after a `transfer`. This function MAY throw to revert and reject the
     *  transfer. Return of other than the magic value MUST result in the
     *  transaction being reverted.
     *  Note: the contract address is always the message sender.
     * @param _operator The address which called `safeTransferFrom` function
     * @param _from The address which previously owned the token
     * @param _tokenId The NFT identifier which is being transferred
     * @param _data Additional data with no specified format
     * @return `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`
     *  unless throwing
     */
    function onERC721Received(
        address _operator, 
        address _from, 
        uint256 _tokenId, 
        bytes calldata _data
    ) external returns(bytes4);
}


// File @openzeppelin/contracts/utils/[email protected]

// 
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}


// File @openzeppelin/contracts/utils/math/[email protected]

// 
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}


// File @openzeppelin/contracts/utils/math/[email protected]

// 
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}


// File @openzeppelin/contracts/utils/[email protected]

// 
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;


/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}


// File @openzeppelin/contracts/utils/[email protected]

// 
// OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)

pragma solidity ^0.8.0;

/**
 * @title Counters
 * @author Matt Condon (@shrugs)
 * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
 * of elements in a mapping, issuing ERC721 ids, or counting request ids.
 *
 * Include with `using Counters for Counters.Counter;`
 */
library Counters {
    struct Counter {
        // This variable should never be directly accessed by users of the library: interactions must be restricted to
        // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
        // this feature: see https://github.com/ethereum/solidity/issues/4637
        uint256 _value; // default: 0
    }

    function current(Counter storage counter) internal view returns (uint256) {
        return counter._value;
    }

    function increment(Counter storage counter) internal {
        unchecked {
            counter._value += 1;
        }
    }

    function decrement(Counter storage counter) internal {
        uint256 value = counter._value;
        require(value > 0, "Counter: decrement overflow");
        unchecked {
            counter._value = value - 1;
        }
    }

    function reset(Counter storage counter) internal {
        counter._value = 0;
    }
}


// File @solvprotocol/erc-3525/extensions/[email protected]

// 

pragma solidity ^0.8.1;

/**
 * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 *  Note: the ERC-165 identifier for this interface is 0x780e9d63.
 */
interface IERC721Enumerable is IERC721 {
    /** 
     * @notice Count NFTs tracked by this contract
     * @return A count of valid NFTs tracked by this contract, where each one of
     *  them has an assigned and queryable owner not equal to the zero address
     */
    function totalSupply() external view returns (uint256);

    /** 
     * @notice Enumerate valid NFTs
     * @dev Throws if `_index` >= `totalSupply()`.
     * @param _index A counter less than `totalSupply()`
     * @return The token identifier for the `_index`th NFT,
     *  (sort order not specified)
     */
    function tokenByIndex(uint256 _index) external view returns (uint256);

    /** 
     * @notice Enumerate NFTs assigned to an owner
     * @dev Throws if `_index` >= `balanceOf(_owner)` or if
     *  `_owner` is the zero address, representing invalid NFTs.
     * @param _owner An address where we are interested in NFTs owned by them
     * @param _index A counter less than `balanceOf(_owner)`
     * @return The token identifier for the `_index`th NFT assigned to `_owner`,
     *  (sort order not specified)
     */
    function tokenOfOwnerByIndex(address _owner, uint256 _index) external view returns (uint256);
}


// File @solvprotocol/erc-3525/extensions/[email protected]

// 

pragma solidity ^0.8.1;

/**
 * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 *  Note: the ERC-165 identifier for this interface is 0x5b5e139f.
 */
interface IERC721Metadata is IERC721 {
    /**
     * @notice A descriptive name for a collection of NFTs in this contract
     */
    function name() external view returns (string memory);

    /**
     * @notice An abbreviated name for NFTs in this contract
     */
    function symbol() external view returns (string memory);

    /**
     * @notice A distinct Uniform Resource Identifier (URI) for a given asset.
     * @dev Throws if `_tokenId` is not a valid NFT. URIs are defined in RFC
     *  3986. The URI may point to a JSON file that conforms to the "ERC721
     *  Metadata JSON Schema".
     */
    function tokenURI(uint256 _tokenId) external view returns (string memory);
}


// File @openzeppelin/contracts/utils/[email protected]

