Contract Name:
MultiSigPool
Contract Source Code:
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
pragma experimental ABIEncoderV2;
import "../interfaces/IAggregationRouterV4.sol";
import "../interfaces/IWETH.sol";
import "../interfaces/IStarkEx.sol";
import "../interfaces/IFactRegister.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
/**
*
* MultiSigPool
* ============
*
* Basic multi-signer wallet designed for use in a co-signing environment where 2 signatures are require to move funds.
* Typically used in a 2-of-3 signing configuration. Uses ecrecover to allow for 2 signatures in a single transaction.
*
* The signatures are created on the operation hash and passed to withdrawETH/withdrawERC20
* The signer is determined by ECDSA.recover().
*
* The signature is created with ethereumjs-util.ecsign(operationHash).
* Like the eth_sign RPC call, it packs the values as a 65-byte array of [r, s, v].
* Unlike eth_sign, the message is not prefixed.
*
*/
contract MultiSigPool is ReentrancyGuard {
using SafeERC20 for IERC20;
using SafeMath for uint256;
// Events
event Deposit(address from, address token, uint256 spentAmount, uint256 swapReturnAmount, uint256 starkKey, uint256 positionId);
event WithdrawETH(uint256 orderId, address to, uint256 amount);
event WithdrawERC20(uint256 orderId, address token, address to, uint256 amount);
// Public fields
address immutable public USDC_ADDRESS; // USDC contract address
address immutable public STARKEX_ADDRESS; // stark exchange adress
address immutable public FACT_ADDRESS; // stark external fact contract address
address immutable public AGGREGATION_ROUTER_V4_ADDRESS; // 1inch AggregationRouterV4 address
address[] public signers; // The addresses that can co-sign transactions on the wallet
mapping(uint256 => order) orders; // history orders
uint256 public ASSET_TYPE; // stark exchange defined USDC
IERC20 private constant ETH_ADDRESS = IERC20(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE);
IERC20 private constant ZERO_ADDRESS = IERC20(address(0));
struct order{
address to; // The address the transaction was sent to
uint256 amount; // Amount of Wei sent to the address
address token; // The address of the ERC20 token contract, 0 means ETH
bool executed; // If the order was executed
}
/**
* Set up a simple 2-3 multi-sig wallet by specifying the signers allowed to be used on this wallet.
* 2 signers will be require to send a transaction from this wallet.
* Note: The sender is NOT automatically added to the list of signers.
* Signers CANNOT be changed once they are set
*
* @param allowedSigners An array of signers on the wallet
* @param usdc The USDC contract address
* @param aggregationRouterV4 The 1inch exchange router address
* @param starkex The stark exchange address
* @param fact The stark fact address
*/
constructor(address[] memory allowedSigners, address usdc,address aggregationRouterV4,address starkex, address fact, uint256 assetType) {
require(allowedSigners.length == 3, "invalid allSigners length");
require(allowedSigners[0] != allowedSigners[1], "must be different signers");
require(allowedSigners[0] != allowedSigners[2], "must be different signers");
require(allowedSigners[1] != allowedSigners[2], "must be different signers");
require(usdc != address(0), "invalid usdc address");
require(aggregationRouterV4 != address(0), "invalid 1inch address");
signers = allowedSigners;
USDC_ADDRESS = usdc;
AGGREGATION_ROUTER_V4_ADDRESS = aggregationRouterV4;
STARKEX_ADDRESS = starkex;
FACT_ADDRESS = fact;
ASSET_TYPE = assetType;
}
/**
* Gets called when a transaction is received without calling a method
*/
receive() external payable { }
/**
* @notice Make a deposit to the Starkware Layer2, after converting funds to USDC.
* Funds will be transferred from the sender and USDC will be deposited into this wallet, and
* generate a deposit event specified by the starkKey and positionId.
*
* @param token The ERC20 token to convert from
* @param amount The amount in Wei to deposit.
* @param starkKey The starkKey of the L2 account to deposit into.
* @param positionId The positionId of the L2 account to deposit into.
* @param exchangeData Trade parameters for the exchange.
