Contract Name:
ERC20FactoryByMetadrop
Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC1271 standard signature validation method for
* contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
*
* _Available since v4.1._
*/
interface IERC1271 {
/**
* @dev Should return whether the signature provided is valid for the provided data
* @param hash Hash of the data to be signed
* @param signature Signature byte array associated with _data
*/
function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/Clones.sol)
pragma solidity ^0.8.0;
/**
* @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for
* deploying minimal proxy contracts, also known as "clones".
*
* > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
* > a minimal bytecode implementation that delegates all calls to a known, fixed address.
*
* The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
* (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
* deterministic method.
*
* _Available since v3.4._
*/
library Clones {
/**
* @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
*
* This function uses the create opcode, which should never revert.
*/
function clone(address implementation) internal returns (address instance) {
/// @solidity memory-safe-assembly
assembly {
// Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
// of the `implementation` address with the bytecode before the address.
mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
// Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
instance := create(0, 0x09, 0x37)
}
require(instance != address(0), "ERC1167: create failed");
}
/**
* @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
*
* This function uses the create2 opcode and a `salt` to deterministically deploy
* the clone. Using the same `implementation` and `salt` multiple time will revert, since
* the clones cannot be deployed twice at the same address.
*/
function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
/// @solidity memory-safe-assembly
assembly {
// Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
// of the `implementation` address with the bytecode before the address.
mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
// Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
instance := create2(0, 0x09, 0x37, salt)
}
require(instance != address(0), "ERC1167: create2 failed");
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(
address implementation,
bytes32 salt,
address deployer
) internal pure returns (address predicted) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(add(ptr, 0x38), deployer)
mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
mstore(add(ptr, 0x14), implementation)
mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
mstore(add(ptr, 0x58), salt)
mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
predicted := keccak256(add(ptr, 0x43), 0x55)
}
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(
address implementation,
bytes32 salt
) internal view returns (address predicted) {
return predictDeterministicAddress(implementation, salt, address(this));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32")
mstore(0x1c, hash)
message := keccak256(0x00, 0x3c)
}
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, "\x19\x01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
data := keccak256(ptr, 0x42)
}
}
/**
* @dev Returns an Ethereum Signed Data with intended validator, created from a
* `validator` and `data` according to the version 0 of EIP-191.
*
* See {recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x00", validator, data));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/SignatureChecker.sol)
pragma solidity ^0.8.0;
import "./ECDSA.sol";
import "../../interfaces/IERC1271.sol";
/**
* @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
* signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like
* Argent and Gnosis Safe.
*
* _Available since v4.1._
*/
library SignatureChecker {
/**
* @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
* signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) {
(address recovered, ECDSA.RecoverError error) = ECDSA.tryRecover(hash, signature);
return
(error == ECDSA.RecoverError.NoError && recovered == signer) ||
isValidERC1271SignatureNow(signer, hash, signature);
}
/**
* @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
* against the signer smart contract using ERC1271.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidERC1271SignatureNow(
address signer,
bytes32 hash,
bytes memory signature
) internal view returns (bool) {
(bool success, bytes memory result) = signer.staticcall(
abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, signature)
);
return (success &&
result.length >= 32 &&
abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```solidity
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
pragma solidity >=0.5.0;
interface IUniswapV2Factory {
event PairCreated(address indexed token0, address indexed token1, address pair, uint);
function feeTo() external view returns (address);
function feeToSetter() external view returns (address);
function getPair(address tokenA, address tokenB) external view returns (address pair);
function allPairs(uint) external view returns (address pair);
function allPairsLength() external view returns (uint);
function createPair(address tokenA, address tokenB) external returns (address pair);
function setFeeTo(address) external;
function setFeeToSetter(address) external;
}
pragma solidity >=0.6.2;
interface IUniswapV2Router01 {
function factory() external pure returns (address);
function WETH() external pure returns (address);
function addLiquidity(
address tokenA,
address tokenB,
uint amountADesired,
uint amountBDesired,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB, uint liquidity);
function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);
function removeLiquidity(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB);
function removeLiquidityETH(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountToken, uint amountETH);
function removeLiquidityWithPermit(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountA, uint amountB);
function removeLiquidityETHWithPermit(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountToken, uint amountETH);
function swapExactTokensForTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapTokensForExactTokens(
uint amountOut,
uint amountInMax,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
external
payable
returns (uint[] memory amounts);
function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);
function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);
function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
external
payable
returns (uint[] memory amounts);
function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}
pragma solidity >=0.6.2;
import './IUniswapV2Router01.sol';
interface IUniswapV2Router02 is IUniswapV2Router01 {
function removeLiquidityETHSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountETH);
function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountETH);
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
function swapExactETHForTokensSupportingFeeOnTransferTokens(
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external payable;
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
}
// SPDX-License-Identifier: BUSL-1.1
// Metadrop Contracts (v2.1.0)
pragma solidity 0.8.21;
import {Context} from "@openzeppelin/contracts/utils/Context.sol";
import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import {IERC20ByMetadrop} from "./IERC20ByMetadrop.sol";
import {IERC20DRIPoolByMetadrop} from "../ERC20Pools/IERC20DRIPoolByMetadrop.sol";
import {IERC20FactoryByMetadrop} from "../ERC20Factory/IERC20FactoryByMetadrop.sol";
import {IUniswapV2Factory} from "@uniswap/v2-core/contracts/interfaces/IUniswapV2Factory.sol";
import {IUniswapV2Router02} from "@uniswap/v2-periphery/contracts/interfaces/IUniswapV2Router02.sol";
import {IWETH} from "../../ThirdParty/WETH/IWETH.sol";
import {Ownable2Step} from "../../Global/OZ/Ownable2Step.sol";
import {Revert} from "../../Global/Revert.sol";
import {IERC20, SafeERC20} from "../../Global/OZ/SafeERC20.sol";
import {ERC20ByMetadropParamDecoder} from "../../lib/erc20/ERC20ByMetadropParamDecoder.sol";
import {ERC20ByMetadropSablierV2LinearLockup} from "../../lib/erc20/ERC20ByMetadropSablierV2LinearLockup.sol";
/**
* @dev Metadrop core ERC-20 contract
*
* @dev Implementation of the {IERC20} interface.
*
*/
contract ERC20ByMetadrop is Context, IERC20ByMetadrop, Ownable2Step {
bytes32 public constant x_META_ID_HASH =
0x4D45544144524F504D45544144524F504D45544144524F504D45544144524F50;
using EnumerableSet for EnumerableSet.AddressSet;
using EnumerableSet for EnumerableSet.Bytes32Set;
using SafeERC20 for IERC20;
uint256 public constant x_VERSION = 100020001000000000;
uint256 internal constant BP_DENOM = 10000;
uint256 internal constant ROUND_DEC = 100000000000;
uint256 internal constant CALL_GAS_LIMIT = 50000;
uint256 internal constant MAX_AUTOSWAP_THRESHOLD_MULTIPLE = 20;
uint256 internal constant MIN_AUTOSWAP_THRESHOLD_BP = 1;
uint256 internal constant MAX_AUTOSWAPS_PER_BLOCK = 1;
uint256 internal constant MAX_BUYS_PER_ORIGIN_PER_BLOCK = 1;
uint256 public immutable lpSupply;
uint256 public immutable botProtectionDurationInSeconds;
uint256 public immutable metadropTaxPeriodInDays;
uint256 public immutable metadropBuyTaxProportionBasisPoints;
uint256 public immutable metadropSellTaxProportionBasisPoints;
uint256 public immutable metadropMinBuyTaxBasisPoints;
uint256 public immutable metadropMinSellTaxBasisPoints;
uint256 public immutable autoBurnDurationInBlocks;
uint256 public immutable autoBurnBasisPoints;
address public immutable metadropTaxRecipient;
address public immutable uniswapV2Pair;
address public immutable driPool;
address public immutable lpOwner;
address public immutable metadropFactory;
bool internal immutable _tokenHasTax;
address internal immutable _tokenVault;
IUniswapV2Router02 internal immutable _uniswapRouter;
/** @dev {Storage Slot 1} Vars read as part of transfers packed to a single
* slot for warm reads.
* Slot 1:
* 120
* 32
* 32
* 16 * 4
* 8
* ------
* 256
* ------ */
uint120 private _totalSupply;
uint32 public fundedDate;
uint32 public fundedBlock;
uint16 public projectBuyTaxBasisPoints;
uint16 public projectSellTaxBasisPoints;
uint16 public metadropBuyTaxBasisPoints;
uint16 public metadropSellTaxBasisPoints;
/** @dev {_autoSwapInProgress} We start with {_autoSwapInProgress} ON, as we don't want to
* call autoswap when processing initial liquidity from this address. We turn this OFF when
* liquidity has been loaded, and use this bool to control processing during auto-swaps
* from that point onwards. */
bool private _autoSwapInProgress = true;
/** @dev {Storage Slot 2} Vars read as part of transfers packed to a single
* slot for warm reads.
* Slot 1:
* 120
* 112
* 16
* 8
* ------
* 256
* ------ */
uint120 public maxTokensPerWallet;
uint112 public maxTokensPerTransaction;
uint16 public swapThresholdBasisPoints;
bool public initialBuyRelevantAndNotYetCompleted;
/** @dev {Storage Slot 3} Not read / written in transfers (unless autoswap taking place):
* 160
* 88
* 8
* ------
* 256
* ------ */
address public projectTaxRecipient;
uint88 public lpLockupInDays;
bool public burnLPTokens;
/** @dev {Storage Slot 4} Potentially written in transfers:
* Slot 3:
* 128
* 128
* ------
* 256
* ------ */
uint128 public projectTaxPendingSwap;
uint128 public metadropTaxPendingSwap;
/** @dev {Storage Slot 5 to n} Not read as part of transfers etc. */
string private _name;
string private _symbol;
/** @dev {_balances} Addresses balances */
mapping(address => uint256) private _balances;
/** @dev {_allowances} Addresses allocance details */
mapping(address => mapping(address => uint256)) private _allowances;
/** @dev {_autoswapForBlock} Limit autoswaps per block */
mapping(uint256 => uint256) private _autoswapForBlock;
/** @dev {_originBuysPerBlock} Number of buys from this txn.origin by block */
mapping(address => mapping(uint256 => uint256)) private _originBuysPerBlock;
/** @dev {_liquidityPools} Enumerable set for liquidity pool addresses */
EnumerableSet.AddressSet private _liquidityPools;
/** @dev {_unlimited} Enumerable set for addresses where limits do not apply */
EnumerableSet.AddressSet private _unlimited;
/**
* @dev {constructor}
*
* @param integrationAddresses_ The project owner, uniswap router, vault contract (currently Sablier), metadrop factory and pool template.
* @param baseParams_ configuration of this ERC20.
* @param supplyParams_ Supply configuration of this ERC20.
* @param taxParams_ Tax configuration of this ERC20
* @param taxParams_ Launch pool configuration of this ERC20
*/
constructor(
address[5] memory integrationAddresses_,
bytes memory baseParams_,
bytes memory supplyParams_,
bytes memory taxParams_,
bytes memory poolParams_
) {
_transferOwnership(integrationAddresses_[0]);
address[] memory supplyRecipients;
uint256[] memory supplyAmounts;
(
_name,
_symbol,
supplyRecipients,
supplyAmounts
) = ERC20ByMetadropParamDecoder.decodeBaseParams(baseParams_);
uint256 distributedSupply = _processDistribution(
supplyRecipients,
supplyAmounts
);
_uniswapRouter = IUniswapV2Router02(integrationAddresses_[1]);
_tokenVault = integrationAddresses_[2];
metadropFactory = (integrationAddresses_[3]);
ERC20SupplyParameters memory supplyParams = abi.decode(
supplyParams_,
(ERC20SupplyParameters)
);
ERC20TaxParameters memory taxParams = abi.decode(
taxParams_,
(ERC20TaxParameters)
);
// If we have a DRI Pool record the address and also set the variable
// initialBuyRelevantAndNotYetCompleted based on the DRI pool type. For
// initial buy type DRI pools we do NOT tax or take autoburn from the very
// first buy:
if (integrationAddresses_[4] != address(0)) {
driPool = integrationAddresses_[4];
if (
IERC20DRIPoolByMetadrop(integrationAddresses_[4]).driType() ==
DRIPoolType.initialBuy
) {
initialBuyRelevantAndNotYetCompleted = true;
} else {
initialBuyRelevantAndNotYetCompleted = false;
}
} else {
initialBuyRelevantAndNotYetCompleted = false;
}
ERC20PoolParameters memory poolParams;
if (integrationAddresses_[4] != address(0)) {
poolParams = abi.decode(poolParams_, (ERC20PoolParameters));
_unlimited.add(integrationAddresses_[4]);
}
_processSupplyParams(supplyParams, poolParams, distributedSupply);
// projectSupplyRecipient = supplyParams.projectSupplyRecipient;
lpSupply = supplyParams.lpSupply * (10 ** decimals());
// projectSupply = supplyParams.projectSupply * (10 ** decimals());
botProtectionDurationInSeconds = supplyParams
.botProtectionDurationInSeconds;
lpOwner = supplyParams.projectLPOwner;
_tokenHasTax = _processTaxParams(taxParams);
metadropTaxPeriodInDays = taxParams.metadropTaxPeriodInDays;
metadropTaxRecipient = taxParams.metadropTaxRecipient;
metadropBuyTaxProportionBasisPoints = taxParams
.metadropBuyTaxProportionBasisPoints;
metadropSellTaxProportionBasisPoints = taxParams
.metadropSellTaxProportionBasisPoints;
metadropMinBuyTaxBasisPoints = uint16(
taxParams.metadropMinBuyTaxBasisPoints
);
metadropMinSellTaxBasisPoints = uint16(
taxParams.metadropMinSellTaxBasisPoints
);
autoBurnDurationInBlocks = taxParams.autoBurnDurationInBlocks;
autoBurnBasisPoints = taxParams.autoBurnBasisPoints;
_mintBalances(lpSupply, poolParams.poolSupply * (10 ** decimals()));
uniswapV2Pair = _createPair();
}
/**
* @dev {onlyOwnerFactoryOrPool}
*
* Throws if called by any account other than the owner, factory or pool.
*/
modifier onlyOwnerFactoryOrPool() {
if (
metadropFactory != _msgSender() &&
owner() != _msgSender() &&
driPool != _msgSender()
) {
_revert(CallerIsNotFactoryProjectOwnerOrPool.selector);
}
if (owner() == _msgSender() && driPool != address(0)) {
_revert(CannotManuallyFundLPWhenUsingADRIPool.selector);
}
_;
}
/**
* @dev {notDuringAutoswap}
*
* Throws if called during an autoswap
*/
modifier notDuringAutoswap() {
if (_autoSwapInProgress) {
_revert(CannotPerformDuringAutoswap.selector);
}
_;
}
/**
* @dev function {_processDistribution}
*
* Mints and set unlimited to the initial mint recipients
*
* @param recipients_ The distribution addresses
* @param amounts_ The distribution amounts
*
*/
function _processDistribution(
address[] memory recipients_,
uint256[] memory amounts_
) internal returns (uint256 distributedSupply) {
if (recipients_.length != amounts_.length) {
_revert(RecipientsAndAmountsMismatch.selector);
}
distributedSupply = 0;
for (uint256 i = 0; i < recipients_.length; i++) {
_unlimited.add(recipients_[i]);
_mint(recipients_[i], amounts_[i] * (10 ** decimals()));
distributedSupply += amounts_[i];
}
return distributedSupply;
}
/**
* @dev function {_processSupplyParams}
*
* Process provided supply params
*
* @param erc20SupplyParameters_ The supply params
* @param erc20PoolParameters_ The pool params
* @param distributedSupply_ The distributed supply
*/
function _processSupplyParams(
ERC20SupplyParameters memory erc20SupplyParameters_,
ERC20PoolParameters memory erc20PoolParameters_,
uint256 distributedSupply_
) internal {
if (
erc20SupplyParameters_.maxSupply !=
(erc20SupplyParameters_.lpSupply +
distributedSupply_ +
erc20PoolParameters_.poolSupply)
) {
_revert(SupplyTotalMismatch.selector);
}
if (erc20SupplyParameters_.maxSupply > type(uint120).max) {
_revert(MaxSupplyTooHigh.selector);
}
if (erc20SupplyParameters_.lpLockupInDays > type(uint88).max) {
_revert(LPLockUpMustFitUint88.selector);
}
if (
erc20SupplyParameters_.botProtectionDurationInSeconds > type(uint128).max
) {
_revert(botProtectionDurationInSecondsMustFitUint128.selector);
}
if (erc20SupplyParameters_.maxTokensPerWallet > type(uint120).max) {
_revert(LimitTooHigh.selector);
}
if (erc20SupplyParameters_.maxTokensPerTxn > type(uint120).max) {
_revert(LimitTooHigh.selector);
}
maxTokensPerWallet = uint120(
erc20SupplyParameters_.maxTokensPerWallet * (10 ** decimals())
);
maxTokensPerTransaction = uint112(
erc20SupplyParameters_.maxTokensPerTxn * (10 ** decimals())
);
lpLockupInDays = uint88(erc20SupplyParameters_.lpLockupInDays);
burnLPTokens = erc20SupplyParameters_.burnLPTokens;
_unlimited.add(address(this));
_unlimited.add(address(0));
}
/**
* @dev function {_processTaxParams}
*
* Process provided tax params
*
* @param erc20TaxParameters_ The tax params
*/
function _processTaxParams(
ERC20TaxParameters memory erc20TaxParameters_
) internal returns (bool tokenHasTax_) {
/**
* @dev We use the immutable var {_tokenHasTax} to avoid unneccesary storage writes and reads. If this
* token does NOT have tax applied then there is no need to store or read these parameters, and we can
* avoid this simply by checking the immutable var. Pass back the value for this var from this method.