// 
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}


// File @solvprotocol/erc-3525/extensions/[email protected]

// 

pragma solidity ^0.8.1;


/**
 * @title ERC-3525 Semi-Fungible Token Standard, optional extension for metadata
 * @dev Interfaces for any contract that wants to support query of the Uniform Resource Identifier
 *  (URI) for the ERC3525 contract as well as a specified slot.
 *  Because of the higher reliability of data stored in smart contracts compared to data stored in
 *  centralized systems, it is recommended that metadata, including `contractURI`, `slotURI` and
 *  `tokenURI`, be directly returned in JSON format, instead of being returned with a url pointing
 *  to any resource stored in a centralized system.
 *  See https://eips.ethereum.org/EIPS/eip-3525
 * Note: the ERC-165 identifier for this interface is 0xe1600902.
 */
interface IERC3525Metadata is IERC3525, IERC721Metadata {
    /**
     * @notice Returns the Uniform Resource Identifier (URI) for the current ERC3525 contract.
     * @dev This function SHOULD return the URI for this contract in JSON format, starting with
     *  header `data:application/json;`.
     *  See https://eips.ethereum.org/EIPS/eip-3525 for the JSON schema for contract URI.
     * @return The JSON formatted URI of the current ERC3525 contract
     */
    function contractURI() external view returns (string memory);

    /**
     * @notice Returns the Uniform Resource Identifier (URI) for the specified slot.
     * @dev This function SHOULD return the URI for `_slot` in JSON format, starting with header
     *  `data:application/json;`.
     *  See https://eips.ethereum.org/EIPS/eip-3525 for the JSON schema for slot URI.
     * @return The JSON formatted URI of `_slot`
     */
    function slotURI(uint256 _slot) external view returns (string memory);
}


// File @solvprotocol/erc-3525/periphery/interface/[email protected]

// 

pragma solidity ^0.8.0;

interface IERC3525MetadataDescriptor {

    function constructContractURI() external view returns (string memory);

    function constructSlotURI(uint256 slot) external view returns (string memory);
    
    function constructTokenURI(uint256 tokenId) external view returns (string memory);

}


// File @solvprotocol/erc-3525/[email protected]

// 

pragma solidity ^0.8.0;













contract ERC3525 is Context, IERC3525Metadata, IERC721Enumerable {
    using Strings for address;
    using Strings for uint256;
    using Address for address;
    using Counters for Counters.Counter;

    event SetMetadataDescriptor(address indexed metadataDescriptor);

    struct TokenData {
        uint256 id;
        uint256 slot;
        uint256 balance;
        address owner;
        address approved;
        address[] valueApprovals;
    }

    struct AddressData {
        uint256[] ownedTokens;
        mapping(uint256 => uint256) ownedTokensIndex;
        mapping(address => bool) approvals;
    }

    string private _name;
    string private _symbol;
    uint8 private _decimals;
    Counters.Counter private _tokenIdGenerator;

    // id => (approval => allowance)
    // @dev _approvedValues cannot be defined within TokenData, cause struct containing mappings cannot be constructed.
    mapping(uint256 => mapping(address => uint256)) private _approvedValues;

    TokenData[] private _allTokens;

    // key: id
    mapping(uint256 => uint256) private _allTokensIndex;

    mapping(address => AddressData) private _addressData;

    IERC3525MetadataDescriptor public metadataDescriptor;

    constructor(string memory name_, string memory symbol_, uint8 decimals_) {
         _name = name_;
        _symbol = symbol_;
        _decimals = decimals_;
    }

    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return
            interfaceId == type(IERC165).interfaceId ||
            interfaceId == type(IERC3525).interfaceId ||
            interfaceId == type(IERC721).interfaceId ||
            interfaceId == type(IERC3525Metadata).interfaceId ||
            interfaceId == type(IERC721Enumerable).interfaceId || 
            interfaceId == type(IERC721Metadata).interfaceId;
    }

