ETH Price: $2,682.56 (-2.00%)

Contract Diff Checker

Contract Name:
YieldFarmXfund3

Contract Source Code:

// SPDX-License-Identifier: Apache-2.0
pragma solidity ^0.6.0;

import "@openzeppelin/contracts-ethereum-package/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./interfaces/IStaking.sol";

contract YieldFarmXfund3 {

    // lib
    using SafeMath for uint;
    using SafeMath for uint128;

    // constants
    uint public constant TOTAL_DISTRIBUTED_AMOUNT = 50;
    uint public constant NR_OF_EPOCHS = 10;
    uint128 public constant EPOCHS_DELAYED_FROM_STAKING_CONTRACT = 22; // start Staking epoch 23

    // state variables

    // addreses
    address private _poolTokenAddress;
    address private _communityVault;
    // contracts
    IERC20 private _xfund;
    IStaking private _staking;


    uint[] private epochs = new uint[](NR_OF_EPOCHS + 1);
    uint private _totalAmountPerEpoch;
    uint128 public lastInitializedEpoch;
    mapping(address => uint128) private lastEpochIdHarvested;
    uint public epochDuration; // init from staking contract
    uint public epochStart; // init from staking contract

    // events
    event MassHarvest(address indexed user, uint256 epochsHarvested, uint256 totalValue);
    event Harvest(address indexed user, uint128 indexed epochId, uint256 amount);

    // constructor
    constructor(address xfundTokenAddress, address stakeContract, address communityVault) public {
        _xfund = IERC20(xfundTokenAddress);
        _poolTokenAddress = xfundTokenAddress;
        _staking = IStaking(stakeContract);
        _communityVault = communityVault;
        epochDuration = _staking.epochDuration();
        epochStart = _staking.epoch1Start() + epochDuration.mul(EPOCHS_DELAYED_FROM_STAKING_CONTRACT);
        // xFUND has 9 decimals
        _totalAmountPerEpoch = TOTAL_DISTRIBUTED_AMOUNT.mul(10**9).div(NR_OF_EPOCHS);
    }

    // public methods
    // public method to harvest all the unharvested epochs until current epoch - 1
    function massHarvest() external returns (uint){
        uint totalDistributedValue;
        uint epochId = _getEpochId().sub(1); // fails in epoch 0
        // force max number of epochs
        if (epochId > NR_OF_EPOCHS) {
            epochId = NR_OF_EPOCHS;
        }

        for (uint128 i = lastEpochIdHarvested[msg.sender] + 1; i <= epochId; i++) {
            // i = epochId
            // compute distributed Value and do one single transfer at the end
            totalDistributedValue += _harvest(i);
        }

        emit MassHarvest(msg.sender, epochId - lastEpochIdHarvested[msg.sender], totalDistributedValue);

        if (totalDistributedValue > 0) {
            _xfund.transferFrom(_communityVault, msg.sender, totalDistributedValue);
        }

        return totalDistributedValue;
    }
    function harvest (uint128 epochId) external returns (uint){
        // checks for requested epoch
        require (_getEpochId() > epochId, "This epoch is in the future");
        require(epochId <= NR_OF_EPOCHS, "Maximum number of epochs is 10");
        require (lastEpochIdHarvested[msg.sender].add(1) == epochId, "Harvest in order");
        uint userReward = _harvest(epochId);
        if (userReward > 0) {
            _xfund.transferFrom(_communityVault, msg.sender, userReward);
        }
        emit Harvest(msg.sender, epochId, userReward);
        return userReward;
    }

    // views
    // calls to the staking smart contract to retrieve the epoch total pool size
    function getPoolSize(uint128 epochId) external view returns (uint) {
        return _getPoolSize(epochId);
    }

    function getCurrentEpoch() external view returns (uint) {
        return _getEpochId();
    }

    // calls to the staking smart contract to retrieve user balance for an epoch
    function getEpochStake(address userAddress, uint128 epochId) external view returns (uint) {
        return _getUserBalancePerEpoch(userAddress, epochId);
    }

    function userLastEpochIdHarvested() external view returns (uint){
        return lastEpochIdHarvested[msg.sender];
    }

    // internal methods

    function _initEpoch(uint128 epochId) internal {
        require(lastInitializedEpoch.add(1) == epochId, "Epoch can be init only in order");
        lastInitializedEpoch = epochId;
        // call the staking smart contract to init the epoch
        epochs[epochId] = _getPoolSize(epochId);
    }

    function _harvest (uint128 epochId) internal returns (uint) {
        // try to initialize an epoch. if it can't it fails
        // if it fails either user either a BarnBridge account will init not init epochs
        if (lastInitializedEpoch < epochId) {
            _initEpoch(epochId);
        }
        // Set user state for last harvested
        lastEpochIdHarvested[msg.sender] = epochId;
        // compute and return user total reward. For optimization reasons the transfer have been moved to an upper layer (i.e. massHarvest needs to do a single transfer)

        // exit if there is no stake on the epoch
        if (epochs[epochId] == 0) {
            return 0;
        }
        return _totalAmountPerEpoch
        .mul(_getUserBalancePerEpoch(msg.sender, epochId))
        .div(epochs[epochId]);
    }

    // retrieve _poolTokenAddress token balance
    function _getPoolSize(uint128 epochId) internal view returns (uint) {
        return _staking.getEpochPoolSize(_poolTokenAddress, _stakingEpochId(epochId));
    }

    // retrieve _poolTokenAddress token balance per user per epoch
    function _getUserBalancePerEpoch(address userAddress, uint128 epochId) internal view returns (uint){
        return _staking.getEpochUserBalance(userAddress, _poolTokenAddress, _stakingEpochId(epochId));
    }

    // compute epoch id from block.timestamp and epochStart date
    function _getEpochId() internal view returns (uint128 epochId) {
        if (block.timestamp < epochStart) {
            return 0;
        }
        epochId = uint128(block.timestamp.sub(epochStart).div(epochDuration).add(1));
    }

    // get the staking epoch
    function _stakingEpochId(uint128 epochId) pure internal returns (uint128) {
        return epochId + EPOCHS_DELAYED_FROM_STAKING_CONTRACT;
    }
}

pragma solidity ^0.6.0;

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, "SafeMath: subtraction overflow");
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        uint256 c = a - b;

        return c;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");

        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        // Solidity only automatically asserts when dividing by 0
        require(b > 0, errorMessage);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold

        return c;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, "SafeMath: modulo by zero");
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts with custom message when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b != 0, errorMessage);
        return a % b;
    }
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity ^0.6.0;

import "@openzeppelin/contracts/access/Ownable.sol";

interface IStaking {

    function getEpochId(uint timestamp) external view returns (uint); // get epoch id
    function getEpochUserBalance(address user, address token, uint128 epoch) external view returns(uint);
    function getEpochPoolSize(address token, uint128 epoch) external view returns (uint);
    function epoch1Start() external view returns (uint);
    function epochDuration() external view returns (uint);
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "../utils/Context.sol";
/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor () internal {
        address msgSender = _msgSender();
        _owner = msgSender;
        emit OwnershipTransferred(address(0), msgSender);
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
        _;
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        emit OwnershipTransferred(_owner, address(0));
        _owner = address(0);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        emit OwnershipTransferred(_owner, newOwner);
        _owner = newOwner;
    }
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address payable) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes memory) {
        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
        return msg.data;
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):