*/
if (
erc20TaxParameters_.projectBuyTaxBasisPoints == 0 &&
erc20TaxParameters_.projectSellTaxBasisPoints == 0 &&
erc20TaxParameters_.metadropBuyTaxBasisPoints == 0 &&
erc20TaxParameters_.metadropSellTaxBasisPoints == 0
) {
return false;
} else {
// Validate that the sum of all buy deductions does not equal or exceed
// 10,000 basis points (i.e. 100%).
if (
(erc20TaxParameters_.projectBuyTaxBasisPoints +
erc20TaxParameters_.metadropBuyTaxBasisPoints +
erc20TaxParameters_.autoBurnBasisPoints) >= BP_DENOM
) {
_revert(DeductionsOnBuyExceedOrEqualOneHundredPercent.selector);
}
projectBuyTaxBasisPoints = uint16(
erc20TaxParameters_.projectBuyTaxBasisPoints
);
projectSellTaxBasisPoints = uint16(
erc20TaxParameters_.projectSellTaxBasisPoints
);
metadropBuyTaxBasisPoints = uint16(
erc20TaxParameters_.metadropBuyTaxBasisPoints
);
metadropSellTaxBasisPoints = uint16(
erc20TaxParameters_.metadropSellTaxBasisPoints
);
if (
erc20TaxParameters_.taxSwapThresholdBasisPoints <
MIN_AUTOSWAP_THRESHOLD_BP
) {
_revert(SwapThresholdTooLow.selector);
}
swapThresholdBasisPoints = uint16(
erc20TaxParameters_.taxSwapThresholdBasisPoints
);
projectTaxRecipient = erc20TaxParameters_.projectTaxRecipient;
return true;
}
}
/**
* @dev function {_mintBalances}
*
* Mint initial balances
*
* @param lpMint_ The number of tokens for liquidity
* @param poolMint_ The number of tokens for the launch pool
*/
function _mintBalances(uint256 lpMint_, uint256 poolMint_) internal {
if (lpMint_ > 0) {
_mint(address(this), lpMint_);
}
if (poolMint_ > 0) {
_mint(driPool, poolMint_);
}
}
/**
* @dev function {_createPair}
*
* Create the uniswap pair
*
* @return uniswapV2Pair_ The pair address
*/
function _createPair() internal returns (address uniswapV2Pair_) {
if (_totalSupply > 0) {
uniswapV2Pair_ = IUniswapV2Factory(_uniswapRouter.factory()).createPair(
address(this),
_uniswapRouter.WETH()
);
_liquidityPools.add(uniswapV2Pair_);
emit LiquidityPoolCreated(uniswapV2Pair_);
}
_unlimited.add(address(_uniswapRouter));
_unlimited.add(uniswapV2Pair_);
return (uniswapV2Pair_);
}
/**
* @dev function {addInitialLiquidity}
*
* Add initial liquidity to the uniswap pair
*
* @param vaultFee_ The vault fee in wei. This must match the required fee from the external vault contract.
* @param lpLockupInDaysOverride_ The number of days to lock liquidity NOTE you can pass 0 to use the stored value.
* This value is an override, and will override a stored value which is LOWER that it. If the value you are passing is
* LOWER than the stored value the stored value will not be reduced.
*
* Example usage 1: When creating the coin the lpLockupInDays is set to 0. This means that on this call the
* user can set the lockup to any value they like, as all integer values greater than zero will be used to override
* that set in storage.
*
* Example usage 2: When using a DRI Pool the lockup period is set on this contract and the pool need not know anything
* about this setting. The pool can pass back a 0 on this call and know that the existing value stored on this contract
* will be used.
* @param burnLPTokensOverride_ If the LP tokens should be burned (otherwise they are locked). This is an override field
* that can ONLY be used to override a held value of FALSE with a new value of TRUE.
*
* Example usage 1: When creating the coin the user didn't add liquidity, or specify that the LP tokens were to be burned.
* So burnLPTokens is held as FALSE. When they add liquidity they want to lock tokens, so they pass this in as FALSE again,
* and it remains FALSE.
*
* Example usage 2: As above, but when later adding liquidity the user wants to burn the LP. So the stored value is FALSE
* and the user passes TRUE into this method. The TRUE overrides the held value of FALSE and the tokens are burned.
*
* Example uusage 3: The user is using a DRI pool and they have specified on the coin creation that the LP tokens are to
* be burned. This contract therefore holds TRUE for burnLPTokens. The DRI pool does not need to know what the user has
* selected. It can safely pass back FALSE to this method call and the stored value of TRUE will remain, resulting in the
* LP tokens being burned.
*/
function addInitialLiquidity(
uint256 vaultFee_,
uint256 lpLockupInDaysOverride_,
bool burnLPTokensOverride_
) external payable onlyOwnerFactoryOrPool {
uint256 ethForLiquidity;
if ((burnLPTokens == false) && (burnLPTokensOverride_ == true)) {
burnLPTokens = true;
}
if (burnLPTokens) {
if (msg.value == 0) {
_revert(NoETHForLiquidityPair.selector);
}
ethForLiquidity = msg.value;
} else {
if (vaultFee_ >= msg.value) {
// The amount of ETH MUST exceed the vault fee, otherwise what liquidity are we adding?
_revert(NoETHForLiquidityPair.selector);
}
ethForLiquidity = msg.value - vaultFee_;
}
if (lpLockupInDaysOverride_ > lpLockupInDays) {
lpLockupInDays = uint88(lpLockupInDaysOverride_);
}
_addInitialLiquidity(ethForLiquidity, vaultFee_);
}
/**
* @dev function {_addInitialLiquidity}
*
* Add initial liquidity to the uniswap pair (internal function that does processing)
*
* @param ethAmount_ The amount of ETH passed into the call
* @param vaultFee_ The vault fee in wei. This must match the required fee from the external vault contract.
*/
function _addInitialLiquidity(
uint256 ethAmount_,
uint256 vaultFee_
) internal {
// Funded date is the date of first funding. We can only add initial liquidity once. If this date is set,
// we cannot proceed
if (fundedDate != 0) {
_revert(InitialLiquidityAlreadyAdded.selector);
}
fundedDate = uint32(block.timestamp);
fundedBlock = uint32(block.number);
// Can only do this if this contract holds tokens:
if (balanceOf(address(this)) == 0) {
_revert(NoTokenForLiquidityPair.selector);
}
// Approve the uniswap router for an inifinite amount (max uint256)
// This means that we don't need to worry about later incrememtal
// approvals on tax swaps, as the uniswap router allowance will never
// be decreased (see code in decreaseAllowance for reference)
_approve(address(this), address(_uniswapRouter), type(uint256).max);
// Add the liquidity:
(uint256 amountA, uint256 amountB, uint256 lpTokens) = _uniswapRouter
.addLiquidityETH{value: ethAmount_}(
address(this),
balanceOf(address(this)),
0,
0,
address(this),
block.timestamp
);
emit InitialLiquidityAdded(amountA, amountB, lpTokens);
// We now set this to false so that future transactions can be eligibile for autoswaps
_autoSwapInProgress = false;
// Are we locking, or burning?
if (burnLPTokens) {
_burnLiquidity(lpTokens);
} else {
// The LP token amount to lock should be equal to the LP token balance in the contract. If it's not, something is wrong.
if (lpTokens != IERC20(uniswapV2Pair).balanceOf(address(this))) {
_revert(LPTokensBalanceMismatch.selector);
}
// Lock the liquidity:
_addLiquidityToVault(vaultFee_, lpTokens);
}
}
/**
* @dev function {_addLiquidityToVault}
*
* Lock initial liquidity on vault contract
*
* @param vaultFee_ The vault fee in wei. This must match the required fee from the external vault contract.
* @param lpTokens_ The amount of LP tokens to be locked
*/
function _addLiquidityToVault(uint256 vaultFee_, uint256 lpTokens_) internal {
// Approve the vault contract to spend the LP tokens.
IERC20(uniswapV2Pair).approve(_tokenVault, lpTokens_);
uint256 streamId = ERC20ByMetadropSablierV2LinearLockup.createWithDurations(
lpOwner,
uniswapV2Pair,
_tokenVault,
lpTokens_,
uint40(lpLockupInDays * 1 days)
);
emit LiquidityLocked(lpTokens_, lpLockupInDays, streamId);
}
/**
* @dev function {_burnLiquidity}
*
* Burn LP tokens
*
* @param lpTokens_ The amount of LP tokens to be locked
*/
function _burnLiquidity(uint256 lpTokens_) internal {
IERC20(uniswapV2Pair).transfer(address(0), lpTokens_);
emit LiquidityBurned(lpTokens_);
}
/**
* @dev function {isLiquidityPool}
*
* Return if an address is a liquidity pool
*
* @param queryAddress_ The address being queried
* @return bool The address is / isn't a liquidity pool
*/
function isLiquidityPool(address queryAddress_) public view returns (bool) {
/** @dev We check the uniswapV2Pair address first as this is an immutable variable and therefore does not need
* to be fetched from storage, saving gas if this address IS the uniswapV2Pool. We also add this address
* to the enumerated set for ease of reference (for example it is returned in the getter), and it does
* not add gas to any other calls, that still complete in 0(1) time.
*/
return (queryAddress_ == uniswapV2Pair ||
_liquidityPools.contains(queryAddress_));
}
/**
* @dev function {liquidityPools}
*
* Returns a list of all liquidity pools
*
* @return liquidityPools_ a list of all liquidity pools
*/
function liquidityPools()
external
view
returns (address[] memory liquidityPools_)
{
return (_liquidityPools.values());
}
/**
* @dev function {addLiquidityPool} onlyOwner
*
* Allows the manager to add a liquidity pool to the pool enumerable set
*
* @param newLiquidityPool_ The address of the new liquidity pool
*/
function addLiquidityPool(address newLiquidityPool_) public onlyOwner {
// Don't allow calls that didn't pass an address:
if (newLiquidityPool_ == address(0)) {
_revert(LiquidityPoolCannotBeAddressZero.selector);
}
// Only allow smart contract addresses to be added, as only these can be pools:
if (newLiquidityPool_.code.length == 0) {
_revert(LiquidityPoolMustBeAContractAddress.selector);
}
// Add this to the enumerated list:
_liquidityPools.add(newLiquidityPool_);
emit LiquidityPoolAdded(newLiquidityPool_);
}
/**
* @dev function {removeLiquidityPool} onlyOwner
*
* Allows the manager to remove a liquidity pool
*
* @param removedLiquidityPool_ The address of the old removed liquidity pool
*/
function removeLiquidityPool(
address removedLiquidityPool_
) external onlyOwner {
// Remove this from the enumerated list:
_liquidityPools.remove(removedLiquidityPool_);
emit LiquidityPoolRemoved(removedLiquidityPool_);
}
/**
* @dev function {isUnlimited}
*
* Return if an address is unlimited (is not subject to per txn and per wallet limits)
*
* @param queryAddress_ The address being queried
* @return bool The address is / isn't unlimited
*/
function isUnlimited(address queryAddress_) public view returns (bool) {
return (_unlimited.contains(queryAddress_));
}
/**
* @dev function {unlimitedAddresses}
*
* Returns a list of all unlimited addresses
*
* @return unlimitedAddresses_ a list of all unlimited addresses
*/
function unlimitedAddresses()
external
view
returns (address[] memory unlimitedAddresses_)
{
return (_unlimited.values());
}
/**
* @dev function {addUnlimited} onlyOwner
*
* Allows the manager to add an unlimited address
*
* @param newUnlimited_ The address of the new unlimited address
*/
function addUnlimited(address newUnlimited_) external onlyOwner {
// Add this to the enumerated list:
_unlimited.add(newUnlimited_);
emit UnlimitedAddressAdded(newUnlimited_);
}
/**
* @dev function {removeUnlimited} onlyOwner
*
* Allows the manager to remove an unlimited address
*
* @param removedUnlimited_ The address of the old removed unlimited address
*/
function removeUnlimited(address removedUnlimited_) external onlyOwner {
// Remove this from the enumerated list:
_unlimited.remove(removedUnlimited_);
emit UnlimitedAddressRemoved(removedUnlimited_);
}
/**
* @dev function {setProjectTaxRecipient} onlyOwner
*
* Allows the manager to set the project tax recipient address
*
* @param projectTaxRecipient_ New recipient address
*/
function setProjectTaxRecipient(
address projectTaxRecipient_
) external onlyOwner {
projectTaxRecipient = projectTaxRecipient_;
emit ProjectTaxRecipientUpdated(projectTaxRecipient_);
}
/**
* @dev function {setSwapThresholdBasisPoints} onlyOwner
*
* Allows the manager to set the autoswap threshold
*
* @param swapThresholdBasisPoints_ New swap threshold in basis points
*/
function setSwapThresholdBasisPoints(
uint16 swapThresholdBasisPoints_
) external onlyOwner {
if (swapThresholdBasisPoints < MIN_AUTOSWAP_THRESHOLD_BP) {
_revert(SwapThresholdTooLow.selector);
}
uint256 oldswapThresholdBasisPoints = swapThresholdBasisPoints;
swapThresholdBasisPoints = swapThresholdBasisPoints_;
emit AutoSwapThresholdUpdated(
oldswapThresholdBasisPoints,
swapThresholdBasisPoints_
);
}
/**
* @dev function {setProjectTaxRates} onlyOwner
*
* Change the tax rates, subject to only ever decreasing
*
* @param newProjectBuyTaxBasisPoints_ The new buy tax rate
* @param newProjectSellTaxBasisPoints_ The new sell tax rate
*/
function setProjectTaxRates(
uint16 newProjectBuyTaxBasisPoints_,
uint16 newProjectSellTaxBasisPoints_
) external onlyOwner {
uint16 oldBuyTaxBasisPoints = projectBuyTaxBasisPoints;
uint16 oldSellTaxBasisPoints = projectSellTaxBasisPoints;
// Cannot increase, down only
if (newProjectBuyTaxBasisPoints_ > oldBuyTaxBasisPoints) {
_revert(CanOnlyReduce.selector);
}
// Cannot increase, down only
if (newProjectSellTaxBasisPoints_ > oldSellTaxBasisPoints) {
_revert(CanOnlyReduce.selector);
}
projectBuyTaxBasisPoints = newProjectBuyTaxBasisPoints_;
projectSellTaxBasisPoints = newProjectSellTaxBasisPoints_;
// We set the metadrop tax rates off of the project tax rates:
//
// 1) If the project tax rate is zero then the metadrop tax rate is zero
// 2) If the project tax rate is not zero the metadrop tax rate is the
// greater of:
// a) The metadrop tax proportion basis points of the project rate
// b) the base metadrop tax rate.
//
// Examples:
//
// A) The project buy tax rate is zero and the sell tax rate is 3%. The metadrop
// tax proportion basis points is 1000, meaning the metadrop proportion is 10% of the
// project tax rate. The base metadrop tax rate is 50 basis points i.e. 0.5%.
//
// * Metadrop buy tax = 0% (as the project buy tax is zero)
// * Metadrop sell tax = 0.5%. 10% of the project sell tax is 0.3%. As this is below
// the base level of 0.5% we set the metadrop tax to 0.5%
//
// B) The project buy tax rate is 4% and the sell tax rate is 20%. The metadrop tax
// proportion basis points is 1000, meaning the metadrop proportion is 10% of the
// project tax rate. The base metadrop tax rate is 50 basis points i.e. 0.5%.