*/
function deposit(
IERC20 token,
uint256 amount,
uint256 starkKey,
uint256 positionId,
bytes calldata exchangeData
) public payable nonReentrant returns (uint256) {
uint256 returnAmount;
uint256 beforeSwapBalance = IERC20(USDC_ADDRESS).balanceOf(address(this));
if (address(token) == USDC_ADDRESS){ // deposit USDC
token.safeTransferFrom(msg.sender, address(this), amount);
returnAmount = amount;
} else {
(, IAggregationRouterV4.SwapDescription memory desc,) = abi.decode(exchangeData[4:], (address, IAggregationRouterV4.SwapDescription, bytes));
require(token == desc.srcToken, 'mismatch token and desc.srcToken');
require(USDC_ADDRESS == address(desc.dstToken), 'invalid desc.dstToken');
require(amount == desc.amount, 'mismatch amount and desc.amount');
require(address(this) == desc.dstReceiver, 'invalid desc.dstReceiver');
bool isNativeToken = isNative(desc.srcToken);
if (!isNativeToken) { // deposit other ERC20 tokens
desc.srcToken.safeTransferFrom(msg.sender, address(this), desc.amount);
// safeApprove requires unsetting the allowance first.
desc.srcToken.safeApprove(AGGREGATION_ROUTER_V4_ADDRESS, 0);
desc.srcToken.safeApprove(AGGREGATION_ROUTER_V4_ADDRESS, desc.amount);
}
// Swap token
(bool success, bytes memory returndata)= AGGREGATION_ROUTER_V4_ADDRESS.call{value:msg.value}(exchangeData);
require(success, "exchange failed");
(returnAmount, ) = abi.decode(returndata, (uint256, uint256));
require(returnAmount >= desc.minReturnAmount, 'received USDC less than minReturnAmount');
}
uint256 afterSwapBalance = IERC20(USDC_ADDRESS).balanceOf(address(this));
require (afterSwapBalance == beforeSwapBalance.add(returnAmount),"swap incorrect");
// ethereum deposit to starkex directly
if (block.chainid == 1 || block.chainid == 5){
// safeApprove requires unsetting the allowance first.
IERC20(USDC_ADDRESS).safeApprove(STARKEX_ADDRESS, 0);
IERC20(USDC_ADDRESS).safeApprove(STARKEX_ADDRESS, returnAmount);
// deposit to starkex
IStarkEx starkEx = IStarkEx(STARKEX_ADDRESS);
starkEx.depositERC20(starkKey, ASSET_TYPE, positionId, returnAmount);
return returnAmount;
}
emit Deposit(
msg.sender,
address(token),
amount,
returnAmount,
starkKey,
positionId
);
return returnAmount;
}
/**
* Withdraw ETHER from this wallet using 2 signers.
*
* @param to the destination address to send an outgoing transaction
* @param amount the amount in Wei to be sent
* @param expireTime the number of seconds since 1970 for which this transaction is valid
* @param orderId the unique order id
* @param allSigners all signers who sign the tx
* @param signatures the signatures of tx
*/
function withdrawETH(
address payable to,
uint256 amount,
uint256 expireTime,
uint256 orderId,
address[] memory allSigners,
bytes[] memory signatures
) public nonReentrant {
require(allSigners.length >= 2, "invalid allSigners length");
require(allSigners.length == signatures.length, "invalid signatures length");
require(allSigners[0] != allSigners[1],"can not be same signer"); // must be different signer
require(expireTime >= block.timestamp,"expired transaction");
bytes32 operationHash = keccak256(abi.encodePacked("ETHER", to, amount, expireTime, orderId, address(this)));
operationHash = ECDSA.toEthSignedMessageHash(operationHash);
for (uint8 index = 0; index < allSigners.length; index++) {
address signer = ECDSA.recover(operationHash, signatures[index]);
require(signer == allSigners[index], "invalid signer");
require(isAllowedSigner(signer), "not allowed signer");
}
// Try to insert the order ID. Will revert if the order id was invalid
tryInsertOrderId(orderId, to, amount, address(0));
// send ETHER
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = to.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
emit WithdrawETH(orderId, to, amount);
}
/**
* Withdraw ERC20 from this wallet using 2 signers.
