Contract Name:
MoonVesting
Contract Source Code:
File 1 of 1 : MoonVesting
/// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
/**
* @title MoonVesting
* @dev A token vesting contract that handles both linear and cycle-based vesting schedules.
*/
contract MoonVesting is Ownable {
using SafeERC20 for IERC20;
IERC20 public token;
struct VestingSchedule {
uint256 amount;
uint256 start;
uint256 duration;
bool revokable;
bool revoked;
uint256 cycles;
uint256 cycleDuration;
uint256 released;
}
mapping(address => mapping(uint256 => VestingSchedule))
public vestingSchedules;
mapping(address => uint256[]) public userVestingIds;
bool private _entered;
event VestingCreated(
address indexed beneficiary,
uint256 indexed vestingId,
uint256 amount,
uint256 start,
uint256 cliff,
uint256 duration,
bool revokable,
uint256 cycles,
uint256 cycleDuration
);
event TokensReleased(
address indexed beneficiary,
uint256 indexed vestingId,
uint256 amount
);
event VestingRevoked(
address indexed beneficiary,
uint256 indexed vestingId
);
error ZeroAddress();
error ZeroAmount();
error CliffPeriodIsNotPassedYet();
error NoTokensToClaim();
error AlreadyClaimed();
error ArrayLengthMismatch();
error ZeroDuration();
error MinimumTwoCycles();
error VestingIsNotRevokable();
error AlreadyRevoked();
error NoVestingFound();
error CannotClaimNativeToken();
/**
* @dev Constructor function
* @param _token Address of the token to be vested
*/
constructor(IERC20 _token) Ownable(msg.sender) {
token = _token;
}
modifier nonReentrant() {
require(!_entered, "Reentrant call");
_entered = true;
_;
_entered = false;
}
function claimOtherERC20(address _token, address to, uint256 amount) external onlyOwner{
if(_token == address(token)){
revert CannotClaimNativeToken();
}
// bytes4(keccak256(bytes('transfer(address,uint256)')));
(bool success, bytes memory data) = _token.call(
abi.encodeWithSelector(0xa9059cbb, to, amount)
);
require(
success && (data.length == 0 || abi.decode(data, (bool))),
"ERC20: TOKEN_CLAIM_FAILED"
);
}
/// @dev set linear vesting
/// see docs:{_setLinearVesting}
/// example - user '0x123' has been alloted with 100 tokens, cliff is 1, duration is 30
/// then user tokens are vested over 30 days linearly.
/// user can start claiming unlocked tokens anytime after cliff of 1 day has been passed.
function setLinearVesting(
address beneficiary,
uint256 amount,
uint256 cliff,
uint256 duration,
bool revokable
) external onlyOwner {
if (amount > 0) {
token.safeTransferFrom(msg.sender, address(this), amount);
}
_setLinearVesting(
beneficiary,
amount,
cliff,
duration,
revokable
);
}
/// @dev set linear vesting for multiple users with custom amounts, duration
/// see docs:{_setLinearVesting}
function setLinearVestingMulti(
address[] calldata users,
uint256[] calldata amounts,
uint256[] calldata cliff,
uint256[] calldata duration,
bool revokable
) external onlyOwner {
uint256 userLength = users.length;
uint256 amountLength = amounts.length;
if(
userLength != amountLength &&
userLength != cliff.length &&
userLength != duration.length){revert ArrayLengthMismatch();}
uint256 totalTokens;
for (uint256 j = 0; j < amountLength; j++) {
totalTokens = totalTokens + amounts[j];
}
token.safeTransferFrom(msg.sender, address(this), totalTokens);
for (uint256 i = 0; i < userLength; i++) {
_setLinearVesting(
users[i],
amounts[i],
cliff[i],
duration[i],
revokable
);
}
}
/// @dev set cycleBased vesting
/// see docs:{_setCycleBasedrVesting}
/// example - user '0x123' is assigned with 100 as amount. With cliff 1, cycles 5 and cycle duration 10
/// so per cycle claimable amount will be (100/5 = 20),
/// when 1 day passed, user can get 20 tokens, then every 10 days he can claim 20 tokens untill full
/// amount is claimed
function setCycleBasedVesting(
address beneficiary,
uint256 amount,
uint256 cliff,
uint256 cycles,
uint256 cycleduration,
bool revokable
) external onlyOwner {
if (amount > 0) {
token.safeTransferFrom(msg.sender, address(this), amount);
}
_setCycleBasedVesting(
beneficiary,
amount,
cliff,
cycles,
cycleduration,
revokable
);
}
/// @dev set cycleBased vesting for multiple users with custom amounts, cycles
