ETH Price: $3,283.90 (-3.26%)

Contract Diff Checker

Contract Name:
Q

Contract Source Code:

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.17;

import {IAccount} from "src/q/interfaces/IAccount.sol";
import {Errors} from "src/libraries/Errors.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {Clones} from "@openzeppelin/contracts/proxy/Clones.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import {IOperator} from "src/storage/interfaces/IOperator.sol";
import {Commands} from "src/libraries/Commands.sol";

contract Q is ReentrancyGuard {
    using SafeERC20 for IERC20;

    /*//////////////////////////////////////////////////////////////
                            STATE VARIABLES
    //////////////////////////////////////////////////////////////*/

    /// @notice nonce for users
    mapping(address => uint256) public nonces;
    address public operator;
    bytes32 public constant EXECUTE_TYPEHASH = keccak256("executeData(bytes data,address user,uint256 nonce)");
    bytes32 private constant _TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
    bytes32 private immutable _hashedName = keccak256(bytes("ozo"));
    bytes32 private immutable _hashedVersion = keccak256(bytes("1"));
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    /*//////////////////////////////////////////////////////////////
                                EVENTS
    //////////////////////////////////////////////////////////////*/

    event InitQ(address indexed operator, bytes32 indexed domainSeparator, bytes32 indexed executeTypehash);
    event Deposit(
        address indexed trader,
        address indexed traderAccount,
        address indexed token,
        uint96 amount,
        uint256 returnAmount
    );
    event Withdraw(address indexed trader, address indexed traderAccount, address indexed token, uint96 amount);
    event Execute(bytes indexed data, uint256 msgValue);
    event CreateTraderAccount(address indexed trader, address indexed traderAccount);
    event CrossChainTrade(address indexed traderAccount, uint256 msgValue, bytes data, bytes signature);

    /*//////////////////////////////////////////////////////////////
                        CONSTRUCTOR/MODIFIERS
    //////////////////////////////////////////////////////////////*/

    constructor(address _operator) {
        operator = _operator;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedChainId = block.chainid;
        _cachedThis = address(this);
        emit InitQ(_operator, _cachedDomainSeparator, EXECUTE_TYPEHASH);
    }

    modifier onlyAdmin() {
        address admin = IOperator(operator).getAddress("ADMIN");
        if (msg.sender != admin) revert Errors.NotAdmin();
        _;
    }

    modifier onlyPlugin() {
        bool isPlugin = IOperator(operator).getPlugin(msg.sender);
        if (!isPlugin) revert Errors.NotPlugin();
        _;
    }

    /*//////////////////////////////////////////////////////////////
                        EXTERNAL FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /// @notice Deposit multiple tokens to your account.
    /// @param tokens The addresses of the tokens to be deposited.
    /// @param amounts The amounts of the tokens to be deposited.
    function deposit(
        address[] calldata tokens,
        uint96[] calldata amounts,
        bytes[] calldata exchangeData,
        bytes[] calldata signature
    ) external payable {
        uint256 tLen = tokens.length;
        uint256 i;
        if (tLen != amounts.length) revert Errors.LengthMismatch();
        for (; i < tLen;) {
            deposit(tokens[i], amounts[i], exchangeData[i], signature[i]);
            unchecked {
                ++i;
            }
        }
    }

    /// @notice Deposits token to your account.
    /// @param token The address of the token to be deposited.
    /// @param amount The amount of the token to be deposited.
    /// @param exchangeData data to transfer the token to the defaultStableCoin
    function deposit(address token, uint96 amount, bytes calldata exchangeData, bytes calldata signature)
        public
        payable
        nonReentrant
    {
        if (amount == 0) revert Errors.ZeroAmount();
        address defaultToken = IOperator(operator).getAddress("DEFAULTSTABLECOIN");

        if (token == address(0)) {
            if (msg.value != amount) revert Errors.InputMismatch();
        } else {
            uint256 tokenBalance = IERC20(token).balanceOf(msg.sender);
            if (amount > tokenBalance) revert Errors.BalanceLessThanAmount();
        }

        address account = IOperator(operator).getTraderAccount(msg.sender);
        if (account == address(0)) account = _createAccount(msg.sender);