//
// * Metadrop buy tax = 0.5%. 10% of the project rate would be 0.4%, so we use the base rate)
// * Metadrop sell tax = 2%. 10% of the project rate is 2%, which is higher than the
// base rate of 0.5%.
uint16 oldMetadropBuyTaxBasisPoints = metadropBuyTaxBasisPoints;
uint16 oldMetadropSellTaxBasisPoints = metadropSellTaxBasisPoints;
// Process the buy tax rate first:
if (newProjectBuyTaxBasisPoints_ == 0) {
metadropBuyTaxBasisPoints = 0;
} else {
uint256 derivedMetadropBuyTaxRate = (newProjectBuyTaxBasisPoints_ *
metadropBuyTaxProportionBasisPoints) / BP_DENOM;
if (derivedMetadropBuyTaxRate < metadropMinBuyTaxBasisPoints) {
metadropBuyTaxBasisPoints = uint16(metadropMinBuyTaxBasisPoints);
} else {
metadropBuyTaxBasisPoints = uint16(derivedMetadropBuyTaxRate);
}
}
// And now the sell tax rate:
if (newProjectSellTaxBasisPoints_ == 0) {
metadropSellTaxBasisPoints = 0;
} else {
uint256 derivedMetadropSellTaxRate = (newProjectSellTaxBasisPoints_ *
metadropSellTaxProportionBasisPoints) / BP_DENOM;
if (derivedMetadropSellTaxRate < metadropMinSellTaxBasisPoints) {
metadropSellTaxBasisPoints = uint16(metadropMinSellTaxBasisPoints);
} else {
metadropSellTaxBasisPoints = uint16(derivedMetadropSellTaxRate);
}
}
// Emit a message if there has been a change:
if (
oldMetadropBuyTaxBasisPoints != metadropBuyTaxBasisPoints ||
oldMetadropSellTaxBasisPoints != metadropSellTaxBasisPoints
) {
emit MetadropTaxBasisPointsChanged(
oldMetadropBuyTaxBasisPoints,
metadropBuyTaxBasisPoints,
oldMetadropSellTaxBasisPoints,
metadropSellTaxBasisPoints
);
}
emit ProjectTaxBasisPointsChanged(
oldBuyTaxBasisPoints,
newProjectBuyTaxBasisPoints_,
oldSellTaxBasisPoints,
newProjectSellTaxBasisPoints_
);
}
/**
* @dev function {setLimits} onlyOwner
*
* Change the limits on transactions and holdings
*
* @param newMaxTokensPerTransaction_ The new per txn limit
* @param newMaxTokensPerWallet_ The new tokens per wallet limit
*/
function setLimits(
uint256 newMaxTokensPerTransaction_,
uint256 newMaxTokensPerWallet_
) external onlyOwner {
if (newMaxTokensPerWallet_ > type(uint120).max) {
_revert(LimitTooHigh.selector);
}
if (newMaxTokensPerTransaction_ > type(uint120).max) {
_revert(LimitTooHigh.selector);
}
uint256 oldMaxTokensPerTransaction = maxTokensPerTransaction;
uint256 oldMaxTokensPerWallet = maxTokensPerWallet;
// Limit can only be increased:
if (
(oldMaxTokensPerTransaction == 0 && newMaxTokensPerTransaction_ != 0) ||
(oldMaxTokensPerWallet == 0 && newMaxTokensPerWallet_ != 0)
) {
_revert(LimitsCanOnlyBeRaised.selector);
}
if (
((newMaxTokensPerTransaction_ != 0) &&
newMaxTokensPerTransaction_ < oldMaxTokensPerTransaction) ||
((newMaxTokensPerWallet_ != 0) &&
newMaxTokensPerWallet_ < oldMaxTokensPerWallet)
) {
_revert(LimitsCanOnlyBeRaised.selector);
}
maxTokensPerTransaction = uint112(newMaxTokensPerTransaction_);
maxTokensPerWallet = uint120(newMaxTokensPerWallet_);
emit LimitsUpdated(
oldMaxTokensPerTransaction,
newMaxTokensPerTransaction_,
oldMaxTokensPerWallet,
newMaxTokensPerWallet_
);
}
/**
* @dev function {limitsEnforced}
*
* Return if limits are enforced on this contract
*
* @return bool : they are / aren't
*/
function limitsEnforced() public view returns (bool) {
// Limits are not enforced if
// this is renounced AND after the protection end date
// OR prior to LP funding:
// The second clause of 'fundedDate == 0' isn't strictly needed, since with a funded
// date of 0 we would always expect the block.timestamp to be less than 0 plus
// the botProtectionDurationInSeconds. But, to cover the miniscule chance of a user
// selecting a truly enormous bot protection period, such that when added to 0 it
// is more than the current block.timestamp, we have included this second clause. There
// is no permanent gas overhead (the logic will be returning from the first clause after
// the bot protection period has expired). During the bot protection period there is a minor
// gas overhead from evaluating the fundedDate == 0 (which will be false), but this is minimal.
if (
(owner() == address(0) &&
block.timestamp > fundedDate + botProtectionDurationInSeconds) ||
fundedDate == 0
) {
return false;
} else {
// LP has been funded AND we are within the protection period:
return true;
}
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev getMetadropBuyTaxBasisPoints
*
* Return the metadrop buy tax basis points given the timed expiry
*/
function getMetadropBuyTaxBasisPoints() public view returns (uint256) {
// If we are outside the metadrop tax period this is ZERO
if (block.timestamp > (fundedDate + (metadropTaxPeriodInDays * 1 days))) {
return 0;
} else {
return metadropBuyTaxBasisPoints;
}
}
/**
* @dev getMetadropSellTaxBasisPoints
*
* Return the metadrop sell tax basis points given the timed expiry
*/
function getMetadropSellTaxBasisPoints() public view returns (uint256) {
// If we are outside the metadrop tax period this is ZERO
if (block.timestamp > (fundedDate + (metadropTaxPeriodInDays * 1 days))) {
return 0;
} else {
return metadropSellTaxBasisPoints;
}
}
/**
* @dev totalBuyTaxBasisPoints
*
* Provide easy to view tax total:
*/
function totalBuyTaxBasisPoints() public view returns (uint256) {
return projectBuyTaxBasisPoints + getMetadropBuyTaxBasisPoints();
}
/**
* @dev totalSellTaxBasisPoints
*
* Provide easy to view tax total:
*/
function totalSellTaxBasisPoints() public view returns (uint256) {
return projectSellTaxBasisPoints + getMetadropSellTaxBasisPoints();
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(
address account
) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(
address to,
uint256 amount
) public virtual override(IERC20) returns (bool) {
address owner = _msgSender();
_transfer(
owner,
to,
amount,
(isLiquidityPool(owner) || isLiquidityPool(to))
);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(
address owner,
address spender
) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(
address spender,
uint256 amount
) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(
address from,
address to,
uint256 amount
) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount, (isLiquidityPool(from) || isLiquidityPool(to)));
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(
address spender,
uint256 addedValue
) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(
address spender,
uint256 subtractedValue
) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance < subtractedValue) {
_revert(AllowanceDecreasedBelowZero.selector);
}
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(
address from,
address to,
uint256 amount,
bool applyTax
) internal virtual {
_beforeTokenTransfer(from, to, amount);
// Perform pre-tax validation (e.g. amount doesn't exceed balance, max txn amount)
uint256 fromBalance = _pretaxValidationAndLimits(from, to, amount);
// Perform autoswap if eligible
_autoSwap(from, to);
uint256 amountMinusDeductions;
// We limit the number of buys per tx.origin per block:
if (isLiquidityPool(from)) {
if (_blockMaxBuysPerOriginExceeded()) {
_revert(MaxBuysPerBlockExceeded.selector);
}
_originBuysPerBlock[tx.origin][block.number] += 1;
}
// The first by from a liquidity pool is relevant for tokens that use an initial buy
// type DRI pool, as the very first buy does not have tax or autoburn applied. In all
// cases where this is NOT the initial buy, or where the initial buy is not relevant,
// the processing is the same:
if (_intialBuyTreatmentApplies(from)) {
initialBuyRelevantAndNotYetCompleted = false;
amountMinusDeductions = amount;
} else {
// Process taxes
amountMinusDeductions = _taxProcessing(applyTax, to, from, amount);
// Process autoburn
amountMinusDeductions = _autoburnProcessing(
from,
amount,
amountMinusDeductions
);
}
// Perform post-tax validation (e.g. total balance after post-tax amount applied)
_posttaxValidationAndLimits(from, to, amountMinusDeductions);
_balances[from] = fromBalance - amount;
_balances[to] += amountMinusDeductions;
emit Transfer(from, to, amountMinusDeductions);
_afterTokenTransfer(from, to, amount);
}
/**
* @dev function {_blockMaxBuysPerOriginExceeded}
*
* Has the max buy per origin per block been exceeded
*
* @return bool this does / doesn't exceed the maximum
*/
function _blockMaxBuysPerOriginExceeded() internal view returns (bool) {
return
_originBuysPerBlock[tx.origin][block.number] >=
MAX_BUYS_PER_ORIGIN_PER_BLOCK;
}
/**
* @dev function {_intialBuyTreatmentApplies}
*
* Does a tax free initial buy apply to this contract?
*
* @param from_ the from address on the transfer
* @return bool tax free treatment does / doesn't apply
*/
function _intialBuyTreatmentApplies(
address from_
) internal view returns (bool) {
return initialBuyRelevantAndNotYetCompleted && isLiquidityPool(from_);
}
/**
* @dev function {_pretaxValidationAndLimits}
*
* Perform validation on pre-tax amounts
*
* @param from_ From address for the transaction
* @param to_ To address for the transaction
* @param amount_ Amount of the transaction
*/
function _pretaxValidationAndLimits(
address from_,
address to_,
uint256 amount_
) internal view returns (uint256 fromBalance_) {
// This can't be a transfer to the liquidity pool before the funding date
// UNLESS the from address is this contract. This ensures that the initial
// LP funding transaction is from this contract using the supply of tokens
// designated for the LP pool, and therefore the initial price in the pool
// is being set as expected.
//
// This protects from, for example, tokens from a team minted supply being
// paired with ETH and added to the pool, setting the initial price, BEFORE
// the initial liquidity is added through this contract.
if (to_ == uniswapV2Pair && from_ != address(this) && fundedDate == 0) {
_revert(InitialLiquidityNotYetAdded.selector);
}
if (from_ == address(0)) {
_revert(TransferFromZeroAddress.selector);
}
if (to_ == address(0)) {
_revert(TransferToZeroAddress.selector);
}
fromBalance_ = _balances[from_];
if (fromBalance_ < amount_) {
_revert(TransferAmountExceedsBalance.selector);
}
if (
limitsEnforced() &&
(maxTokensPerTransaction != 0) &&
((isLiquidityPool(from_) && !isUnlimited(to_)) ||
(isLiquidityPool(to_) && !isUnlimited(from_)))
) {
// Liquidity pools aren't always going to round cleanly. This can (and does)
// mean that a limit of 5,000 tokens (for example) will trigger on a transfer
// of 5,000 tokens, as the transfer is actually for 5,000.00000000000000213.
// While 4,999 will work fine, it isn't hugely user friendly. So we buffer
// the limit with rounding decimals, which in all cases are considerably less
// than one whole token:
uint256 roundedLimited;
unchecked {
roundedLimited = maxTokensPerTransaction + ROUND_DEC;
}
if (amount_ > roundedLimited) {
_revert(MaxTokensPerTxnExceeded.selector);
}
}
return (fromBalance_);
}
/**
* @dev function {_posttaxValidationAndLimits}
*
* Perform validation on post-tax amounts
*
* @param to_ To address for the transaction
* @param amount_ Amount of the transaction
*/
function _posttaxValidationAndLimits(
address from_,
address to_,
uint256 amount_
) internal view {
if (
limitsEnforced() &&
(maxTokensPerWallet != 0) &&
!isUnlimited(to_) &&
// If this is a buy (from a liquidity pool), we apply if the to_
// address isn't noted as unlimited:
(isLiquidityPool(from_) && !isUnlimited(to_))
) {
// Liquidity pools aren't always going to round cleanly. This can (and does)
// mean that a limit of 5,000 tokens (for example) will trigger on a max holding
// of 5,000 tokens, as the transfer to achieve that is actually for
// 5,000.00000000000000213. While 4,999 will work fine, it isn't hugely user friendly.
// So we buffer the limit with rounding decimals, which in all cases are considerably
// less than one whole token:
uint256 roundedLimited;
unchecked {
roundedLimited = maxTokensPerWallet + ROUND_DEC;
}
if ((amount_ + balanceOf(to_) > roundedLimited)) {
_revert(MaxTokensPerWalletExceeded.selector);
}
}
}
/**
* @dev function {_taxProcessing}
*
* Perform tax processing
*
* @param applyTax_ Do we apply tax to this transaction?
* @param to_ The reciever of the token
* @param from_ The sender of the token
* @param sentAmount_ The amount being send
* @return amountLessTax_ The amount that will be recieved, i.e. the send amount minus tax
*/
function _taxProcessing(
bool applyTax_,
address to_,
address from_,
uint256 sentAmount_
) internal returns (uint256 amountLessTax_) {
amountLessTax_ = sentAmount_;
if (_tokenHasTax && applyTax_ && !_autoSwapInProgress) {
uint256 tax;
// on sell
if (isLiquidityPool(to_) && totalSellTaxBasisPoints() > 0) {
if (projectSellTaxBasisPoints > 0) {
uint256 projectTax = ((sentAmount_ * projectSellTaxBasisPoints) /
BP_DENOM);
projectTaxPendingSwap += uint128(projectTax);
tax += projectTax;
}
uint256 metadropSellTax = getMetadropSellTaxBasisPoints();
if (metadropSellTax > 0) {
uint256 metadropTax = ((sentAmount_ * metadropSellTax) / BP_DENOM);
metadropTaxPendingSwap += uint128(metadropTax);
tax += metadropTax;
}
}
// on buy
else if (isLiquidityPool(from_) && totalBuyTaxBasisPoints() > 0) {
if (projectBuyTaxBasisPoints > 0) {
uint256 projectTax = ((sentAmount_ * projectBuyTaxBasisPoints) /
BP_DENOM);
projectTaxPendingSwap += uint128(projectTax);
tax += projectTax;
}
uint256 metadropBuyTax = getMetadropBuyTaxBasisPoints();
if (metadropBuyTax > 0) {
uint256 metadropTax = ((sentAmount_ * metadropBuyTax) / BP_DENOM);
metadropTaxPendingSwap += uint128(metadropTax);
tax += metadropTax;
}
}
if (tax > 0) {
_balances[address(this)] += tax;
emit Transfer(from_, address(this), tax);
amountLessTax_ -= tax;
}
}
return (amountLessTax_);
}
/**
* @dev function {_autoburnProcessing}
*
* Perform autoburn processing
*
* @param from_ The sender of the token
* @param originalSentAmount_ The original amount being sent, before any deductions (if appropriate)
* @param currentRecipientAmount_ The amount the recipient is currently due to receive
* @return amountLessBurn_ The amount that will be recieved, i.e. the currentRecipientAmount_
* minus the burn applied here
*/
function _autoburnProcessing(
address from_,
uint256 originalSentAmount_,
uint256 currentRecipientAmount_
) internal returns (uint256 amountLessBurn_) {
amountLessBurn_ = currentRecipientAmount_;
// Perform autoBurn processing, if appropriate:
if (
autoBurnDurationInBlocks != 0 &&
autoBurnBasisPoints != 0 &&
!_autoSwapInProgress &&
isLiquidityPool(from_)
) {
uint256 blocksElapsed = block.number - fundedBlock;
if (blocksElapsed < autoBurnDurationInBlocks) {
// Get the blocks remaining in the autoburn period. The more blocks
// remaining, the higher the proportion of the burn we apply:
uint256 burnBlocksRemaining = autoBurnDurationInBlocks - blocksElapsed;
// Calculate the linear burn basis point per remaining block. For example, if our
// burn basis points = 1500 (15%) and we are burning for three blocks then this
// will be 1500 / 3 = 500 (5%):
uint256 linearBurnPerRemainingBlock = autoBurnBasisPoints /
autoBurnDurationInBlocks;
// Finally, determine the burn basis points for this block by multiplying the per remaining
// block burn % by the number of blocks remaining. To follow our example, in the 0th
// block since funding there are three blocks remaining in the burn period, therefore
// 500 * 3 = 1500 (15%). Two blocks after funding we have one block remaining in the burn
// period, and therefore are burning 500 * 1 = 500 (5%). Three blocks after funding we do not
// reach this point in the logic, as the blocksElapsed is 3 and needs to be UNDER 3 to enter
// this code.
uint256 burnBasisPointsForThisBlock = burnBlocksRemaining *
linearBurnPerRemainingBlock;
// This is eligible for burn. Send the basis points amount of
// the originalSentAmount_ to the zero address:
uint256 burnAmount = ((originalSentAmount_ *
burnBasisPointsForThisBlock) / BP_DENOM);
_burn(from_, burnAmount);
amountLessBurn_ -= burnAmount;
}
}
return (amountLessBurn_);
}
/**
* @dev totalTaxPendingSwap
*
* Return the total tax awaiting swap:
*/
function totalTaxPendingSwap() public view returns (uint256) {
return projectTaxPendingSwap + metadropTaxPendingSwap;
}
/**
* @dev function {_autoSwap}
*
* Automate the swap of accumulated tax fees to native token
*
* @param from_ The sender of the token
* @param to_ The recipient of the token
*/
function _autoSwap(address from_, address to_) internal {
if (_tokenHasTax) {
uint256 totalTaxBalance = totalTaxPendingSwap();
uint256 swapBalance = totalTaxBalance;
uint256 swapThresholdInTokens = (_totalSupply *
swapThresholdBasisPoints) / BP_DENOM;
if (_eligibleForSwap(from_, to_, swapBalance, swapThresholdInTokens)) {
// Store that a swap back is in progress:
_autoSwapInProgress = true;
// Increment the swaps per block counter:
_autoswapForBlock[block.number] += 1;
// Check if we need to reduce the amount of tokens for this swap:
if (
swapBalance > swapThresholdInTokens * MAX_AUTOSWAP_THRESHOLD_MULTIPLE
) {
swapBalance = swapThresholdInTokens * MAX_AUTOSWAP_THRESHOLD_MULTIPLE;
}
// Perform the auto swap to native token:
_swapTaxForNative(swapBalance, totalTaxBalance);
// Flag that the autoswap is complete:
_autoSwapInProgress = false;
}
}
}
/**
* @dev function {_eligibleForSwap}
*
* Is the current transfer eligible for autoswap
*
* @param from_ The sender of the token
* @param to_ The recipient of the token
* @param taxBalance_ The current accumulated tax balance
* @param swapThresholdInTokens_ The swap threshold as a token amount
*/
function _eligibleForSwap(
address from_,
address to_,
uint256 taxBalance_,
uint256 swapThresholdInTokens_
) internal view returns (bool) {
return (taxBalance_ >= swapThresholdInTokens_ &&
!_autoSwapInProgress &&
!isLiquidityPool(from_) &&
from_ != address(_uniswapRouter) &&
to_ != address(_uniswapRouter) &&
from_ != address(driPool) &&
_autoswapForBlock[block.number] < MAX_AUTOSWAPS_PER_BLOCK);
}
/**
* @dev function {_swapTaxForNative}
*
* Swap tokens taken as tax for native token
*
* @param swapBalance_ The current accumulated tax balance to swap
* @param totalTaxBalance_ The current accumulated total tax balance
*/
function _swapTaxForNative(
uint256 swapBalance_,
uint256 totalTaxBalance_
) internal {
uint256 preSwapBalance = address(this).balance;
address[] memory path = new address[](2);
path[0] = address(this);
path[1] = _uniswapRouter.WETH();
// Wrap external calls in try / catch to handle errors
try
_uniswapRouter.swapExactTokensForETHSupportingFeeOnTransferTokens(
swapBalance_,
0,
path,
address(this),
block.timestamp + 600
)
{
uint256 postSwapBalance = address(this).balance;
uint256 balanceToDistribute = postSwapBalance - preSwapBalance;
uint256 projectBalanceToDistribute = (balanceToDistribute *
projectTaxPendingSwap) / totalTaxBalance_;
uint256 metadropBalanceToDistribute = (balanceToDistribute *
metadropTaxPendingSwap) / totalTaxBalance_;
// We will not have swapped all tax tokens IF the amount was greater than the max auto swap.