*
* @param to the destination address to send an outgoing transactioni
* @param amount the amount in Wei to be sent
* @param token the address of the erc20 token contract
* @param expireTime the number of seconds since 1970 for which this transaction is valid
* @param orderId the unique order id
* @param allSigners all signer who sign the tx
* @param signatures the signatures of tx
*/
function withdrawErc20(
address to,
uint256 amount,
address token,
uint256 expireTime,
uint256 orderId,
address[] memory allSigners,
bytes[] memory signatures
) public nonReentrant {
require(allSigners.length >=2, "invalid allSigners length");
require(allSigners.length == signatures.length, "invalid signatures length");
require(allSigners[0] != allSigners[1],"can not be same signer"); // must be different signer
require(expireTime >= block.timestamp,"expired transaction");
bytes32 operationHash = keccak256(abi.encodePacked("ERC20", to, amount, token, expireTime, orderId, address(this)));
operationHash = ECDSA.toEthSignedMessageHash(operationHash);
for (uint8 index = 0; index < allSigners.length; index++) {
address signer = ECDSA.recover(operationHash, signatures[index]);
require(signer == allSigners[index], "invalid signer");
require(isAllowedSigner(signer),"not allowed signer");
}
// Try to insert the order ID. Will revert if the order id was invalid
tryInsertOrderId(orderId, to, amount, token);
// Success, send ERC20 token
IERC20(token).safeTransfer(to, amount);
emit WithdrawERC20(orderId, token, to, amount);
}
/**
* Withdraw ERC20 from this wallet using 2 signers.
* The function only can be called when user make a fast withdraw in ApexPro.
*
* @param to the destination address to send an outgoing transaction
* @param amount the amount in wei to be sent
* @param token the address of the erc20 token contract
* @param salt salt amount to generate fact
* @param expireTime the number of seconds since 1970 for which this transaction is valid
* @param orderId the unique order id
* @param allSigners all signer who sign the tx
* @param signatures the signatures of tx
*/
function factTransferErc20(
address to,
address token,
uint256 amount,
uint256 salt,
uint256 expireTime,
uint256 orderId,
address[] memory allSigners,
bytes[] memory signatures
) public nonReentrant {
require(token == USDC_ADDRESS,"invalid token");
require(allSigners.length >=2, "invalid allSigners length");
require(allSigners.length == signatures.length, "invalid signatures length");
require(allSigners[0] != allSigners[1],"can not be same signer"); // must be different signer
require(expireTime >= block.timestamp,"expired transaction");
bytes32 operationHash = keccak256(abi.encodePacked("FAST",to, amount, token, expireTime, salt, orderId, address(this)));
operationHash = ECDSA.toEthSignedMessageHash(operationHash);
for (uint8 index = 0; index < allSigners.length; index++) {
address signer = ECDSA.recover(operationHash, signatures[index]);
require(signer == allSigners[index], "invalid signer");
require(isAllowedSigner(signer),"not allowed signer");
}
// Try to insert the order ID. Will revert if the order id was invalid
tryInsertOrderId(orderId, to, amount, token);
// check fact
bytes32 transferFact = keccak256(abi.encodePacked(to, amount, token, salt));
IFactRegister factAddress = IFactRegister(FACT_ADDRESS);
require(!factAddress.isValid(transferFact),"fact already isValid");
// safeApprove requires unsetting the allowance first.
IERC20(token).safeApprove(FACT_ADDRESS, 0);
IERC20(token).safeApprove(FACT_ADDRESS, amount);
factAddress.transferERC20(to, token, amount, salt);
emit WithdrawERC20(orderId, token, to, amount);
}
function isNative(IERC20 token_) internal pure returns (bool) {
return (token_ == ZERO_ADDRESS || token_ == ETH_ADDRESS);
}
/**
* Determine if an address is a signer on this wallet
*
* @param signer address to check
*/
function isAllowedSigner(address signer) public view returns (bool) {
// Iterate through all signers on the wallet and
for (uint i = 0; i < signers.length; i++) {
if (signers[i] == signer) {
return true;
}
}
return false;
}
/**
* Verify that the order id has not been used before and inserts it. Throws if the order ID was not accepted.
*
* @param orderId the unique order id
* @param to the destination address to send an outgoing transaction
* @param amount the amount in Wei to be sent
* @param token the address of the ERC20 contract
*/
function tryInsertOrderId(
uint256 orderId,
address to,
uint256 amount,
address token
) internal {
if (orders[orderId].executed) {
// This order ID has been excuted before. Disallow!
revert("repeated order");
}
orders[orderId].executed = true;
orders[orderId].to = to;
orders[orderId].amount = amount;
orders[orderId].token = token;
}
/**
* calcSigHash is a helper function that to help you generate the sighash needed for withdrawal.
