Contract Source Code:
File 1 of 1 : GRN
/**
* Upgradeable ERC20 Contract of GRN and GRNGRID.
* Follow the official https://t.me/grncommunity for more information.
*/
pragma solidity ^0.4.26;
library SafeMath {
/**
* @dev Multiplies two numbers, throws on overflow.
*/
function mul(uint256 _a, uint256 _b) internal pure returns (uint256 c) {
// Gas optimization: this is cheaper than asserting 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
if (_a == 0) {
return 0;
}
c = _a * _b;
assert(c / _a == _b);
return c;
}
/**
* @dev Integer division of two numbers, truncating the quotient.
*/
function div(uint256 _a, uint256 _b) internal pure returns (uint256) {
// assert(_b > 0); // Solidity automatically throws when dividing by 0
// uint256 c = _a / _b;
// assert(_a == _b * c + _a % _b); // There is no case in which this doesn't hold
return _a / _b;
}
/**
* @dev Subtracts two numbers, throws on overflow (i.e. if subtrahend is greater than minuend).
*/
function sub(uint256 _a, uint256 _b) internal pure returns (uint256) {
assert(_b <= _a);
return _a - _b;
}
/**
* @dev Adds two numbers, throws on overflow.
*/
function add(uint256 _a, uint256 _b) internal pure returns (uint256 c) {
c = _a + _b;
assert(c >= _a);
return c;
}
}
contract Ownable {
address public owner;
event OwnershipRenounced(address indexed previousOwner);
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
/**
* @dev The Ownable constructor sets the original `owner` of the contract to the sender
* account.
*/
constructor() public {
owner = msg.sender;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
/**
* @dev Allows the current owner to relinquish control of the contract.
* @notice Renouncing to ownership will leave the contract without an owner.
* It will not be possible to call the functions with the `onlyOwner`
* modifier anymore.
*/
function renounceOwnership() public onlyOwner {
emit OwnershipRenounced(owner);
owner = address(0);
}
/**
* @dev Allows the current owner to transfer control of the contract to a newOwner.
* @param _newOwner The address to transfer ownership to.
*/
function transferOwnership(address _newOwner) public onlyOwner {
_transferOwnership(_newOwner);
}
/**
* @dev Transfers control of the contract to a newOwner.
* @param _newOwner The address to transfer ownership to.
*/
function _transferOwnership(address _newOwner) internal {
require(_newOwner != address(0));
emit OwnershipTransferred(owner, _newOwner);
owner = _newOwner;
}
}
contract ERC20Basic {
function totalSupply() public view returns (uint256);
function balanceOf(address _who) public view returns (uint256);
function transfer(address _to, uint256 _value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
contract BasicToken is ERC20Basic {
using SafeMath for uint256;
mapping(address => uint256) internal balances;
uint256 internal totalSupply_;
/**
* @dev Total number of tokens in existence
*/
function totalSupply() public view returns (uint256) {
return totalSupply_;
}
/**
* @dev Transfer token for a specified address
* @param _to The address to transfer to.
* @param _value The amount to be transferred.
*/
function transfer(address _to, uint256 _value) public returns (bool) {
require(_value <= balances[msg.sender]);
require(_to != address(0));
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
emit Transfer(msg.sender, _to, _value);
return true;
}
/**
* @dev Gets the balance of the specified address.
* @param _owner The address to query the the balance of.
* @return An uint256 representing the amount owned by the passed address.
*/
function balanceOf(address _owner) public view returns (uint256) {
return balances[_owner];
}
}
contract ERC20 is ERC20Basic {
function allowance(address _owner, address _spender)
public view returns (uint256);
function transferFrom(address _from, address _to, uint256 _value)
public returns (bool);
function approve(address _spender, uint256 _value) public returns (bool);
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
contract StandardToken is ERC20, BasicToken {
mapping (address => mapping (address => uint256)) internal allowed;
/**
* @dev Transfer tokens from one address to another
* @param _from address The address which you want to send tokens from
* @param _to address The address which you want to transfer to
* @param _value uint256 the amount of tokens to be transferred
*/
function transferFrom(
address _from,
address _to,
uint256 _value
)
public
returns (bool)
{
require(_value <= balances[_from]);
require(_value <= allowed[_from][msg.sender]);
require(_to != address(0));
balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(_value);
allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
emit Transfer(_from, _to, _value);
return true;
}
/**
* @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
* Beware that changing an allowance with this method brings the risk that someone may use both the old
* and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this
* race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
* @param _spender The address which will spend the funds.