/// see docs:{_setCycleBasedrVesting}
function setCycleBasedVestingMultiWithCustomParams(
address[] calldata users,
uint256[] calldata amounts,
uint256[] calldata cliff,
uint256[] calldata cycles,
uint256[] calldata cycleduration,
bool revokable
) external onlyOwner {
uint256 userLength = users.length;
uint256 amountLength = amounts.length;
if(
userLength != amountLength &&
userLength != cliff.length &&
userLength != cycles.length){revert ArrayLengthMismatch();}
uint256 totalTokens;
for (uint256 j = 0; j < amountLength; ++j) {
totalTokens = totalTokens + amounts[j];
}
token.safeTransferFrom(msg.sender, address(this), totalTokens);
for (uint256 i = 0; i < userLength; ++i) {
_setCycleBasedVesting(
users[i],
amounts[i],
cliff[i],
cycles[i],
cycleduration[i],
revokable
);
}
}
/**
* @notice Sets a linear vesting schedule for a beneficiary
* @param beneficiary Address of the beneficiary
* @param amount Total amount of tokens to be vested
* @param cliff Duration in days before vesting starts
* @param duration Total duration in days for vesting
* @param revokable Boolean indicating whether the vesting is revokable by the owner
*/
function _setLinearVesting(
address beneficiary,
uint256 amount,
uint256 cliff,
uint256 duration,
bool revokable
) internal {
if(
beneficiary == address(0)){revert ZeroAddress();}
if(amount == 0){revert ZeroAmount();}
if(duration == 0){revert ZeroDuration();}
cliff = cliff * 1 days;
duration = duration * 1 days;
uint256 start = block.timestamp + cliff;
uint256 vestingId = userVestingIds[beneficiary].length;
vestingSchedules[beneficiary][vestingId] = VestingSchedule({
amount: amount,
start: start,
duration: duration,
revokable: revokable,
revoked: false,
cycles: 0,
cycleDuration: 0,
released: 0
});
userVestingIds[beneficiary].push(vestingId);
emit VestingCreated(
beneficiary,
vestingId,
amount,
start,
cliff,
duration,
revokable,
0,
0
);
}
/**
* @notice Sets a cycle-based vesting schedule for a beneficiary
* @param beneficiary Address of the beneficiary
* @param amount Total amount of tokens to be vested
* @param cliff Duration in days before vesting starts
* @param cycles Number of cycles for the vesting
* @param cycleduration Duration in days of each cycle
* @param revokable Boolean indicating whether the vesting is revokable by the owner
*/
function _setCycleBasedVesting(
address beneficiary,
uint256 amount,
uint256 cliff,
uint256 cycles,
uint256 cycleduration,
bool revokable
) internal {
if(
beneficiary == address(0)){revert ZeroAddress();}
if(amount == 0){revert ZeroAmount();}
if(cycleduration == 0){revert ZeroDuration();}
if(cycles == 0){revert MinimumTwoCycles();}
cliff = cliff * 1 days;
cycleduration = cycleduration * 1 days;
uint256 start = block.timestamp + cliff;
uint256 duration = cycles * cycleduration;
uint256 vestingId = userVestingIds[beneficiary].length;
vestingSchedules[beneficiary][vestingId] = VestingSchedule({
amount: amount,
start: start,
duration: duration,
revokable: revokable,
revoked: false,
cycles: cycles,
cycleDuration: cycleduration,
released: 0
});
userVestingIds[beneficiary].push(vestingId);
emit VestingCreated(
beneficiary,
vestingId,
amount,
start,
cliff,
duration,
revokable,
cycles,
cycleduration
);
}
/**
* @notice Returns the IDs of all vesting schedules for a user
* @param beneficiary Address of the beneficiary
* @return Array of vesting schedule IDs
*/
function getUserVestingIds(address beneficiary)
external
view
returns (uint256[] memory)
{
return userVestingIds[beneficiary];
}
/**
* @notice Allows a beneficiary to claim tokens from a specific vesting schedule
* @param vestingId ID of the vesting schedule
*/
function claimTokens(uint256 vestingId) external nonReentrant{
_release(msg.sender, vestingId);
}
/**
* @notice Allows a beneficiary to claim tokens from multiple vesting schedules
* @param vestingIds Array of vesting schedule IDs
*/
function claimMultipleTokens(uint256[] memory vestingIds) external nonReentrant{
for (uint256 i = 0; i < vestingIds.length; i++) {
_release(msg.sender, vestingIds[i]);
}
}
/**
* @notice Revokes a vesting schedule
* @param beneficiary Address of the beneficiary
* @param vestingId ID of the vesting schedule