        uint256 returnAmount;
        if (token != defaultToken) {
            if (exchangeData.length == 0) revert Errors.ExchangeDataMismatch();
            _verifyData(exchangeData, signature);
            address exchangeRouter = IOperator(operator).getAddress("ONEINCHROUTER");
            uint256 balanceBefore = IERC20(defaultToken).balanceOf(account);
            if (token != address(0)) {
                IERC20(token).safeTransferFrom(msg.sender, account, amount);
                bytes memory approveData = abi.encodeWithSelector(IERC20.approve.selector, exchangeRouter, amount);
                IAccount(account).execute(token, approveData, 0);
                IAccount(account).execute(exchangeRouter, exchangeData, 0);
            } else {
                IAccount(account).execute{value: amount}(exchangeRouter, exchangeData, amount);
            }
            uint256 balanceAfter = IERC20(defaultToken).balanceOf(account);
            if (balanceAfter <= balanceBefore) revert Errors.BalanceLessThanAmount();
            returnAmount = balanceAfter - balanceBefore;
        } else {
            if (exchangeData.length != 0) revert Errors.ExchangeDataMismatch();
            IERC20(defaultToken).safeTransferFrom(msg.sender, account, amount);
        }
        emit Deposit(msg.sender, account, token, amount, returnAmount);
    }

    /// @notice withdraw any number of tokens from the `Account` contract
    /// @param token address of the token to be swapped
    /// @param amount total amount of `defaultStableCoin` to be withdrawn
    /// @param exchangeData calldata to swap from the dex
    /// @param signature signature of the exchangeData by the admin
    function withdraw(address token, uint96 amount, bytes calldata exchangeData, bytes calldata signature) external {
        if (amount == 0) revert Errors.ZeroAmount();
        address account = IOperator(operator).getTraderAccount(msg.sender);
        if (account == address(0)) revert Errors.NotInitialised();

        address defaultStableCoin = IOperator(operator).getAddress("DEFAULTSTABLECOIN");
        uint256 tokenBalance = IERC20(defaultStableCoin).balanceOf(account);
        if (amount > tokenBalance) revert Errors.BalanceLessThanAmount();

        if (token == defaultStableCoin) {
            if (exchangeData.length != 0) revert Errors.ExchangeDataMismatch();
            bytes memory transferData = abi.encodeWithSignature("transfer(address,uint256)", msg.sender, amount);
            IAccount(account).execute(defaultStableCoin, transferData, 0);
        } else {
            _verifyData(exchangeData, signature);
            address exchangeRouter = IOperator(operator).getAddress("ONEINCHROUTER");
            bytes memory approvalData = abi.encodeWithSignature("approve(address,uint256)", exchangeRouter, amount);
            IAccount(account).execute(defaultStableCoin, approvalData, 0);
            uint256 defaultStableCoinBalanceBefore = IERC20(defaultStableCoin).balanceOf(account);
            IAccount(account).execute(exchangeRouter, exchangeData, 0);
            uint256 defaultStableCoinBalanceAfter = IERC20(defaultStableCoin).balanceOf(account);
            if (defaultStableCoinBalanceBefore - defaultStableCoinBalanceAfter != amount) {
                revert Errors.ExchangeDataMismatch();
            }
        }

        emit Withdraw(msg.sender, account, token, amount);
    }

    /// @notice Deposit & execute a trade in one transaction.
    /// @param token The address of the token to be deposited.
    /// @param amount The amount of the token to be deposited.
    /// @param exchangeData data to transfer the token to the defaultStableCoin
    /// @param data The data to be executed.
    /// @param signature The signature of the data.
    function depositAndExecute(
        address token,
        uint96 amount,
        bytes calldata exchangeData,
        bytes calldata data,
        bytes calldata signature,
        bytes calldata exchangeDataSignature
    ) external payable {
        _verifyData(data, signature);
        deposit(token, amount, exchangeData, exchangeDataSignature);
        address perpTrade = IOperator(operator).getAddress("PERPTRADE");
        (bool success,) = perpTrade.call{value: msg.value}(data);
        if (!success) revert Errors.CallFailed(data);
        emit Execute(data, msg.value);
    }

    /// @notice execute the type of trade
    /// @dev can only be called by the `admin`
    /// @param command the command of the ddex protocol from `Commands` library
    /// @param data encoded data of parameters depending on the ddex
    /// @param isOpen bool to check if its an increase or decrease trade
    function execute(uint256 command, bytes calldata data, bool isOpen) public payable onlyAdmin {
        bytes memory tradeData = abi.encodeWithSignature("execute(uint256,bytes,bool)", command, data, isOpen);
        address perpTrade = IOperator(operator).getAddress("PERPTRADE");
        (bool success,) = perpTrade.call{value: msg.value}(tradeData);
        if (!success) revert Errors.CallFailed(tradeData);
        emit Execute(data, msg.value);
    }

