Contract Name:
StateCommitmentChain
Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.9;
/* Library Imports */
import {Lib_OVMCodec} from '../../libraries/codec/Lib_OVMCodec.sol';
import {Lib_AddressResolver} from '../../libraries/resolver/Lib_AddressResolver.sol';
import {Lib_MerkleTree} from '../../libraries/utils/Lib_MerkleTree.sol';
/* Interface Imports */
import {IStateCommitmentChain} from './IStateCommitmentChain.sol';
import {ICanonicalTransactionChain} from './ICanonicalTransactionChain.sol';
import {IBondManager} from '../verification/IBondManager.sol';
import {IChainStorageContainer} from './IChainStorageContainer.sol';
/**
* @title StateCommitmentChain
* @dev The State Commitment Chain (SCC) contract contains a list of proposed state roots which
* Proposers assert to be a result of each transaction in the Canonical Transaction Chain (CTC).
* Elements here have a 1:1 correspondence with transactions in the CTC, and should be the unique
* state root calculated off-chain by applying the canonical transactions one by one.
*
* Runtime target: EVM
*/
contract StateCommitmentChain is IStateCommitmentChain, Lib_AddressResolver {
/*************
* Constants *
*************/
uint256 public FRAUD_PROOF_WINDOW;
uint256 public SEQUENCER_PUBLISH_WINDOW;
/***************
* Constructor *
***************/
/**
* @param _libAddressManager Address of the Address Manager.
*/
constructor(
address _libAddressManager,
uint256 _fraudProofWindow,
uint256 _sequencerPublishWindow
) Lib_AddressResolver(_libAddressManager) {
FRAUD_PROOF_WINDOW = _fraudProofWindow;
SEQUENCER_PUBLISH_WINDOW = _sequencerPublishWindow;
}
/********************
* Public Functions *
********************/
/**
* Accesses the batch storage container.
* @return Reference to the batch storage container.
*/
function batches() public view returns (IChainStorageContainer) {
return IChainStorageContainer(resolve('ChainStorageContainer-SCC-batches'));
}
/**
* @inheritdoc IStateCommitmentChain
*/
function getTotalElements() public view returns (uint256 _totalElements) {
(uint40 totalElements, ) = _getBatchExtraData();
return uint256(totalElements);
}
/**
* @inheritdoc IStateCommitmentChain
*/
function getTotalBatches() public view returns (uint256 _totalBatches) {
return batches().length();
}
/**
* @inheritdoc IStateCommitmentChain
*/
function getLastSequencerTimestamp()
public
view
returns (uint256 _lastSequencerTimestamp)
{
(, uint40 lastSequencerTimestamp) = _getBatchExtraData();
return uint256(lastSequencerTimestamp);
}
/**
* @inheritdoc IStateCommitmentChain
*/
function appendStateBatch(
bytes32[] memory _batch,
uint256 _shouldStartAtElement
) public {
// Fail fast in to make sure our batch roots aren't accidentally made fraudulent by the
// publication of batches by some other user.
require(
_shouldStartAtElement == getTotalElements(),
'Actual batch start index does not match expected start index.'
);
// Proposers must have previously staked at the BondManager
require(
IBondManager(resolve('BondManager')).isCollateralized(msg.sender),
'Proposer does not have enough collateral posted'
);
require(_batch.length > 0, 'Cannot submit an empty state batch.');
require(
getTotalElements() + _batch.length <=
ICanonicalTransactionChain(resolve('CanonicalTransactionChain'))
.getTotalElements(),
'Number of state roots cannot exceed the number of canonical transactions.'
);
// Pass the block's timestamp and the publisher of the data
// to be used in the fraud proofs
_appendBatch(_batch, abi.encode(block.timestamp, msg.sender));
}
/**
* @inheritdoc IStateCommitmentChain
*/
function deleteStateBatch(Lib_OVMCodec.ChainBatchHeader memory _batchHeader)
public
{
require(
msg.sender == resolve('OVM_FraudVerifier'),
'State batches can only be deleted by the OVM_FraudVerifier.'
);
require(_isValidBatchHeader(_batchHeader), 'Invalid batch header.');
require(
insideFraudProofWindow(_batchHeader),
'State batches can only be deleted within the fraud proof window.'
);
_deleteBatch(_batchHeader);
}
/**
* @inheritdoc IStateCommitmentChain
*/
function verifyStateCommitment(
bytes32 _element,
Lib_OVMCodec.ChainBatchHeader memory _batchHeader,
Lib_OVMCodec.ChainInclusionProof memory _proof
) public view returns (bool) {
require(_isValidBatchHeader(_batchHeader), 'Invalid batch header.');
require(
Lib_MerkleTree.verify(
_batchHeader.batchRoot,
_element,
_proof.index,
_proof.siblings,
_batchHeader.batchSize
),
'Invalid inclusion proof.'
);
return true;
}
/**
* @inheritdoc IStateCommitmentChain
*/
function insideFraudProofWindow(
Lib_OVMCodec.ChainBatchHeader memory _batchHeader
) public view returns (bool _inside) {
(uint256 timestamp, ) = abi.decode(
_batchHeader.extraData,
(uint256, address)
);
require(timestamp != 0, 'Batch header timestamp cannot be zero');
return (timestamp + FRAUD_PROOF_WINDOW) > block.timestamp;
}
/**********************
* Internal Functions *
**********************/
/**
* Parses the batch context from the extra data.
* @return Total number of elements submitted.
* @return Timestamp of the last batch submitted by the sequencer.
*/
function _getBatchExtraData() internal view returns (uint40, uint40) {
bytes27 extraData = batches().getGlobalMetadata();
// solhint-disable max-line-length
uint40 totalElements;
uint40 lastSequencerTimestamp;
assembly {
extraData := shr(40, extraData)
totalElements := and(
extraData,
0x000000000000000000000000000000000000000000000000000000FFFFFFFFFF
)
lastSequencerTimestamp := shr(
40,
and(
extraData,
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0000000000
)
)
}
// solhint-enable max-line-length
return (totalElements, lastSequencerTimestamp);
}
/**
* Encodes the batch context for the extra data.
