ETH Price: $3,409.28 (-7.28%)
Gas: 6.42 Gwei

Contract Diff Checker

Contract Name:
ERCXOXO

Contract Source Code:

//SPDX-License-Identifier: MIT

/*
    ░  ░░░░  ░░░      ░░░  ░░░░  ░░░      ░░
    ▒▒  ▒▒  ▒▒▒  ▒▒▒▒  ▒▒▒  ▒▒  ▒▒▒  ▒▒▒▒  ▒
    ▓▓▓    ▓▓▓▓  ▓▓▓▓  ▓▓▓▓    ▓▓▓▓  ▓▓▓▓  ▓
    ██  ██  ███  ████  ███  ██  ███  ████  █
    █  ████  ███      ███  ████  ███      ██
    
    Website:  https://ercxoxo.love
    Telegram: https://t.me/ercxoxolove
    Twitter:  https://twitter.com/ercxoxolove

    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
    ⣿⣿⣿⣿⣿⣿⣿⣿⣶⣤⣄⡀⠀⢿⡿⣁⠀⢆⡘⠤⡘⠠⢰⠃⡄⠂⠄⠀⠀⠀⠀⡀⡆⠌⢄⠀⠀⢠⡇⠂⡌⠄⠀⠀⠀⠀⠀⠀⠡⣖⠀⢃⠸⠀⠸⣟⡄⠘⡽⡜⡄⠀⠀⠀⠈⠦⠀⠀⠀⠸
    ⣿⣿⣿⣿⣿⣿⡿⠁⠈⢻⡝⣟⣷⡿⢁⠤⢀⠢⢌⠰⡀⠂⡟⠠⡄⠈⠀⠀⣀⠤⠐⣰⠌⡈⢄⠂⡡⣺⠄⡇⠰⠈⡄⢃⠰⢀⠰⢀⠂⢽⠂⢼⠐⡠⠄⣿⡼⡀⠱⢹⡰⠀⠀⠀⠀⠀⣆⠀⠀⠀
    ⣿⣿⣿⣿⣿⣿⠁⢄⠠⢀⣹⣞⡿⢁⢊⠰⢀⠎⡐⢂⠁⢳⠋⠴⠁⠀⣠⠞⡠⢁⣺⡇⠤⢁⠢⠘⢠⡿⢰⡏⠄⢃⡐⢈⠰⢈⠰⢸⠌⣸⠌⢺⡐⠤⢈⣽⣧⢩⡄⢉⢧⠡⠉⡍⠒⠤⣸⡀⠀⠀
    ⣿⣿⣿⣿⣿⣿⠩⡐⠌⢿⡯⣿⠇⡌⠢⢡⠈⡔⠈⠂⠃⢾⢈⠒⠀⡴⢁⡾⠑⣸⢻⢀⠒⢠⠂⡉⢼⡇⢸⡇⠌⠄⡄⢃⠰⢈⠰⠸⡂⢼⢈⢹⠆⠰⢸⢿⠸⡆⢷⢈⠸⣄⠃⠤⢉⡐⠨⣧⠀⡀
    ⣿⣿⣿⣿⣿⣿⡟⣿⣻⢾⡷⣿⠐⡄⢃⠆⠈⠐⠁⠀⠀⣾⠸⠀⢀⡇⣼⠇⢡⡏⣇⠢⠘⡀⠆⢡⡎⡇⢺⣇⠘⢠⠐⠨⡐⢂⠢⢡⡇⠾⢈⢸⡃⡘⢼⢸⠀⢻⠈⣇⠌⣷⢈⡐⠂⠤⢱⢿⠀⠔
    ⣿⣿⣿⣿⣿⣿⣯⡚⢧⡻⣽⡏⠰⡈⢄⠈⠀⡀⠀⠀⠀⣿⢸⢀⢂⢸⡟⡈⢼⢳⠁⢂⡁⠆⡑⢺⢱⡇⣼⢿⠈⠄⡈⠡⢐⠠⢁⢺⡄⡟⡀⢺⢁⡴⡿⢸⢄⠈⡇⢺⡆⢸⡆⠤⢉⠰⢐⣸⠈⠔
    ⣿⣿⣿⣿⣿⣿⣿⣷⠁⢿⣹⡇⠡⠌⠀⠀⠀⠀⠀⠀⢀⡿⣸⠀⢂⣿⢃⠐⡞⡼⢈⣄⣐⣤⡴⡯⢼⠴⡿⢼⠾⠶⠶⠶⣤⠂⠌⣹⢰⡇⡐⡏⢸⢡⡇⡽⡀⠑⢳⠐⣷⠀⢿⡇⠌⡐⠂⡽⢈⡐