    /// @notice executes many trades in a single function
    /// @dev can only be called by the `admin`
    /// @param commands array of commands of the ddex protocol from `Commands` library
    /// @param data array of encoded data of parameters depending on the ddex
    /// @param msgValue msg.value for each command which has to be transfered when executing the position
    /// @param isOpen array of bool to check if its an increase or decrease trade
    function multiExecute(
        uint256[] calldata commands,
        bytes[] calldata data,
        uint256[] calldata msgValue,
        bool[] calldata isOpen
    ) public payable onlyAdmin {
        if (data.length != msgValue.length) revert Errors.LengthMismatch();
        address perpTrade = IOperator(operator).getAddress("PERPTRADE");
        uint256 i;
        for (; i < data.length;) {
            uint256 command = commands[i];
            bytes calldata tradeData = data[i];
            uint256 value = msgValue[i];
            bool openOrClose = isOpen[i];

            bytes memory perpTradeData =
                abi.encodeWithSignature("execute(uint256,bytes,bool)", command, tradeData, openOrClose);
            (bool success,) = perpTrade.call{value: value}(perpTradeData);
            if (!success) revert Errors.CallFailed(perpTradeData);

            emit Execute(tradeData, value);
            unchecked {
                ++i;
            }
        }
    }

    /// @notice Creates a new account for the trader.
    /// @dev can only be called by a plugin
    /// @param trader The address of the trader.
    function createAccount(address trader) public onlyPlugin returns (address newAccount) {
        address traderAccount = IOperator(operator).getTraderAccount(trader);
        if (traderAccount != address(0)) revert Errors.AccountAlreadyExists();
        newAccount = _createAccount(trader);
        emit CreateTraderAccount(trader, newAccount);
    }

    /// @notice Trade on a exchange using lifi
    /// @dev The function should be called by lifi
    /// @param data The payload to be passed to the perpTrade contract
    /// @dev "user" is the address of the trader, so to get account we have to query traderAccount[user]
    function crossChainTradeReciever(bytes memory data, bytes memory signature) public payable nonReentrant {
        bool success;
        // EIP-712
        _verifyData(data, signature);

        (address token, address user, uint96 amount, bytes memory payload) =
            abi.decode(data, (address, address, uint96, bytes));

        address tradeAccount = IOperator(operator).getTraderAccount(user);
        if (tradeAccount == address(0)) tradeAccount = _createAccount(user);
        if (token != address(0)) _depositTo(token, tradeAccount, amount);

        address perpTrade = IOperator(operator).getAddress("PERPTRADE");
        (success, payload) = perpTrade.call{value: msg.value}(payload);
        if (!success) revert Errors.CallFailed(payload);

        emit CrossChainTrade(tradeAccount, msg.value, data, signature);
    }

    function sgReceive(uint16, bytes memory, uint256, address, uint256 amountLD, bytes memory payload)
        external
        payable
    {
        // Check the caller is stargate router
        address stargateRouter = IOperator(operator).getAddress("STARGATE");
        if (msg.sender != stargateRouter) revert Errors.NoAccess();

        // Verify that the payload is signed by the admin
        (bytes memory data, bytes memory signature) = abi.decode(payload, (bytes, bytes));
        bool success;
        _verifyData(data, signature);

        (address token, address user, uint96 amount, bytes memory payload) =
            abi.decode(data, (address, address, uint96, bytes));

        // transfer the token amount to the user
        address tradeAccount = IOperator(operator).getTraderAccount(user);
        if (tradeAccount == address(0)) tradeAccount = _createAccount(user);
        if (token != address(0)) IERC20(token).transfer(tradeAccount, amountLD);

        // Execute the trade
        address perpTrade = IOperator(operator).getAddress("PERPTRADE");
        (success, payload) = perpTrade.call{value: msg.value}(payload);
        if (!success) revert Errors.CallFailed(payload);

        emit CrossChainTrade(tradeAccount, msg.value, data, signature);
    }

    function swap(address account, address tradeToken, bytes[] memory exchangeData) external onlyAdmin {
        address exchangeRouter = IOperator(operator).getAddress("ONEINCHROUTER");
        address defaultStableCoin = IOperator(operator).getAddress("DEFAULTSTABLECOIN");
        uint256 balanceBefore = IERC20(defaultStableCoin).balanceOf(account);
        uint256 ethBalance = account.balance;