* @param _totalElements Total number of elements submitted.
* @param _lastSequencerTimestamp Timestamp of the last batch submitted by the sequencer.
* @return Encoded batch context.
*/
function _makeBatchExtraData(
uint40 _totalElements,
uint40 _lastSequencerTimestamp
) internal pure returns (bytes27) {
bytes27 extraData;
assembly {
extraData := _totalElements
extraData := or(extraData, shl(40, _lastSequencerTimestamp))
extraData := shl(40, extraData)
}
return extraData;
}
/**
* Appends a batch to the chain.
* @param _batch Elements within the batch.
* @param _extraData Any extra data to append to the batch.
*/
function _appendBatch(bytes32[] memory _batch, bytes memory _extraData)
internal
{
address sequencer = resolve('OVM_Proposer');
(
uint40 totalElements,
uint40 lastSequencerTimestamp
) = _getBatchExtraData();
if (msg.sender == sequencer) {
lastSequencerTimestamp = uint40(block.timestamp);
} else {
// We keep track of the last batch submitted by the sequencer so there's a window in
// which only the sequencer can publish state roots. A window like this just reduces
// the chance of "system breaking" state roots being published while we're still in
// testing mode. This window should be removed or significantly reduced in the future.
require(
lastSequencerTimestamp + SEQUENCER_PUBLISH_WINDOW < block.timestamp,
'Cannot publish state roots within the sequencer publication window.'
);
}
// For efficiency reasons getMerkleRoot modifies the `_batch` argument in place
// while calculating the root hash therefore any arguments passed to it must not
// be used again afterwards
Lib_OVMCodec.ChainBatchHeader memory batchHeader = Lib_OVMCodec
.ChainBatchHeader({
batchIndex: getTotalBatches(),
batchRoot: Lib_MerkleTree.getMerkleRoot(_batch),
batchSize: _batch.length,
prevTotalElements: totalElements,
extraData: _extraData
});
emit StateBatchAppended(
batchHeader.batchIndex,
batchHeader.batchRoot,
batchHeader.batchSize,
batchHeader.prevTotalElements,
batchHeader.extraData
);
batches().push(
Lib_OVMCodec.hashBatchHeader(batchHeader),
_makeBatchExtraData(
uint40(batchHeader.prevTotalElements + batchHeader.batchSize),
lastSequencerTimestamp
)
);
}
/**
* Removes a batch and all subsequent batches from the chain.
* @param _batchHeader Header of the batch to remove.
*/
function _deleteBatch(Lib_OVMCodec.ChainBatchHeader memory _batchHeader)
internal
{
require(
_batchHeader.batchIndex < batches().length(),
'Invalid batch index.'
);
require(_isValidBatchHeader(_batchHeader), 'Invalid batch header.');
batches().deleteElementsAfterInclusive(
_batchHeader.batchIndex,
_makeBatchExtraData(uint40(_batchHeader.prevTotalElements), 0)
);
emit StateBatchDeleted(_batchHeader.batchIndex, _batchHeader.batchRoot);
}
/**
* Checks that a batch header matches the stored hash for the given index.
* @param _batchHeader Batch header to validate.
* @return Whether or not the header matches the stored one.
*/
function _isValidBatchHeader(
Lib_OVMCodec.ChainBatchHeader memory _batchHeader
) internal view returns (bool) {
return
Lib_OVMCodec.hashBatchHeader(_batchHeader) ==
batches().get(_batchHeader.batchIndex);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.9;
/* Library Imports */
import {Lib_RLPReader} from '../rlp/Lib_RLPReader.sol';
import {Lib_RLPWriter} from '../rlp/Lib_RLPWriter.sol';
import {Lib_BytesUtils} from '../utils/Lib_BytesUtils.sol';
import {Lib_Bytes32Utils} from '../utils/Lib_Bytes32Utils.sol';
/**
* @title Lib_OVMCodec
*/
library Lib_OVMCodec {
/*********
* Enums *
*********/
enum QueueOrigin {
SEQUENCER_QUEUE,
L1TOL2_QUEUE
}
/***********
* Structs *
***********/
struct EVMAccount {
uint256 nonce;
uint256 balance;
bytes32 storageRoot;
bytes32 codeHash;
}
struct ChainBatchHeader {
uint256 batchIndex;
bytes32 batchRoot;
uint256 batchSize;
uint256 prevTotalElements;
bytes extraData;
}
struct ChainInclusionProof {
uint256 index;
bytes32[] siblings;
}
struct Transaction {
uint256 timestamp;
uint256 blockNumber;
QueueOrigin l1QueueOrigin;
address l1TxOrigin;
address entrypoint;
uint256 gasLimit;
bytes data;
}
struct TransactionChainElement {
bool isSequenced;
uint256 queueIndex; // QUEUED TX ONLY
uint256 timestamp; // SEQUENCER TX ONLY
uint256 blockNumber; // SEQUENCER TX ONLY
bytes txData; // SEQUENCER TX ONLY
}
struct QueueElement {
bytes32 transactionHash;
uint40 timestamp;
uint40 blockNumber;
}
/**********************
* Internal Functions *
**********************/
/**
* Encodes a standard OVM transaction.
* @param _transaction OVM transaction to encode.
* @return Encoded transaction bytes.
*/
function encodeTransaction(Transaction memory _transaction)
internal
pure
returns (bytes memory)
{
return
abi.encodePacked(
_transaction.timestamp,
_transaction.blockNumber,
_transaction.l1QueueOrigin,
_transaction.l1TxOrigin,
_transaction.entrypoint,
_transaction.gasLimit,
_transaction.data
);
}
/**
* Hashes a standard OVM transaction.
* @param _transaction OVM transaction to encode.
* @return Hashed transaction
*/
function hashTransaction(Transaction memory _transaction)
internal
pure
returns (bytes32)
{
return keccak256(encodeTransaction(_transaction));
}
/**
* @notice Decodes an RLP-encoded account state into a useful struct.
* @param _encoded RLP-encoded account state.
* @return Account state struct.
