ETH Price: $3,394.82 (-1.21%)
Gas: 2 Gwei

Contract Diff Checker

Contract Name:
Coti

Contract Source Code:

File 1 of 1 : Coti

pragma solidity 0.4.24;

library SafeMath {

  /**
  * @dev Multiplies two numbers, throws on overflow.
  */
  function mul(uint256 a, uint256 b) internal pure returns (uint256 c) {
    // Gas optimization: this is cheaper than asserting 'a' not being zero, but the
    // benefit is lost if 'b' is also tested.
    // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
    if (a == 0) {
      return 0;
    }

    c = a * b;
    assert(c / a == b);
    return c;
  }

  /**
  * @dev Integer division of two numbers, truncating the quotient.
  */
  function div(uint256 a, uint256 b) internal pure returns (uint256) {
    // assert(b > 0); // Solidity automatically throws when dividing by 0
    // uint256 c = a / b;
    // assert(a == b * c + a % b); // There is no case in which this doesn't hold
    return a / b;
  }

  /**
  * @dev Subtracts two numbers, throws on overflow (i.e. if subtrahend is greater than minuend).
  */
  function sub(uint256 a, uint256 b) internal pure returns (uint256) {
    assert(b <= a);
    return a - b;
  }

  /**
  * @dev Adds two numbers, throws on overflow.
  */
  function add(uint256 a, uint256 b) internal pure returns (uint256 c) {
    c = a + b;
    assert(c >= a);
    return c;
  }
}


/**
 * @title Ownable
 * @dev The Ownable contract has an owner address, and provides basic authorization control
 * functions, this simplifies the implementation of "user permissions".
 */
contract Ownable {
  address public owner;


  event OwnershipRenounced(address indexed previousOwner);
  event OwnershipTransferred(
    address indexed previousOwner,
    address indexed newOwner
  );


  /**
   * @dev The Ownable constructor sets the original `owner` of the contract to the sender
   * account.
   */
  constructor() public {
    owner = msg.sender;
  }

  /**
   * @dev Throws if called by any account other than the owner.
   */
  modifier onlyOwner() {
    require(msg.sender == owner);
    _;
  }

  /**
   * @dev Allows the current owner to relinquish control of the contract.
   */
  function renounceOwnership() public onlyOwner {
    emit OwnershipRenounced(owner);
    owner = address(0);
  }

  /**
   * @dev Allows the current owner to transfer control of the contract to a newOwner.
   * @param _newOwner The address to transfer ownership to.
   */
  function transferOwnership(address _newOwner) public onlyOwner {
    _transferOwnership(_newOwner);
  }

  /**
   * @dev Transfers control of the contract to a newOwner.
   * @param _newOwner The address to transfer ownership to.
   */
  function _transferOwnership(address _newOwner) internal {
    require(_newOwner != address(0));
    emit OwnershipTransferred(owner, _newOwner);
    owner = _newOwner;
  }
}

contract HasNoEther is Ownable {

  /**
  * @dev Constructor that rejects incoming Ether
  * @dev The `payable` flag is added so we can access `msg.value` without compiler warning. If we
  * leave out payable, then Solidity will allow inheriting contracts to implement a payable
  * constructor. By doing it this way we prevent a payable constructor from working. Alternatively
  * we could use assembly to access msg.value.
  */
  constructor() public payable {
    require(msg.value == 0);
  }

  /**
   * @dev Disallows direct send by settings a default function without the `payable` flag.
   */
  function() external {
  }

  /**
   * @dev Transfer all Ether held by the contract to the owner.
   */
  function reclaimEther() external onlyOwner {
    owner.transfer(address(this).balance);
  }
}

contract Claimable is Ownable {
  address public pendingOwner;

  /**
   * @dev Modifier throws if called by any account other than the pendingOwner.
   */
  modifier onlyPendingOwner() {
    require(msg.sender == pendingOwner);
    _;
  }

  /**
   * @dev Allows the current owner to set the pendingOwner address.
   * @param newOwner The address to transfer ownership to.
   */
  function transferOwnership(address newOwner) onlyOwner public {
    pendingOwner = newOwner;
  }

  /**
   * @dev Allows the pendingOwner address to finalize the transfer.
   */
  function claimOwnership() onlyPendingOwner public {
    emit OwnershipTransferred(owner, pendingOwner);
    owner = pendingOwner;
    pendingOwner = address(0);
  }
}

contract ERC20Basic {
  function totalSupply() public view returns (uint256);
  function balanceOf(address who) public view returns (uint256);
  function transfer(address to, uint256 value) public returns (bool);
  event Transfer(address indexed from, address indexed to, uint256 value);
}

contract BasicToken is ERC20Basic {
  using SafeMath for uint256;

  mapping(address => uint256) balances;

  uint256 totalSupply_;

  /**
  * @dev total number of tokens in existence
  */
  function totalSupply() public view returns (uint256) {
    return totalSupply_;
  }

  /**
  * @dev transfer token for a specified address
  * @param _to The address to transfer to.
  * @param _value The amount to be transferred.
  */
  function transfer(address _to, uint256 _value) public returns (bool) {
    require(_to != address(0));
    require(_value <= balances[msg.sender]);

    balances[msg.sender] = balances[msg.sender].sub(_value);
    balances[_to] = balances[_to].add(_value);
    emit Transfer(msg.sender, _to, _value);
    return true;
  }

  /**
  * @dev Gets the balance of the specified address.
  * @param _owner The address to query the the balance of.
  * @return An uint256 representing the amount owned by the passed address.
  */
  function balanceOf(address _owner) public view returns (uint256) {
    return balances[_owner];
  }