// We therefore cannot just set the pending swap counters to 0. Instead, in this scenario,
// we must reduce them in proportion to the swap amount vs the remaining balance + swap
// amount.
//
// For example:
// * swap Balance is 250
// * contract balance is 385.
// * projectTaxPendingSwap is 300
// * metadropTaxPendingSwap is 85.
//
// The new total for the projectTaxPendingSwap is:
// = 300 - ((300 * 250) / 385)
// = 300 - 194
// = 106
// The new total for the metadropTaxPendingSwap is:
// = 85 - ((85 * 250) / 385)
// = 85 - 55
// = 30
//
if (swapBalance_ < totalTaxBalance_) {
// Calculate the project tax spending swap reduction amount:
uint256 projectTaxPendingSwapReduction = (projectTaxPendingSwap *
swapBalance_) / totalTaxBalance_;
projectTaxPendingSwap -= uint128(projectTaxPendingSwapReduction);
// The metadrop tax pending swap reduction is therefore the total swap amount minus the
// project tax spending swap reduction:
metadropTaxPendingSwap -= uint128(
swapBalance_ - projectTaxPendingSwapReduction
);
} else {
(projectTaxPendingSwap, metadropTaxPendingSwap) = (0, 0);
}
// Distribute to treasuries:
bool success;
address weth;
uint256 gas;
if (projectBalanceToDistribute > 0) {
// If no gas limit was provided or provided gas limit greater than gas left, just use the remaining gas.
gas = (CALL_GAS_LIMIT == 0 || CALL_GAS_LIMIT > gasleft())
? gasleft()
: CALL_GAS_LIMIT;
// We limit the gas passed so that a called address cannot cause a block out of gas error:
(success, ) = projectTaxRecipient.call{
value: projectBalanceToDistribute,
gas: gas
}("");
// If the ETH transfer fails, wrap the ETH and send it as WETH. We do this so that a called
// address cannot cause this transfer to fail, either intentionally or by mistake:
if (!success) {
if (weth == address(0)) {
weth = _uniswapRouter.WETH();
}
try IWETH(weth).deposit{value: projectBalanceToDistribute}() {
try
IERC20(address(weth)).transfer(
projectTaxRecipient,
projectBalanceToDistribute
)
{} catch {
// Dont allow a failed external call (in this case to WETH) to stop a transfer.
// Emit that this has occured and continue.
emit ExternalCallError(1);
}
} catch {
// Dont allow a failed external call (in this case to WETH) to stop a transfer.
// Emit that this has occured and continue.
emit ExternalCallError(2);
}
}
}
if (metadropBalanceToDistribute > 0) {
// If no gas limit was provided or provided gas limit greater than gas left, just use the remaining gas.
gas = (CALL_GAS_LIMIT == 0 || CALL_GAS_LIMIT > gasleft())
? gasleft()
: CALL_GAS_LIMIT;
(success, ) = metadropTaxRecipient.call{
value: metadropBalanceToDistribute,
gas: gas
}("");
// If the ETH transfer fails, wrap the ETH and send it as WETH. We do this so that a called
// address cannot cause this transfer to fail, either intentionally or by mistake:
if (!success) {
if (weth == address(0)) {
weth = _uniswapRouter.WETH();
}
try IWETH(weth).deposit{value: metadropBalanceToDistribute}() {
try
IERC20(address(weth)).transfer(
metadropTaxRecipient,
metadropBalanceToDistribute
)
{} catch {
// Dont allow a failed external call (in this case to WETH) to stop a transfer.
// Emit that this has occured and continue.
emit ExternalCallError(3);
}
} catch {
// Dont allow a failed external call (in this case to WETH) to stop a transfer.
// Emit that this has occured and continue.
emit ExternalCallError(4);
}
}
}
} catch {
// Dont allow a failed external call (in this case to uniswap) to stop a transfer.
// Emit that this has occured and continue.
emit ExternalCallError(5);
}
}
/**
* @dev distributeTaxTokens
*
* Allows the distribution of tax tokens to the designated recipient(s)
*
* As part of standard processing the tax token balance being above the threshold
* will trigger an autoswap to ETH and distribution of this ETH to the designated
* recipients. This is automatic and there is no need for user involvement.
*
* As part of this swap there are a number of calculations performed, particularly
* if the tax balance is above MAX_AUTOSWAP_THRESHOLD_MULTIPLE.
*
* Testing indicates that these calculations are safe. But given the data / code
* interactions it remains possible that some edge case set of scenarios may cause
* an issue with these calculations.
*
* This method is therefore provided as a 'fallback' option to safely distribute
* accumulated taxes from the contract, with a direct transfer of the ERC20 tokens
* themselves.
*/
function distributeTaxTokens() external notDuringAutoswap {
if (projectTaxPendingSwap > 0) {
uint256 projectDistribution = projectTaxPendingSwap;
projectTaxPendingSwap = 0;
_transfer(address(this), projectTaxRecipient, projectDistribution, false);
}
if (metadropTaxPendingSwap > 0) {
uint256 metadropDistribution = metadropTaxPendingSwap;
metadropTaxPendingSwap = 0;
_transfer(
address(this),
metadropTaxRecipient,
metadropDistribution,
false
);
}
}
/**
* @dev function {rescueETH}
*
* A withdraw function to allow ETH to be rescued.
*
* This contract should never hold ETH. The only envisaged scenario where
* it might hold ETH is a failed autoswap where the uniswap swap has completed,
* the recipient of ETH reverts, the contract then wraps to WETH and the
* wrap to WETH fails.
*
* This feels unlikely. But, for safety, we include this method.
*
* @param amount_ The amount to withdraw
*/
function rescueETH(uint256 amount_) external notDuringAutoswap {
(bool success, ) = projectTaxRecipient.call{value: amount_}("");
if (!success) {
_revert(TransferFailed.selector);
}
}
/**
* @dev function {rescueERC20}
*
* A withdraw function to allow ERC20s (except address(this)) to be rescued.
*
* This contract should never hold ERC20s other than tax tokens. The only envisaged
* scenario where it might hold an ERC20 is a failed autoswap where the uniswap swap
* has completed, the recipient of ETH reverts, the contract then wraps to WETH, the
* wrap to WETH succeeds, BUT then the transfer of WETH fails.
*
* This feels even less likely than the scenario where ETH is held on the contract.
* But, for safety, we include this method.
*
* @param token_ The ERC20 contract
* @param amount_ The amount to withdraw
*/
function rescueERC20(
address token_,
uint256 amount_
) external notDuringAutoswap {
if (token_ == address(this)) {
_revert(CannotWithdrawThisToken.selector);
}
IERC20(token_).safeTransfer(projectTaxRecipient, amount_);
}
/**
* @dev function {rescueExcessToken}
*
* A withdraw function to allow ERC20s from this address that are above
* the accrued tax balance to be rescued.
*/
function rescueExcessToken(uint256 amount_) external notDuringAutoswap {
// Cannot perform this before the token has been funded:
if (fundedDate == 0) {
_revert(CannotPerformPriorToFunding.selector);
}
uint256 excessToken = balanceOf(address(this)) - totalTaxPendingSwap();
if (amount_ > excessToken) {
_revert(AmountExceedsAvailable.selector);
}
IERC20(address(this)).safeTransfer(projectTaxRecipient, amount_);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
if (account == address(0)) {
_revert(MintToZeroAddress.selector);
}
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += uint120(amount);
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
if (account == address(0)) {
_revert(BurnFromTheZeroAddress.selector);
}
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
if (accountBalance < amount) {
_revert(BurnExceedsBalance.selector);
}
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= uint120(amount);
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(
address owner,
address spender,
uint256 amount
) internal virtual {
if (owner == address(0)) {
_revert(ApproveFromTheZeroAddress.selector);
}
if (spender == address(0)) {
_revert(ApproveToTheZeroAddress.selector);
}
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(
address owner,
address spender,
uint256 amount
) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
if (currentAllowance < amount) {
_revert(InsufficientAllowance.selector);
}
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Destroys a `value` amount of tokens from the caller.
*
* See {ERC20-_burn}.
*/
function burn(uint256 value) public virtual {
_burn(_msgSender(), value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, deducting from
* the caller's allowance.
*
* See {ERC20-_burn} and {ERC20-allowance}.
*
* Requirements:
*
* - the caller must have allowance for ``accounts``'s tokens of at least
* `value`.
*/
function burnFrom(address account, uint256 value) public virtual {
_spendAllowance(account, _msgSender(), value);
_burn(account, value);
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
receive() external payable {}
}
// SPDX-License-Identifier: MIT
// Metadrop Contracts (v2.1.0)
pragma solidity 0.8.21;
import {IConfigStructures} from "../../Global/IConfigStructures.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC20ConfigByMetadrop} from "./IERC20ConfigByMetadrop.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
/**
* @dev Metadrop core ERC-20 contract, interface
*/
interface IERC20ByMetadrop is
IConfigStructures,
IERC20,
IERC20ConfigByMetadrop,
IERC20Metadata
{
event AutoSwapThresholdUpdated(uint256 oldThreshold, uint256 newThreshold);
event ExternalCallError(uint256 identifier);
event InitialLiquidityAdded(uint256 tokenA, uint256 tokenB, uint256 lpToken);
event LimitsUpdated(
uint256 oldMaxTokensPerTransaction,
uint256 newMaxTokensPerTransaction,
uint256 oldMaxTokensPerWallet,
uint256 newMaxTokensPerWallet
);
event LiquidityLocked(
uint256 lpTokens,
uint256 lpLockupInDays,
uint256 streamId
);
event LiquidityBurned(uint256 lpTokens);
event LiquidityPoolCreated(address addedPool);
event LiquidityPoolAdded(address addedPool);
event LiquidityPoolRemoved(address removedPool);
event MetadropTaxBasisPointsChanged(
uint256 oldBuyBasisPoints,
uint256 newBuyBasisPoints,
uint256 oldSellBasisPoints,
uint256 newSellBasisPoints
);
event ProjectTaxBasisPointsChanged(
uint256 oldBuyBasisPoints,
uint256 newBuyBasisPoints,
uint256 oldSellBasisPoints,
uint256 newSellBasisPoints
);
event RevenueAutoSwap();
event ProjectTaxRecipientUpdated(address treasury);
event UnlimitedAddressAdded(address addedUnlimted);
event UnlimitedAddressRemoved(address removedUnlimted);
event ValidCallerAdded(bytes32 addedValidCaller);
event ValidCallerRemoved(bytes32 removedValidCaller);
/**
* @dev function {addInitialLiquidity}
*
* Add initial liquidity to the uniswap pair
*
* @param vaultFee_ The vault fee in wei. This must match the required fee from the external vault contract.
* @param lpLockupInDaysOverride_ The number of days to lock liquidity NOTE you can pass 0 to use the stored value.
* This value is an override, and will override a stored value which is LOWER that it. If the value you are passing is
* LOWER than the stored value the stored value will not be reduced.
*
* Example usage 1: When creating the coin the lpLockupInDays is set to 0. This means that on this call the
* user can set the lockup to any value they like, as all integer values greater than zero will be used to override
* that set in storage.
*
* Example usage 2: When using a DRI Pool the lockup period is set on this contract and the pool need not know anything
* about this setting. The pool can pass back a 0 on this call and know that the existing value stored on this contract
* will be used.
* @param burnLPTokensOverride_ If the LP tokens should be burned (otherwise they are locked). This is an override field
* that can ONLY be used to override a held value of FALSE with a new value of TRUE.
*
* Example usage 1: When creating the coin the user didn't add liquidity, or specify that the LP tokens were to be burned.
* So burnLPTokens is held as FALSE. When they add liquidity they want to lock tokens, so they pass this in as FALSE again,
* and it remains FALSE.
*
* Example usage 2: As above, but when later adding liquidity the user wants to burn the LP. So the stored value is FALSE
* and the user passes TRUE into this method. The TRUE overrides the held value of FALSE and the tokens are burned.
*
* Example uusage 3: The user is using a DRI pool and they have specified on the coin creation that the LP tokens are to
* be burned. This contract therefore holds TRUE for burnLPTokens. The DRI pool does not need to know what the user has
* selected. It can safely pass back FALSE to this method call and the stored value of TRUE will remain, resulting in the
* LP tokens being burned.
*/
function addInitialLiquidity(
uint256 vaultFee_,
uint256 lpLockupInDaysOverride_,
bool burnLPTokensOverride_
) external payable;
/**
* @dev function {isLiquidityPool}
*
* Return if an address is a liquidity pool
*
* @param queryAddress_ The address being queried
* @return bool The address is / isn't a liquidity pool
*/
function isLiquidityPool(address queryAddress_) external view returns (bool);
/**
* @dev function {liquidityPools}
*
* Returns a list of all liquidity pools
*
* @return liquidityPools_ a list of all liquidity pools
*/
function liquidityPools()
external
view
returns (address[] memory liquidityPools_);
/**
* @dev function {addLiquidityPool} onlyOwner
*
* Allows the manager to add a liquidity pool to the pool enumerable set
*
* @param newLiquidityPool_ The address of the new liquidity pool
*/
function addLiquidityPool(address newLiquidityPool_) external;
/**
* @dev function {removeLiquidityPool} onlyOwner
*
* Allows the manager to remove a liquidity pool
*
* @param removedLiquidityPool_ The address of the old removed liquidity pool
*/
function removeLiquidityPool(address removedLiquidityPool_) external;
/**
* @dev function {isUnlimited}
*
* Return if an address is unlimited (is not subject to per txn and per wallet limits)
*
* @param queryAddress_ The address being queried
* @return bool The address is / isn't unlimited
*/
function isUnlimited(address queryAddress_) external view returns (bool);
/**
* @dev function {unlimitedAddresses}
*
* Returns a list of all unlimited addresses
*
* @return unlimitedAddresses_ a list of all unlimited addresses
*/
function unlimitedAddresses()
external
view
returns (address[] memory unlimitedAddresses_);
/**
* @dev function {addUnlimited} onlyOwner
*
* Allows the manager to add an unlimited address
*
* @param newUnlimited_ The address of the new unlimited address
*/
function addUnlimited(address newUnlimited_) external;
/**
* @dev function {removeUnlimited} onlyOwner
*
* Allows the manager to remove an unlimited address
*
* @param removedUnlimited_ The address of the old removed unlimited address
*/
function removeUnlimited(address removedUnlimited_) external;
/**
* @dev function {setProjectTaxRecipient} onlyOwner
*
* Allows the manager to set the project tax recipient address
*
* @param projectTaxRecipient_ New recipient address
*/
function setProjectTaxRecipient(address projectTaxRecipient_) external;
/**
* @dev function {setSwapThresholdBasisPoints} onlyOwner
*
* Allows the manager to set the autoswap threshold
*
* @param swapThresholdBasisPoints_ New swap threshold in basis points
*/
function setSwapThresholdBasisPoints(
uint16 swapThresholdBasisPoints_
) external;
/**
* @dev function {setProjectTaxRates} onlyOwner
*
* Change the tax rates, subject to only ever decreasing
*
* @param newProjectBuyTaxBasisPoints_ The new buy tax rate
* @param newProjectSellTaxBasisPoints_ The new sell tax rate
*/
function setProjectTaxRates(
uint16 newProjectBuyTaxBasisPoints_,
uint16 newProjectSellTaxBasisPoints_
) external;
/**
* @dev function {setLimits} onlyOwner
*
* Change the limits on transactions and holdings
*
* @param newMaxTokensPerTransaction_ The new per txn limit
* @param newMaxTokensPerWallet_ The new tokens per wallet limit
*/
function setLimits(
uint256 newMaxTokensPerTransaction_,
uint256 newMaxTokensPerWallet_
) external;
/**
* @dev function {limitsEnforced}
*
* Return if limits are enforced on this contract
*
* @return bool : they are / aren't
*/
function limitsEnforced() external view returns (bool);
/**
* @dev getMetadropBuyTaxBasisPoints
*
* Return the metadrop buy tax basis points given the timed expiry
*/
function getMetadropBuyTaxBasisPoints() external view returns (uint256);
/**
* @dev getMetadropSellTaxBasisPoints
*
* Return the metadrop sell tax basis points given the timed expiry
*/
function getMetadropSellTaxBasisPoints() external view returns (uint256);
/**
* @dev totalBuyTaxBasisPoints
*
* Provide easy to view tax total:
*/
function totalBuyTaxBasisPoints() external view returns (uint256);
/**
* @dev totalSellTaxBasisPoints
*
* Provide easy to view tax total:
*/
function totalSellTaxBasisPoints() external view returns (uint256);
/**
* @dev distributeTaxTokens
*
* Allows the distribution of tax tokens to the designated recipient(s)
*
* As part of standard processing the tax token balance being above the threshold
* will trigger an autoswap to ETH and distribution of this ETH to the designated
* recipients. This is automatic and there is no need for user involvement.