*/
function decodeEVMAccount(bytes memory _encoded)
internal
pure
returns (EVMAccount memory)
{
Lib_RLPReader.RLPItem[] memory accountState = Lib_RLPReader.readList(
_encoded
);
return
EVMAccount({
nonce: Lib_RLPReader.readUint256(accountState[0]),
balance: Lib_RLPReader.readUint256(accountState[1]),
storageRoot: Lib_RLPReader.readBytes32(accountState[2]),
codeHash: Lib_RLPReader.readBytes32(accountState[3])
});
}
/**
* Calculates a hash for a given batch header.
* @param _batchHeader Header to hash.
* @return Hash of the header.
*/
function hashBatchHeader(Lib_OVMCodec.ChainBatchHeader memory _batchHeader)
internal
pure
returns (bytes32)
{
return
keccak256(
abi.encode(
_batchHeader.batchRoot,
_batchHeader.batchSize,
_batchHeader.prevTotalElements,
_batchHeader.extraData
)
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.9;
/* Library Imports */
import {Lib_AddressManager} from './Lib_AddressManager.sol';
/**
* @title Lib_AddressResolver
*/
abstract contract Lib_AddressResolver {
/*************
* Variables *
*************/
Lib_AddressManager public libAddressManager;
/***************
* Constructor *
***************/
/**
* @param _libAddressManager Address of the Lib_AddressManager.
*/
constructor(address _libAddressManager) {
libAddressManager = Lib_AddressManager(_libAddressManager);
}
/********************
* Public Functions *
********************/
/**
* Resolves the address associated with a given name.
* @param _name Name to resolve an address for.
* @return Address associated with the given name.
*/
function resolve(string memory _name) public view returns (address) {
return libAddressManager.getAddress(_name);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.9;
/**
* @title Lib_MerkleTree
* @author River Keefer
*/
library Lib_MerkleTree {
/**********************
* Internal Functions *
**********************/
/**
* Calculates a merkle root for a list of 32-byte leaf hashes. WARNING: If the number
* of leaves passed in is not a power of two, it pads out the tree with zero hashes.
* If you do not know the original length of elements for the tree you are verifying, then
* this may allow empty leaves past _elements.length to pass a verification check down the line.
* Note that the _elements argument is modified, therefore it must not be used again afterwards
* @param _elements Array of hashes from which to generate a merkle root.
* @return Merkle root of the leaves, with zero hashes for non-powers-of-two (see above).
*/
function getMerkleRoot(bytes32[] memory _elements)
internal
pure
returns (bytes32)
{
require(
_elements.length > 0,
'Lib_MerkleTree: Must provide at least one leaf hash.'
);
if (_elements.length == 1) {
return _elements[0];
}
uint256[16] memory defaults = [
0x290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563,
0x633dc4d7da7256660a892f8f1604a44b5432649cc8ec5cb3ced4c4e6ac94dd1d,
0x890740a8eb06ce9be422cb8da5cdafc2b58c0a5e24036c578de2a433c828ff7d,
0x3b8ec09e026fdc305365dfc94e189a81b38c7597b3d941c279f042e8206e0bd8,
0xecd50eee38e386bd62be9bedb990706951b65fe053bd9d8a521af753d139e2da,
0xdefff6d330bb5403f63b14f33b578274160de3a50df4efecf0e0db73bcdd3da5,
0x617bdd11f7c0a11f49db22f629387a12da7596f9d1704d7465177c63d88ec7d7,
0x292c23a9aa1d8bea7e2435e555a4a60e379a5a35f3f452bae60121073fb6eead,
0xe1cea92ed99acdcb045a6726b2f87107e8a61620a232cf4d7d5b5766b3952e10,
0x7ad66c0a68c72cb89e4fb4303841966e4062a76ab97451e3b9fb526a5ceb7f82,
0xe026cc5a4aed3c22a58cbd3d2ac754c9352c5436f638042dca99034e83636516,
0x3d04cffd8b46a874edf5cfae63077de85f849a660426697b06a829c70dd1409c,
0xad676aa337a485e4728a0b240d92b3ef7b3c372d06d189322bfd5f61f1e7203e,
0xa2fca4a49658f9fab7aa63289c91b7c7b6c832a6d0e69334ff5b0a3483d09dab,
0x4ebfd9cd7bca2505f7bef59cc1c12ecc708fff26ae4af19abe852afe9e20c862,
0x2def10d13dd169f550f578bda343d9717a138562e0093b380a1120789d53cf10
];
// Reserve memory space for our hashes.
bytes memory buf = new bytes(64);
// We'll need to keep track of left and right siblings.
bytes32 leftSibling;
bytes32 rightSibling;
// Number of non-empty nodes at the current depth.
uint256 rowSize = _elements.length;
// Current depth, counting from 0 at the leaves
uint256 depth = 0;
// Common sub-expressions
uint256 halfRowSize; // rowSize / 2
bool rowSizeIsOdd; // rowSize % 2 == 1
while (rowSize > 1) {
halfRowSize = rowSize / 2;
rowSizeIsOdd = rowSize % 2 == 1;
for (uint256 i = 0; i < halfRowSize; i++) {
leftSibling = _elements[(2 * i)];
rightSibling = _elements[(2 * i) + 1];
assembly {
mstore(add(buf, 32), leftSibling)
mstore(add(buf, 64), rightSibling)
}
_elements[i] = keccak256(buf);
}
if (rowSizeIsOdd) {
leftSibling = _elements[rowSize - 1];
rightSibling = bytes32(defaults[depth]);
assembly {
mstore(add(buf, 32), leftSibling)
mstore(add(buf, 64), rightSibling)
}
_elements[halfRowSize] = keccak256(buf);
}
rowSize = halfRowSize + (rowSizeIsOdd ? 1 : 0);
depth++;
}
return _elements[0];
}
/**
* Verifies a merkle branch for the given leaf hash. Assumes the original length
* of leaves generated is a known, correct input, and does not return true for indices
* extending past that index (even if _siblings would be otherwise valid.)
* @param _root The Merkle root to verify against.