* send unlocked tokens to beneficiary and rest to the owner
* userful if setting vesting for employees
*/
function revoke(address beneficiary, uint256 vestingId) external onlyOwner {
VestingSchedule storage schedule = vestingSchedules[beneficiary][
vestingId
];
if(!schedule.revokable){revert VestingIsNotRevokable();}
if(schedule.revoked){revert AlreadyRevoked();}
uint256 vestedAmount = _tokensVested(beneficiary, vestingId);
uint256 unreleased = vestedAmount - schedule.released;
uint256 refund = schedule.amount - vestedAmount;
schedule.revoked = true;
if (unreleased > 0) {
token.safeTransfer(beneficiary, unreleased);
}
token.safeTransfer(owner(), refund);
emit VestingRevoked(beneficiary, vestingId);
}
/**
* @notice Returns the IDs of all vesting schedules for a user that have tokens available
* @param beneficiary Address of the beneficiary
* @return Array of vesting schedule IDs with tokens available
*/
function getUserVestingIdsWithTokens(address beneficiary) external view returns (uint256[] memory) {
uint256[] memory allIds = userVestingIds[beneficiary];
uint256[] memory tempIdsWithTokens = new uint256[](allIds.length);
uint256 count = 0;
for (uint256 i = 0; i < allIds.length; i++) {
uint256 vestingId = allIds[i];
if (getIdWithTokens(beneficiary, vestingId) > 0) {
tempIdsWithTokens[count] = vestingId;
count++;
}
}
// Create the final array with the exact count
uint256[] memory idsWithTokens = new uint256[](count);
for (uint256 i = 0; i < count; i++) {
idsWithTokens[i] = tempIdsWithTokens[i];
}
return idsWithTokens;
}
/**
* @dev Internal function to release tokens for a specific vesting schedule
* @param beneficiary Address of the beneficiary
* @param vestingId ID of the vesting schedule
*/
function _release(address beneficiary, uint256 vestingId) internal {
VestingSchedule storage schedule = vestingSchedules[beneficiary][
vestingId
];
if(schedule.amount == 0){revert NoVestingFound();}
if(block.timestamp < schedule.start){revert CliffPeriodIsNotPassedYet();}
if(schedule.revoked){revert AlreadyRevoked();}
uint256 vestedAmount = _tokensVested(beneficiary, vestingId);
uint256 unreleased = vestedAmount - schedule.released;
if(unreleased == 0) {revert AlreadyClaimed();}
schedule.released += unreleased;
token.safeTransfer(beneficiary, unreleased);
emit TokensReleased(beneficiary, vestingId, unreleased);
}
/**
* @dev returns if particular vesting has tokens to claim
* @param user user address
* @param vesting vesting id
*/
function getIdWithTokens (address user, uint256 vesting) public view returns (uint256){
VestingSchedule storage schedule = vestingSchedules[user][
vesting
];
uint256 amount = schedule.amount - schedule.released;
return amount;
}
/**
* @notice returns current claimable tokens for particular user
* @param user user address
* @param vesting vesting id
*/
function getUnlockedTokens(address user, uint256 vesting) public view returns (uint256) {
VestingSchedule storage schedule = vestingSchedules[user][
vesting
];
if(schedule.start > block.timestamp){return 0;}
uint256 totalAmount = _tokensVested(user, vesting);
uint256 unlockedTokens = totalAmount - schedule.released;
return unlockedTokens;
}
/**
* @dev Internal function to calculate the amount of tokens vested for a specific vesting schedule
* @param beneficiary Address of the beneficiary
* @param vestingId ID of the vesting schedule
* @return Amount of vested tokens
*/
function _tokensVested(address beneficiary, uint256 vestingId)
private
view
returns (uint256)
{
VestingSchedule storage schedule = vestingSchedules[beneficiary][
vestingId
];
if (block.timestamp < schedule.start) {
return 0;
}
if (schedule.revoked) {
return schedule.released;
}
uint256 elapsedTime = block.timestamp - schedule.start;
uint256 vestedAmount;
if (schedule.cycles == 0) {
// Linear vesting
vestedAmount = (schedule.amount * elapsedTime) / schedule.duration;
} else {
// Cycle-based vesting
uint256 currentCycle = elapsedTime / schedule.cycleDuration;
vestedAmount =
(schedule.amount * (currentCycle + 1)) /
schedule.cycles;
}
if (vestedAmount > schedule.amount) {
vestedAmount = schedule.amount;
}
return vestedAmount;
}
}