ETH Price: $2,531.67 (+3.76%)

Contract Diff Checker

Contract Name:
GOLDFARM

Contract Source Code:

File 1 of 1 : GOLDFARM

// goldfarm.io
// GoldFarm is a cross-chain DeFi FaaS protocol that allows users to deploy crypto and NFT farms on BSC and ETH with no code required!
// 1,000,000 $GOLD tokens will be minted and split between BSC and ETH blockchains. 
// 1,000,000 $GOLD will be the max supply and the initial circulating supply will be 900,000 $GOLD.
// GoldFarm is a cross-chain DeFi protocol designed to bring utility to any token by turning it into an NFT farm with no code required on 
// both BSC and ETH blockchains. With an innovative suite of visual tools, any project can deploy the world's most exciting new farm 
// with custom rules that incentivize the behaviors they value most. It's easy to reward liquidity providers, incentivize longer stakes 
// or even provide special access to your project's services through NFTs with utility.

// GoldFarm provides a bridge between current crypto ecosystems and the explosive gaming industry. 
// NFTs from GoldFarm and Official Partner Farms will gain utility within real AAA video games, 
// in this ecosystem, NFTs are no longer just pixels on a screen, but hold the power to unlock unique digital experiences.

// Twitter: https://twitter.com/goldfarmio
// Telegram: https://t.me/GoldFarmChat
// Website: https://goldfarm.io
// Telegram ANN: https://t.me/goldfarmio


// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.6.12;

abstract contract Context {
    function _msgSender() internal view virtual returns (address payable) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes memory) {
        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
        return msg.data;
    }
}


abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor () internal {
        address msgSender = _msgSender();
        _owner = msgSender;
        emit OwnershipTransferred(address(0), msgSender);
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
        _;
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        emit OwnershipTransferred(_owner, address(0));
        _owner = address(0);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        emit OwnershipTransferred(_owner, newOwner);
        _owner = newOwner;
    }
}

interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

contract ERC20 is Context, IERC20 {
    using SafeMath for uint256;

    mapping (address => uint256) private _balances;

    mapping (address => mapping (address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;
    uint8 private _decimals;

    /**
     * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
     * a default value of 18.
     *
     * To select a different value for {decimals}, use {_setupDecimals}.
     *
     * All three of these values are immutable: they can only be set once during
     * construction.
     */
    constructor (string memory name_, string memory symbol_) public {
        _name = name_;
        _symbol = symbol_;
        _decimals = 18;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5,05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
     * called.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return _decimals;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * Requirements:
     *
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
        _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
        return true;
    }

    /**
     * @dev Moves tokens `amount` from `sender` to `recipient`.
     *
     * This is internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(address sender, address recipient, uint256 amount) internal virtual {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(sender, recipient, amount);

        _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
        _balances[recipient] = _balances[recipient].add(amount);
        emit Transfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply = _totalSupply.add(amount);
        _balances[account] = _balances[account].add(amount);
        emit Transfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
        _totalSupply = _totalSupply.sub(amount);
        emit Transfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Sets {decimals} to a value other than the default one of 18.
     *
     * WARNING: This function should only be called from the constructor. Most
     * applications that interact with token contracts will not expect
     * {decimals} to ever change, and may work incorrectly if it does.
     */
    function _setupDecimals(uint8 decimals_) internal virtual {
        _decimals = decimals_;
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be to transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}


abstract contract ERC20Capped is ERC20 {
    using SafeMath for uint256;

    uint256 private _cap;

    /**
     * @dev Sets the value of the `cap`. This value is immutable, it can only be
     * set once during construction.
     */
    constructor (uint256 cap_) internal {
        require(cap_ > 0, "ERC20Capped: cap is 0");
        _cap = cap_;
    }

    /**
     * @dev Returns the cap on the token's total supply.
     */
    function cap() public view virtual returns (uint256) {
        return _cap;
    }

    /**
     * @dev See {ERC20-_beforeTokenTransfer}.
     *
     * Requirements:
     *
     * - minted tokens must not cause the total supply to go over the cap.
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual override {
        super._beforeTokenTransfer(from, to, amount);

        if (from == address(0)) { // When minting tokens
            require(totalSupply().add(amount) <= cap(), "ERC20Capped: cap exceeded");
        }
    }
}

contract GOLDFARM is ERC20Capped, Ownable {

  /// A version number for this Token contract's interface.
  uint256 public version = 1;

  /**
    Construct a new Token by providing it a name, ticker, and supply cap.