* @param _leaf The leaf hash to verify inclusion of.
* @param _index The index in the tree of this leaf.
* @param _siblings Array of sibline nodes in the inclusion proof, starting from depth 0
* (bottom of the tree).
* @param _totalLeaves The total number of leaves originally passed into.
* @return Whether or not the merkle branch and leaf passes verification.
*/
function verify(
bytes32 _root,
bytes32 _leaf,
uint256 _index,
bytes32[] memory _siblings,
uint256 _totalLeaves
) internal pure returns (bool) {
require(
_totalLeaves > 0,
'Lib_MerkleTree: Total leaves must be greater than zero.'
);
require(_index < _totalLeaves, 'Lib_MerkleTree: Index out of bounds.');
require(
_siblings.length == _ceilLog2(_totalLeaves),
'Lib_MerkleTree: Total siblings does not correctly correspond to total leaves.'
);
bytes32 computedRoot = _leaf;
for (uint256 i = 0; i < _siblings.length; i++) {
if ((_index & 1) == 1) {
computedRoot = keccak256(abi.encodePacked(_siblings[i], computedRoot));
} else {
computedRoot = keccak256(abi.encodePacked(computedRoot, _siblings[i]));
}
_index >>= 1;
}
return _root == computedRoot;
}
/*********************
* Private Functions *
*********************/
/**
* Calculates the integer ceiling of the log base 2 of an input.
* @param _in Unsigned input to calculate the log.
* @return ceil(log_base_2(_in))
*/
function _ceilLog2(uint256 _in) private pure returns (uint256) {
require(_in > 0, 'Lib_MerkleTree: Cannot compute ceil(log_2) of 0.');
if (_in == 1) {
return 0;
}
// Find the highest set bit (will be floor(log_2)).
// Borrowed with <3 from https://github.com/ethereum/solidity-examples
uint256 val = _in;
uint256 highest = 0;
for (uint256 i = 128; i >= 1; i >>= 1) {
if (val & (((uint256(1) << i) - 1) << i) != 0) {
highest += i;
val >>= i;
}
}
// Increment by one if this is not a perfect logarithm.
if ((uint256(1) << highest) != _in) {
highest += 1;
}
return highest;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.9.0;
/* Library Imports */
import {Lib_OVMCodec} from '../../libraries/codec/Lib_OVMCodec.sol';
/**
* @title IStateCommitmentChain
*/
interface IStateCommitmentChain {
/**********
* Events *
**********/
event StateBatchAppended(
uint256 indexed _batchIndex,
bytes32 _batchRoot,
uint256 _batchSize,
uint256 _prevTotalElements,
bytes _extraData
);
event StateBatchDeleted(uint256 indexed _batchIndex, bytes32 _batchRoot);
/********************
* Public Functions *
********************/
/**
* Retrieves the total number of elements submitted.
* @return _totalElements Total submitted elements.
*/
function getTotalElements() external view returns (uint256 _totalElements);
/**
* Retrieves the total number of batches submitted.
* @return _totalBatches Total submitted batches.
*/
function getTotalBatches() external view returns (uint256 _totalBatches);
/**
* Retrieves the timestamp of the last batch submitted by the sequencer.
* @return _lastSequencerTimestamp Last sequencer batch timestamp.
*/
function getLastSequencerTimestamp()
external
view
returns (uint256 _lastSequencerTimestamp);
/**
* Appends a batch of state roots to the chain.
* @param _batch Batch of state roots.
* @param _shouldStartAtElement Index of the element at which this batch should start.
*/
function appendStateBatch(
bytes32[] calldata _batch,
uint256 _shouldStartAtElement
) external;
/**
* Deletes all state roots after (and including) a given batch.
* @param _batchHeader Header of the batch to start deleting from.
*/
function deleteStateBatch(Lib_OVMCodec.ChainBatchHeader memory _batchHeader)
external;
/**
* Verifies a batch inclusion proof.
* @param _element Hash of the element to verify a proof for.
* @param _batchHeader Header of the batch in which the element was included.
* @param _proof Merkle inclusion proof for the element.
*/
function verifyStateCommitment(
bytes32 _element,
Lib_OVMCodec.ChainBatchHeader memory _batchHeader,
Lib_OVMCodec.ChainInclusionProof memory _proof
) external view returns (bool _verified);
/**
* Checks whether a given batch is still inside its fraud proof window.
* @param _batchHeader Header of the batch to check.
* @return _inside Whether or not the batch is inside the fraud proof window.
*/
function insideFraudProofWindow(
Lib_OVMCodec.ChainBatchHeader memory _batchHeader
) external view returns (bool _inside);
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.9.0;
/* Library Imports */
import {Lib_OVMCodec} from '../../libraries/codec/Lib_OVMCodec.sol';
/* Interface Imports */
import {IChainStorageContainer} from './IChainStorageContainer.sol';
/**
* @title ICanonicalTransactionChain
*/
interface ICanonicalTransactionChain {
/**********
* Events *
**********/
event L2GasParamsUpdated(
uint256 l2GasDiscountDivisor,
uint256 enqueueGasCost,
uint256 enqueueL2GasPrepaid
);
event TransactionEnqueued(
address indexed _l1TxOrigin,
address indexed _target,
uint256 _gasLimit,
bytes _data,
uint256 indexed _queueIndex,
uint256 _timestamp
);
event QueueBatchAppended(
uint256 _startingQueueIndex,
uint256 _numQueueElements,
uint256 _totalElements
);
event SequencerBatchAppended(
uint256 _startingQueueIndex,
uint256 _numQueueElements,
uint256 _totalElements
);
event TransactionBatchAppended(
uint256 indexed _batchIndex,
bytes32 _batchRoot,
uint256 _batchSize,
uint256 _prevTotalElements,
bytes _extraData
);
/***********
* Structs *
***********/
struct BatchContext {
uint256 numSequencedTransactions;
uint256 numSubsequentQueueTransactions;
uint256 timestamp;
uint256 blockNumber;
}
/*******************************
* Authorized Setter Functions *
*******************************/
/**
* Allows the Burn Admin to update the parameters which determine the amount of gas to burn.