    ⣿⣿⣿⣿⣿⣿⣿⡏⠠⣄⣿⠄⠀⠀⠀⠀⠀⡅⠀⠠⢠⡟⣧⠈⣰⣿⠀⣼⠴⡗⢉⠉⡐⢠⢷⠃⢸⢠⠃⢸⣿⠀⢀⠂⢸⠀⢂⡏⣼⠁⣸⠁⡏⡜⡇⡧⠬⣴⣼⣀⢿⢇⢸⣹⠀⠀⡁⠇⡃⠄
    ⣿⣿⣿⣿⣿⣿⣿⣇⡷⠊⢸⠀⠀⠀⢠⣦⣄⠇⡈⢁⠆⣿⣧⠐⣽⡇⠐⣾⢰⡇⢂⠡⢈⡏⡞⠀⡼⣸⠀⠀⣿⠀⠀⠂⣏⠐⢸⢡⡟⢀⡏⣼⢱⠁⣧⠁⠀⠀⠈⡟⣻⠺⣤⣿⡆⠐⠀⡇⠄⡈
    ⣿⣿⣿⣿⣿⣿⣿⣿⣄⠂⣿⠀⠀⢠⠃⢿⣣⠐⠠⠌⠠⣿⣿⠀⢿⠃⢌⣿⠸⡇⢀⢂⡼⡼⠀⢀⢧⡯⠄⡀⣿⠀⠌⢰⡇⠈⣼⡿⠁⡞⣸⢇⠇⢰⡟⠀⠀⠀⠈⡇⡝⠀⢇⡟⡧⣄⠂⡇⠀⢰
    ⣿⣿⣿⣿⣿⡿⢭⢿⣿⣶⣻⡆⠀⡏⠠⠸⡽⣏⠐⡈⡐⢿⣻⡠⣿⠈⢸⡍⣆⣧⣾⣾⣿⣿⣶⣾⣾⣆⠄⠀⣿⡆⠀⣸⠁⣸⡿⢁⡞⡕⡹⡌⠀⣼⢁⠤⠤⢀⣀⡇⡇⠀⠸⣼⡇⠀⠑⣷⠈⣸
    ⣿⣿⣿⣿⣿⡹⢎⣗⡻⣿⣷⣇⠘⣇⠄⡁⢻⣽⡆⠡⠠⢹⣿⡓⣿⣴⣿⣿⣿⣿⡿⣟⣿⢫⣟⣏⠉⠙⠛⠶⣿⢿⠀⡞⢀⡟⢡⣾⠊⣰⠟⠀⣼⠃⣐⣤⣴⣦⣤⣧⣇⣠⠀⣿⡇⠀⡁⡏⠀⡿
    ⣿⣿⣿⡟⣧⣛⡭⢶⡙⣿⢻⣿⡄⢻⡔⠠⡈⢧⢿⡆⢡⠈⢿⣇⣷⣿⡿⠛⣯⢽⡳⢧⡞⡷⠎⣽⡀⠀⠀⠀⠛⠘⠻⢣⣞⣴⠟⠁⠠⠏⠀⠐⠁⢸⣿⢿⣟⠿⣿⡿⣿⣷⣤⣸⡂⠀⢸⠃⢰⠇
    ⣿⣿⡿⣹⣧⡓⢾⢷⡟⢸⣯⢹⣷⡌⢻⣄⠱⣌⠳⣿⣦⠲⠾⣿⣿⣿⠁⠈⣟⠊⢿⡧⢿⠃⡜⣸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣏⣟⡳⢾⡻⡴⢷⠈⠻⣿⣿⣟⠋⡟⢀⡎⠄
    ⣿⣿⠳⣽⠲⣝⡿⢸⡇⣸⠙⣷⢺⣿⣧⡻⣷⣌⢢⡙⢽⣷⣤⠘⢧⠙⢦⡀⢻⡌⠠⢠⢁⠒⢯⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⣷⣹⡏⠵⡙⣺⠀⠀⠸⣿⣿⣾⢁⡾⠀⣲
    ⣿⢫⡝⣾⢹⣾⢃⢹⡇⢼⠂⣿⣹⠋⢉⡿⣾⣿⣷⣌⠲⣽⢿⣿⣮⣷⣀⠈⠀⠙⠗⠒⠚⠋⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢷⢈⠩⠀⡥⠲⠏⠀⠀⣸⢟⣽⣫⡟⢁⣴⢏
    ⣏⢷⣙⣮⠟⡐⠢⢼⡇⢸⡿⢧⣟⠀⡇⡄⣤⢩⢿⣛⢷⣤⣭⣛⢿⣮⠉⠳⠦⠄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⠲⢷⡼⠆⠀⠀⠐⠁⣿⣿⣋⣴⣾⢋⣾
    ⣞⢺⣼⠏⡐⠌⡁⣿⡇⢸⡇⠼⣿⠀⢷⠀⢹⡆⣿⡉⠚⠶⣭⣻⣿⡟⠢⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣟⢫⣿⡳⣵⡿⢿
    ⣎⡿⢼⠂⡅⢊⠔⣿⣵⢺⡏⠄⣿⣧⡈⠓⢌⠷⢾⡇⢁⠢⢀⢹⠑⣷⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡿⣬⡿⢣⡓⣸⣇⢻