* @param _value The amount of tokens to be spent.
*/
function approve(address _spender, uint256 _value) public returns (bool) {
allowed[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
/**
* @dev Function to check the amount of tokens that an owner allowed to a spender.
* @param _owner address The address which owns the funds.
* @param _spender address The address which will spend the funds.
* @return A uint256 specifying the amount of tokens still available for the spender.
*/
function allowance(
address _owner,
address _spender
)
public
view
returns (uint256)
{
return allowed[_owner][_spender];
}
/**
* @dev Increase the amount of tokens that an owner allowed to a spender.
* approve should be called when allowed[_spender] == 0. To increment
* allowed value is better to use this function to avoid 2 calls (and wait until
* the first transaction is mined)
* From MonolithDAO Token.sol
* @param _spender The address which will spend the funds.
* @param _addedValue The amount of tokens to increase the allowance by.
*/
function increaseApproval(
address _spender,
uint256 _addedValue
)
public
returns (bool)
{
allowed[msg.sender][_spender] = (
allowed[msg.sender][_spender].add(_addedValue));
emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
/**
* @dev Decrease the amount of tokens that an owner allowed to a spender.
* approve should be called when allowed[_spender] == 0. To decrement
* allowed value is better to use this function to avoid 2 calls (and wait until
* the first transaction is mined)
* From MonolithDAO Token.sol
* @param _spender The address which will spend the funds.
* @param _subtractedValue The amount of tokens to decrease the allowance by.
*/
function decreaseApproval(
address _spender,
uint256 _subtractedValue
)
public
returns (bool)
{
uint256 oldValue = allowed[msg.sender][_spender];
if (_subtractedValue >= oldValue) {
allowed[msg.sender][_spender] = 0;
} else {
allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
}
emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
}
contract MintableToken is StandardToken, Ownable {
event Mint(address indexed to, uint256 amount);
event MintFinished();
bool public mintingFinished = false;
modifier canMint() {
require(!mintingFinished);
_;
}
modifier hasMintPermission() {
require(msg.sender == owner);
_;
}
/**
* @dev Function to mint tokens
* @param _to The address that will receive the minted tokens.
* @param _amount The amount of tokens to mint.
* @return A boolean that indicates if the operation was successful.
*/
function mint(
address _to,
uint256 _amount
)
public
hasMintPermission
canMint
returns (bool)
{
totalSupply_ = totalSupply_.add(_amount);
balances[_to] = balances[_to].add(_amount);
emit Mint(_to, _amount);
emit Transfer(address(0), _to, _amount);
return true;
}
/**
* @dev Function to stop minting new tokens.
* @return True if the operation was successful.
*/
function finishMinting() public onlyOwner canMint returns (bool) {
mintingFinished = true;
emit MintFinished();
return true;
}
}
contract ReleasableToken is ERC20, Ownable {
/* The finalizer contract that allows unlift the transfer limits on this token */
address public releaseAgent;
/** A crowdsale contract can release us to the wild if the sale is a success. If false we are are in transfer lock up period.*/
bool public released = false;
/** Map of agents that are allowed to transfer tokens regardless of the lock down period. These are crowdsale contracts and possible the team multisig itself. */
mapping(address => bool) public transferAgents;
/**
* Limit token transfer until the crowdsale is over.
*
*/
modifier canTransfer(address _sender) {
require(released || transferAgents[_sender], "For the token to be able to transfer: it's required that the crowdsale is in released state; or the sender is a transfer agent.");
_;
}
/**
* Set the contract that can call release and make the token transferable.
*
* Design choice. Allow reset the release agent to fix fat finger mistakes.