    /**
     * @dev Returns the token collection name.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals the token uses for value.
     */
    function valueDecimals() public view virtual override returns (uint8) {
        return _decimals;
    }

    function balanceOf(uint256 tokenId_) public view virtual override returns (uint256) {
        _requireMinted(tokenId_);
        return _allTokens[_allTokensIndex[tokenId_]].balance;
    }

    function ownerOf(uint256 tokenId_) public view virtual override returns (address owner_) {
        _requireMinted(tokenId_);
        owner_ = _allTokens[_allTokensIndex[tokenId_]].owner;
        require(owner_ != address(0), "ERC3525: invalid token ID");
    }

    function slotOf(uint256 tokenId_) public view virtual override returns (uint256) {
        _requireMinted(tokenId_);
        return _allTokens[_allTokensIndex[tokenId_]].slot;
    }

    function _baseURI() internal view virtual returns (string memory) {
        return "";
    }

    function contractURI() public view virtual override returns (string memory) {
        string memory baseURI = _baseURI();
        return 
            address(metadataDescriptor) != address(0) ? 
                metadataDescriptor.constructContractURI() :
                bytes(baseURI).length > 0 ? 
                    string(abi.encodePacked(baseURI, "contract/", Strings.toHexString(address(this)))) : 
                    "";
    }

    function slotURI(uint256 slot_) public view virtual override returns (string memory) {
        string memory baseURI = _baseURI();
        return 
            address(metadataDescriptor) != address(0) ? 
                metadataDescriptor.constructSlotURI(slot_) : 
                bytes(baseURI).length > 0 ? 
                    string(abi.encodePacked(baseURI, "slot/", slot_.toString())) : 
                    "";
    }

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId_) public view virtual override returns (string memory) {
        _requireMinted(tokenId_);
        string memory baseURI = _baseURI();
        return 
            address(metadataDescriptor) != address(0) ? 
                metadataDescriptor.constructTokenURI(tokenId_) : 
                bytes(baseURI).length > 0 ? 
                    string(abi.encodePacked(baseURI, tokenId_.toString())) : 
                    "";
    }

    function approve(uint256 tokenId_, address to_, uint256 value_) public payable virtual override {
        address owner = ERC3525.ownerOf(tokenId_);
        require(to_ != owner, "ERC3525: approval to current owner");

        require(_isApprovedOrOwner(_msgSender(), tokenId_), "ERC3525: approve caller is not owner nor approved");

        _approveValue(tokenId_, to_, value_);
    }

    function allowance(uint256 tokenId_, address operator_) public view virtual override returns (uint256) {
        _requireMinted(tokenId_);
        return _approvedValues[tokenId_][operator_];
    }

    function transferFrom(
        uint256 fromTokenId_,
        address to_,
        uint256 value_
    ) public payable virtual override returns (uint256 newTokenId) {
        _spendAllowance(_msgSender(), fromTokenId_, value_);

        newTokenId = _createDerivedTokenId(fromTokenId_);
        _mint(to_, newTokenId, ERC3525.slotOf(fromTokenId_), 0);
        _transferValue(fromTokenId_, newTokenId, value_);
    }

    function transferFrom(
        uint256 fromTokenId_,
        uint256 toTokenId_,
        uint256 value_
    ) public payable virtual override {
        _spendAllowance(_msgSender(), fromTokenId_, value_);
        _transferValue(fromTokenId_, toTokenId_, value_);
    }

    function balanceOf(address owner_) public view virtual override returns (uint256 balance) {
        require(owner_ != address(0), "ERC3525: balance query for the zero address");
        return _addressData[owner_].ownedTokens.length;
    }

    function transferFrom(
        address from_,
        address to_,
        uint256 tokenId_
    ) public payable virtual override {
        require(_isApprovedOrOwner(_msgSender(), tokenId_), "ERC3525: transfer caller is not owner nor approved");
        _transferTokenId(from_, to_, tokenId_);
    }

    function safeTransferFrom(
        address from_,
        address to_,
        uint256 tokenId_,
        bytes memory data_
    ) public payable virtual override {
        require(_isApprovedOrOwner(_msgSender(), tokenId_), "ERC3525: transfer caller is not owner nor approved");
        _safeTransferTokenId(from_, to_, tokenId_, data_);
    }

    function safeTransferFrom(
        address from_,
        address to_,
        uint256 tokenId_
    ) public payable virtual override {
        safeTransferFrom(from_, to_, tokenId_, "");
    }

    function approve(address to_, uint256 tokenId_) public payable virtual override {
        address owner = ERC3525.ownerOf(tokenId_);
        require(to_ != owner, "ERC3525: approval to current owner");

        require(
            _msgSender() == owner || ERC3525.isApprovedForAll(owner, _msgSender()),
            "ERC3525: approve caller is not owner nor approved for all"
        );