    ⣾⣃⡯⢼⣀⠣⣈⣿⡽⣺⠛⢠⠹⡻⣿⣦⡀⠑⠪⣇⠂⠔⡈⡾⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⢰⠟⡞⠡⢠⢰⣿⠸⣸
    ⣿⣿⣳⢯⣿⣿⣿⣷⣽⣹⡇⠌⣷⢳⢋⠻⢿⣦⣀⡟⡀⠊⢰⡇⠂⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠔⠁⠀⠉⠢⢀⠀⠀⠀⠀⠀⠀⠀⢀⠠⠊⠀⠈⢺⡞⠠⢁⢂⣯⡏⠵⡘
    ⣿⣿⡜⣿⣿⣿⣿⣿⢾⣻⣧⡂⢹⣏⣿⡄⠌⢻⣿⣧⠀⠡⣸⠠⠁⣾⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠐⠁⠀⠀⠀⠀⠀⠀⠀⠉⠫⣦⠀⠀⢀⠔⠁⠀⠀⠀⡀⠀⠙⢦⢁⡞⣼⡙⢦⠑
    ⣿⣿⡽⣹⣿⣿⣿⣿⡯⣷⣯⢿⣄⠻⣜⣷⡈⠄⢻⣷⠈⢠⡗⠠⠁⣿⢸⣄⠀⠀⠀⠀⠀⠀⢀⡔⠊⠉⠀⠀⠀⠀⠀⠀⡰⠂⠤⣀⠀⠀⢀⣃⠀⣰⠁⠀⠀⡴⢴⣧⠀⠀⠀⠀⠙⢦⡏⡝⢢⠌
    ⡿⣿⣿⣽⣿⢿⣿⣿⡷⣣⢿⣯⣻⢷⣽⢞⣿⡄⠂⣿⠀⣸⠃⠠⢁⣷⠸⡇⠑⢤⡀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⣀⠔⠀⠀⠀⠀⠈⢧⡀⢿⣿⣾⡿⠁⡠⢊⣴⣿⢸⡷⣄⣐⠀⢀⠄⠙⠓⠧⣌
    ⣿⣷⣿⣿⣿⣿⣿⣿⡿⣵⢫⣷⣏⣟⣾⣻⣾⣿⣆⢿⠀⡿⠀⠀⠂⣼⠐⣿⡀⢀⡼⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠒⢄⡀⠀⠀⠀⠀⠑⠮⠿⠛⠒⢈⣴⣿⣿⡏⡾⢁⠈⣿⠖⠁⠀⠀⠀⠀⠀
    ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣳⣿⣿⣿⣯⣟⣷⢯⣿⣿⣿⢰⠃⠀⠀⠐⢸⠀⣻⠟⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠲⠄⡀⠀⠀⠀⢀⣠⣾⣿⣿⣿⣿⣃⠇⢂⢡⠏⠀⠀⠀⠀⢀⠀⠀
    ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣞⢾⡻⢷⣯⣿⣼⠀⠀⠀⢀⡼⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠲⣤⣀⡀⠀⠀⠀⠀⠈⠢⣤⣾⣿⣿⣿⣿⣿⣿⣿⢸⠠⡱⠃⠀⠀⠀⣠⣶⠋⠀⠀
    ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⢾⣽⣯⣞⣽⡟⠀⣠⠔⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⠿⣷⣤⡀⠀⠀⠀⠀⠙⢿⣿⣿⣿⣿⣷⣿⢀⡜⠁⠀⠀⣠⡞⡱⠁⠀⠀⠀
    ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢯⢿⣿⣿⣿⣧⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠐⠠⢀⠀⠀⠀⠀⠀⠀⠙⢿⣷⣄⡀⠀⠀⠀⠙⢿⣿⣿⣿⣿⡼⠀⠀⢀⣾⣿⡟⠀⠀⠀⠀⠀
    ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡻⣞⢾⡹⡿⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠂⢄⡀⠀⠀⣠⣿⣿⣿⣿⣦⣄⠀⠀⠀⠻⣿⣿⡟⠀⠀⣠⠂⢺⣿⡣⢀⢀⠄⠀⠀
    ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣯⣝⣾⣿⣧⢶⡶⣿⢿⣿⣦⣤⣀⣀⣀⣤⣀⣴⣶⣤⣤⣄⡀⠀⠀⢀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣄⠀⢠⣾⣿⣾⡷⣰⠉⡆⣹⣿⣿⣶⣿⣆⡀⢀
    ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡞⣯⢷⣏⡿⣽⣻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣶⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣦⣽⣿⡿⠕⠉⢆⢱⢸⣿⣿⣿⣿⣿⣿⣿
    ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣟⡽⣾⣹⡞⣷⡽⣞⡽⣯⢿⣹⢯⣿⣿⣿⣿⣯⣿⡿⣿⣿⣿⣿⣿⣻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡀⠀⠀⢪⢿⣿⣿⣿⣿⣿⣿⣿
    ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣯⡽⣶⢯⡽⣞⣳⢯⡽⣞⣯⣽⢫⣿⡟⣿⣻⢿⡽⣿⣿⣿⣿⣻⣽⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⡈⠀⠀⠹⣿⣿⣿⣿⣿⣿⣿
    ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣯⢷⣛⡾⣽⣹⡽⢾⣹⠷⣞⣞⠿⣼⣿⡘⣯⣾⣿⢿⣹⢯⣟⡿⣿⢿⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣄⠀⠀⠈⠻⣿⣿⣿⣿⣿