*
* As part of this swap there are a number of calculations performed, particularly
* if the tax balance is above MAX_SWAP_THRESHOLD_MULTIPLE.
*
* Testing indicates that these calculations are safe. But given the data / code
* interactions it remains possible that some edge case set of scenarios may cause
* an issue with these calculations.
*
* This method is therefore provided as a 'fallback' option to safely distribute
* accumulated taxes from the contract, with a direct transfer of the ERC20 tokens
* themselves.
*/
function distributeTaxTokens() external;
/**
* @dev function {rescueETH} onlyOwner
*
* A withdraw function to allow ETH to be rescued.
*
* This contract should never hold ETH. The only envisaged scenario where
* it might hold ETH is a failed autoswap where the uniswap swap has completed,
* the recipient of ETH reverts, the contract then wraps to WETH and the
* wrap to WETH fails.
*
* This feels unlikely. But, for safety, we include this method.
*
* @param amount_ The amount to withdraw
*/
function rescueETH(uint256 amount_) external;
/**
* @dev function {rescueERC20}
*
* A withdraw function to allow ERC20s (except address(this)) to be rescued.
*
* This contract should never hold ERC20s other than tax tokens. The only envisaged
* scenario where it might hold an ERC20 is a failed autoswap where the uniswap swap
* has completed, the recipient of ETH reverts, the contract then wraps to WETH, the
* wrap to WETH succeeds, BUT then the transfer of WETH fails.
*
* This feels even less likely than the scenario where ETH is held on the contract.
* But, for safety, we include this method.
*
* @param token_ The ERC20 contract
* @param amount_ The amount to withdraw
*/
function rescueERC20(address token_, uint256 amount_) external;
/**
* @dev function {rescueExcessToken}
*
* A withdraw function to allow ERC20s from this address that are above
* the accrued tax balance to be rescued.
*/
function rescueExcessToken(uint256 amount_) external;
/**
* @dev Destroys a `value` amount of tokens from the caller.
*
* See {ERC20-_burn}.
*/
function burn(uint256 value) external;
/**
* @dev Destroys a `value` amount of tokens from `account`, deducting from
* the caller's allowance.
*
* See {ERC20-_burn} and {ERC20-allowance}.
*
* Requirements:
*
* - the caller must have allowance for ``accounts``'s tokens of at least
* `value`.
*/
function burnFrom(address account, uint256 value) external;
}
// SPDX-License-Identifier: MIT
// Metadrop Contracts (v2.1.0)
/**
*
* @title IERC20ByMetadrop.sol. Interface for metadrop ERC20 standard
*
* @author metadrop https://metadrop.com/
*
*/
pragma solidity 0.8.21;
interface IERC20ConfigByMetadrop {
enum DRIPoolType {
fundingLP,
initialBuy
}
struct ERC20Config {
bytes baseParameters;
bytes supplyParameters;
bytes taxParameters;
bytes poolParameters;
}
struct ERC20BaseParameters {
string name;
string symbol;
bool addLiquidityOnCreate;
bool usesDRIPool;
bytes distribution;
}
struct ERC20SupplyParameters {
uint256 maxSupply;
uint256 lpSupply;
uint256 maxTokensPerWallet;
uint256 maxTokensPerTxn;
uint256 lpLockupInDays;
uint256 botProtectionDurationInSeconds;
address projectLPOwner;
bool burnLPTokens;
}
struct ERC20TaxParameters {
uint256 projectBuyTaxBasisPoints;
uint256 projectSellTaxBasisPoints;
uint256 taxSwapThresholdBasisPoints;
uint256 metadropBuyTaxBasisPoints;
uint256 metadropSellTaxBasisPoints;
uint256 metadropTaxPeriodInDays;
address projectTaxRecipient;
address metadropTaxRecipient;
uint256 metadropMinBuyTaxBasisPoints;
uint256 metadropMinSellTaxBasisPoints;
uint256 metadropBuyTaxProportionBasisPoints;
uint256 metadropSellTaxProportionBasisPoints;
uint256 autoBurnDurationInBlocks;
uint256 autoBurnBasisPoints;
}
struct ERC20PoolParameters {
uint256 poolType;
uint256 poolSupply;
uint256 poolStartDate;
uint256 poolEndDate;
uint256 poolVestingInSeconds;
uint256 poolMaxETH;
uint256 poolPerAddressMaxETH;
uint256 poolMinETH;
uint256 poolPerTransactionMinETH;
uint256 poolContributionFeeBasisPoints;
uint256 poolMaxInitialBuy;
uint256 poolMaxInitialLiquidity;
address poolFeeRecipient;
address poolOwner;
}
}
// SPDX-License-Identifier: BUSL-1.1
// Metadrop Contracts (v2.1.0)
pragma solidity 0.8.21;
import {AuthorityModel} from "../../Global/AuthorityModel.sol";
import {Clones} from "@openzeppelin/contracts/proxy/Clones.sol";
import {Context} from "@openzeppelin/contracts/utils/Context.sol";
import {Decommissionable} from "../../Global/Decommissionable.sol";
import {IERC20ByMetadrop} from "../ERC20/IERC20ByMetadrop.sol";
import {IERC20DRIPoolByMetadrop} from "../ERC20Pools/IERC20DRIPoolByMetadrop.sol";
import {IERC20FactoryByMetadrop} from "./IERC20FactoryByMetadrop.sol";
import {IERC20MachineByMetadrop} from "../ERC20Machine/IERC20MachineByMetadrop.sol";
import {SafeERC20, IERC20} from "../../Global/OZ/SafeERC20.sol";
import {SignatureChecker} from "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol";
/**
* @dev Metadrop ERC-20 factory
*/
contract ERC20FactoryByMetadrop is
AuthorityModel,
Context,
Decommissionable,
IERC20FactoryByMetadrop
{
using SafeERC20 for IERC20;
using Clones for address payable;
// Uniswap router address
address public immutable uniswapRouter;
// Token vault address
address public immutable tokenVault;
// Deployer address
address private immutable deployer;
// DRIPool template:
address payable public driPoolTemplate;
// Machine template:
address payable public machineTemplate;
// Metadrop trusted oracle address
address public metadropOracleAddress;
// Address for all platform fee payments
address public platformTreasury;
// The oracle signed message validity period:
// Note that maximum is 65,535, therefore 18.2 hours (which seems plenty)
uint16 private messageValidityInSeconds = 30 minutes;
/**
* @dev {constructor}
*
* @param superAdmin_ The address that can add and remove user authority roles. Will also be added as the
* first platform admin.
* @param platformAdmins_ The address(es) for the platform admin(s)
* @param platformTreasury_ The address of the platform treasury. This will be used on primary vesting
* for the platform share of funds and on the royalty payment splitter for the platform share.
* @param metadropOracleAddress_ The address of the metadrop oracle signer
* @param uniswapRouter_ The address of the uniswap router
* @param tokenVault_ The address of the token vault
* @param driPoolTemplate_ The address of the launch pool template
*/
constructor(
address superAdmin_,
address[] memory platformAdmins_,
address platformTreasury_,
address metadropOracleAddress_,
address uniswapRouter_,
address tokenVault_,
address driPoolTemplate_
) {
// Save the deployer address:
deployer = _msgSender();
// The initial instance owner is set as the Ownable owner on all cloned contracts:
if (superAdmin_ == address(0)) {
_revert(SuperAdminCannotBeAddressZero.selector);
}
// superAdmin can grant and revoke all other roles. This address MUST be secured.
// For the duration of this constructor only the super admin is the deployer.
// This is so the deployer can set initial authorities.
// We set to the configured super admin address at the end of the constructor.
superAdmin = _msgSender();
// Grant platform admin to the deployer for the duration of the constructor:
grantPlatformAdmin(_msgSender());
// By default we will revoke the temporary authority for the deployer, BUT,
// if the deployer is in the platform admin array then we want to keep that
// authority, as it has been explicitly set. We handle that situation using
// a bool:
bool revokeDeployerPlatformAdmin = true;
grantPlatformAdmin(superAdmin_);
for (uint256 i = 0; i < platformAdmins_.length; ) {
// Check if the address we are granting for is the deployer. If it is,
// then the deployer address already IS a platform admin and it would be
// a waste of gas to grant again. Instead, we update the bool to show that
// we DON'T want to revoke this permission at the end of this method:
if (platformAdmins_[i] == _msgSender()) {
revokeDeployerPlatformAdmin = false;
} else {
grantPlatformAdmin(platformAdmins_[i]);
}
unchecked {
i++;
}
}
// Set platform treasury:
if (platformTreasury_ == address(0)) {
_revert(PlatformTreasuryCannotBeAddressZero.selector);
}
platformTreasury = platformTreasury_;
if (metadropOracleAddress_ == address(0)) {
_revert(MetadropOracleCannotBeAddressZero.selector);
}
metadropOracleAddress = metadropOracleAddress_;
uniswapRouter = uniswapRouter_;
tokenVault = tokenVault_;
driPoolTemplate = payable(driPoolTemplate_);
// This is the factory
factory = address(this);
// Revoke platform admin status of the deployer and transfer superAdmin
// and ownable owner to the superAdmin_.
// Revoke platform admin based on the bool flag set earlier (see above
// for an explanation of how this flag is set)
if (revokeDeployerPlatformAdmin) {
revokePlatformAdmin(_msgSender());
}
if (superAdmin_ != _msgSender()) {
transferSuperAdmin(superAdmin_);
}
}
/**
* @dev function {initialiseMachineAddress}
*
* Initialise the machine template address. This needs to be separate from
* the constructor as the machine needs the factory address on its constructor.
*
* This must ALWAYS be called as part of deployment.
*
* @param machineTemplate_ the machine address
*/
function initialiseMachineAddress(address machineTemplate_) external {
if (_msgSender() != deployer) {
_revert(DeployerOnly.selector);
}
if (machineTemplate != address(0)) {
_revert(AddressAlreadySet.selector);
}
machineTemplate = payable(machineTemplate_);
emit MachineAddressUpdated(address(0), machineTemplate_);
}
/**
* @dev function {decommissionFactory} onlySuperAdmin
*
* Make this factory unusable for creating new ERC20s, forever
*
*/
function decommissionFactory() external onlySuperAdmin {
_decommission();
}
/**
* @dev function {setMetadropOracleAddress} onlyPlatformAdmin
*
* Set the metadrop trusted oracle address
*
* @param metadropOracleAddress_ Trusted metadrop oracle address
*/
function setMetadropOracleAddress(
address metadropOracleAddress_
) external onlyPlatformAdmin {
if (metadropOracleAddress_ == address(0)) {
_revert(MetadropOracleCannotBeAddressZero.selector);
}
address oldMetadropOracleAddress = metadropOracleAddress;
metadropOracleAddress = metadropOracleAddress_;
emit OracleAddressUpdated(oldMetadropOracleAddress, metadropOracleAddress_);
}
/**
* @dev function {setMessageValidityInSeconds} onlyPlatformAdmin
*
* Set the validity period of signed messages
*
* @param messageValidityInSeconds_ Validity period in seconds for messages signed by the trusted oracle
*/
function setMessageValidityInSeconds(
uint256 messageValidityInSeconds_
) external onlyPlatformAdmin {
uint16 oldMessageValidityInSeconds = messageValidityInSeconds;
messageValidityInSeconds = uint16(messageValidityInSeconds_);
emit MessageValidityInSecondsUpdated(
oldMessageValidityInSeconds,
messageValidityInSeconds_
);
}
/**
* @dev function {setPlatformTreasury} onlySuperAdmin
*
* Set the address that platform fees will be paid to / can be withdrawn to.
* Note that this is restricted to the highest authority level, the super
* admin. Platform admins can trigger a withdrawal to the treasury, but only
* the default admin can set or alter the treasury address. It is recommended
* that the default admin is highly secured and restrited e.g. a multi-sig.
*
* @param platformTreasury_ New treasury address
*/
function setPlatformTreasury(
address platformTreasury_
) external onlySuperAdmin {
if (platformTreasury_ == address(0)) {
_revert(PlatformTreasuryCannotBeAddressZero.selector);
}
address oldPlatformTreasury = platformTreasury;
platformTreasury = platformTreasury_;
emit PlatformTreasuryUpdated(oldPlatformTreasury, platformTreasury_);
}
/**
* @dev function {setMachineAddress} onlyPlatformAdmin
*
* Set a new machine template address
*
* @param newMachineAddress_ the new machine address
*/
function setMachineAddress(
address newMachineAddress_
) external onlyPlatformAdmin {
if (newMachineAddress_ == address(0)) {
_revert(MachineAddressCannotBeAddressZero.selector);
}
address oldMachineAddress = machineTemplate;
machineTemplate = payable(newMachineAddress_);
emit MachineAddressUpdated(oldMachineAddress, newMachineAddress_);
}
/**
* @dev function {setDriPoolAddress} onlyPlatformAdmin
*
* Set a new launch pool template address
*
* @param newDriPoolAddress_ the new launch pool address
*/
function setDriPoolAddress(
address newDriPoolAddress_
) external onlyPlatformAdmin {
if (newDriPoolAddress_ == address(0)) {
_revert(DriPoolAddressCannotBeAddressZero.selector);
}
address oldDriPoolAddress = driPoolTemplate;
driPoolTemplate = payable(newDriPoolAddress_);
emit DriPoolAddressUpdated(oldDriPoolAddress, newDriPoolAddress_);
}
/**
* @dev function {withdrawETH} onlyPlatformAdmin
*
* A withdraw function to allow ETH to be withdrawn to the treasury
*
* @param amount_ The amount to withdraw
*/
function withdrawETH(uint256 amount_) external onlyPlatformAdmin {
_withdrawETH(amount_);
}
/**
* @dev function {_withdrawETH}
*
* Internal function to allow ETH to be withdrawn to the treasury
*
* @param amount_ The amount to withdraw
*/
function _withdrawETH(uint256 amount_) internal {
(bool success, ) = platformTreasury.call{value: amount_}("");
if (!success) {
_revert(TransferFailed.selector);
}
}
/**
* @dev function {withdrawERC20} onlyPlatformAdmin
*
* A withdraw function to allow ERC20s to be withdrawn to the treasury
*
* @param token_ The contract address of the token being withdrawn
* @param amount_ The amount to withdraw
*/
function withdrawERC20(
IERC20 token_,
uint256 amount_
) external onlyPlatformAdmin {
token_.safeTransfer(platformTreasury, amount_);
}
/**
* @dev function {createERC20}
*
* Create an ERC-20
*
* @param metaId_ The drop Id being approved
* @param salt_ Salt for create2
* @param erc20Config_ ERC20 configuration
* @param signedMessage_ The signed message object
* @param vaultFee_ The fee for the token vault
* @param deploymentFee_ The fee for deployment, if any
* @return deployedAddress_ The deployed ERC20 contract address
*/
function createERC20(
string calldata metaId_,
bytes32 salt_,
ERC20Config calldata erc20Config_,
SignedDropMessageDetails calldata signedMessage_,
uint256 vaultFee_,
uint256 deploymentFee_
) external payable notWhenDecommissioned returns (address deployedAddress_) {
// Check the signed message origin and time:
_verifyMessage(signedMessage_);
// We can only proceed if the hash of the passed configuration matches the hash
// signed by our oracle signer:
_checkConfigHashMatches(
metaId_,
salt_,
erc20Config_,
signedMessage_,
vaultFee_,
deploymentFee_
);
// Decode required base parameters:
(
string[2] memory tokenDetails,
bool addLiquidityOnCreate,
bool usesDRIPool
) = _decodeBaseData(erc20Config_.baseParameters);
address driPool = _processDRIPool(
usesDRIPool,
erc20Config_.poolParameters,
tokenDetails
);
// Deploy the new contract:
(address newERC20, bytes memory contructorArgs) = _deployERC20Contract(
keccak256(abi.encodePacked(metaId_)),
salt_,
erc20Config_,
IERC20MachineByMetadrop(machineTemplate),
driPool
);
// Process liquidity operations (if any):
_processLiquidity(
addLiquidityOnCreate,
vaultFee_,
deploymentFee_,
newERC20,
driPool
);
// Emit details of the new ERC20:
_emitOnCreation(metaId_, newERC20, driPool, tokenDetails, contructorArgs);
// Return the address of the new contract up the call stack:
return (newERC20);
}
/**
* @dev function {_emitOnCreation} Emit the creation event
*
* @param metaId_ The string ID for this ERC-20 deployment
* @param newERC20_ Address of the new ERC-20
* @param driPool_ Address of the pool (if any)
* @param tokenDetails_ The name [0] and symbol [1] of this token
*/
function _emitOnCreation(
string memory metaId_,
address newERC20_,
address driPool_,
string[2] memory tokenDetails_,
bytes memory constructorArgs_
) internal {
emit ERC20Created(
metaId_,
_msgSender(),
newERC20_,
driPool_,
tokenDetails_[0],
tokenDetails_[1],
constructorArgs_
);
}
/**
* @dev function {_processDRIPool} Process DRIPool creation, if applicable.
*
* @param usesDRIPool_ Are we using a DRIPool?
* @param poolParameters_ Pool parameters in bytes.
* @param tokenDetails_ Name and symbol of the token.
* @return driPoolAddress_ address of the launch pool
*/
function _processDRIPool(
bool usesDRIPool_,
bytes calldata poolParameters_,
string[2] memory tokenDetails_
) internal virtual returns (address driPoolAddress_) {
if (usesDRIPool_) {
// Create a minimal proxy DRIPool:
driPoolAddress_ = driPoolTemplate.clone();
// Initialise it:
IERC20DRIPoolByMetadrop(driPoolAddress_).initialiseDRIP(
poolParameters_,
tokenDetails_[0],
tokenDetails_[1]
);
} else {
driPoolAddress_ = address(0);
}
return (driPoolAddress_);
}
/**
* @dev function {_processLiquidity} Process liquidity, if relevant.