* The value of enqueueL2GasPrepaid is immediately updated as well.
*/
function setGasParams(uint256 _l2GasDiscountDivisor, uint256 _enqueueGasCost)
external;
/********************
* Public Functions *
********************/
/**
* Accesses the batch storage container.
* @return Reference to the batch storage container.
*/
function batches() external view returns (IChainStorageContainer);
/**
* Accesses the queue storage container.
* @return Reference to the queue storage container.
*/
function queue() external view returns (IChainStorageContainer);
/**
* Retrieves the total number of elements submitted.
* @return _totalElements Total submitted elements.
*/
function getTotalElements() external view returns (uint256 _totalElements);
/**
* Retrieves the total number of batches submitted.
* @return _totalBatches Total submitted batches.
*/
function getTotalBatches() external view returns (uint256 _totalBatches);
/**
* Returns the index of the next element to be enqueued.
* @return Index for the next queue element.
*/
function getNextQueueIndex() external view returns (uint40);
/**
* Gets the queue element at a particular index.
* @param _index Index of the queue element to access.
* @return _element Queue element at the given index.
*/
function getQueueElement(uint256 _index)
external
view
returns (Lib_OVMCodec.QueueElement memory _element);
/**
* Returns the timestamp of the last transaction.
* @return Timestamp for the last transaction.
*/
function getLastTimestamp() external view returns (uint40);
/**
* Returns the blocknumber of the last transaction.
* @return Blocknumber for the last transaction.
*/
function getLastBlockNumber() external view returns (uint40);
/**
* Get the number of queue elements which have not yet been included.
* @return Number of pending queue elements.
*/
function getNumPendingQueueElements() external view returns (uint40);
/**
* Retrieves the length of the queue, including
* both pending and canonical transactions.
* @return Length of the queue.
*/
function getQueueLength() external view returns (uint40);
/**
* Adds a transaction to the queue.
* @param _target Target contract to send the transaction to.
* @param _gasLimit Gas limit for the given transaction.
* @param _data Transaction data.
*/
function enqueue(
address _target,
uint256 _gasLimit,
bytes memory _data
) external;
/**
* Allows the sequencer to append a batch of transactions.
* @dev This function uses a custom encoding scheme for efficiency reasons.
* .param _shouldStartAtElement Specific batch we expect to start appending to.
* .param _totalElementsToAppend Total number of batch elements we expect to append.
* .param _contexts Array of batch contexts.
* .param _transactionDataFields Array of raw transaction data.
*/
function appendSequencerBatch(
// uint40 _shouldStartAtElement,
// uint24 _totalElementsToAppend,
// BatchContext[] _contexts,
// bytes[] _transactionDataFields
) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.9;
/**
* @title IBondManager
*/
interface IBondManager {
/********************
* Public Functions *
********************/
function isCollateralized(address _who) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.9.0;
/**
* @title IChainStorageContainer
*/
interface IChainStorageContainer {
/********************
* Public Functions *
********************/
/**
* Sets the container's global metadata field. We're using `bytes27` here because we use five
* bytes to maintain the length of the underlying data structure, meaning we have an extra
* 27 bytes to store arbitrary data.
* @param _globalMetadata New global metadata to set.
*/
function setGlobalMetadata(bytes27 _globalMetadata) external;
/**
* Retrieves the container's global metadata field.
* @return Container global metadata field.
*/
function getGlobalMetadata() external view returns (bytes27);
/**
* Retrieves the number of objects stored in the container.
* @return Number of objects in the container.
*/
function length() external view returns (uint256);
/**
* Pushes an object into the container.
* @param _object A 32 byte value to insert into the container.
*/
function push(bytes32 _object) external;
/**
* Pushes an object into the container. Function allows setting the global metadata since
* we'll need to touch the "length" storage slot anyway, which also contains the global
* metadata (it's an optimization).
* @param _object A 32 byte value to insert into the container.
* @param _globalMetadata New global metadata for the container.
*/
function push(bytes32 _object, bytes27 _globalMetadata) external;
/**
* Retrieves an object from the container.
* @param _index Index of the particular object to access.
* @return 32 byte object value.
*/
function get(uint256 _index) external view returns (bytes32);
/**
* Removes all objects after and including a given index.
* @param _index Object index to delete from.
*/
function deleteElementsAfterInclusive(uint256 _index) external;
/**
* Removes all objects after and including a given index. Also allows setting the global
* metadata field.
* @param _index Object index to delete from.
* @param _globalMetadata New global metadata for the container.
*/
function deleteElementsAfterInclusive(uint256 _index, bytes27 _globalMetadata)
external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.9;
/**
* @title Lib_RLPReader
* @dev Adapted from "RLPReader" by Hamdi Allam ([email protected]).
*/
library Lib_RLPReader {
/*************
* Constants *
*************/
uint256 internal constant MAX_LIST_LENGTH = 32;
/*********
* Enums *
*********/
enum RLPItemType {
DATA_ITEM,
LIST_ITEM
}
/***********
* Structs *
***********/
struct RLPItem {
uint256 length;
uint256 ptr;
}
/**********************
* Internal Functions *
**********************/
/**
* Converts bytes to a reference to memory position and length.
* @param _in Input bytes to convert.
* @return Output memory reference.
*/
function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory) {
uint256 ptr;
assembly {
ptr := add(_in, 32)
}
return RLPItem({length: _in.length, ptr: ptr});
}
/**
* Reads an RLP list value into a list of RLP items.
* @param _in RLP list value.
* @return Decoded RLP list items.
*/
function readList(RLPItem memory _in)
internal
pure
returns (RLPItem[] memory)
{
(uint256 listOffset, , RLPItemType itemType) = _decodeLength(_in);
require(itemType == RLPItemType.LIST_ITEM, 'Invalid RLP list value.');
// Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by
// writing to the length. Since we can't know the number of RLP items without looping over
// the entire input, we'd have to loop twice to accurately size this array. It's easier to
// simply set a reasonable maximum list length and decrease the size before we finish.