        if (ethBalance > 0) IAccount(account).execute(exchangeRouter, exchangeData[0], ethBalance);
        if (tradeToken != address(0)) {
            uint256 tokenInBalance = IERC20(tradeToken).balanceOf(account);
            bytes memory tokenApprovalData =
                abi.encodeWithSignature("approve(address,uint256)", exchangeRouter, tokenInBalance);
            IAccount(account).execute(tradeToken, tokenApprovalData, 0);
            IAccount(account).execute(exchangeRouter, exchangeData[1], 0);
        }

        uint256 balanceAfter = IERC20(defaultStableCoin).balanceOf(account);
        if (balanceAfter <= balanceBefore) revert Errors.BalanceLessThanAmount();
    }

    function changeTraderAccount(address newTrader) external {
        if (newTrader == address(0)) revert Errors.ZeroAddress();
        address traderAccount = IOperator(operator).getTraderAccount(msg.sender);
        IOperator(operator).setTraderAccount(newTrader, traderAccount);
    }

    /*//////////////////////////////////////////////////////////////
                        INTERNAL FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    function _createAccount(address trader) internal returns (address newAccount) {
        bytes32 salt = keccak256(abi.encodePacked(trader));
        address accountImplementation = IOperator(operator).getAddress("ACCOUNT");
        newAccount = Clones.cloneDeterministic(accountImplementation, salt);
        IOperator(operator).setTraderAccount(trader, newAccount);
    }

    /*
    
        * `TradeRemote` is a function that will only be called by lifi
        * It will be called when a trader wants to trade on a remote exchange
        
        FLOW:
            * TradeRemote called by lifi
            * DepositRemote fucntion is called from inside TradeRemote
                - it decodes msg.sender from the payload
                - it creates a new account for the trader, if not already exists
                - It transferFrom the tokens from the lifi to the Trader Account
            * Trade Remote Pass the payload to the perpTrade contract
            * perpTrade contract will execute the trade on the remote exchange
    */

    function _depositTo(address token, address user, uint256 amount) internal {
        if (amount == 0) revert Errors.ZeroAmount();

        uint256 tokenBalance = IERC20(token).balanceOf(msg.sender);
        if (amount > tokenBalance) revert Errors.BalanceLessThanAmount();

        IERC20(token).safeTransferFrom(msg.sender, user, amount);
    }

    function DOMAIN_SEPARATOR() public view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    function _verifyData(bytes memory data, bytes memory signature) internal {
        bytes32 structHash = keccak256(abi.encode(EXECUTE_TYPEHASH, keccak256(data), msg.sender, nonces[msg.sender]++));
        bytes32 signedData = ECDSA.toTypedDataHash(DOMAIN_SEPARATOR(), structHash);
        address signer = ECDSA.recover(signedData, signature);
        address admin = IOperator(operator).getAddress("ADMIN");
        if (signer != admin) revert Errors.NotAdmin();
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.17;

interface IAccount {
    function execute(address adapter, bytes calldata data, uint256 ethToSend)
        external
        payable
        returns (bytes memory returnData);
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.17;

library Errors {
    // Zero Errors
    error ZeroAmount();
    error ZeroAddress();
    error ZeroTotalRaised();
    error ZeroClaimableAmount();

    // Modifier Errors
    error NotOwner();
    error NotAdmin();
    error CallerNotVault();
    error CallerNotTrade();
    error CallerNotVaultOwner();
    error CallerNotGenerate();
    error NoAccess();
    error NotPlugin();

    // State Errors
    error BelowMinFundraisingPeriod();
    error AboveMaxFundraisingPeriod();
    error BelowMinLeverage();
    error AboveMaxLeverage();
    error BelowMinEndTime();
    error TradeTokenNotApplicable();

    // STV errors
    error StvDoesNotExist();
    error AlreadyOpened();
    error MoreThanTotalRaised();
    error MoreThanTotalReceived();
    error StvNotOpen();
    error StvNotClose();
    error ClaimNotApplicable();
    error StvStatusMismatch();

    // General Errors
    error BalanceLessThanAmount();
    error FundraisingPeriodEnded();
    error TotalRaisedMoreThanCapacity();
    error StillFundraising();
    error CommandMisMatch();
    error TradeCommandMisMatch();
    error NotInitialised();
    error Initialised();
    error LengthMismatch();
    error TransferFailed();
    error DelegateCallFailed();
    error CallFailed(bytes);
    error AccountAlreadyExists();
    error SwapFailed();
    error ExchangeDataMismatch();
    error AccountNotExists();
    error InputMismatch();
    error AboveMaxDistributeIndex();
    error BelowMinStvDepositAmount();

