Contract Source Code:
File 1 of 1 : RoseMaster
// File: @openzeppelin/contracts/token/ERC20/IERC20.sol
pragma solidity ^0.6.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// File: @openzeppelin/contracts/math/SafeMath.sol
pragma solidity ^0.6.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
// File: @openzeppelin/contracts/utils/Address.sol
pragma solidity ^0.6.2;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies in extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return _functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
return _functionCallWithValue(target, data, value, errorMessage);
}
function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// File: @openzeppelin/contracts/token/ERC20/SafeERC20.sol
pragma solidity ^0.6.0;
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// File: @openzeppelin/contracts/utils/EnumerableSet.sol
pragma solidity ^0.6.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.0.0, only sets of type `address` (`AddressSet`) and `uint256`
* (`UintSet`) are supported.
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping (bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) { // Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
// When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs
// so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement.
bytes32 lastvalue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastvalue;
// Update the index for the moved value
set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
require(set._values.length > index, "EnumerableSet: index out of bounds");
return set._values[index];
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(value)));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(value)));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(value)));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint256(_at(set._inner, index)));
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
}
// File: @openzeppelin/contracts/GSN/Context.sol
pragma solidity ^0.6.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// File: @openzeppelin/contracts/access/Ownable.sol
pragma solidity ^0.6.0;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(_owner == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
// File: @openzeppelin/contracts/token/ERC20/ERC20.sol
pragma solidity ^0.6.0;
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20 {
using SafeMath for uint256;
using Address for address;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
uint8 private _decimals;
/**
* @dev Sets the values for {name} and {symbol}, initializes {decimals} with
* a default value of 18.
*
* To select a different value for {decimals}, use {_setupDecimals}.
*
* All three of these values are immutable: they can only be set once during
* construction.
*/
constructor (string memory name, string memory symbol) public {
_name = name;
_symbol = symbol;
_decimals = 18;
}
/**
* @dev Returns the name of the token.
*/
function name() public view returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
* called.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view returns (uint8) {
return _decimals;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20};
*
* Requirements:
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Sets {decimals} to a value other than the default one of 18.
*
* WARNING: This function should only be called from the constructor. Most
* applications that interact with token contracts will not expect
* {decimals} to ever change, and may work incorrectly if it does.
*/
function _setupDecimals(uint8 decimals_) internal {
_decimals = decimals_;
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be to transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}
// File: contracts/RoseToken.sol
pragma solidity 0.6.12;
// RoseToken with Governance.
contract RoseToken is ERC20("RoseToken", "ROSE"), Ownable {
// @notice Creates `_amount` token to `_to`. Must only be called by the owner (RoseMain).
function mint(address _to, uint256 _amount) public onlyOwner {
_mint(_to, _amount);
}
}
// File: contracts/IUniswapV2Pair.sol
pragma solidity >=0.5.0;
interface IUniswapV2Pair {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
function MINIMUM_LIQUIDITY() external pure returns (uint);
function factory() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
function price0CumulativeLast() external view returns (uint);
function price1CumulativeLast() external view returns (uint);
function kLast() external view returns (uint);
function mint(address to) external returns (uint liquidity);
function burn(address to) external returns (uint amount0, uint amount1);
function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
function skim(address to) external;
function sync() external;
function initialize(address, address) external;
}
// File: contracts/RoseMaster.sol
pragma solidity 0.6.12;
// RoseMaster is the master of Rose. He can make Rose and he is a fair guy.
//
// Note that it's ownable and the owner wields tremendous power. The ownership
// will be transferred to a governance smart contract once ROSE is sufficiently
// distributed and the community can show to govern itself.
//
// Have fun reading it. Hopefully it's bug-free. God bless.
contract RoseMaster is Ownable {
using SafeMath for uint256;
using SafeERC20 for IERC20;
// Info of each user.
struct UserInfo {
uint256 amount; // How many LP tokens the user has provided.
uint256 rewardDebt; // Reward debt. See explanation below.