RLPItem[] memory out = new RLPItem[](MAX_LIST_LENGTH);
uint256 itemCount = 0;
uint256 offset = listOffset;
while (offset < _in.length) {
require(
itemCount < MAX_LIST_LENGTH,
'Provided RLP list exceeds max list length.'
);
(uint256 itemOffset, uint256 itemLength, ) = _decodeLength(
RLPItem({length: _in.length - offset, ptr: _in.ptr + offset})
);
out[itemCount] = RLPItem({
length: itemLength + itemOffset,
ptr: _in.ptr + offset
});
itemCount += 1;
offset += itemOffset + itemLength;
}
// Decrease the array size to match the actual item count.
assembly {
mstore(out, itemCount)
}
return out;
}
/**
* Reads an RLP list value into a list of RLP items.
* @param _in RLP list value.
* @return Decoded RLP list items.
*/
function readList(bytes memory _in) internal pure returns (RLPItem[] memory) {
return readList(toRLPItem(_in));
}
/**
* Reads an RLP bytes value into bytes.
* @param _in RLP bytes value.
* @return Decoded bytes.
*/
function readBytes(RLPItem memory _in) internal pure returns (bytes memory) {
(
uint256 itemOffset,
uint256 itemLength,
RLPItemType itemType
) = _decodeLength(_in);
require(itemType == RLPItemType.DATA_ITEM, 'Invalid RLP bytes value.');
return _copy(_in.ptr, itemOffset, itemLength);
}
/**
* Reads an RLP bytes value into bytes.
* @param _in RLP bytes value.
* @return Decoded bytes.
*/
function readBytes(bytes memory _in) internal pure returns (bytes memory) {
return readBytes(toRLPItem(_in));
}
/**
* Reads an RLP string value into a string.
* @param _in RLP string value.
* @return Decoded string.
*/
function readString(RLPItem memory _in)
internal
pure
returns (string memory)
{
return string(readBytes(_in));
}
/**
* Reads an RLP string value into a string.
* @param _in RLP string value.
* @return Decoded string.
*/
function readString(bytes memory _in) internal pure returns (string memory) {
return readString(toRLPItem(_in));
}
/**
* Reads an RLP bytes32 value into a bytes32.
* @param _in RLP bytes32 value.
* @return Decoded bytes32.
*/
function readBytes32(RLPItem memory _in) internal pure returns (bytes32) {
require(_in.length <= 33, 'Invalid RLP bytes32 value.');
(
uint256 itemOffset,
uint256 itemLength,
RLPItemType itemType
) = _decodeLength(_in);
require(itemType == RLPItemType.DATA_ITEM, 'Invalid RLP bytes32 value.');
uint256 ptr = _in.ptr + itemOffset;
bytes32 out;
assembly {
out := mload(ptr)
// Shift the bytes over to match the item size.
if lt(itemLength, 32) {
out := div(out, exp(256, sub(32, itemLength)))
}
}
return out;
}
/**
* Reads an RLP bytes32 value into a bytes32.
* @param _in RLP bytes32 value.
* @return Decoded bytes32.
*/
function readBytes32(bytes memory _in) internal pure returns (bytes32) {
return readBytes32(toRLPItem(_in));
}
/**
* Reads an RLP uint256 value into a uint256.
* @param _in RLP uint256 value.
* @return Decoded uint256.
*/
function readUint256(RLPItem memory _in) internal pure returns (uint256) {
return uint256(readBytes32(_in));
}
/**
* Reads an RLP uint256 value into a uint256.
* @param _in RLP uint256 value.
* @return Decoded uint256.
*/
function readUint256(bytes memory _in) internal pure returns (uint256) {
return readUint256(toRLPItem(_in));
}
/**
* Reads an RLP bool value into a bool.
* @param _in RLP bool value.
* @return Decoded bool.
*/
function readBool(RLPItem memory _in) internal pure returns (bool) {
require(_in.length == 1, 'Invalid RLP boolean value.');
uint256 ptr = _in.ptr;
uint256 out;
assembly {
out := byte(0, mload(ptr))
}
require(
out == 0 || out == 1,
'Lib_RLPReader: Invalid RLP boolean value, must be 0 or 1'
);
return out != 0;
}
/**
* Reads an RLP bool value into a bool.
* @param _in RLP bool value.
* @return Decoded bool.
*/
function readBool(bytes memory _in) internal pure returns (bool) {
return readBool(toRLPItem(_in));
}
/**
* Reads an RLP address value into a address.
* @param _in RLP address value.
* @return Decoded address.
*/
function readAddress(RLPItem memory _in) internal pure returns (address) {
if (_in.length == 1) {
return address(0);
}
require(_in.length == 21, 'Invalid RLP address value.');
return address(uint160(readUint256(_in)));
}
/**
* Reads an RLP address value into a address.
* @param _in RLP address value.
* @return Decoded address.
*/
function readAddress(bytes memory _in) internal pure returns (address) {
return readAddress(toRLPItem(_in));
}
/**
* Reads the raw bytes of an RLP item.
* @param _in RLP item to read.
* @return Raw RLP bytes.
*/
function readRawBytes(RLPItem memory _in)
internal
pure
returns (bytes memory)
{
return _copy(_in);
}
/*********************
* Private Functions *
*********************/
/**
* Decodes the length of an RLP item.
* @param _in RLP item to decode.
* @return Offset of the encoded data.
* @return Length of the encoded data.
* @return RLP item type (LIST_ITEM or DATA_ITEM).