*/


pragma solidity ^0.8.24;

import {Strings} from "@openzeppelin/contracts/utils/Strings.sol";
import {ERC425} from "ERC425.sol";

contract ERCXOXO is ERC425 {
  using Strings for uint256;
  using Strings for uint8;
  string public dataURI;
  string public baseTokenURI;

  mapping(address => bool) private blacklist;
  uint256 public maxWallet;
  uint256 private deploymentBlock;

  string[5] private themes = ["Creepy", "Horny", "Wholesome", "Cute", "Dark"];
  string[5] private themesLower = ["creepy", "horny", "wholesome", "cute", "dark"];
  uint8[5] private characterCounts = [1, 2, 7, 6, 1];
  uint8[5] private captionCounts = [8, 8, 14, 14, 8];
  string[5] private descriptions = [
      "A creepy valentine from a yandere's basement >:)",
      "A horny valentine from your pumped up lover B-)",
      "A wholesome valentine from a respectful robot :]",
      "A cute valentine from a kawaii girl for you!!1 :3",
      "A dark valentine from The Smoker. Heh heh heh heh heh..."
  ];
  string[1] private creepyCharacters = ["Yandere"];
  string[2] private hornyCharacters = ["Big Pump", "Dem Lips"];
  string[7] private wholesomeCharacters =
      ["Mr. Fedora", "Baseball Cap", "Twinkbot", "Borebot", "Scarfbot", "Turbo Autsimo", "Kawaii Guy"];
  string[6] private cuteCharacters =
      ["Heart-chan", "Kawaii-chan", "Mini-chan", "Bussi-chan", "Baby-chan", "Moshi-moshi"];
  string[1] private darkCharacters = ["The Smoker"];

  string private constant name_ = "ERCXOXO";
  string private constant symbol_ = "ERCXOXO";
  uint8 private constant decimals_ = 18;
  uint256 private constant _erc20TokensSupply = 10000;
  string private constant uri_ = "https://bafybeie5r37hwjf3ahtr6stjfrv2hbrtjkjdq2yv4licl4ggxg5psde524.ipfs.nftstorage.link/";

  constructor() ERC425(name_, symbol_, decimals_, _erc20TokensSupply, uri_) {
    maxWallet = ((_erc20TokensSupply * 10 ** decimals_) * 8) / 100;
    deploymentBlock = block.number;
    dataURI = uri_;
  }

  function _beforeTokenTransfer(
    address operator,
    address from,
    address to,
    uint256[] memory ids
  ) internal override {
    require(!blacklist[from], "Sender is BLACKLISTED.");
    require(!blacklist[to], "Recipient is BLACKLISTED.");

    require(
      block.number > deploymentBlock + 88,
      "Transfers are BLOCKED for first 88 blocks AFTER DEPLOYMENT."
    );

    super._beforeTokenTransfer(operator, from, to, ids);
  }

  function _afterTokenTransfer(
    address operator,
    address from,
    address to,
    uint256[] memory ids
  ) internal override {
    if (!nftsTransferExempt[to]) {
      require(
        balanceOf(to) <= maxWallet,
        "Transfer EXCEEDS allowed holding PER wallet. Prepare FOR destruction."
      );
    }

    super._afterTokenTransfer(operator, from, to, ids);
  }

  function setDataURI(string memory _dataURI) public onlyOwner {
    dataURI = _dataURI;
  }

  function setTokenURI(string memory _tokenURI) public onlyOwner {
    baseTokenURI = _tokenURI;
  }

  function setURI(string memory _uri) external onlyOwner {
    _setURI(_uri);
  }

  function tokenURI(uint256 id) public view override returns (string memory) {
    if (id >= _nextTokenId()) revert InvalidNFTId();

    if (bytes(baseTokenURI).length > 0) {
      return string.concat(baseTokenURI, Strings.toString(id));
    } else {
      string memory theme = "";
      string memory themeLower = "";
      string memory character = "";
      string memory message = "";
      string memory description = "";
      string memory fileName = "";