//
// We do some fancy math here. Basically, any point in time, the amount of ROSEs
// entitled to a user but is pending to be distributed is:
//
// pending reward = (user.amount * pool.accRosePerShare) - user.rewardDebt
//
// Whenever a user deposits or withdraws LP tokens to a pool. Here's what happens:
// 1. The pool's `accRosePerShare` (and `lastRewardBlock`) gets updated.
// 2. User receives the pending reward sent to his/her address.
// 3. User's `amount` gets updated.
// 4. User's `rewardDebt` gets updated.
}
// Info of each pool.
struct PoolInfo1 {
IERC20 lpToken; // Address of LP token contract.
uint256 allocPoint; // How many allocation points assigned to this pool. ROSEs to distribute per block.
uint256 lastRewardBlock; // Last block number that ROSEs distribution occurs.
uint256 accRosePerShare; // Accumulated ROSEs per share, times 1e12. See below.
// Lock LP, until the end of mining.
uint256 totalAmount;
}
// Info of each pool.
struct PoolInfo2 {
uint256 allocPoint; // How many allocation points assigned to this pool. ROSEs to distribute per block.
uint256 lastRewardBlock; // Last block number that ROSEs distribution occurs.
uint256 accRosePerShare; // Accumulated ROSEs per share, times 1e12. See below.
uint256 lastUnlockedBlock; // Last block number that pool to renovate.
// Lock LP, until the pool update.
uint256 lockedAmount;
uint256 freeAmount;
uint256 maxLockAmount;
uint256 unlockIntervalBlock;
uint256 feeAmount;
uint256 sharedFeeAmount;
}
// Info of each period.
struct PeriodInfo {
uint256 endBlock;
uint256 blockReward;
}
// The ROSE TOKEN!
RoseToken public rose;
// Dev address.
address public devaddr;
// Rank address .
address public rankAddr;
// Autonomous communities address.
address public communityAddr;
// Sunflower address.
address public sfr;
// UnisawpV2Pair SFR-ROSE.
IUniswapV2Pair public sfr2rose;
// Info of each pool.
PoolInfo1[] public poolInfo1;
// Info of each pool.
PoolInfo2[] public poolInfo2;
// Info of each user that stakes LP tokens.
mapping(uint256 => mapping(address => UserInfo)) public userInfo1;
// Info of each user that stakes LP tokens.
mapping(uint256 => mapping(address => UserInfo)) public userInfo2;
// Total allocation points. Must be the sum of all allocation points in all pool1s.
uint256 public allocPointPool1 = 0;
// Total allocation points. Must be the sum of all allocation points in all pool2s.
uint256 public allocPointPool2 = 0;
// The block number when ROSE mining starts.
uint256 public startBlock;
// User address to referrer address.
mapping(address => address) public referrers;
mapping(address => address[]) referreds1;
mapping(address => address[]) referreds2;
// Mint period info.
PeriodInfo[] public periodInfo;
event Deposit1(address indexed user, uint256 indexed pid, uint256 amount);
event Withdraw1(address indexed user, uint256 indexed pid, uint256 amount);
event EmergencyWithdraw1(
address indexed user,
uint256 indexed pid,
uint256 amount
);
event Deposit2(address indexed user, uint256 indexed pid, uint256 amount);
event Withdraw2(address indexed user, uint256 indexed pid, uint256 amount);
event EmergencyWithdraw2(
address indexed user,
uint256 indexed pid,
uint256 amount
);
constructor(
RoseToken _rose,
address _sfr,
address _devaddr,
address _topReferrer,
uint256 _startBlock,
uint256 _firstBlockReward,
uint256 _supplyPeriod,
uint256 _maxSupply
) public {
rose = _rose;
sfr = _sfr;
devaddr = _devaddr;
startBlock = _startBlock;
// the block rewards and the block at the end of the period.