    @param _name The name of the new Token.
    @param _ticker The ticker symbol of the new Token.
    @param _cap The supply cap of the new Token.
  */
  constructor (string memory _name, string memory _ticker, uint256 _cap) public ERC20(_name, _ticker) ERC20Capped(_cap) { }

  /**
   * @dev Destroys `amount` tokens from the caller.
   *
   * See {ERC20-_burn}.
   */
  function burn(uint256 amount) public virtual {
      _burn(_msgSender(), amount);
  }

  /**
   * @dev Destroys `amount` tokens from `account`, deducting from the caller's
   * allowance.
   *
   * See {ERC20-_burn} and {ERC20-allowance}.
   *
   * Requirements:
   *
   * - the caller must have allowance for ``accounts``'s tokens of at least
   * `amount`.
   */
  function burnFrom(address account, uint256 amount) public virtual {
      uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, "ERC20: burn amount exceeds allowance");

      _approve(account, _msgSender(), decreasedAllowance);
      _burn(account, amount);
  }

  /**
    Allows Token creator to mint `_amount` of this Token to the address `_to`.
    New tokens of this Token cannot be minted if it would exceed the supply cap.
    Users are delegated votes when they are minted Token.

    @param _to the address to mint Tokens to.
    @param _amount the amount of new Token to mint.
  */
  function mint(address _to, uint256 _amount) external onlyOwner {
    _mint(_to, _amount);
    _moveDelegates(address(0), _delegates[_to], _amount);
  }

  /**
    Allows users to transfer tokens to a recipient, moving delegated votes with
    the transfer.

    @param recipient The address to transfer tokens to.
    @param amount The amount of tokens to send to `recipient`.
  */
  function transfer(address recipient, uint256 amount) public override returns (bool) {
    _transfer(_msgSender(), recipient, amount);
    _moveDelegates(_delegates[msg.sender], _delegates[recipient], amount);
    return true;
  }

  /// @dev A mapping to record delegates for each address.
  mapping (address => address) internal _delegates;

  /// A checkpoint structure to mark some number of votes from a given block.
  struct Checkpoint {
    uint32 fromBlock;
    uint256 votes;
  }

  /// A mapping to record indexed Checkpoint votes for each address.
  mapping (address => mapping (uint32 => Checkpoint)) public checkpoints;

  /// A mapping to record the number of Checkpoints for each address.
  mapping (address => uint32) public numCheckpoints;

  /// The EIP-712 typehash for the contract's domain.
  bytes32 public constant DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,uint256 chainId,address verifyingContract)");

  /// The EIP-712 typehash for the delegation struct used by the contract.
  bytes32 public constant DELEGATION_TYPEHASH = keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)");

  /// A mapping to record per-address states for signing / validating signatures.
  mapping (address => uint) public nonces;

  /// An event emitted when an address changes its delegate.
  event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);

  /// An event emitted when the vote balance of a delegated address changes.
  event DelegateVotesChanged(address indexed delegate, uint previousBalance, uint newBalance);

  /**
    Return the address delegated to by `delegator`.

    @return The address delegated to by `delegator`.
  */
  function delegates(address delegator) external view returns (address) {
    return _delegates[delegator];
  }

  /**
    Delegate votes from `msg.sender` to `delegatee`.

    @param delegatee The address to delegate votes to.
  */
  function delegate(address delegatee) external {
    return _delegate(msg.sender, delegatee);
  }

  /**
    Delegate votes from signatory to `delegatee`.

    @param delegatee The address to delegate votes to.
    @param nonce The contract state required for signature matching.
    @param expiry The time at which to expire the signature.
    @param v The recovery byte of the signature.
    @param r Half of the ECDSA signature pair.
    @param s Half of the ECDSA signature pair.
  */
  function delegateBySig(address delegatee, uint nonce, uint expiry, uint8 v, bytes32 r, bytes32 s) external {
    bytes32 domainSeparator = keccak256(
      abi.encode(
        DOMAIN_TYPEHASH,
        keccak256(bytes(name())),
        getChainId(),
        address(this)));

    bytes32 structHash = keccak256(
      abi.encode(
          DELEGATION_TYPEHASH,
          delegatee,
          nonce,
          expiry));

    bytes32 digest = keccak256(
      abi.encodePacked(
        "\x19\x01",
        domainSeparator,
        structHash));

    address signatory = ecrecover(digest, v, r, s);
    require(signatory != address(0), "Invalid signature.");
    require(nonce == nonces[signatory]++, "Invalid nonce.");
    require(now <= expiry, "Signature expired.");
    return _delegate(signatory, delegatee);
  }

  /**
    Get the current votes balance for the address `account`.

    @param account The address to get the votes balance of.
    @return The number of current votes for `account`.
  */
  function getCurrentVotes(address account) external view returns (uint256) {
    uint32 nCheckpoints = numCheckpoints[account];
    return nCheckpoints > 0 ? checkpoints[account][nCheckpoints - 1].votes : 0;
  }

  /**
    Determine the prior number of votes for an address as of a block number.