*
* @param addLiquidityOnCreate_ If we are adding liquidity now
* @param vaultFee_ The fee for the token vault
* @param deploymentFee_ The fee for deployment, if any
* @param newERC20_ The address of the new ERC20
* @param driPool_ The address of the launch pool
*/
function _processLiquidity(
bool addLiquidityOnCreate_,
uint256 vaultFee_,
uint256 deploymentFee_,
address newERC20_,
address driPool_
) internal {
if (addLiquidityOnCreate_ && (driPool_ == address(0))) {
// Check the fee, we must have enough ETH for the fees, plus at least ONE wei if adding liquidity:
if (msg.value < (vaultFee_ + deploymentFee_)) {
_revert(IncorrectPayment.selector);
}
// Value to pass on (for storage is the vault fee plus liquidity, if any) is the sent
// amount minus the deployment fee (if any)
IERC20ByMetadrop(newERC20_).addInitialLiquidity{
value: msg.value - deploymentFee_
}(vaultFee_, 0, false);
} else {
// Check if we have a DRIPool for this token. If so, we need to initialise the
// token address on the pool. We pass in the DRIPool address on the constructor
// of the ERC-20, but as they BOTH need to know each others address we need to perform
// this update.
// We also fund any intial seed ETH from the project in this call.
if (driPool_ != address(0)) {
// We must have at least the deploymentFee. If we have more, this is ETH that the project
// is seeding into the launch pool
if (msg.value < deploymentFee_) {
_revert(IncorrectPayment.selector);
}
uint256 ethSeedAmount = msg.value - deploymentFee_;
address ethSeeContributor = address(0);
if (ethSeedAmount > 0) {
ethSeeContributor = _msgSender();
}
IERC20DRIPoolByMetadrop(driPool_).loadERC20AddressAndSeedETH{
value: ethSeedAmount
}(newERC20_, ethSeeContributor);
} else {
// Check the fee, we must have ETH for ONLY the deployment fee
if (msg.value != deploymentFee_) {
_revert(IncorrectPayment.selector);
}
}
}
// Forward the deployment fee to the recipient:
_withdrawETH(deploymentFee_);
}
/**
* @dev function {_deployERC20Contract} Deploy the ERC20 using CREATE2
*
* @param metaIdHash_ Bytes32 hash of the metaId
* @param salt_ Salt for create2
* @param erc20Config_ ERC20 configuration
* @param machine_ The machine contract
* @param driPool_ The address of the launch pool (if any)
* @return erc20ContractAddress_ Address of the newly deployed ERC20
*/
function _deployERC20Contract(
bytes32 metaIdHash_,
bytes32 salt_,
ERC20Config calldata erc20Config_,
IERC20MachineByMetadrop machine_,
address driPool_
)
internal
returns (address erc20ContractAddress_, bytes memory constructorArgs_)
{
address[5] memory integrationAddresses = [
_msgSender(),
uniswapRouter,
tokenVault,
address(this),
driPool_
];
bytes memory args = abi.encode(
integrationAddresses,
erc20Config_.baseParameters,
erc20Config_.supplyParameters,
erc20Config_.taxParameters,
erc20Config_.poolParameters
);
return (machine_.deploy(metaIdHash_, salt_, args), args);
}
/**
* @dev function {_decodeBaseData} Create an ERC-20
*
* Decode the name, symbol and if we are adding liquidity on create
*
* @param encodedBaseParams_ Base ERC20 params
* @return tokenDetails_ The name [0] and symbol [1] of this token
* @return addLiquidityOnCreate_ bool to indicate we are adding liquidity on create
* @return usesDRIPool_ bool to indicate we are using a launch pool
*/
function _decodeBaseData(
bytes memory encodedBaseParams_
)
internal
pure
returns (
string[2] memory tokenDetails_,
bool addLiquidityOnCreate_,
bool usesDRIPool_
)
{
string memory name;
string memory symbol;
(name, symbol, addLiquidityOnCreate_, usesDRIPool_) = abi.decode(
encodedBaseParams_,
(string, string, bool, bool)
);
return ([name, symbol], addLiquidityOnCreate_, usesDRIPool_);
}
/**
* @dev function {_verifyMessage}
*
* Check the signature and expiry of the passed message
*
* @param signedMessage_ The signed message object
*/
function _verifyMessage(
SignedDropMessageDetails calldata signedMessage_
) internal view {
// Check that this signature is from the oracle signer:
if (
!_validSignature(
signedMessage_.messageHash,
signedMessage_.messageSignature
)
) {
_revert(InvalidOracleSignature.selector);
}
// Check that the signature has not expired:
unchecked {
if (
(signedMessage_.messageTimeStamp + messageValidityInSeconds) <
block.timestamp
) {
_revert(OracleSignatureHasExpired.selector);
}
}
}
/**
* @dev function {_validSignature}
*
* Checks the the signature on the signed message is from the metadrop oracle
*
* @param messageHash_ The message hash signed by the trusted oracle signer. This will be the
* keccack256 hash of received data about this token.
* @param messageSignature_ The signed message from the backend oracle signer for validation.
* @return messageIsValid_ If the message is valid (or not)
*/
function _validSignature(
bytes32 messageHash_,
bytes memory messageSignature_
) internal view returns (bool messageIsValid_) {
bytes32 ethSignedMessageHash = keccak256(
abi.encodePacked("\x19Ethereum Signed Message:\n32", messageHash_)
);
// Check the signature is valid:
return (
SignatureChecker.isValidSignatureNow(
metadropOracleAddress,
ethSignedMessageHash,
messageSignature_
)
);
}
/**
* @dev function {_checkConfigHashMatches}
*
* Check the passed config against the stored config hash
*
* @param metaId_ The drop Id being approved
* @param salt_ Salt for create2
* @param erc20Config_ ERC20 configuration
* @param signedMessage_ The signed message object
* @param vaultFee_ The fee for the token vault
* @param deploymentFee_ The fee for deployment, if any
*/
function _checkConfigHashMatches(
string calldata metaId_,
bytes32 salt_,
ERC20Config calldata erc20Config_,
SignedDropMessageDetails calldata signedMessage_,
uint256 vaultFee_,
uint256 deploymentFee_
) internal view {
// Create the hash of the passed data for comparison:
bytes32 passedConfigHash = createConfigHash(
metaId_,
salt_,
erc20Config_,
signedMessage_.messageTimeStamp,
vaultFee_,
deploymentFee_,
_msgSender()
);
// Must equal the stored hash:
if (passedConfigHash != signedMessage_.messageHash) {
_revert(PassedConfigDoesNotMatchApproved.selector);
}
}
/**
* @dev function {createConfigHash}
*
* Create the config hash
*
* @param metaId_ The drop Id being approved
* @param salt_ Salt for create2
* @param erc20Config_ ERC20 configuration
* @param messageTimeStamp_ When the message for this config hash was signed
* @param vaultFee_ The fee for the token vault
* @param deploymentFee_ The fee for deployment, if any
* @param deployer_ Address performing the deployment
* @return configHash_ The bytes32 config hash
*/
function createConfigHash(
string calldata metaId_,
bytes32 salt_,
ERC20Config calldata erc20Config_,
uint256 messageTimeStamp_,
uint256 vaultFee_,
uint256 deploymentFee_,
address deployer_
) public pure returns (bytes32 configHash_) {
configHash_ = keccak256(
abi.encodePacked(
metaId_,
salt_,
_createBytesParamsHash(erc20Config_),
messageTimeStamp_,
vaultFee_,
deploymentFee_,
deployer_
)
);
return (configHash_);
}
/**
* @dev function {_createBytesParamsHash}
*
* Create a hash of the bytes params objects
*
* @param erc20Config_ ERC20 configuration
* @return configHash_ The bytes32 config hash
*/
function _createBytesParamsHash(
ERC20Config calldata erc20Config_
) internal pure returns (bytes32 configHash_) {
configHash_ = keccak256(
abi.encodePacked(
erc20Config_.baseParameters,
erc20Config_.supplyParameters,
erc20Config_.taxParameters,
erc20Config_.poolParameters
)
);
return (configHash_);
}
}
// SPDX-License-Identifier: MIT
// Metadrop Contracts (v2.1.0)
pragma solidity 0.8.21;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IConfigStructures} from "../../Global/IConfigStructures.sol";
import {IErrors} from "../../Global/IErrors.sol";
import {IERC20ConfigByMetadrop} from "../ERC20/IERC20ConfigByMetadrop.sol";
/**
* @dev Metadrop ERC-20 factory, interface
*/
interface IERC20FactoryByMetadrop is
IConfigStructures,
IErrors,
IERC20ConfigByMetadrop
{
event DriPoolAddressUpdated(address oldAddress, address newAddress);
event ERC20Created(
string metaId,
address indexed deployer,
address contractInstance,
address driPoolInstance,
string symbol,
string name,
bytes constructorArgs
);
event MachineAddressUpdated(address oldAddress, address newAddress);
event OracleAddressUpdated(address oldAddress, address newAddress);
event MessageValidityInSecondsUpdated(
uint256 oldMessageValidityInSeconds,
uint256 newMessageValidityInSeconds
);
event PlatformTreasuryUpdated(address oldAddress, address newAddress);
/**
* @dev function {initialiseMachineAddress}
*
* Initialise the machine template address. This needs to be separate from
* the constructor as the machine needs the factory address on its constructor.
*
* This must ALWAYS be called as part of deployment.
*
* @param machineTemplate_ the machine address
*/
function initialiseMachineAddress(address machineTemplate_) external;
/**
* @dev function {decommissionFactory} onlySuperAdmin
*
* Make this factory unusable for creating new ERC20s, forever
*
*/
function decommissionFactory() external;
/**
* @dev function {setMetadropOracleAddress} onlyPlatformAdmin
*
* Set the metadrop trusted oracle address
*
* @param metadropOracleAddress_ Trusted metadrop oracle address
*/
function setMetadropOracleAddress(address metadropOracleAddress_) external;
/**
* @dev function {setMessageValidityInSeconds} onlyPlatformAdmin
*
* Set the validity period of signed messages
*
* @param messageValidityInSeconds_ Validity period in seconds for messages signed by the trusted oracle
*/
function setMessageValidityInSeconds(
uint256 messageValidityInSeconds_
) external;
/**
* @dev function {setPlatformTreasury} onlySuperAdmin
*
* Set the address that platform fees will be paid to / can be withdrawn to.
* Note that this is restricted to the highest authority level, the super
* admin. Platform admins can trigger a withdrawal to the treasury, but only
* the default admin can set or alter the treasury address. It is recommended
* that the default admin is highly secured and restrited e.g. a multi-sig.
*
* @param platformTreasury_ New treasury address
*/
function setPlatformTreasury(address platformTreasury_) external;
/**
* @dev function {setMachineAddress} onlyPlatformAdmin
*
* Set a new machine template address
*
* @param newMachineAddress_ the new machine address
*/
function setMachineAddress(address newMachineAddress_) external;
/**
* @dev function {setDriPoolAddress} onlyPlatformAdmin
*
* Set a new launch pool template address
*
* @param newDriPoolAddress_ the new launch pool address
*/
function setDriPoolAddress(address newDriPoolAddress_) external;
/**
* @dev function {withdrawETH} onlyPlatformAdmin
*
* A withdraw function to allow ETH to be withdrawn to the treasury
*
* @param amount_ The amount to withdraw
*/
function withdrawETH(uint256 amount_) external;
/**
* @dev function {withdrawERC20} onlyPlatformAdmin
*
* A withdraw function to allow ERC20s to be withdrawn to the treasury
*
* @param token_ The contract address of the token being withdrawn
* @param amount_ The amount to withdraw
*/
function withdrawERC20(IERC20 token_, uint256 amount_) external;
/**
* @dev function {createERC20}
*
* Create an ERC-20
*
* @param metaId_ The drop Id being approved
* @param salt_ Salt for create2
* @param erc20Config_ ERC20 configuration
* @param signedMessage_ The signed message object
* @param vaultFee_ The fee for the token vault
* @param deploymentFee_ The fee for deployment, if any
* @return deployedAddress_ The deployed ERC20 contract address
*/
function createERC20(
string calldata metaId_,
bytes32 salt_,
ERC20Config calldata erc20Config_,
SignedDropMessageDetails calldata signedMessage_,
uint256 vaultFee_,
uint256 deploymentFee_
) external payable returns (address deployedAddress_);
/**
* @dev function {createConfigHash}
*
* Create the config hash
*
* @param metaId_ The drop Id being approved
* @param salt_ Salt for create2
* @param erc20Config_ ERC20 configuration
* @param messageTimeStamp_ When the message for this config hash was signed
* @param vaultFee_ The fee for the token vault
* @param deploymentFee_ The fee for deployment, if any
* @param deployer_ Address performing the deployment
* @return configHash_ The bytes32 config hash
*/
function createConfigHash(
string calldata metaId_,
bytes32 salt_,
ERC20Config calldata erc20Config_,
uint256 messageTimeStamp_,
uint256 vaultFee_,
uint256 deploymentFee_,
address deployer_
) external pure returns (bytes32 configHash_);
}
// SPDX-License-Identifier: BUSL-1.1
// Metadrop Contracts (v2.1.0)
pragma solidity 0.8.21;
import {Context} from "@openzeppelin/contracts/utils/Context.sol";
import {IConfigStructures} from "../../Global/IConfigStructures.sol";
import {IERC20ConfigByMetadrop} from "../ERC20/IERC20ConfigByMetadrop.sol";
import {IERC20ByMetadrop} from "../ERC20/ERC20ByMetadrop.sol";
import {IErrors} from "../../Global/IErrors.sol";
/**
* @dev Metadrop ERC-20 contract deployer
*
* @dev Implementation of the {IERC20DeployerByMetasdrop} interface.
*
* Lightweight deployment module for use with template contracts
*/
interface IERC20MachineByMetadrop is IERC20ConfigByMetadrop, IErrors {
/**
* @dev function {deploy}
*
* Deploy a fresh instance
*/
function deploy(
bytes32 metaIdHash_,
bytes32 salt_,
bytes memory args_
) external payable returns (address erc20ContractAddress_);
}
// SPDX-License-Identifier: BUSL-1.1
// Metadrop Contracts (v2.1.0)
pragma solidity 0.8.21;
import {IConfigStructures} from "../../Global/IConfigStructures.sol";
import {IERC20ConfigByMetadrop} from "../ERC20/IERC20ConfigByMetadrop.sol";
import {IErrors} from "../../Global/IErrors.sol";
interface IERC20DRIPoolByMetadrop is
IConfigStructures,
IERC20ConfigByMetadrop,
IErrors
{
enum PhaseStatus {
before,
open,
succeeded,
failed
}
struct Participant {
uint128 contribution;
uint128 excessRefunded;
}
event DRIPoolCreatedAndInitialised();
event AddToPool(address dripHolder, uint256 ethPooled, uint256 ethFee);
event ClaimFromPool(
address participant,
uint256 dripTokenBurned,
uint256 pooledTokenClaimed,
uint256 pooledTokenBurnt,
uint256 ethRefunded
);
event ExcessRefunded(address participant, uint256 ethRefunded);
event RefundFromFailedPool(
address participant,
uint256 dripTokenBurned,
uint256 ethRefunded
);
event InitialBuyMade(uint256 ethBuy);
event UnexpectedTotalETHPooled(
uint256 totalETHPooled,
uint256 contractBalance,
uint256 totalETHFundedToLPAndTokenBuy,
uint256 totalExcessETHRefunded,
uint256 projectSeedContributionETH,
uint256 accumulatedFees
);
event PoolClosedSuccessfully(uint256 totalETHPooled, uint256 totalETHFee);
/**
* @dev {driType}
*
* Returns the type of this DRI pool
*/
function driType() external view returns (DRIPoolType);
/**
* @dev {initialiseDRIP}
*
* Initalise configuration on a new minimal proxy clone
*
* @param poolParams_ bytes parameter object that will be decoded into configuration items.
* @param name_ the name of the associated ERC20 token
* @param symbol_ the symbol of the associated ERC20 token
*/
function initialiseDRIP(
bytes calldata poolParams_,
string calldata name_,
string calldata symbol_
) external;
/**
* @dev {supplyForLP}
*
* Convenience function to return the LP supply from the ERC-20 token contract.
*
* @return supplyForLP_ The total supply for LP creation.
*/
function supplyForLP() external view returns (uint256 supplyForLP_);
/**
* @dev {poolPhaseStatus}
*
* Convenience function to return the pool status in string format.
*
* @return poolPhaseStatus_ The pool phase status as a string
*/
function poolPhaseStatus()
external
view
returns (string memory poolPhaseStatus_);
/**
* @dev {vestingEndDate}
*
* The vesting end date, being the end of the pool phase plus number of days vesting, if any.
*
* @return vestingEndDate_ The vesting end date as a timestamp
*/
function vestingEndDate() external view returns (uint256 vestingEndDate_);
/**
* @dev Return if the pool total has exceeded the minimum:
*
* @return poolIsAboveMinimum_ If the pool is above the minimum (or not)
*/
function poolIsAboveMinimum()
external
view
returns (bool poolIsAboveMinimum_);
/**
* @dev Return if the pool is at the maximum.
*
* @return poolIsAtMaximum_ If the pool is at the maximum ETH.
*/
function poolIsAtMaximum() external view returns (bool poolIsAtMaximum_);
/**
* @dev Return the total ETH pooled (whether in the balance of this contract
* or supplied as LP / token buy already).
*
* Note that this INCLUDES any seed ETH from the project on create.