uint256 _supplyPerPeriod = _maxSupply / _supplyPeriod;
uint256 lastPeriodEndBlock = _startBlock;
for (uint256 i = 0; i < _supplyPeriod; i++) {
lastPeriodEndBlock = lastPeriodEndBlock.add(
_supplyPerPeriod.div(_firstBlockReward) << i
);
periodInfo.push(
PeriodInfo({
endBlock: lastPeriodEndBlock,
blockReward: _firstBlockReward >> i
})
);
}
referrers[_topReferrer] = _topReferrer;
}
function pool1Length() external view returns (uint256) {
return poolInfo1.length;
}
function pool2Length() external view returns (uint256) {
return poolInfo2.length;
}
function setStartBlock(uint256 _startBlock) public onlyOwner {
require(block.number < startBlock);
startBlock = _startBlock;
}
function setSfr2rose(address _sfr2rose) external onlyOwner {
sfr2rose = IUniswapV2Pair(_sfr2rose);
}
// Add a new lp to the pool. Can only be called by the owner.
// XXX DO NOT add the same LP token more than once. Rewards will be messed up if you do.
function add1(
uint256 _allocPoint,
IERC20 _lpToken,
bool _withUpdate
) public onlyOwner {
if (_withUpdate) {
massUpdatePool1s();
}
uint256 firstBlock = block.number > startBlock
? block.number
: startBlock;
allocPointPool1 = allocPointPool1.add(_allocPoint);
poolInfo1.push(
PoolInfo1({
lpToken: _lpToken,
allocPoint: _allocPoint,
lastRewardBlock: firstBlock,
accRosePerShare: 0,
totalAmount: 0
})
);
}
// Add a new lp to the pool. Can only be called by the owner.
// XXX DO NOT add the same LP token more than once. Rewards will be messed up if you do.
function add2(
uint256 _allocPoint,
bool _withUpdate,
uint256 _maxLockAmount,
uint256 _unlockIntervalBlock
) public onlyOwner {
if (_withUpdate) {
massUpdatePool2s();
}
uint256 firstBlock = block.number > startBlock
? block.number
: startBlock;
allocPointPool2 = allocPointPool2.add(_allocPoint);
poolInfo2.push(
PoolInfo2({
allocPoint: _allocPoint,
lastRewardBlock: firstBlock,
accRosePerShare: 0,
lastUnlockedBlock: 0,
lockedAmount: 0,
freeAmount: 0,
maxLockAmount: _maxLockAmount,
unlockIntervalBlock: _unlockIntervalBlock,
feeAmount: 0,
sharedFeeAmount: 0
})
);
}
// Update the given pool's ROSE allocation point. Can only be called by the owner.
function set1(
uint256 _pid,
uint256 _allocPoint,
bool _withUpdate
) public onlyOwner {
if (_withUpdate) {
massUpdatePool1s();
}
allocPointPool1 = allocPointPool1.sub(poolInfo1[_pid].allocPoint).add(
_allocPoint
);
poolInfo1[_pid].allocPoint = _allocPoint;
}
// Update the given pool's ROSE allocation point. Can only be called by the owner.
function set2(
uint256 _pid,
uint256 _allocPoint,
bool _withUpdate
) public onlyOwner {
if (_withUpdate) {
massUpdatePool2s();
}
allocPointPool2 = allocPointPool2.sub(poolInfo2[_pid].allocPoint).add(
_allocPoint
);
poolInfo2[_pid].allocPoint = _allocPoint;
}
function setMaxLockAmount(uint256 _pid, uint256 _maxLockAmount)
external
onlyOwner
{
poolInfo2[_pid].maxLockAmount = _maxLockAmount;
}
function setUnlockIntervalBlock(uint256 _pid, uint256 _unlockIntervalBlock)
external
onlyOwner
{
poolInfo2[_pid].unlockIntervalBlock = _unlockIntervalBlock;
}
function getBlockRewardNow() public view returns (uint256) {
return getBlockRewards(block.number, block.number + 1);
}
function getBlockRewards(uint256 from, uint256 to)
public
view
returns (uint256 rewards)
{
if (from < startBlock) {
from = startBlock;
}
if (from >= to) {
return 0;
}
for (uint256 i = 0; i < periodInfo.length; i++) {
if (periodInfo[i].endBlock >= to) {
return to.sub(from).mul(periodInfo[i].blockReward).add(rewards);
} else if (periodInfo[i].endBlock <= from) {
continue;
} else {
rewards = rewards.add(
periodInfo[i].endBlock.sub(from).mul(
periodInfo[i].blockReward
)
);
from = periodInfo[i].endBlock;
}
}
}
// View function to see pending ROSEs on frontend.