        _approve(to_, tokenId_);
    }

    function getApproved(uint256 tokenId_) public view virtual override returns (address) {
        _requireMinted(tokenId_);
        return _allTokens[_allTokensIndex[tokenId_]].approved;
    }

    function setApprovalForAll(address operator_, bool approved_) public virtual override {
        _setApprovalForAll(_msgSender(), operator_, approved_);
    }

    function isApprovedForAll(address owner_, address operator_) public view virtual override returns (bool) {
        return _addressData[owner_].approvals[operator_];
    }

    function totalSupply() public view virtual override returns (uint256) {
        return _allTokens.length;
    }

    function tokenByIndex(uint256 index_) public view virtual override returns (uint256) {
        require(index_ < ERC3525.totalSupply(), "ERC3525: global index out of bounds");
        return _allTokens[index_].id;
    }

    function tokenOfOwnerByIndex(address owner_, uint256 index_) public view virtual override returns (uint256) {
        require(index_ < ERC3525.balanceOf(owner_), "ERC3525: owner index out of bounds");
        return _addressData[owner_].ownedTokens[index_];
    }

    function _setApprovalForAll(
        address owner_,
        address operator_,
        bool approved_
    ) internal virtual {
        require(owner_ != operator_, "ERC3525: approve to caller");

        _addressData[owner_].approvals[operator_] = approved_;

        emit ApprovalForAll(owner_, operator_, approved_);
    }

    function _isApprovedOrOwner(address operator_, uint256 tokenId_) internal view virtual returns (bool) {
        address owner = ERC3525.ownerOf(tokenId_);
        return (
            operator_ == owner ||
            ERC3525.isApprovedForAll(owner, operator_) ||
            ERC3525.getApproved(tokenId_) == operator_
        );
    }

    function _spendAllowance(address operator_, uint256 tokenId_, uint256 value_) internal virtual {
        uint256 currentAllowance = ERC3525.allowance(tokenId_, operator_);
        if (!_isApprovedOrOwner(operator_, tokenId_) && currentAllowance != type(uint256).max) {
            require(currentAllowance >= value_, "ERC3525: insufficient allowance");
            _approveValue(tokenId_, operator_, currentAllowance - value_);
        }
    }

    function _exists(uint256 tokenId_) internal view virtual returns (bool) {
        return _allTokens.length != 0 && _allTokens[_allTokensIndex[tokenId_]].id == tokenId_;
    }

    function _requireMinted(uint256 tokenId_) internal view virtual {
        require(_exists(tokenId_), "ERC3525: invalid token ID");
    }

    function _mint(address to_, uint256 slot_, uint256 value_) internal virtual returns (uint256 tokenId) {
        tokenId = _createOriginalTokenId();
        _mint(to_, tokenId, slot_, value_);  
    }

    function _mint(address to_, uint256 tokenId_, uint256 slot_, uint256 value_) internal virtual {
        require(to_ != address(0), "ERC3525: mint to the zero address");
        require(tokenId_ != 0, "ERC3525: cannot mint zero tokenId");
        require(!_exists(tokenId_), "ERC3525: token already minted");

        _beforeValueTransfer(address(0), to_, 0, tokenId_, slot_, value_);
        __mintToken(to_, tokenId_, slot_);
        __mintValue(tokenId_, value_);
        _afterValueTransfer(address(0), to_, 0, tokenId_, slot_, value_);
    }

    function _mintValue(uint256 tokenId_, uint256 value_) internal virtual {
        address owner = ERC3525.ownerOf(tokenId_);
        uint256 slot = ERC3525.slotOf(tokenId_);
        _beforeValueTransfer(address(0), owner, 0, tokenId_, slot, value_);
        __mintValue(tokenId_, value_);
        _afterValueTransfer(address(0), owner, 0, tokenId_, slot, value_);
    }

    function __mintValue(uint256 tokenId_, uint256 value_) private {
        _allTokens[_allTokensIndex[tokenId_]].balance += value_;
        emit TransferValue(0, tokenId_, value_);
    }

    function __mintToken(address to_, uint256 tokenId_, uint256 slot_) private {
        TokenData memory tokenData = TokenData({
            id: tokenId_,
            slot: slot_,
            balance: 0,
            owner: to_,
            approved: address(0),
            valueApprovals: new address[](0)
        });