*/
function setReleaseAgent(address addr) public onlyOwner inReleaseState(false) {
// We don't do interface check here as we might want to a normal wallet address to act as a release agent
releaseAgent = addr;
}
/**
* Owner can allow a particular address (a crowdsale contract) to transfer tokens despite the lock up period.
*/
function setTransferAgent(address addr, bool state) public onlyOwner inReleaseState(false) {
transferAgents[addr] = state;
}
/**
* One way function to release the tokens to the wild.
*
* Can be called only from the release agent that is the final sale contract. It is only called if the crowdsale has been success (first milestone reached).
*/
function releaseTokenTransfer() public onlyReleaseAgent {
released = true;
}
/** The function can be called only before or after the tokens have been released */
modifier inReleaseState(bool releaseState) {
require(releaseState == released, "It's required that the state to check aligns with the released flag.");
_;
}
/** The function can be called only by a whitelisted release agent. */
modifier onlyReleaseAgent() {
require(msg.sender == releaseAgent, "Message sender is required to be a release agent.");
_;
}
function transfer(address _to, uint _value) public canTransfer(msg.sender) returns (bool success) {
// Call StandardToken.transfer()
return super.transfer(_to, _value);
}
function transferFrom(address _from, address _to, uint _value) public canTransfer(_from) returns (bool success) {
// Call StandardToken.transferForm()
return super.transferFrom(_from, _to, _value);
}
}
contract UpgradeableToken is StandardToken {
using SafeMath for uint256;
/** Contract / person who can set the upgrade path. This can be the same as team multisig wallet, as what it is with its default value. */
address public upgradeMaster;
/** The next contract where the tokens will be migrated. */
UpgradeAgent public upgradeAgent;
/** How many tokens we have upgraded by now. */
uint256 public totalUpgraded;
/**
* Upgrade states.
*
* - NotAllowed: The child contract has not reached a condition where the upgrade can begin
* - WaitingForAgent: Token allows upgrade, but we don't have a new agent yet
* - ReadyToUpgrade: The agent is set and the balance holders can upgrade their tokens
*
*/
enum UpgradeState {Unknown, NotAllowed, WaitingForAgent, ReadyToUpgrade}
/**
* Somebody has upgraded some of his tokens.
*/
event Upgrade(address indexed _from, address indexed _to, uint256 _value);
/**
* New upgrade agent available.
*/
event UpgradeAgentSet(address agent);
/**
* Do not allow construction without upgrade master set.
*/
constructor(address _upgradeMaster) public {
upgradeMaster = _upgradeMaster;
}
/**
* Allow the token holder to upgrade some of their tokens to a new contract.
*/
function upgrade(uint256 value) public {
UpgradeState state = getUpgradeState();
require(state == UpgradeState.ReadyToUpgrade, "It's required that the upgrade state is ready.");
// Validate input value.
require(value > 0, "The upgrade value is required to be above 0.");
balances[msg.sender] = balances[msg.sender].sub(value);
// Take tokens out from circulation
totalSupply_ = totalSupply_.sub(value);
totalUpgraded = totalUpgraded.add(value);
// Upgrade agent reissues the tokens
upgradeAgent.upgradeFrom(msg.sender, value);
emit Upgrade(msg.sender, upgradeAgent, value);
}
/**
* Set an upgrade agent that handles
*/
function setUpgradeAgent(address agent) external {
require(canUpgrade(), "It's required to be in canUpgrade() condition when setting upgrade agent.");
require(agent != address(0), "Agent is required to be an non-empty address when setting upgrade agent.");
// Only a master can designate the next agent
require(msg.sender == upgradeMaster, "Message sender is required to be the upgradeMaster when setting upgrade agent.");
// Upgrade has already begun for an agent
require(getUpgradeState() != UpgradeState.ReadyToUpgrade, "Upgrade state is required to not be upgrading when setting upgrade agent.");
require(address(upgradeAgent) == address(0), "upgradeAgent once set, cannot be reset");
upgradeAgent = UpgradeAgent(agent);
// Bad interface
require(upgradeAgent.isUpgradeAgent(), "The provided updateAgent contract is required to be compliant to the UpgradeAgent interface method when setting upgrade agent.");
// Make sure that token supplies match in source and target
require(upgradeAgent.originalSupply() == totalSupply_, "The provided upgradeAgent contract's originalSupply is required to be equivalent to existing contract's totalSupply_ when setting upgrade agent.");
emit UpgradeAgentSet(upgradeAgent);
}
/**
* Get the state of the token upgrade.