*
* @return totalETHPooled_ the total ETH pooled in this contract
*/
function totalETHPooled() external view returns (uint256 totalETHPooled_);
/**
* @dev Return the total ETH contributed (whether in the balance of this contract
* or supplied as LP already).
*
* Note that this EXCLUDES any seed ETH from the project on create.
*
* @return totalETHContributed_ the total ETH pooled in this contract
*/
function totalETHContributed()
external
view
returns (uint256 totalETHContributed_);
/**
* @dev Return the total ETH pooled that is in excess of requirements
*
* @return totalExcessETHPooled_ the total ETH pooled in this contract
* that is not needed for the initial lp / buy
*/
function totalExcessETHPooled()
external
view
returns (uint256 totalExcessETHPooled_);
/**
* @dev Return the ETH pooled for this recipient
*
* @return participantETHPooled_ the total ETH pooled for this address
*/
function participantETHPooled(
address participant_
) external view returns (uint256 participantETHPooled_);
/**
* @dev Return the excess ETH already refunded for this recipient
*
* @return participantExcessETHRefunded_ the total excess ETH refunded for this participant
*/
function participantExcessETHRefunded(
address participant_
) external view returns (uint256 participantExcessETHRefunded_);
/**
* @dev Return the excess refund currently owing for the query address
*
* Note that this EXCLUDES any seed ETH from the project on create.
*
* @return participantExcessRefund_ the total ETH pooled in this contract
*/
function participantExcessRefundAvailable(
address participant_
) external view returns (uint256 participantExcessRefund_);
/**
* @dev Return if the max initial buy has been exceeded
*
* @return maxInitialBuyExceeded_
*/
function maxInitialBuyExceeded()
external
view
returns (bool maxInitialBuyExceeded_);
/**
* @dev Return if the max initial lp funding has been exceeded
*
* @return maxInitialLiquidityExceeded_
*/
function maxInitialLiquidityExceeded()
external
view
returns (bool maxInitialLiquidityExceeded_);
/**
* @dev {loadERC20AddressAndSeedETH}
*
* Load the target ERC-20 address. This is called by the factory in the same transaction as the clone
* is instantiated
*
* @param createdERC20_ The ERC-20 address
* @param poolCreator_ The creator of this pool
*/
function loadERC20AddressAndSeedETH(
address createdERC20_,
address poolCreator_
) external payable;
/**
* @dev {startPool}
*
* The pool owner starts the pool manually.
*
* Note this can only be called by the owner IF the pool was setup with a manual
* start date. See _setPoolDates
*
* @param signedMessage_ The signed message object
* @param poolDuration_ The desired duration of the pool
*/
function startPool(
SignedDropMessageDetails calldata signedMessage_,
uint256 poolDuration_
) external payable;
/**
* @dev {addToPool}
*
* A user calls this to contribute to the pool
*
* Note that we could have used the receive method for this, and processed any ETH send to the
* contract as a contribution to the pool. We've opted for the clarity of a specific method,
* with the recieve method reverting an unidentified ETH.
*
* @param signedMessage_ The signed message object
*/
function addToPool(
SignedDropMessageDetails calldata signedMessage_
) external payable;
/**
* @dev function {createAddToPoolMessageHash}
*
* Create the message hash
*
* @param sender_ The sender of the transcation
* @param value_ The value of the transaction
* @return messageHash_ The hash for the signed message
*/
function createAddToPoolMessageHash(
address sender_,
uint256 value_
) external view returns (bytes32 messageHash_);
/**
* @dev function {createStartPoolMessageHash}
*
* Create the message hash
*
* @param poolDuration_ The duration of the pool
* @return messageHash_ The hash for the signed message
*/
function createStartPoolMessageHash(
uint256 poolDuration_
) external view returns (bytes32 messageHash_);
/**
* @dev {claimFromPool}
*
* A user calls this to burn their DRIP and claim their ERC-20 tokens
*
*/
function claimFromPool() external;
/**
* @dev {refundExcess}
*
* Can be called at any time by a participant to claim and ETH refund of any
* ETH that will not be used to either fund the pool or for an initial buy
*
*/
function refundExcess() external;
/**
* @dev {refundFromFailedPool}
*
* A user calls this to burn their DRIP and claim an ETH refund where the
* minimum ETH pooled amount was not exceeded.
*
*/
function refundFromFailedPool() external;
/**
* @dev {supplyLiquidity}
*
* When the pool phase is over this can be called to supply the pooled ETH to
* the token contract. There it will be forwarded along with the LP supply of
* tokens to uniswap to create the funded pair
*
* Note that this function can be called by anyone. While clearly it is likely
* that this will be the project team, having this method open to anyone ensures that
* liquidity will not be trapped in this contract if the team as unable to perform
* this action.
*
* This method behaves differently depending on the pool type:
*
* IN A FUNDING LP POOL:
*
* All of the ETH held on this contract is provided to fund the LP
*
* IN AN INITIAL BUY POOL:
*
* ONLY the project supplied ETH is used to fund the liquidity. The remaining ETH
* on this contract will fall into two possible categories:
*
* 1) ETH used to perform an initial token purchase immediately after the funding of
* the LP. This will be the total remaining ETH on this contract IF that amount is
* below the maximum initial buy amount. Otherwise it will be the max initial buy amount and the
* remaining ETH will remain for refunds.
*
* 2) If the ETH on this contract is above the max initial buy amount there will be a
* proportion of ETH remaining on this contract for refunds.
*
* @param lockerFee_ The ETH fee required to lock LP tokens
*
*/
function supplyLiquidity(uint256 lockerFee_) external payable;
/**
* @dev function {rescueETH}
*
* A withdraw function to allow ETH to be rescued.
*
* Fallback safety method, only callable by the fee recipient.
*
* @param amount_ The amount to withdraw
*/
function rescueETH(uint256 amount_) external;
/**
* @dev function {rescueERC20}
*
* A withdraw function to allow ERC20s to be rescued.
*
* Fallback safety method, only callable by the fee recipient.
*
* @param token_ The ERC20 contract
* @param amount_ The amount to withdraw
*/
function rescueERC20(address token_, uint256 amount_) external;
}
// SPDX-License-Identifier: MIT
// Metadrop Contracts (v2.1.0)
/**
*
* @title AuthorityModel.sol. Library for global authority components
*
* @author metadrop https://metadrop.com/
*
*/
pragma solidity 0.8.21;
/**
*
* @dev Inheritance details:
* EnumerableSet OZ enumerable mapping sets
* IErrors Interface for platform error definitions
*
*/
import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import {IErrors} from "./IErrors.sol";
import {Revert} from "./Revert.sol";
contract AuthorityModel is IErrors, Revert {
using EnumerableSet for EnumerableSet.AddressSet;
event SuperAdminTransferred(address oldSuperAdmin, address newSuperAdmin);
event PlatformAdminAdded(address platformAdmin);
event PlatformAdminRevoked(address platformAdmin);
// Address for the factory:
address public factory;
// The super admin can grant and revoke roles
address public superAdmin;
// Enumerable set to store platform admins:
EnumerableSet.AddressSet private _platformAdmins;
/** ====================================================================================================================
* MODIFIERS
* =====================================================================================================================
*/
/** ____________________________________________________________________________________________________________________
* -->ACCESS CONTROL
* @dev (modifier) onlySuperAdmin. The associated action can only be taken by the super admin (an address with the
* default admin role).
*
* _____________________________________________________________________________________________________________________
*/
modifier onlySuperAdmin() {
if (!isSuperAdmin(msg.sender)) revert CallerIsNotSuperAdmin(msg.sender);
_;
}
/** ____________________________________________________________________________________________________________________
* -->ACCESS CONTROL
* @dev (modifier) onlyPlatformAdmin. The associated action can only be taken by an address with the
* platform admin role.
*
* _____________________________________________________________________________________________________________________
*/
modifier onlyPlatformAdmin() {
if (!isPlatformAdmin(msg.sender))
revert CallerIsNotPlatformAdmin(msg.sender);
_;
}
/** ____________________________________________________________________________________________________________________
* -->GETTER
* @dev (function) isSuperAdmin check if an address is the super admin
*
* ---------------------------------------------------------------------------------------------------------------------
* @return bool
* ---------------------------------------------------------------------------------------------------------------------
* _____________________________________________________________________________________________________________________
*/
function isSuperAdmin(address queryAddress_) public view returns (bool) {
return (superAdmin == queryAddress_);
}
/** ____________________________________________________________________________________________________________________
* -->GETTER
* @dev (function) isPlatformAdmin check if an address is a platform admin
*
* ---------------------------------------------------------------------------------------------------------------------
* @return bool
* ---------------------------------------------------------------------------------------------------------------------
* _____________________________________________________________________________________________________________________
*/
function isPlatformAdmin(address queryAddress_) public view returns (bool) {
return (_platformAdmins.contains(queryAddress_));
}
/** ____________________________________________________________________________________________________________________
* -->ACCESS CONTROL
* @dev (function) grantPlatformAdmin Allows the super user Default Admin to add an address to the platform admin group
*
* ---------------------------------------------------------------------------------------------------------------------
* @param newPlatformAdmin_ The address of the new platform admin
* ---------------------------------------------------------------------------------------------------------------------
* _____________________________________________________________________________________________________________________
*/
function grantPlatformAdmin(address newPlatformAdmin_) public onlySuperAdmin {
if (newPlatformAdmin_ == address(0)) {
_revert(PlatformAdminCannotBeAddressZero.selector);
}
// Add this to the enumerated list:
_platformAdmins.add(newPlatformAdmin_);
emit PlatformAdminAdded(newPlatformAdmin_);
}
/** ____________________________________________________________________________________________________________________
* -->ACCESS CONTROL
* @dev (function) revokePlatformAdmin Allows the super user Default Admin to revoke from the platform admin group
*
* ---------------------------------------------------------------------------------------------------------------------
* @param oldPlatformAdmin_ The address of the old platform admin
* ---------------------------------------------------------------------------------------------------------------------
* _____________________________________________________________________________________________________________________
*/
function revokePlatformAdmin(
address oldPlatformAdmin_
) public onlySuperAdmin {
// Remove this from the enumerated list:
_platformAdmins.remove(oldPlatformAdmin_);
emit PlatformAdminRevoked(oldPlatformAdmin_);
}
/** ____________________________________________________________________________________________________________________
* -->ACCESS CONTROL
* @dev (function) transferSuperAdmin Allows the super user Default Admin to transfer this right to another address
*
* ---------------------------------------------------------------------------------------------------------------------
* @param newSuperAdmin_ The address of the new default admin
* ---------------------------------------------------------------------------------------------------------------------
* _____________________________________________________________________________________________________________________
*/
function transferSuperAdmin(address newSuperAdmin_) public onlySuperAdmin {
address oldSuperAdmin = superAdmin;
// Update storage of this address:
superAdmin = newSuperAdmin_;
emit SuperAdminTransferred(oldSuperAdmin, newSuperAdmin_);
}
}
// SPDX-License-Identifier: MIT
// Metadrop Contracts (v2.1.0)
/**
*
* @title Decommissionable.sol. Simple contract to implement a decommission 'kill switch'
*
* @author metadrop https://metadrop.com/
*
*/
pragma solidity 0.8.21;
import {IErrors} from "./IErrors.sol";
import {Revert} from "./Revert.sol";
abstract contract Decommissionable is IErrors, Revert {
bool internal _decommissioned;
event Decomissioned();
/**
* @dev {notWhenDecommissioned}
*
* Throws if the contract has been decommissioned
*/
modifier notWhenDecommissioned() {
if (_decommissioned) {
_revert(ContractIsDecommissioned.selector);
}
_;
}
/**
* @dev Internal method to set the decommissioned flag. Should be called
* by an external method with access control (e.g. ownable etc.)
*/
function _decommission() internal {
_decommissioned = true;
emit Decomissioned();
}
}
// SPDX-License-Identifier: MIT
// Metadrop Contracts (v2.1.0)
/**
*
* @title IConfigStructures.sol. Interface for common config structures used accross the platform
*
* @author metadrop https://metadrop.com/
*
*/
pragma solidity 0.8.21;
interface IConfigStructures {
enum DropStatus {
approved,
deployed,
cancelled
}
enum TemplateStatus {
live,
terminated
}
// The current status of the mint:
// - notEnabled: This type of mint is not part of this drop
// - notYetOpen: This type of mint is part of the drop, but it hasn't started yet
// - open: it's ready for ya, get in there.
// - finished: been and gone.
// - unknown: theoretically impossible.
enum MintStatus {
notEnabled,
notYetOpen,
open,
finished,
unknown
}
struct SubListConfig {
uint256 start;
uint256 end;
uint256 phaseMaxSupply;
}
struct PrimarySaleModuleInstance {
address instanceAddress;
string instanceDescription;
}
struct NFTModuleConfig {
uint256 templateId;
bytes configData;
bytes vestingData;
}
struct PrimarySaleModuleConfig {
uint256 templateId;
bytes configData;
}
struct ProjectBeneficiary {
address payable payeeAddress;
uint256 payeeShares;
}
struct VestingConfig {
uint256 start;
uint256 projectUpFrontShare;
uint256 projectVestedShare;
uint256 vestingPeriodInDays;
uint256 vestingCliff;
ProjectBeneficiary[] projectPayees;
}
struct RoyaltySplitterModuleConfig {
uint256 templateId;
bytes configData;
}
struct InLifeModuleConfig {
uint256 templateId;
bytes configData;
}
struct InLifeModules {
InLifeModuleConfig[] modules;
}
struct NFTConfig {
uint256 supply;
string name;
string symbol;
bytes32 positionProof;
bool includePriorPhasesInMintTracking;
bool singleMetadataCollection;
uint256 reservedAllocation;
uint256 assistanceRequestWindowInSeconds;
}
struct Template {
TemplateStatus status;
uint16 templateNumber;
uint32 loadedDate;
address payable templateAddress;
string templateDescription;
}
struct RoyaltyDetails {
address newRoyaltyPaymentSplitterInstance;
uint96 royaltyFromSalesInBasisPoints;
}
struct SignedDropMessageDetails {
uint256 messageTimeStamp;
bytes32 messageHash;
bytes messageSignature;
}
}
// SPDX-License-Identifier: MIT
// Metadrop Contracts (v2.1.0)
/**
*
* @title IErrors.sol. Interface for error definitions used across the platform
*
* @author metadrop https://metadrop.com/
*
*/
pragma solidity 0.8.21;
interface IErrors {
enum BondingCurveErrorType {
OK, // No error
INVALID_NUMITEMS, // The numItem value is 0
SPOT_PRICE_OVERFLOW // The updated spot price doesn't fit into 128 bits
}
error AdapterParamsMustBeEmpty(); // The adapter parameters on this LZ call must be empty.
error AdditionToPoolIsBelowPerTransactionMinimum(); // The contribution amount is less than the minimum.
error AdditionToPoolWouldExceedPoolCap(); // This addition to the pool would exceed the pool cap.
error AdditionToPoolWouldExceedPerAddressCap(); // This addition to the pool would exceed the per address cap.
error AddressAlreadySet(); // The address being set can only be set once, and is already non-0.
error AllowanceDecreasedBelowZero(); // You cannot decrease the allowance below zero.
error AlreadyInitialised(); // The contract is already initialised: it cannot be initialised twice!
error AmountExceedsAvailable(); // You are requesting more token than is available.
error ApprovalCallerNotOwnerNorApproved(); // The caller must own the token or be an approved operator.
error ApproveFromTheZeroAddress(); // Approval cannot be called from the zero address (indeed, how have you??).
error ApproveToTheZeroAddress(); // Approval cannot be given to the zero address.
error ApprovalQueryForNonexistentToken(); // The token does not exist.
error AuctionStatusIsNotEnded(); // Throw if the action required the auction to be closed, and it isn't.
error AuctionStatusIsNotOpen(); // Throw if the action requires the auction to be open, and it isn't.
error AuxCallFailed(
address[] modules,
uint256 value,
bytes data,
uint256 txGas
); // An auxilliary call from the drop factory failed.
error BalanceMismatch(); // An error when comparing balance amounts.
error BalanceQueryForZeroAddress(); // Cannot query the balance for the zero address.
error BidMustBeBelowTheFloorWhenReducingQuantity(); // Only bids that are below the floor can reduce the quantity of the bid.
error BidMustBeBelowTheFloorForRefundDuringAuction(); // Only bids that are below the floor can be refunded during the auction.
error BondingCurveError(BondingCurveErrorType error); // An error of the type specified has occured in bonding curve processing.
error botProtectionDurationInSecondsMustFitUint128(); // botProtectionDurationInSeconds cannot be too large.
error BurnExceedsBalance(); // The amount you have selected to burn exceeds the addresses balance.
error BurnFromTheZeroAddress(); // Tokens cannot be burned from the zero address. (Also, how have you called this!?!)
error CallerIsNotDepositBoxOwner(); // The caller is not the owner of the deposit box.
error CallerIsNotFactory(); // The caller of this function must match the factory address in storage.
error CallerIsNotFactoryOrProjectOwner(); // The caller of this function must match the factory address OR project owner address.
error CallerIsNotFactoryProjectOwnerOrPool(); // The caller of this function must match the factory address, project owner or pool address.
error CallerIsNotTheFeeRecipient(); // The caller is not the fee recipient.
error CallerIsNotTheOwner(); // The caller is not the owner of this contract.
error CallerIsNotTheManager(); // The caller is not the manager of this contract.
error CallerMustBeLzApp(); // The caller must be an LZ application.
error CallerIsNotPlatformAdmin(address caller); // The caller of this function must be part of the platformAdmin group.
error CallerIsNotSuperAdmin(address caller); // The caller of this function must match the superAdmin address in storage.