*/
function _decodeLength(RLPItem memory _in)
private
pure
returns (
uint256,
uint256,
RLPItemType
)
{
require(_in.length > 0, 'RLP item cannot be null.');
uint256 ptr = _in.ptr;
uint256 prefix;
assembly {
prefix := byte(0, mload(ptr))
}
if (prefix <= 0x7f) {
// Single byte.
return (0, 1, RLPItemType.DATA_ITEM);
} else if (prefix <= 0xb7) {
// Short string.
uint256 strLen = prefix - 0x80;
require(_in.length > strLen, 'Invalid RLP short string.');
return (1, strLen, RLPItemType.DATA_ITEM);
} else if (prefix <= 0xbf) {
// Long string.
uint256 lenOfStrLen = prefix - 0xb7;
require(_in.length > lenOfStrLen, 'Invalid RLP long string length.');
uint256 strLen;
assembly {
// Pick out the string length.
strLen := div(mload(add(ptr, 1)), exp(256, sub(32, lenOfStrLen)))
}
require(_in.length > lenOfStrLen + strLen, 'Invalid RLP long string.');
return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM);
} else if (prefix <= 0xf7) {
// Short list.
uint256 listLen = prefix - 0xc0;
require(_in.length > listLen, 'Invalid RLP short list.');
return (1, listLen, RLPItemType.LIST_ITEM);
} else {
// Long list.
uint256 lenOfListLen = prefix - 0xf7;
require(_in.length > lenOfListLen, 'Invalid RLP long list length.');
uint256 listLen;
assembly {
// Pick out the list length.
listLen := div(mload(add(ptr, 1)), exp(256, sub(32, lenOfListLen)))
}
require(_in.length > lenOfListLen + listLen, 'Invalid RLP long list.');
return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM);
}
}
/**
* Copies the bytes from a memory location.
* @param _src Pointer to the location to read from.
* @param _offset Offset to start reading from.
* @param _length Number of bytes to read.
* @return Copied bytes.
*/
function _copy(
uint256 _src,
uint256 _offset,
uint256 _length
) private pure returns (bytes memory) {
bytes memory out = new bytes(_length);
if (out.length == 0) {
return out;
}
uint256 src = _src + _offset;
uint256 dest;
assembly {
dest := add(out, 32)
}
// Copy over as many complete words as we can.
for (uint256 i = 0; i < _length / 32; i++) {
assembly {
mstore(dest, mload(src))
}
src += 32;
dest += 32;
}
// Pick out the remaining bytes.
uint256 mask;
unchecked {
mask = 256**(32 - (_length % 32)) - 1;
}
assembly {
mstore(dest, or(and(mload(src), not(mask)), and(mload(dest), mask)))
}
return out;
}
/**
* Copies an RLP item into bytes.
* @param _in RLP item to copy.
* @return Copied bytes.
*/
function _copy(RLPItem memory _in) private pure returns (bytes memory) {
return _copy(_in.ptr, 0, _in.length);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.9;
/**
* @title Lib_RLPWriter
* @author Bakaoh (with modifications)
*/
library Lib_RLPWriter {
/**********************
* Internal Functions *
**********************/
/**
* RLP encodes a byte string.
* @param _in The byte string to encode.
* @return The RLP encoded string in bytes.
*/
function writeBytes(bytes memory _in) internal pure returns (bytes memory) {
bytes memory encoded;
if (_in.length == 1 && uint8(_in[0]) < 128) {
encoded = _in;
} else {
encoded = abi.encodePacked(_writeLength(_in.length, 128), _in);
}
return encoded;
}
/**
* RLP encodes a list of RLP encoded byte byte strings.
* @param _in The list of RLP encoded byte strings.
* @return The RLP encoded list of items in bytes.
*/
function writeList(bytes[] memory _in) internal pure returns (bytes memory) {
bytes memory list = _flatten(_in);
return abi.encodePacked(_writeLength(list.length, 192), list);
}
/**
* RLP encodes a string.
* @param _in The string to encode.
* @return The RLP encoded string in bytes.
*/
function writeString(string memory _in) internal pure returns (bytes memory) {
return writeBytes(bytes(_in));
}
/**
* RLP encodes an address.
* @param _in The address to encode.
* @return The RLP encoded address in bytes.
*/
function writeAddress(address _in) internal pure returns (bytes memory) {
return writeBytes(abi.encodePacked(_in));
}
/**
* RLP encodes a uint.
* @param _in The uint256 to encode.
* @return The RLP encoded uint256 in bytes.
*/
function writeUint(uint256 _in) internal pure returns (bytes memory) {
return writeBytes(_toBinary(_in));
}
/**
* RLP encodes a bool.
* @param _in The bool to encode.
* @return The RLP encoded bool in bytes.
*/
function writeBool(bool _in) internal pure returns (bytes memory) {
bytes memory encoded = new bytes(1);
encoded[0] = (_in ? bytes1(0x01) : bytes1(0x80));
return encoded;
}
/*********************
* Private Functions *
*********************/
/**
* Encode the first byte, followed by the `len` in binary form if `length` is more than 55.
* @param _len The length of the string or the payload.
* @param _offset 128 if item is string, 192 if item is list.
* @return RLP encoded bytes.
*/
function _writeLength(uint256 _len, uint256 _offset)
private
pure
returns (bytes memory)
{
bytes memory encoded;
if (_len < 56) {
encoded = new bytes(1);
encoded[0] = bytes1(uint8(_len) + uint8(_offset));
} else {
uint256 lenLen;
uint256 i = 1;
while (_len / i != 0) {
lenLen++;
i *= 256;
}
encoded = new bytes(lenLen + 1);
encoded[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
for (i = 1; i <= lenLen; i++) {
encoded[i] = bytes1(uint8((_len / (256**(lenLen - i))) % 256));
}
}
return encoded;
}
/**
* Encode integer in big endian binary form with no leading zeroes.
* @notice TODO: This should be optimized with assembly to save gas costs.
* @param _x The integer to encode.
* @return RLP encoded bytes.
*/
function _toBinary(uint256 _x) private pure returns (bytes memory) {
bytes memory b = abi.encodePacked(_x);
uint256 i = 0;
for (; i < 32; i++) {
if (b[i] != 0) {
break;
}
}
bytes memory res = new bytes(32 - i);
for (uint256 j = 0; j < res.length; j++) {
res[j] = b[i++];
}
return res;
}
/**
* Copies a piece of memory to another location.
* @notice From: https://github.com/Arachnid/solidity-stringutils/blob/master/src/strings.sol.
* @param _dest Destination location.
* @param _src Source location.
* @param _len Length of memory to copy.