function pendingRose1(uint256 _pid, address _user)
public
view
returns (uint256)
{
PoolInfo1 storage pool = poolInfo1[_pid];
UserInfo storage user = userInfo1[_pid][_user];
uint256 accRosePerShare = pool.accRosePerShare;
uint256 lpSupply = pool.totalAmount;
if (block.number > pool.lastRewardBlock && lpSupply != 0) {
uint256 blockRewards = getBlockRewards(
pool.lastRewardBlock,
block.number
);
// pool1 hold 70% rewards.
blockRewards = blockRewards.mul(7).div(10);
uint256 roseReward = blockRewards.mul(pool.allocPoint).div(
allocPointPool1
);
accRosePerShare = accRosePerShare.add(
roseReward.mul(1e12).div(lpSupply)
);
}
return user.amount.mul(accRosePerShare).div(1e12).sub(user.rewardDebt);
}
// View function to see pending ROSEs on frontend.
function pendingRose2(uint256 _pid, address _user)
public
view
returns (uint256)
{
PoolInfo2 storage pool = poolInfo2[_pid];
UserInfo storage user = userInfo2[_pid][_user];
uint256 accRosePerShare = pool.accRosePerShare;
uint256 lpSupply = pool.lockedAmount.add(pool.freeAmount);
if (block.number > pool.lastRewardBlock && lpSupply != 0) {
uint256 blockRewards = getBlockRewards(
pool.lastRewardBlock,
block.number
);
// pool2 hold 30% rewards.
blockRewards = blockRewards.mul(3).div(10);
uint256 roseReward = blockRewards.mul(pool.allocPoint).div(
allocPointPool2
);
accRosePerShare = accRosePerShare.add(
roseReward.mul(1e12).div(lpSupply)
);
}
return user.amount.mul(accRosePerShare).div(1e12).sub(user.rewardDebt);
}
// Update reward variables for all pools. Be careful of gas spending!
function massUpdatePool1s() public {
uint256 length = poolInfo1.length;
for (uint256 pid = 0; pid < length; ++pid) {
updatePool1(pid);
}
}
// Update reward variables for all pools. Be careful of gas spending!
function massUpdatePool2s() public {
uint256 length = poolInfo2.length;
for (uint256 pid = 0; pid < length; ++pid) {
updatePool2(pid);
}
}
// Update reward variables of the given pool to be up-to-date.
function updatePool1(uint256 _pid) public {
PoolInfo1 storage pool = poolInfo1[_pid];
if (block.number <= pool.lastRewardBlock) {
return;
}
uint256 lpSupply = pool.totalAmount;
if (lpSupply == 0) {
pool.lastRewardBlock = block.number;
return;
}
uint256 blockRewards = getBlockRewards(
pool.lastRewardBlock,
block.number
);
// pool1 hold 70% rewards.
blockRewards = blockRewards.mul(7).div(10);
uint256 roseReward = blockRewards.mul(pool.allocPoint).div(
allocPointPool1
);
rose.mint(devaddr, roseReward.div(10));
if (rankAddr != address(0)) {
rose.mint(rankAddr, roseReward.mul(9).div(100));
}
if (communityAddr != address(0)) {
rose.mint(communityAddr, roseReward.div(100));
}
rose.mint(address(this), roseReward);
pool.accRosePerShare = pool.accRosePerShare.add(
roseReward.mul(1e12).div(lpSupply)
);
pool.lastRewardBlock = block.number;
}
// Update reward variables of the given pool to be up-to-date.