      uint8 themeIdx = uint8(uint8(bytes1(keccak256(abi.encodePacked(id)))) % themes.length);
      theme = themes[themeIdx];
      themeLower = themesLower[themeIdx];
      uint8 characterIdx = uint8(uint8(bytes1(keccak256(abi.encodePacked(id)) << 8)) % characterCounts[themeIdx]);

      if (themeIdx == 0) {
          character = creepyCharacters[characterIdx];
      } else if (themeIdx == 1) {
          character = hornyCharacters[characterIdx];
      } else if (themeIdx == 2) {
          character = wholesomeCharacters[characterIdx];
      } else if (themeIdx == 3) {
          character = cuteCharacters[characterIdx];
      } else if (themeIdx == 4) {
          character = darkCharacters[characterIdx];
      }

      uint8 captionIdx = uint8(uint8(bytes1(keccak256(abi.encodePacked(id)) << 16)) % captionCounts[themeIdx]);
      string memory captionId = (captionIdx + 1) > 9 ? (captionIdx + 1).toString() : string(abi.encodePacked("0", (captionIdx + 1).toString()));
      string memory characterId = (characterIdx + 1) > 9 ? (characterIdx + 1).toString() : string(abi.encodePacked("0", (characterIdx + 1).toString()));

      message = string(abi.encodePacked(theme, "-Caption-", captionId));
      description = string(
          abi.encodePacked(
              descriptions[themeIdx], " (", character, " x ", theme, "-", captionId, ")"
          )
      );
      fileName = string(
          abi.encodePacked(
              themeLower,
              "-",
              characterId,
              "_",
              themeLower,
              "-caption-",
              captionId
          )
      );

      string memory jsonPreImage = string(
          abi.encodePacked(
              '{"name":"ERCXOXO #',
              id.toString(),
              '","description":"',
              description,
              '","external_url":"https://ercxoxo.love","image":"',
              dataURI,
              fileName,
              ".png",
              '","animation_url":"',
              dataURI,
              fileName,
              ".mp4"
          )
      );

      return string(
          abi.encodePacked(
              "data:application/json;utf8,",
              jsonPreImage,
              '","attributes":[{"trait_type":"Theme","value":"',
              theme,
              '"},{"trait_type":"Character","value":"',
              character,
              '"},{"trait_type":"Message","value":"',
              message,
              '"}]}'
          )
      );
    }
  }

  function uri(uint256 id) public view override returns (string memory) {
    return tokenURI(id);
  }

  function setBlacklist(address target, bool state) public virtual onlyOwner {
    blacklist[target] = state;
  }

  function setMaxWallet(uint256 percentage) external onlyOwner {
    maxWallet = (totalSupply() * percentage) / 100;
  }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

import "@openzeppelin/contracts/token/ERC1155/IERC1155Receiver.sol";
import "@openzeppelin/contracts/token/ERC1155/extensions/IERC1155MetadataURI.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "@openzeppelin/contracts/token/ERC1155/IERC1155.sol";
import "@openzeppelin/contracts/interfaces/draft-IERC6093.sol";
import "@openzeppelin/contracts/utils/introspection/ERC165.sol";
import "@openzeppelin/contracts/utils/Context.sol";
import "@openzeppelin/contracts/access/Ownable.sol";

import "solady/src/utils/LibBitmap.sol";

import "./interfaces/IERC425.sol";
import "./lib/Address.sol";

abstract contract ERC425 is
  Context,
  ERC165,
  IERC1155,
  IERC1155MetadataURI,
  IERC425,
  IERC20,
  IERC20Metadata,
  IERC20Errors,
  Ownable
{
  using Address for address;
  using LibBitmap for LibBitmap.Bitmap;

  // Mapping from accout to owned tokens
  mapping(address => LibBitmap.Bitmap) internal _owned;