*/
function _memcpy(
uint256 _dest,
uint256 _src,
uint256 _len
) private pure {
uint256 dest = _dest;
uint256 src = _src;
uint256 len = _len;
for (; len >= 32; len -= 32) {
assembly {
mstore(dest, mload(src))
}
dest += 32;
src += 32;
}
uint256 mask;
unchecked {
mask = 256**(32 - len) - 1;
}
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
}
/**
* Flattens a list of byte strings into one byte string.
* @notice From: https://github.com/sammayo/solidity-rlp-encoder/blob/master/RLPEncode.sol.
* @param _list List of byte strings to flatten.
* @return The flattened byte string.
*/
function _flatten(bytes[] memory _list) private pure returns (bytes memory) {
if (_list.length == 0) {
return new bytes(0);
}
uint256 len;
uint256 i = 0;
for (; i < _list.length; i++) {
len += _list[i].length;
}
bytes memory flattened = new bytes(len);
uint256 flattenedPtr;
assembly {
flattenedPtr := add(flattened, 0x20)
}
for (i = 0; i < _list.length; i++) {
bytes memory item = _list[i];
uint256 listPtr;
assembly {
listPtr := add(item, 0x20)
}
_memcpy(flattenedPtr, listPtr, item.length);
flattenedPtr += _list[i].length;
}
return flattened;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.9;
/**
* @title Lib_BytesUtils
*/
library Lib_BytesUtils {
/**********************
* Internal Functions *
**********************/
function slice(
bytes memory _bytes,
uint256 _start,
uint256 _length
) internal pure returns (bytes memory) {
require(_length + 31 >= _length, 'slice_overflow');
require(_start + _length >= _start, 'slice_overflow');
require(_bytes.length >= _start + _length, 'slice_outOfBounds');
bytes memory tempBytes;
assembly {
switch iszero(_length)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(_length, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
let end := add(mc, _length)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(
add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))),
_start
)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
mstore(tempBytes, _length)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
//zero out the 32 bytes slice we are about to return
//we need to do it because Solidity does not garbage collect
mstore(tempBytes, 0)
mstore(0x40, add(tempBytes, 0x20))
}
}
return tempBytes;
}
function slice(bytes memory _bytes, uint256 _start)
internal
pure
returns (bytes memory)
{
if (_start >= _bytes.length) {
return bytes('');
}
return slice(_bytes, _start, _bytes.length - _start);
}
function toBytes32(bytes memory _bytes) internal pure returns (bytes32) {
if (_bytes.length < 32) {
bytes32 ret;
assembly {
ret := mload(add(_bytes, 32))
}
return ret;
}
return abi.decode(_bytes, (bytes32)); // will truncate if input length > 32 bytes
}
function toUint256(bytes memory _bytes) internal pure returns (uint256) {
return uint256(toBytes32(_bytes));
}
function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
bytes memory nibbles = new bytes(_bytes.length * 2);
for (uint256 i = 0; i < _bytes.length; i++) {
nibbles[i * 2] = _bytes[i] >> 4;
nibbles[i * 2 + 1] = bytes1(uint8(_bytes[i]) % 16);
}
return nibbles;
}
function fromNibbles(bytes memory _bytes)
internal
pure
returns (bytes memory)
{
bytes memory ret = new bytes(_bytes.length / 2);
for (uint256 i = 0; i < ret.length; i++) {
ret[i] = (_bytes[i * 2] << 4) | (_bytes[i * 2 + 1]);
}
return ret;
}
function equal(bytes memory _bytes, bytes memory _other)
internal
pure
returns (bool)
{
return keccak256(_bytes) == keccak256(_other);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.9;
/**
* @title Lib_Byte32Utils
*/
library Lib_Bytes32Utils {
/**********************
* Internal Functions *
**********************/
/**
* Converts a bytes32 value to a boolean. Anything non-zero will be converted to "true."
* @param _in Input bytes32 value.
* @return Bytes32 as a boolean.
*/
function toBool(bytes32 _in) internal pure returns (bool) {
return _in != 0;
}
/**
* Converts a boolean to a bytes32 value.
* @param _in Input boolean value.
* @return Boolean as a bytes32.
*/
function fromBool(bool _in) internal pure returns (bytes32) {
return bytes32(uint256(_in ? 1 : 0));
}
/**
* Converts a bytes32 value to an address. Takes the *last* 20 bytes.
* @param _in Input bytes32 value.
* @return Bytes32 as an address.
*/
function toAddress(bytes32 _in) internal pure returns (address) {
return address(uint160(uint256(_in)));
}
/**
* Converts an address to a bytes32.
* @param _in Input address value.
* @return Address as a bytes32.
*/
function fromAddress(address _in) internal pure returns (bytes32) {
return bytes32(uint256(uint160(_in)));
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.9;
/* External Imports */
import {Ownable} from '@openzeppelin/contracts/access/Ownable.sol';
/**
* @title Lib_AddressManager
*/
contract Lib_AddressManager is Ownable {
/**********
* Events *
**********/
event AddressSet(
string indexed _name,
address _newAddress,
address _oldAddress
);
/*************
* Variables *
*************/
mapping(bytes32 => address) private addresses;
/********************
* Public Functions *
********************/
/**
* Changes the address associated with a particular name.
* @param _name String name to associate an address with.
* @param _address Address to associate with the name.
*/
function setAddress(string memory _name, address _address)
external
onlyOwner
{
bytes32 nameHash = _getNameHash(_name);
address oldAddress = addresses[nameHash];
addresses[nameHash] = _address;
emit AddressSet(_name, _address, oldAddress);
}
/**
* Retrieves the address associated with a given name.
* @param _name Name to retrieve an address for.
* @return Address associated with the given name.
*/
function getAddress(string memory _name) external view returns (address) {
return addresses[_getNameHash(_name)];
}
/**********************
* Internal Functions *
**********************/
/**
* Computes the hash of a name.
* @param _name Name to compute a hash for.
* @return Hash of the given name.
*/
function _getNameHash(string memory _name) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(_name));
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_setOwner(_msgSender());
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_setOwner(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_setOwner(newOwner);
}
function _setOwner(address newOwner) private {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}