        _addTokenToAllTokensEnumeration(tokenData);
        _addTokenToOwnerEnumeration(to_, tokenId_);

        emit Transfer(address(0), to_, tokenId_);
        emit SlotChanged(tokenId_, 0, slot_);
    }

    function _burn(uint256 tokenId_) internal virtual {
        _requireMinted(tokenId_);

        TokenData storage tokenData = _allTokens[_allTokensIndex[tokenId_]];
        address owner = tokenData.owner;
        uint256 slot = tokenData.slot;
        uint256 value = tokenData.balance;

        _beforeValueTransfer(owner, address(0), tokenId_, 0, slot, value);

        _clearApprovedValues(tokenId_);
        _removeTokenFromOwnerEnumeration(owner, tokenId_);
        _removeTokenFromAllTokensEnumeration(tokenId_);

        emit TransferValue(tokenId_, 0, value);
        emit SlotChanged(tokenId_, slot, 0);
        emit Transfer(owner, address(0), tokenId_);

        _afterValueTransfer(owner, address(0), tokenId_, 0, slot, value);
    }

    function _burnValue(uint256 tokenId_, uint256 burnValue_) internal virtual {
        _requireMinted(tokenId_);

        TokenData storage tokenData = _allTokens[_allTokensIndex[tokenId_]];
        address owner = tokenData.owner;
        uint256 slot = tokenData.slot;
        uint256 value = tokenData.balance;

        require(value >= burnValue_, "ERC3525: burn value exceeds balance");

        _beforeValueTransfer(owner, address(0), tokenId_, 0, slot, burnValue_);
        
        tokenData.balance -= burnValue_;
        emit TransferValue(tokenId_, 0, burnValue_);
        
        _afterValueTransfer(owner, address(0), tokenId_, 0, slot, burnValue_);
    }

    function _addTokenToOwnerEnumeration(address to_, uint256 tokenId_) private {
        _allTokens[_allTokensIndex[tokenId_]].owner = to_;

        _addressData[to_].ownedTokensIndex[tokenId_] = _addressData[to_].ownedTokens.length;
        _addressData[to_].ownedTokens.push(tokenId_);
    }

    function _removeTokenFromOwnerEnumeration(address from_, uint256 tokenId_) private {
        _allTokens[_allTokensIndex[tokenId_]].owner = address(0);

        AddressData storage ownerData = _addressData[from_];
        uint256 lastTokenIndex = ownerData.ownedTokens.length - 1;
        uint256 lastTokenId = ownerData.ownedTokens[lastTokenIndex];
        uint256 tokenIndex = ownerData.ownedTokensIndex[tokenId_];

        ownerData.ownedTokens[tokenIndex] = lastTokenId;
        ownerData.ownedTokensIndex[lastTokenId] = tokenIndex;

        delete ownerData.ownedTokensIndex[tokenId_];
        ownerData.ownedTokens.pop();
    }

    function _addTokenToAllTokensEnumeration(TokenData memory tokenData_) private {
        _allTokensIndex[tokenData_.id] = _allTokens.length;
        _allTokens.push(tokenData_);
    }

    function _removeTokenFromAllTokensEnumeration(uint256 tokenId_) private {
        // To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and
        // then delete the last slot (swap and pop).

        uint256 lastTokenIndex = _allTokens.length - 1;
        uint256 tokenIndex = _allTokensIndex[tokenId_];

        // When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so
        // rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding
        // an 'if' statement (like in _removeTokenFromOwnerEnumeration)
        TokenData memory lastTokenData = _allTokens[lastTokenIndex];

        _allTokens[tokenIndex] = lastTokenData; // Move the last token to the slot of the to-delete token
        _allTokensIndex[lastTokenData.id] = tokenIndex; // Update the moved token's index