error CannotAddLiquidityOnCreateAndUseDRIPool(); // Cannot use both liquidity added on create and a DRIPool in the same token.
error CannotManuallyFundLPWhenUsingADRIPool(); // Cannot add liquidity manually when using a DRI pool.
error CannotPerformDuringAutoswap(); // Cannot call this function during an autoswap.
error CannotPerformPriorToFunding(); // Cannot perform this operation before a token is funded (i.e. liquidity added).
error CannotSetNewOwnerToTheZeroAddress(); // You can't set the owner of this contract to the zero address (address(0)).
error CannotSetToZeroAddress(); // The corresponding address cannot be set to the zero address (address(0)).
error CannotSetNewManagerToTheZeroAddress(); // Cannot transfer the manager to the zero address (address(0)).
error CannotWithdrawThisToken(); // Cannot withdraw the specified token.
error CanOnlyReduce(); // The given operation can only reduce the value specified.
error CollectionAlreadyRevealed(); // The collection is already revealed; you cannot call reveal again.
error ContractIsDecommissioned(); // This contract is decommissioned!
error ContractIsPaused(); // The call requires the contract to be unpaused, and it is paused.
error ContractIsNotPaused(); // The call required the contract to be paused, and it is NOT paused.
error DecreasedAllowanceBelowZero(); // The request would decrease the allowance below zero, and that is not allowed.
error DestinationIsNotTrustedSource(); // The destination that is being called through LZ has not been set as trusted.
error DeductionsOnBuyExceedOrEqualOneHundredPercent(); // The total of all buy deductions cannot equal or exceed 100%.
error DeployerOnly(); // This method can only be called by the deployer address.
error DeploymentError(); // Error on deployment.
error DepositBoxIsNotOpen(); // This action cannot complete as the deposit box is not open.
error DriPoolAddressCannotBeAddressZero(); // The Dri Pool address cannot be the zero address.
error GasLimitIsTooLow(); // The gas limit for the LayerZero call is too low.
error IncorrectConfirmationValue(); // You need to enter the right confirmation value to call this funtion (usually 69420).
error IncorrectPayment(); // The function call did not include passing the correct payment.
error InitialLiquidityAlreadyAdded(); // Initial liquidity has already been added. You can't do it again.
error InitialLiquidityNotYetAdded(); // Initial liquidity needs to have been added for this to succedd.
error InsufficientAllowance(); // There is not a high enough allowance for this operation.
error InvalidAdapterParams(); // The current adapter params for LayerZero on this contract won't work :(.
error InvalidAddress(); // An address being processed in the function is not valid.
error InvalidEndpointCaller(); // The calling address is not a valid LZ endpoint. The LZ endpoint was set at contract creation
// and cannot be altered after. Check the address LZ endpoint address on the contract.
error InvalidHash(); // The passed hash does not meet requirements.
error InvalidMinGas(); // The minimum gas setting for LZ in invalid.
error InvalidOracleSignature(); // The signature provided with the contract call is not valid, either in format or signer.
error InvalidPayload(); // The LZ payload is invalid
error InvalidReceiver(); // The address used as a target for funds is not valid.
error InvalidSourceSendingContract(); // The LZ message is being related from a source contract on another chain that is NOT trusted.
error InvalidTotalShares(); // Total shares must equal 100 percent in basis points.
error LimitsCanOnlyBeRaised(); // Limits are UP ONLY.
error LimitTooHigh(); // The limit has been set too high.
error ListLengthMismatch(); // Two or more lists were compared and they did not match length.
error LiquidityPoolMustBeAContractAddress(); // Cannot add a non-contract as a liquidity pool.
error LiquidityPoolCannotBeAddressZero(); // Cannot add a liquidity pool from the zero address.
error LPLockUpMustFitUint88(); // LP lockup is held in a uint88, so must fit.
error NoTrustedPathRecord(); // LZ needs a trusted path record for this to work. What's that, you ask?
error MachineAddressCannotBeAddressZero(); // Cannot set the machine address to the zero address.
error ManagerUnauthorizedAccount(); // The caller is not the pending manager.
error MaxBidQuantityIs255(); // Validation: as we use a uint8 array to track bid positions the max bid quantity is 255.
error MaxBuysPerBlockExceeded(); // You have exceeded the max buys per block.
error MaxPublicMintAllowanceExceeded(
uint256 requested,
uint256 alreadyMinted,
uint256 maxAllowance
); // The calling address has requested a quantity that would exceed the max allowance.
error MaxSupplyTooHigh(); // Max supply must fit in a uint128.
error MaxTokensPerWalletExceeded(); // The transfer would exceed the max tokens per wallet limit.
error MaxTokensPerTxnExceeded(); // The transfer would exceed the max tokens per transaction limit.
error MetadataIsLocked(); // The metadata on this contract is locked; it cannot be altered!
error MetadropFactoryOnlyOncePerReveal(); // This function can only be called (a) by the factory and, (b) just one time!
error MetadropModulesOnly(); // Can only be called from a metadrop contract.
error MetadropOracleCannotBeAddressZero(); // The metadrop Oracle cannot be the zero address (address(0)).
error MinETHCannotExceedMaxBuy(); // The min ETH amount cannot exceed the max buy amount.
error MinETHCannotExceedMaxLiquidity(); // The min ETH amount cannot exceed the max liquidity amount.
error MinGasLimitNotSet(); // The minimum gas limit for LayerZero has not been set.
error MintERC2309QuantityExceedsLimit(); // The `quantity` minted with ERC2309 exceeds the safety limit.
error MintingIsClosedForever(); // Minting is, as the error suggests, so over (and locked forever).
error MintToZeroAddress(); // Cannot mint to the zero address.
error MintZeroQuantity(); // The quantity of tokens minted must be more than zero.
error NewBuyTaxBasisPointsExceedsMaximum(); // Project owner trying to set the tax rate too high.
error NewSellTaxBasisPointsExceedsMaximum(); // Project owner trying to set the tax rate too high.
error NoETHForLiquidityPair(); // No ETH has been provided for the liquidity pair.
error TaxPeriodStillInForce(); // The minimum tax period has not yet expired.
error NoPaymentDue(); // No payment is due for this address.
error NoRefundForCaller(); // Error thrown when the calling address has no refund owed.
error NoStoredMessage(); // There is no stored message matching the passed parameters.
error NothingToClaim(); // The calling address has nothing to claim.
error NoTokenForLiquidityPair(); // There is no token to add to the LP.
error OperationDidNotSucceed(); // The operation failed (vague much?).
error OracleSignatureHasExpired(); // A signature has been provided but it is too old.
error OwnableUnauthorizedAccount(); // The caller is not the pending owner.
error OwnershipNotInitializedForExtraData(); // The `extraData` cannot be set on an uninitialized ownership slot.
error OwnerQueryForNonexistentToken(); // The token does not exist.
error ParametersDoNotMatchSignedMessage(); // The parameters passed with the signed message do not match the message itself.
error ParamTooLargeStartDate(); // The passed parameter exceeds the var type max.
error ParamTooLargeEndDate(); // The passed parameter exceeds the var type max.
error ParamTooLargeMinETH(); // The passed parameter exceeds the var type max.
error ParamTooLargePerAddressMax(); // The passed parameter exceeds the var type max.
error ParamTooLargeVestingDays(); // The passed parameter exceeds the var type max.
error ParamTooLargePoolSupply(); // The passed parameter exceeds the var type max.
error ParamTooLargePoolMaxETH(); // The passed parameter exceeds the var type max.
error ParamTooLargePoolPerTxnMinETH(); // The passed parameter exceeds the var type max.
error ParamTooLargeContributionFee(); // The passed parameter exceeds the var type max.
error ParamTooLargeMaxInitialBuy(); // The passed parameter exceeds the var type max.
error ParamTooLargeMaxInitialLiquidity(); // The passed parameter exceeds the var type max.
error PassedConfigDoesNotMatchApproved(); // The config provided on the call does not match the approved config.
error PauseCutOffHasPassed(); // The time period in which we can pause has passed; this contract can no longer be paused.
error PaymentMustCoverPerMintFee(); // The payment passed must at least cover the per mint fee for the quantity requested.
error PermitDidNotSucceed(); // The safeERC20 permit failed.
error PlatformAdminCannotBeAddressZero(); // We cannot use the zero address (address(0)) as a platformAdmin.
error PlatformTreasuryCannotBeAddressZero(); // The treasury address cannot be set to the zero address.
error PoolCannotBeManuallyStarted(); // This pool cannot be manually started.
error PoolIsAboveMinimum(); // You required the pool to be below the minimum, and it is not
error PoolIsBelowMinimum(); // You required the pool to be above the minimum, and it is not
error PoolMustBeSeededWithETHForInitialLiquidity(); // You must pass ETH for liquidity with this type of pool.
error PoolPhaseIsNotOpen(); // The block.timestamp is either before the pool is open or after it is closed.
error PoolPhaseIsNotFailed(); // The pool status must be failed.
error PoolPhaseIsNotSucceeded(); // The pool status must be succeeded.
error PoolVestingNotYetComplete(); // Tokens in the pool are not yet vested.
error ProjectOwnerCannotBeAddressZero(); // The project owner has to be a non zero address.
error ProofInvalid(); // The provided proof is not valid with the provided arguments.
error QuantityExceedsRemainingCollectionSupply(); // The requested quantity would breach the collection supply.
error QuantityExceedsRemainingPhaseSupply(); // The requested quantity would breach the phase supply.
error QuantityExceedsMaxPossibleCollectionSupply(); // The requested quantity would breach the maximum trackable supply
error RecipientsAndAmountsMismatch(); // The number of recipients and amounts do not match.
error ReferralIdAlreadyUsed(); // This referral ID has already been used; they are one use only.
error RequestingMoreThanAvailableBalance(); // The request exceeds the available balance.
error RequestingMoreThanRemainingAllocation(
uint256 previouslyMinted,
uint256 requested,
uint256 remainingAllocation
); // Number of tokens requested for this mint exceeds the remaining allocation (taking the
// original allocation from the list and deducting minted tokens).
error RouterCannotBeZeroAddress(); // The router address cannot be Zero.
error RoyaltyFeeWillExceedSalePrice(); // The ERC2981 royalty specified will exceed the sale price.
error ShareTotalCannotBeZero(); // The total of all the shares cannot be nothing.
error SliceOutOfBounds(); // The bytes slice operation was out of bounds.
error SliceOverflow(); // The bytes slice operation overlowed.
error SuperAdminCannotBeAddressZero(); // The superAdmin cannot be the sero address (address(0)).
error SupplyTotalMismatch(); // The sum of the team supply and lp supply does not match.
error SupportWindowIsNotOpen(); // The project owner has not requested support within the support request expiry window.
error SwapThresholdTooLow(); // The select swap threshold is below the minimum.
error TaxFreeAddressCannotBeAddressZero(); // A tax free address cannot be address(0)
error TemplateCannotBeAddressZero(); // The address for a template cannot be address zero (address(0)).
error TemplateNotFound(); // There is no template that matches the passed template Id.
error ThisMintIsClosed(); // It's over (well, this mint is, anyway).
error TotalSharesMustMatchDenominator(); // The total of all shares must equal the denominator value.
error TransferAmountExceedsBalance(); // The transfer amount exceeds the accounts available balance.
error TransferCallerNotOwnerNorApproved(); // The caller must own the token or be an approved operator.
error TransferFailed(); // The transfer has failed.
error TransferFromIncorrectOwner(); // The token must be owned by `from`.
error TransferToNonERC721ReceiverImplementer(); // Cannot safely transfer to a contract that does not implement the ERC721Receiver interface.
error TransferFromZeroAddress(); // Cannot transfer from the zero address. Indeed, this surely is impossible, and likely a waste to check??
error TransferToZeroAddress(); // Cannot transfer to the zero address.
error UnrecognisedVRFMode(); // Currently supported VRF modes are 0: chainlink and 1: arrng
error UnrecognisedType(); // Pool type not found.
error URIQueryForNonexistentToken(); // The token does not exist.
error ValueExceedsMaximum(); // The value sent exceeds the maximum allowed (super useful explanation huh?).
error VRFCoordinatorCannotBeAddressZero(); // The VRF coordinator cannot be the zero address (address(0)).
error VestedBalanceExceedsTotalBalance(); // The vested balance cannot exceed the total balance.
error LPTokensBalanceMismatch(); // The balace of LP tokens is not as expected.
}
// SPDX-License-Identifier: MIT
// Metadrop Contracts (v2.1.0)
// Metadrop based on OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity 0.8.21;
import {Context} from "@openzeppelin/contracts/utils/Context.sol";
import {IErrors} from "../IErrors.sol";
import {Revert} from "../Revert.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is IErrors, Revert, Context {
address private _owner;
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
_revert(CallerIsNotTheOwner.selector);
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
_revert(CannotSetNewOwnerToTheZeroAddress.selector);
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// Metadrop Contracts (v2.1.0)
// Metadrop based on OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)
pragma solidity 0.8.21;
import {Ownable} from "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(
address indexed previousOwner,
address indexed newOwner
);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(
address newOwner
) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
_revert(OwnableUnauthorizedAccount.selector);
}
_transferOwnership(sender);
}
}
// SPDX-License-Identifier: MIT
// Metadrop Contracts (v2.1.0)
// Metadrop based on OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity 0.8.21;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";
import {Address} from "@openzeppelin/contracts/utils/Address.sol";
import {IErrors} from "../IErrors.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(
token,
abi.encodeCall(token.transferFrom, (from, to, value))
);
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
if (oldAllowance < value) {
revert IErrors.DecreasedAllowanceBelowZero();
}
forceApprove(token, spender, oldAllowance - value);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to
* 0 before setting it to a non-zero value.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
if (nonceAfter != (nonceBefore + 1)) {
revert IErrors.PermitDidNotSucceed();
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "call fail");
if ((returndata.length != 0) && !abi.decode(returndata, (bool))) {
revert IErrors.OperationDidNotSucceed();
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(
IERC20 token,
bytes memory data
) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success &&
(returndata.length == 0 || abi.decode(returndata, (bool))) &&
address(token).code.length > 0;
}
}
// SPDX-License-Identifier: MIT
// Metadrop Contracts (v2.1.0)
/**
*
* @title Revert.sol. For efficient reverts
*
* @author metadrop https://metadrop.com/
*
*/
pragma solidity 0.8.21;
abstract contract Revert {
/**
* @dev For more efficient reverts.
*/
function _revert(bytes4 errorSelector) internal pure {
assembly {
mstore(0x00, errorSelector)
revert(0x00, 0x04)
}
}
}
// SPDX-License-Identifier: BUSL-1.1
// Metadrop Contracts (v2.1.0)
pragma solidity 0.8.21;
library ERC20ByMetadropParamDecoder {
/**
* @dev function {decodeBaseParams}
*
* Decode NFT Parameters
*
* @param encodedBaseParams_ The base params encoded into a bytes array
*/
function decodeBaseParams(
bytes memory encodedBaseParams_
) pure public returns (string memory name, string memory symbol, address[] memory recipients, uint256[] memory amounts){
bytes memory distribution;
// Decoding the initial parameters including the distribution bytes array.
(name, symbol, , , distribution) = abi.decode(encodedBaseParams_, (string, string, bool, bool, bytes));
// Decoding the distribution into recipients and amounts.
(recipients, amounts) = abi.decode(distribution, (address[], uint256[]));
return (name, symbol, recipients, amounts);
}
}
// SPDX-License-Identifier: BUSL-1.1
// Metadrop Contracts (v2.1.0)
pragma solidity 0.8.21;
import {ISablierV2LockupLinear, LockupLinear} from "../../vendor/sablier/ISablierV2LockupLinear.sol";
import {IERC20, SafeERC20} from "../../Global/OZ/SafeERC20.sol";
library ERC20ByMetadropSablierV2LinearLockup {
using SafeERC20 for IERC20;
function createWithDurations(
address lpOwner_,
address uniswapV2Pair_,
address tokenVault_,
uint256 lpTokenAmount_,
uint40 lpTokenLockupDuration_
) public returns (uint256 streamId) {
// Setup lock parameters.
LockupLinear.CreateWithDurations memory params;
params.sender = msg.sender; // The sender will be able to cancel the stream
params.recipient = lpOwner_; // The recipient of the streamed assets
params.totalAmount = uint128(
lpTokenAmount_
); // Total amount is the amount inclusive of all fees.
params.asset = IERC20(uniswapV2Pair_); // The streaming asset
params.cancelable = false; // Whether the stream will be cancelable or not
params.durations = LockupLinear.Durations({
cliff: lpTokenLockupDuration_ - 1, // Cliff duration (must be less than total duration or will revert)
total: lpTokenLockupDuration_ // Total duration
});
// Create the LockupLinear stream using a function that sets the start time to `block.timestamp`
streamId = ISablierV2LockupLinear(tokenVault_).createWithDurations(params);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.21;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IWETH is IERC20 {
function deposit() external payable;
function withdraw(uint256 wad) external;
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
type UD60x18 is uint256;
struct Broker {
address account;
UD60x18 fee;
}
library LockupLinear {
struct CreateWithDurations {
address sender;
address recipient;
uint128 totalAmount;
IERC20 asset;
bool cancelable;
bool transferable;
Durations durations;
Broker broker;
}
/// @notice Struct encapsulating the cliff duration and the total duration.
/// @param cliff The cliff duration in seconds.
/// @param total The total duration in seconds.
struct Durations {
uint40 cliff;
uint40 total;
}
}
interface ISablierV2LockupLinear {
function createWithDurations(LockupLinear.CreateWithDurations calldata params)
external
returns (uint256 streamId);
}