*
* @param to the destination address
* @param amount the amount in Wei to be sent
* @param token the address of the ERC20 contract
* @param expireTime the number of seconds since 1970 for which this transaction is valid
* @param orderId the unique order id
* @param isFact If fact withdraw calc sighash
* @param salt Th salt amount to generate fact
*/
function calcSigHash(
address to,
uint256 amount,
address token,
uint256 expireTime,
uint256 orderId,
bool isFact,
uint256 salt) public view returns (bytes32) {
bytes32 operationHash;
if (isFact) {
operationHash = keccak256(abi.encodePacked("FAST", to, amount, token, expireTime, salt, orderId, address(this)));
} else if (token == address(0)) {
operationHash = keccak256(abi.encodePacked("ETHER", to, amount, expireTime, orderId, address(this)));
} else {
operationHash = keccak256(abi.encodePacked("ERC20", to, amount, token, expireTime, orderId, address(this)));
}
return operationHash;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/interfaces/IERC20.sol";
import "./IAggregationExecutor.sol";
interface IAggregationRouterV4 {
struct SwapDescription {
IERC20 srcToken;
IERC20 dstToken;
address payable srcReceiver;
address payable dstReceiver;
uint256 amount;
uint256 minReturnAmount;
uint256 flags;
bytes permit;
}
function swap(
IAggregationExecutor caller,
SwapDescription calldata desc,
bytes calldata data
)
external
payable
returns (
uint256 returnAmount,
uint256 spentAmount,
uint256 gasLeft
);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IWETH {
function deposit() external payable;
function approve(address to, uint256 value) external returns (bool);
function transfer(address to, uint256 value) external returns (bool);
function withdraw(uint256) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
interface IStarkEx {
function getEthKey(
uint256 starkKey
) external view returns (address);
function isMsgSenderKeyOwner(
uint256 ownerKey
) external view returns (bool);
function registerEthAddress(
address ethKey,
uint256 starkKey,
bytes calldata starkSignature
) external;
function depositERC20(
uint256 starkKey,
uint256 assetType,
uint256 vaultId,
uint256 quantizedAmount
) external;
function getWithdrawalBalance(
uint256 starkKey,
uint256 assetId
) external view returns (uint256 balance);
function withdraw(
uint256 starkKey,
uint256 assetId
) external;
function forcedWithdrawalRequest(
uint256 starkKey,
uint256 vaultId,
uint256 quantizedAmount,
bool premiumCost
) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IFactRegister {
function isValid(bytes32 fact) external view returns (bool);
function transferERC20(
address recipient,
address erc20,
uint256 amount,
uint256 salt
) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
} else if (error == RecoverError.InvalidSignatureV) {
revert("ECDSA: invalid signature 'v' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
// Check the signature length
// - case 65: r,s,v signature (standard)
// - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098) _Available since v4.1._
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else if (signature.length == 64) {
bytes32 r;
bytes32 vs;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly {
r := mload(add(signature, 0x20))
vs := mload(add(signature, 0x40))
}
return tryRecover(hash, r, vs);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
if (v != 27 && v != 28) {
return (address(0), RecoverError.InvalidSignatureV);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (utils/math/SafeMath.sol)
pragma solidity ^0.8.0;
// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.
/**
* @dev Wrappers over Solidity's arithmetic operations.
*
* NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
* now has built in overflow checking.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
return a + b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
return a * b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator.
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b <= a, errorMessage);
return a - b;
}
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a / b;
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a % b;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC20.sol)
pragma solidity ^0.8.0;
import "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IAggregationExecutor {
function callBytes(bytes calldata data) external payable;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Strings.sol)
pragma solidity ^0.8.0;
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
// Inspired by OraclizeAPI's implementation - MIT licence
// https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
if (value == 0) {
return "0";
}
uint256 temp = value;
uint256 digits;
while (temp != 0) {
digits++;
temp /= 10;
}
bytes memory buffer = new bytes(digits);
while (value != 0) {
digits -= 1;
buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
value /= 10;
}
return string(buffer);
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
if (value == 0) {
return "0x00";
}
uint256 temp = value;
uint256 length = 0;
while (temp != 0) {
length++;
temp >>= 8;
}
return toHexString(value, length);
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _HEX_SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
}