}

contract ERC20 is ERC20Basic {
  function allowance(address owner, address spender)
    public view returns (uint256);

  function transferFrom(address from, address to, uint256 value)
    public returns (bool);

  function approve(address spender, uint256 value) public returns (bool);
  event Approval(
    address indexed owner,
    address indexed spender,
    uint256 value
  );
}

contract StandardToken is ERC20, BasicToken {

  mapping (address => mapping (address => uint256)) internal allowed;


  /**
   * @dev Transfer tokens from one address to another
   * @param _from address The address which you want to send tokens from
   * @param _to address The address which you want to transfer to
   * @param _value uint256 the amount of tokens to be transferred
   */
  function transferFrom(
    address _from,
    address _to,
    uint256 _value
  )
    public
    returns (bool)
  {
    require(_to != address(0));
    require(_value <= balances[_from]);
    require(_value <= allowed[_from][msg.sender]);

    balances[_from] = balances[_from].sub(_value);
    balances[_to] = balances[_to].add(_value);
    allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
    emit Transfer(_from, _to, _value);
    return true;
  }

  /**
   * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
   *
   * Beware that changing an allowance with this method brings the risk that someone may use both the old
   * and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this
   * race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards:
   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
   * @param _spender The address which will spend the funds.
   * @param _value The amount of tokens to be spent.
   */
  function approve(address _spender, uint256 _value) public returns (bool) {
    allowed[msg.sender][_spender] = _value;
    emit Approval(msg.sender, _spender, _value);
    return true;
  }

  /**
   * @dev Function to check the amount of tokens that an owner allowed to a spender.
   * @param _owner address The address which owns the funds.
   * @param _spender address The address which will spend the funds.
   * @return A uint256 specifying the amount of tokens still available for the spender.
   */
  function allowance(
    address _owner,
    address _spender
   )
    public
    view
    returns (uint256)
  {
    return allowed[_owner][_spender];
  }

  /**
   * @dev Increase the amount of tokens that an owner allowed to a spender.
   *
   * approve should be called when allowed[_spender] == 0. To increment
   * allowed value is better to use this function to avoid 2 calls (and wait until
   * the first transaction is mined)
   * From MonolithDAO Token.sol
   * @param _spender The address which will spend the funds.
   * @param _addedValue The amount of tokens to increase the allowance by.
   */
  function increaseApproval(
    address _spender,
    uint _addedValue
  )
    public
    returns (bool)
  {
    allowed[msg.sender][_spender] = (
      allowed[msg.sender][_spender].add(_addedValue));
    emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
    return true;
  }

  /**
   * @dev Decrease the amount of tokens that an owner allowed to a spender.
   *
   * approve should be called when allowed[_spender] == 0. To decrement
   * allowed value is better to use this function to avoid 2 calls (and wait until
   * the first transaction is mined)
   * From MonolithDAO Token.sol
   * @param _spender The address which will spend the funds.
   * @param _subtractedValue The amount of tokens to decrease the allowance by.
   */
  function decreaseApproval(
    address _spender,
    uint _subtractedValue
  )
    public
    returns (bool)
  {
    uint oldValue = allowed[msg.sender][_spender];
    if (_subtractedValue > oldValue) {
      allowed[msg.sender][_spender] = 0;
    } else {
      allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
    }
    emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
    return true;
  }

}

contract MintableToken is StandardToken, Ownable {
  event Mint(address indexed to, uint256 amount);
  event MintFinished();

  bool public mintingFinished = false;


  modifier canMint() {
    require(!mintingFinished);
    _;
  }

  modifier hasMintPermission() {
    require(msg.sender == owner);
    _;
  }

  /**
   * @dev Function to mint tokens
   * @param _to The address that will receive the minted tokens.
   * @param _amount The amount of tokens to mint.
   * @return A boolean that indicates if the operation was successful.
   */
  function mint(
    address _to,
    uint256 _amount
  )
    hasMintPermission
    canMint
    public
    returns (bool)
  {
    totalSupply_ = totalSupply_.add(_amount);
    balances[_to] = balances[_to].add(_amount);
    emit Mint(_to, _amount);
    emit Transfer(address(0), _to, _amount);
    return true;
  }

  /**
   * @dev Function to stop minting new tokens.
   * @return True if the operation was successful.
   */
  function finishMinting() onlyOwner canMint public returns (bool) {
    mintingFinished = true;
    emit MintFinished();
    return true;
  }
}

contract BurnableToken is BasicToken {

  event Burn(address indexed burner, uint256 value);

  /**
   * @dev Burns a specific amount of tokens.
   * @param _value The amount of token to be burned.
   */
  function burn(uint256 _value) public {
    _burn(msg.sender, _value);
  }

  function _burn(address _who, uint256 _value) internal {
    require(_value <= balances[_who]);
    // no need to require value <= totalSupply, since that would imply the
    // sender's balance is greater than the totalSupply, which *should* be an assertion failure

    balances[_who] = balances[_who].sub(_value);
    totalSupply_ = totalSupply_.sub(_value);
    emit Burn(_who, _value);
    emit Transfer(_who, address(0), _value);
  }
}

contract Coti is HasNoEther, Claimable, MintableToken, BurnableToken {
    string public constant name = "COTI Token";
    string public constant symbol = "COTI";
    uint8 public constant decimals = 18;

}

Please enter a contract address above to load the contract details and source code.

Context size (optional):