function updatePool2(uint256 _pid) public {
PoolInfo2 storage pool = poolInfo2[_pid];
if (block.number <= pool.lastRewardBlock) {
return;
}
uint256 lpSupply = pool.lockedAmount.add(pool.freeAmount);
if (lpSupply == 0) {
pool.lastRewardBlock = block.number;
return;
}
uint256 blockRewards = getBlockRewards(
pool.lastRewardBlock,
block.number
);
// pool2 hold 30% rewards
blockRewards = blockRewards.mul(3).div(10);
uint256 roseReward = blockRewards.mul(pool.allocPoint).div(
allocPointPool2
);
rose.mint(devaddr, roseReward.div(10));
if (rankAddr != address(0)) {
rose.mint(rankAddr, roseReward.mul(9).div(100));
}
if (communityAddr != address(0)) {
rose.mint(communityAddr, roseReward.div(100));
}
rose.mint(address(this), roseReward);
pool.accRosePerShare = pool.accRosePerShare.add(
roseReward.mul(1e12).div(lpSupply)
);
pool.lastRewardBlock = block.number;
}
// Deposit LP tokens to RoseMain for ROSE allocation.
function deposit1(uint256 _pid, uint256 _amount) public {
PoolInfo1 storage pool = poolInfo1[_pid];
UserInfo storage user = userInfo1[_pid][msg.sender];
updatePool1(_pid);
if (user.amount > 0) {
uint256 pending = user.amount
.mul(pool.accRosePerShare)
.div(1e12)
.sub(user.rewardDebt);
if (pending > 0) {
safeRoseTransfer(msg.sender, pending);
mintReferralReward(pending);
}
}
if (_amount > 0) {
pool.lpToken.safeTransferFrom(
address(msg.sender),
address(this),
_amount
);
user.amount = user.amount.add(_amount);
pool.totalAmount = pool.totalAmount.add(_amount);
}
user.rewardDebt = user.amount.mul(pool.accRosePerShare).div(1e12);
emit Deposit1(msg.sender, _pid, _amount);
}
// Deposit LP tokens to RoseMaster for ROSE allocation.
function deposit2(uint256 _pid, uint256 _amount) public {
PoolInfo2 storage pool = poolInfo2[_pid];
UserInfo storage user = userInfo2[_pid][msg.sender];
updatePool2(_pid);
if (user.amount > 0) {
uint256 pending = user.amount
.mul(pool.accRosePerShare)
.div(1e12)
.sub(user.rewardDebt);
if (pending > 0) {
safeRoseTransfer(msg.sender, pending);
mintReferralReward(pending);
}
}
if (_amount > 0) {
_safeTransferFrom(sfr, address(msg.sender), address(this), _amount);
user.amount = user.amount.add(_amount);
pool.lockedAmount = pool.lockedAmount.add(_amount);
}
updateLockedAmount(pool);
user.rewardDebt = user.amount.mul(pool.accRosePerShare).div(1e12);
emit Deposit2(msg.sender, _pid, _amount);
}
// Withdraw LP tokens from RoseMain.
function withdraw1(uint256 _pid, uint256 _amount) public {
PoolInfo1 storage pool = poolInfo1[_pid];
UserInfo storage user = userInfo1[_pid][msg.sender];
require(user.amount >= _amount, "withdraw: not good");
updatePool1(_pid);
uint256 pending = user.amount.mul(pool.accRosePerShare).div(1e12).sub(
user.rewardDebt
);
if (pending > 0) {
safeRoseTransfer(msg.sender, pending);
mintReferralReward(pending);
}
if (_amount > 0) {
user.amount = user.amount.sub(_amount);
pool.totalAmount = pool.totalAmount.sub(_amount);
pool.lpToken.safeTransfer(address(msg.sender), _amount);
}
user.rewardDebt = user.amount.mul(pool.accRosePerShare).div(1e12);
emit Withdraw1(msg.sender, _pid, _amount);
}
// Withdraw LP tokens from RoseMaster.