*/
function getUpgradeState() public view returns (UpgradeState) {
if (!canUpgrade()) return UpgradeState.NotAllowed;
else if (address(upgradeAgent) == address(0)) return UpgradeState.WaitingForAgent;
else return UpgradeState.ReadyToUpgrade;
}
/**
* Change the upgrade master.
*
* This allows us to set a new owner for the upgrade mechanism.
*/
function setUpgradeMaster(address master) public {
require(master != address(0), "The provided upgradeMaster is required to be a non-empty address when setting upgrade master.");
require(msg.sender == upgradeMaster, "Message sender is required to be the original upgradeMaster when setting (new) upgrade master.");
upgradeMaster = master;
}
bool canUpgrade_ = true;
/**
* Child contract can enable to provide the condition when the upgrade can begin.
*/
function canUpgrade() public view returns (bool) {
return canUpgrade_;
}
}
contract GRN is ReleasableToken, MintableToken, UpgradeableToken {
event UpdatedTokenInformation(string newName, string newSymbol);
string public name;
string public symbol;
uint8 public decimals;
address public preSaleReserveWallet;
address public gridValidatorWallet;
address public capitalReserveWallet;
/**
* Construct the token.
*
* This token must be created through a team multisig wallet, so that it is owned by that wallet.
*
* @param _name Token name
* @param _symbol Token symbol - should be all caps
* @param _initialSupply How many tokens we start with
* @param _decimals Number of decimal places
* @param _mintable Are new tokens created over the crowdsale or do we distribute only the initial supply? Note that when the token becomes transferable the minting always ends.
*/
constructor(string _name, string _symbol, uint256 _initialSupply, uint8 _decimals, bool _mintable,
address _preSaleReserveWallet,
address _gridValidatorWallet,
address _capitalReserveWallet
)
public UpgradeableToken(msg.sender) {
// Create any address, can be transferred
// to team multisig via changeOwner(),
// also remember to call setUpgradeMaster()
owner = msg.sender;
releaseAgent = owner;
name = _name;
symbol = _symbol;
decimals = _decimals;
preSaleReserveWallet = _preSaleReserveWallet; //10% for presale
gridValidatorWallet = _gridValidatorWallet; //50% locked untill new blockchain
capitalReserveWallet = _capitalReserveWallet; //40% divided as the tokenomics suggest
if (_initialSupply > 0) {
require((_initialSupply % 100) == 0, "_initialSupply has to be a mulitple of 100");
uint256 fiftyPerCent = _initialSupply.mul(5).div(10);
uint256 fourtyPerCent = _initialSupply.mul(4).div(10);
uint256 tenPerCent = _initialSupply.div(10);
mint(preSaleReserveWallet, tenPerCent);
mint(gridValidatorWallet, fiftyPerCent);
mint(capitalReserveWallet, fourtyPerCent);
}
// No more new supply allowed after the token creation
if (!_mintable) {
finishMinting();
require(totalSupply_ > 0, "Total supply is required to be above 0 if the token is not mintable.");
}
}
/**
* When token is released to be transferable, enforce no new tokens can be created.
*/
function releaseTokenTransfer() public onlyReleaseAgent {
mintingFinished = true;
super.releaseTokenTransfer();
}
/**
* Allow upgrade agent functionality kick in only if the crowdsale was success.
*/
function canUpgrade() public view returns (bool) {
return released && super.canUpgrade();
}
// Total supply
function totalSupply() public view returns (uint) {
return totalSupply_.sub(balances[address(0)]);
}
}
contract UpgradeAgent {
uint public originalSupply;
/** Interface marker */
function isUpgradeAgent() public pure returns (bool) {
return true;
}
function upgradeFrom(address _from, uint256 _value) public;
}