    @dev The block number must be a finalized block or else this function will revert to prevent misinformation.
    @param account The address to check.
    @param blockNumber The block number to get the vote balance at.
    @return The number of votes the account had as of the given block.
  */
  function getPriorVotes(address account, uint blockNumber) external view returns (uint256) {
    require(blockNumber < block.number, "The specified block is not yet finalized.");

    uint32 nCheckpoints = numCheckpoints[account];
    if (nCheckpoints == 0) {
      return 0;
    }

    // First check the most recent balance.
    if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) {
      return checkpoints[account][nCheckpoints - 1].votes;
    }

    // Then check the implicit zero balance.
    if (checkpoints[account][0].fromBlock > blockNumber) {
      return 0;
    }

    uint32 lower = 0;
    uint32 upper = nCheckpoints - 1;
    while (upper > lower) {
      uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow
      Checkpoint memory cp = checkpoints[account][center];
      if (cp.fromBlock == blockNumber) {
        return cp.votes;
      } else if (cp.fromBlock < blockNumber) {
        lower = center;
      } else {
        upper = center - 1;
      }
    }
    return checkpoints[account][lower].votes;
  }

  /**
    An internal function to actually perform the delegation of votes.

    @param delegator The address delegating to `delegatee`.
    @param delegatee The address receiving delegated votes.
  */
  function _delegate(address delegator, address delegatee) internal {
    address currentDelegate = _delegates[delegator];
    uint256 delegatorBalance = balanceOf(delegator);
    _delegates[delegator] = delegatee;
    /* console.log('a-', currentDelegate, delegator, delegatee); */
    emit DelegateChanged(delegator, currentDelegate, delegatee);

    _moveDelegates(currentDelegate, delegatee, delegatorBalance);
  }

  /**
    An internal function to move delegated vote amounts between addresses.

    @param srcRep the previous representative who received delegated votes.
    @param dstRep the new representative to receive these delegated votes.
    @param amount the amount of delegated votes to move between representatives.
  */
  function _moveDelegates(address srcRep, address dstRep, uint256 amount) internal {
    if (srcRep != dstRep && amount > 0) {

      // Decrease the number of votes delegated to the previous representative.
      if (srcRep != address(0)) {
        uint32 srcRepNum = numCheckpoints[srcRep];
        uint256 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0;
        uint256 srcRepNew = srcRepOld.sub(amount);
        _writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew);
      }

      // Increase the number of votes delegated to the new representative.
      if (dstRep != address(0)) {
        uint32 dstRepNum = numCheckpoints[dstRep];
        uint256 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0;
        uint256 dstRepNew = dstRepOld.add(amount);
        _writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew);
      }
    }
  }

  /**
    An internal function to write a checkpoint of modified vote amounts.
    This function is guaranteed to add at most one checkpoint per block.

    @param delegatee The address whose vote count is changed.
    @param nCheckpoints The number of checkpoints by address `delegatee`.
    @param oldVotes The prior vote count of address `delegatee`.
    @param newVotes The new vote count of address `delegatee`.
  */
  function _writeCheckpoint(address delegatee, uint32 nCheckpoints, uint256 oldVotes, uint256 newVotes) internal {
    uint32 blockNumber = safe32(block.number, "Block number exceeds 32 bits.");

    if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock == blockNumber) {
      checkpoints[delegatee][nCheckpoints - 1].votes = newVotes;
    } else {
      checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes);
      numCheckpoints[delegatee] = nCheckpoints + 1;
    }

    emit DelegateVotesChanged(delegatee, oldVotes, newVotes);
  }

  /**
    A function to safely limit a number to less than 2^32.

    @param n the number to limit.
    @param errorMessage the error message to revert with should `n` be too large.
    @return The number `n` limited to 32 bits.
  */
  function safe32(uint n, string memory errorMessage) internal pure returns (uint32) {
    require(n < 2**32, errorMessage);
    return uint32(n);
  }

  /**
    A function to return the ID of the contract's particular network or chain.

    @return The ID of the contract's network or chain.
  */
  function getChainId() internal pure returns (uint) {
    uint256 chainId;
    assembly { chainId := chainid() }
    return chainId;
  }
}


library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        uint256 c = a + b;
        if (c < a) return (false, 0);
        return (true, c);
    }

    /**
     * @dev Returns the substraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b > a) return (false, 0);
        return (true, a - b);
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) return (true, 0);
        uint256 c = a * b;
        if (c / a != b) return (false, 0);
        return (true, c);
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b == 0) return (false, 0);
        return (true, a / b);
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b == 0) return (false, 0);
        return (true, a % b);
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");
        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b <= a, "SafeMath: subtraction overflow");
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        if (a == 0) return 0;
        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");
        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b > 0, "SafeMath: division by zero");
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b > 0, "SafeMath: modulo by zero");
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        return a - b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryDiv}.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        return a % b;
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):