function withdraw2(uint256 _pid, uint256 _amount) public {
UserInfo storage user = userInfo2[_pid][msg.sender];
require(user.amount >= _amount, "withdraw: not good");
PoolInfo2 storage pool = poolInfo2[_pid];
updateLockedAmount(pool);
require(
_amount <= pool.freeAmount,
"withdraw: insufficient free balance in pool"
);
updatePool2(_pid);
uint256 pending = user.amount.mul(pool.accRosePerShare).div(1e12).sub(
user.rewardDebt
);
if (pending > 0) {
safeRoseTransfer(msg.sender, pending);
mintReferralReward(pending);
}
if (_amount > 0) {
user.amount = user.amount.sub(_amount);
pool.freeAmount = pool.freeAmount.sub(_amount);
// reduce the fee of 0.3%
uint256 fee = _amount.mul(3).div(1000);
pool.feeAmount = pool.feeAmount.add(fee);
_safeTransfer(sfr, address(msg.sender), _amount.sub(fee));
}
user.rewardDebt = user.amount.mul(pool.accRosePerShare).div(1e12);
emit Withdraw2(msg.sender, _pid, _amount);
}
// Withdraw without caring about rewards. EMERGENCY ONLY.
function emergencyWithdraw1(uint256 _pid) public {
PoolInfo1 storage pool = poolInfo1[_pid];
UserInfo storage user = userInfo1[_pid][msg.sender];
uint256 amount = user.amount;
user.amount = 0;
user.rewardDebt = 0;
pool.lpToken.safeTransfer(address(msg.sender), amount);
emit EmergencyWithdraw1(msg.sender, _pid, amount);
}
// Withdraw without caring about rewards. EMERGENCY ONLY.
function emergencyWithdraw2(uint256 _pid) public {
PoolInfo2 storage pool = poolInfo2[_pid];
UserInfo storage user = userInfo2[_pid][msg.sender];
require(user.amount <= pool.freeAmount);
_safeTransfer(sfr, address(msg.sender), user.amount);
emit EmergencyWithdraw2(msg.sender, _pid, user.amount);
user.amount = 0;
user.rewardDebt = 0;
}
// Safe rose transfer function, just in case if rounding error causes pool to not have enough ROSEs.
function safeRoseTransfer(address _to, uint256 _amount) internal {
uint256 roseBal = rose.balanceOf(address(this));
if (_amount > roseBal) {
rose.transfer(_to, roseBal);
} else {
rose.transfer(_to, _amount);
}
}
// Update dev address by the previous dev.
function dev(address _devaddr) public {
require(msg.sender == devaddr, "dev: wut?");
devaddr = _devaddr;
}
// Update dev address by the owner.
function rank(address _addr) public onlyOwner {
rankAddr = _addr;
}
// Update dev address by the owner.
function community(address _addr) public onlyOwner {
communityAddr = _addr;
}
// Fill _user in as referrer.
function refer(address _user) external {
require(_user != msg.sender && referrers[_user] != address(0));
// No modification.
require(referrers[msg.sender] == address(0));
referrers[msg.sender] = _user;
// Record two levels of refer relationship。
referreds1[_user].push(msg.sender);
address referrer2 = referrers[_user];
if (_user != referrer2) {
referreds2[referrer2].push(msg.sender);
}
}
// Query the first referred user.
function getReferreds1(address addr, uint256 startPos)
external
view
returns (uint256 length, address[] memory data)
{
address[] memory referreds = referreds1[addr];
length = referreds.length;
data = new address[](length);
for (uint256 i = 0; i < 5 && i + startPos < length; i++) {
data[i] = referreds[startPos + i];
}
}
// Query the second referred user.