        // This also deletes the contents at the last position of the array
        delete _allTokensIndex[tokenId_];
        _allTokens.pop();
    }

    function _approve(address to_, uint256 tokenId_) internal virtual {
        _allTokens[_allTokensIndex[tokenId_]].approved = to_;
        emit Approval(ERC3525.ownerOf(tokenId_), to_, tokenId_);
    }

    function _approveValue(
        uint256 tokenId_,
        address to_,
        uint256 value_
    ) internal virtual {
        require(to_ != address(0), "ERC3525: approve value to the zero address");
        if (!_existApproveValue(to_, tokenId_)) {
            _allTokens[_allTokensIndex[tokenId_]].valueApprovals.push(to_);
        }
        _approvedValues[tokenId_][to_] = value_;

        emit ApprovalValue(tokenId_, to_, value_);
    }

    function _clearApprovedValues(uint256 tokenId_) internal virtual {
        TokenData storage tokenData = _allTokens[_allTokensIndex[tokenId_]];
        uint256 length = tokenData.valueApprovals.length;
        for (uint256 i = 0; i < length; i++) {
            address approval = tokenData.valueApprovals[i];
            delete _approvedValues[tokenId_][approval];
        }
        delete tokenData.valueApprovals;
    }

    function _existApproveValue(address to_, uint256 tokenId_) internal view virtual returns (bool) {
        uint256 length = _allTokens[_allTokensIndex[tokenId_]].valueApprovals.length;
        for (uint256 i = 0; i < length; i++) {
            if (_allTokens[_allTokensIndex[tokenId_]].valueApprovals[i] == to_) {
                return true;
            }
        }
        return false;
    }

    function _transferValue(
        uint256 fromTokenId_,
        uint256 toTokenId_,
        uint256 value_
    ) internal virtual {
        require(_exists(fromTokenId_), "ERC3525: transfer from invalid token ID");
        require(_exists(toTokenId_), "ERC3525: transfer to invalid token ID");

        TokenData storage fromTokenData = _allTokens[_allTokensIndex[fromTokenId_]];
        TokenData storage toTokenData = _allTokens[_allTokensIndex[toTokenId_]];

        require(fromTokenData.balance >= value_, "ERC3525: insufficient balance for transfer");
        require(fromTokenData.slot == toTokenData.slot, "ERC3525: transfer to token with different slot");

        _beforeValueTransfer(
            fromTokenData.owner,
            toTokenData.owner,
            fromTokenId_,
            toTokenId_,
            fromTokenData.slot,
            value_
        );

        fromTokenData.balance -= value_;
        toTokenData.balance += value_;

        emit TransferValue(fromTokenId_, toTokenId_, value_);

        _afterValueTransfer(
            fromTokenData.owner,
            toTokenData.owner,
            fromTokenId_,
            toTokenId_,
            fromTokenData.slot,
            value_
        );

        require(
            _checkOnERC3525Received(fromTokenId_, toTokenId_, value_, ""),
            "ERC3525: transfer rejected by ERC3525Receiver"
        );
    }

    function _transferTokenId(
        address from_,
        address to_,
        uint256 tokenId_
    ) internal virtual {
        require(ERC3525.ownerOf(tokenId_) == from_, "ERC3525: transfer from invalid owner");
        require(to_ != address(0), "ERC3525: transfer to the zero address");

        uint256 slot = ERC3525.slotOf(tokenId_);
        uint256 value = ERC3525.balanceOf(tokenId_);

        _beforeValueTransfer(from_, to_, tokenId_, tokenId_, slot, value);

        _approve(address(0), tokenId_);
        _clearApprovedValues(tokenId_);

        _removeTokenFromOwnerEnumeration(from_, tokenId_);
        _addTokenToOwnerEnumeration(to_, tokenId_);

        emit Transfer(from_, to_, tokenId_);

        _afterValueTransfer(from_, to_, tokenId_, tokenId_, slot, value);
    }

    function _safeTransferTokenId(
        address from_,
        address to_,
        uint256 tokenId_,
        bytes memory data_
    ) internal virtual {
        _transferTokenId(from_, to_, tokenId_);
        require(
            _checkOnERC721Received(from_, to_, tokenId_, data_),
            "ERC3525: transfer to non ERC721Receiver"
        );
    }

    function _checkOnERC3525Received( 
        uint256 fromTokenId_, 
        uint256 toTokenId_, 
        uint256 value_, 
        bytes memory data_
    ) private returns (bool) {
        address to = ERC3525.ownerOf(toTokenId_);
        if (to.isContract() && IERC165(to).supportsInterface(type(IERC3525Receiver).interfaceId)) {
            bytes4 retval = IERC3525Receiver(to).onERC3525Received(_msgSender(), fromTokenId_, toTokenId_, value_, data_);
            return retval == IERC3525Receiver.onERC3525Received.selector;
        } else {
            return true;
        }
    }