    // Protocol specific errors
    error GmxFeesMisMatch();
    error UpdateOrderRequestMisMatch();
    error CancelOrderRequestMisMatch();

    // Subscriptions
    error NotASubscriber();
    error AlreadySubscribed();
    error MoreThanLimit();
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    }

    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) {
            // Return data is optional
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (proxy/Clones.sol)

pragma solidity ^0.8.0;

/**
 * @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for
 * deploying minimal proxy contracts, also known as "clones".
 *
 * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
 * > a minimal bytecode implementation that delegates all calls to a known, fixed address.
 *
 * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
 * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
 * deterministic method.
 *
 * _Available since v3.4._
 */
library Clones {
    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create opcode, which should never revert.
     */
    function clone(address implementation) internal returns (address instance) {
        /// @solidity memory-safe-assembly
        assembly {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create(0, 0x09, 0x37)
        }
        require(instance != address(0), "ERC1167: create failed");
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy
     * the clone. Using the same `implementation` and `salt` multiple time will revert, since
     * the clones cannot be deployed twice at the same address.
     */
    function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
        /// @solidity memory-safe-assembly
        assembly {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create2(0, 0x09, 0x37, salt)
        }
        require(instance != address(0), "ERC1167: create2 failed");
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(add(ptr, 0x38), deployer)
            mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
            mstore(add(ptr, 0x14), implementation)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
            mstore(add(ptr, 0x58), salt)
            mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
            predicted := keccak256(add(ptr, 0x43), 0x55)
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(address implementation, bytes32 salt)
        internal
        view
        returns (address predicted)
    {
        return predictDeterministicAddress(implementation, salt, address(this));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.17;

interface IOperator {
    function getMaxDistributeIndex() external view returns (uint256);
    function getAddress(string calldata adapter) external view returns (address);
    function getAddresses(string[] calldata adapters) external view returns (address[] memory);
    function getTraderAccount(address trader) external view returns (address);
    function getPlugin(address plugin) external view returns (bool);
    function getPlugins(address[] calldata plugins) external view returns (bool[] memory);
    function setAddress(string calldata adapter, address addr) external;
    function setAddresses(string[] calldata adapters, address[] calldata addresses) external;
    function setPlugin(address plugin, bool isPlugin) external;
    function setPlugins(address[] calldata plugins, bool[] calldata isPlugin) external;
    function setTraderAccount(address trader, address account) external;
    function getAllSubscribers(address manager) external view returns (address[] memory);
    function getIsSubscriber(address manager, address subscriber) external view returns (bool);
    function getSubscriptionAmount(address manager, address subscriber) external view returns (uint96);
    function getTotalSubscribedAmountPerManager(address manager) external view returns (uint96);
    function setSubscribe(address manager, address subscriber, uint96 maxLimit) external;
    function setUnsubscribe(address manager, address subscriber) external;
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.17;

/// @title Commands similar to UniversalRouter
/// @notice Command Flags used to decode commands
/// @notice https://github.com/Uniswap/universal-router/blob/main/contracts/libraries/Commands.sol
library Commands {
    // Masks to extract certain bits of commands
    bytes1 internal constant FLAG_ALLOW_REVERT = 0x80;
    bytes1 internal constant COMMAND_TYPE_MASK = 0x3f;

    // Command Types. Maximum supported command at this moment is 0x3f.

    // Command Types where value >= 0x00, for Perpetuals
    uint256 constant GMX = 0x00;
    uint256 constant PERP = 0x01;
    uint256 constant CAP = 0x02;
    uint256 constant KWENTA = 0x03;
    // COMMAND_PLACEHOLDER = 0x04;
    // Future perpetual protocols can be added below

    // Command Types where value >= 0x10, for Spot
    uint256 constant UNI = 0x10;
    uint256 constant SUSHI = 0x11;
    uint256 constant ONE_INCH = 0x12;
    uint256 constant TRADER_JOE = 0x13;
    uint256 constant PANCAKE = 0x14;
    // COMMAND_PLACEHOLDER = 0x15;
    // Future spot protocols can be added below

    // Future financial services like options can be added with a value >= 0x20

    // Command Types where value >= 0x30, for trade functions
    uint256 constant CROSS_CHAIN = 0x30;
    uint256 constant MODIFY_ORDER = 0x31;
    uint256 constant CLAIM_REWARDS = 0x32;
    // COMMAND_PLACEHOLDER = 0x3d;
    // Future functions to interact with protocols can be added below
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):