function getReferreds2(address addr, uint256 startPos)
external
view
returns (uint256 length, address[] memory data)
{
address[] memory referreds = referreds2[addr];
length = referreds.length;
data = new address[](length);
for (uint256 i = 0; i < 5 && i + startPos < length; i++) {
data[i] = referreds[startPos + i];
}
}
// Query user all rewards
function allPendingRose(address _user)
external
view
returns (uint256 pending)
{
for (uint256 i = 0; i < poolInfo1.length; i++) {
pending = pending.add(pendingRose1(i, _user));
}
for (uint256 i = 0; i < poolInfo2.length; i++) {
pending = pending.add(pendingRose2(i, _user));
}
}
// Mint for referrers.
function mintReferralReward(uint256 _amount) internal {
address referrer = referrers[msg.sender];
// no referrer.
if (address(0) == referrer) {
return;
}
// mint for user and the first level referrer.
rose.mint(msg.sender, _amount.div(100));
rose.mint(referrer, _amount.mul(2).div(100));
// only the referrer of the top person is himself.
if (referrers[referrer] == referrer) {
return;
}
// mint for the second level referrer.
rose.mint(referrers[referrer], _amount.mul(2).div(100));
}
// Update the locked amount that meet the conditions
function updateLockedAmount(PoolInfo2 storage pool) internal {
uint256 passedBlock = block.number - pool.lastUnlockedBlock;
if (passedBlock >= pool.unlockIntervalBlock) {
// case 2 and more than 2 period have passed.
pool.lastUnlockedBlock = pool.lastUnlockedBlock.add(
pool.unlockIntervalBlock.mul(
passedBlock.div(pool.unlockIntervalBlock)
)
);
uint256 lockedAmount = pool.lockedAmount;
pool.lockedAmount = 0;
pool.freeAmount = pool.freeAmount.add(lockedAmount);
} else if (pool.lockedAmount >= pool.maxLockAmount) {
// Free 75% to freeAmont from lockedAmount.
uint256 freeAmount = pool.lockedAmount.mul(75).div(100);
pool.lockedAmount = pool.lockedAmount.sub(freeAmount);
pool.freeAmount = pool.freeAmount.add(freeAmount);
}
}
// Using feeAmount to buy back ROSE and share every holder.
function convert(uint256 _pid) external {
PoolInfo2 storage pool = poolInfo2[_pid];
uint256 lpSupply = pool.freeAmount.add(pool.lockedAmount);
if (address(sfr2rose) != address(0) && pool.feeAmount > 0) {
uint256 amountOut = swapSFRForROSE(pool.feeAmount);
if (amountOut > 0) {
pool.feeAmount = 0;
pool.sharedFeeAmount = pool.sharedFeeAmount.add(amountOut);
pool.accRosePerShare = pool.accRosePerShare.add(
amountOut.mul(1e12).div(lpSupply)
);
}
}
}
function swapSFRForROSE(uint256 _amount)
internal
returns (uint256 amountOut)
{
(uint256 reserve0, uint256 reserve1, ) = sfr2rose.getReserves();
address token0 = sfr2rose.token0();
(uint256 reserveIn, uint256 reserveOut) = token0 == sfr
? (reserve0, reserve1)
: (reserve1, reserve0);
// Calculate information required to swap
uint256 amountInWithFee = _amount.mul(997);
uint256 numerator = amountInWithFee.mul(reserveOut);
uint256 denominator = reserveIn.mul(1000).add(amountInWithFee);
amountOut = numerator / denominator;
if (amountOut == 0) {
return 0;
}
(uint256 amount0Out, uint256 amount1Out) = token0 == sfr
? (uint256(0), amountOut)
: (amountOut, uint256(0));
_safeTransfer(sfr, address(sfr2rose), _amount);
sfr2rose.swap(amount0Out, amount1Out, address(this), new bytes(0));
}
// Wrapper for safeTransferFrom
function _safeTransferFrom(
address token,
address from,
address to,
uint256 amount
) internal {
IERC20(token).safeTransferFrom(from, to, amount);
}
// Wrapper for safeTransfer
function _safeTransfer(
address token,
address to,
uint256 amount
) internal {
IERC20(token).safeTransfer(to, amount);
}
}