    /**
     * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
     * The call is not executed if the target address is not a contract.
     *
     * @param from_ address representing the previous owner of the given token ID
     * @param to_ target address that will receive the tokens
     * @param tokenId_ uint256 ID of the token to be transferred
     * @param data_ bytes optional data to send along with the call
     * @return bool whether the call correctly returned the expected magic value
     */
    function _checkOnERC721Received(
        address from_,
        address to_,
        uint256 tokenId_,
        bytes memory data_
    ) private returns (bool) {
        if (to_.isContract()) {
            try 
                IERC721Receiver(to_).onERC721Received(_msgSender(), from_, tokenId_, data_) returns (bytes4 retval) {
                return retval == IERC721Receiver.onERC721Received.selector;
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    revert("ERC721: transfer to non ERC721Receiver implementer");
                } else {
                    /// @solidity memory-safe-assembly
                    assembly {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        } else {
            return true;
        }
    }

    /* solhint-disable */
    function _beforeValueTransfer(
        address from_,
        address to_,
        uint256 fromTokenId_,
        uint256 toTokenId_,
        uint256 slot_,
        uint256 value_
    ) internal virtual {}

    function _afterValueTransfer(
        address from_,
        address to_,
        uint256 fromTokenId_,
        uint256 toTokenId_,
        uint256 slot_,
        uint256 value_
    ) internal virtual {}
    /* solhint-enable */

    function _setMetadataDescriptor(address metadataDescriptor_) internal virtual {
        metadataDescriptor = IERC3525MetadataDescriptor(metadataDescriptor_);
        emit SetMetadataDescriptor(metadataDescriptor_);
    }

    function _createOriginalTokenId() internal virtual returns (uint256) {
         _tokenIdGenerator.increment();
        return _tokenIdGenerator.current();
    }

    function _createDerivedTokenId(uint256 fromTokenId_) internal virtual returns (uint256) {
        fromTokenId_;
        return _createOriginalTokenId();
    }
}


// File @openzeppelin/contracts/access/[email protected]

// 
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}


// File @openzeppelin/contracts/security/[email protected]

// 
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }
}


// File contracts/HomelessCard.sol

// 
pragma solidity ^0.8.9;
contract HomelessCard is ERC3525, Ownable, ReentrancyGuard {
    address public homelessDog;
    uint256 public totalShare;
    uint256 public constant SLOT = 0;

    modifier onlyHomeless() {
        require(msg.sender == homelessDog, "Not granted");
        _;
    }

    constructor(address homelessDog_) ERC3525("HomelessCard", "HomelessCard", 18) {
        homelessDog = homelessDog_;
    }

    function tokenURI(uint256 tokenId) public view override returns (string memory) {
        ownerOf(tokenId);
        return "https://homelessdog.infura-ipfs.io/ipfs/Qmaq8XCfs9xPdnmG2mbvpWE7hMQ4NpSZd5GqZYnkUgiuVU";
    }

    function mint(address to, uint256 value) external payable onlyHomeless {
        totalShare += value;
        uint256 tokenId;
        if (balanceOf(to) > 0) {
            tokenId = tokenOfOwnerByIndex(to, 0);
            ERC3525._mintValue(tokenId, value);
        } else {
            tokenId = _createOriginalTokenId();
            ERC3525._mint(to, tokenId, SLOT, value);
        }
    }

    function burnValue(uint256 tokenId_, uint256 burnValue_) external nonReentrant {
        require(_isApprovedOrOwner(_msgSender(), tokenId_), "ERC3525: caller is not token owner nor approved");
        require(burnValue_ > 0, "burnValue is zero");
        ERC3525._burnValue(tokenId_, burnValue_);

        uint256 ethAmount = (address(this).balance * burnValue_) / totalShare;
        totalShare -= burnValue_;

        (bool success, ) = _msgSender().call{value: ethAmount}("");
        require(success, "Unable to send value");
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):