  // Mapping from account to operator approvals
  mapping(address => mapping(address => bool)) private _operatorApprovals;

  // Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json
  string private _uri;

  // The next token ID to be minted.
  uint256 private _currentIndex;

  // NFT Whitelist
  mapping(address => bool) public nftsTransferExempt;

  // NFT Approvals
  mapping(uint256 => address) public getApproved;

  mapping(address account => uint256) private _balances;

  mapping(address account => mapping(address spender => uint256))
    private _allowances;

  uint256 private _totalSupply;

  string private _name;
  string private _symbol;

  /// @dev Decimals for ERC-20 representation
  uint8 public immutable decimals;

  /// @dev Units for ERC-20 representation
  uint256 public immutable units;

  constructor(
    string memory name_,
    string memory symbol_,
    uint8 decimals_,
    uint256 _erc20TokensSupply,
    string memory uri_
  ) Ownable(_msgSender()) {
    _name = name_;
    _symbol = symbol_;
    decimals = decimals_;
    units = 10 ** decimals;
    _totalSupply = _erc20TokensSupply * units;
    _setURI(uri_);
    _currentIndex = _startTokenId();
    nftsTransferExempt[_msgSender()] = true;
    _balances[msg.sender] = _totalSupply;
    emit Transfer(address(0), msg.sender, _totalSupply);
  }

  function setNFTsTransferExempt(
    address target,
    bool state
  ) public virtual onlyOwner {
    if (balanceOf(target) >= units && !state) {
      revert CannotRemoveFromNFTsTransferExempt();
    }
    nftsTransferExempt[target] = state;
  }

  /**
   * @dev Returns the name of the token.
   */
  function name() public view virtual returns (string memory) {
    return _name;
  }

  /**
   * @dev Returns the symbol of the token, usually a shorter version of the
   * name.
   */
  function symbol() public view virtual returns (string memory) {
    return _symbol;
  }

  /**
   * @dev See {IERC20-totalSupply}.
   */
  function totalSupply() public view virtual returns (uint256) {
    return _totalSupply;
  }

  /**
   * @dev See {IERC20-transfer}.
   *
   * Requirements:
   *
   * - `to` cannot be the zero address.
   * - the caller must have a balance of at least `value`.
   */
  function transfer(address to, uint256 value) public virtual returns (bool) {
    address owner = _msgSender();
    _transfer(owner, to, value, true);
    return true;
  }

  /**
   * @dev See {IERC20-allowance}.
   */
  function allowance(
    address owner,
    address spender
  ) public view virtual returns (uint256) {
    return _allowances[owner][spender];
  }

  /**
   * @dev See {IERC20-approve}.
   *
   * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
   * `transferFrom`. This is semantically equivalent to an infinite approval.
   *
   * Requirements:
   *
   * - `spender` cannot be the zero address.
   */
  function approve(
    address spender,
    uint256 value
  ) public virtual returns (bool) {
    address owner = _msgSender();
    _approve(owner, spender, value);
    return true;
  }

  /**
   * @dev See {IERC20-transferFrom}.
   *
   * Emits an {Approval} event indicating the updated allowance. This is not
   * required by the EIP. See the note at the beginning of {ERC20}.
   *
   * NOTE: Does not update the allowance if the current allowance
   * is the maximum `uint256`.
   *
   * Requirements:
   *
   * - `from` and `to` cannot be the zero address.
   * - `from` must have a balance of at least `value`.
   * - the caller must have allowance for ``from``'s tokens of at least
   * `value`.
   */
  function transferFrom(
    address from,
    address to,
    uint256 value
  ) public virtual returns (bool) {
    address spender = _msgSender();
    _spendAllowance(from, spender, value);
    _transfer(from, to, value, true);
    return true;
  }

  /**
   * @dev Moves a `value` amount of tokens from `from` to `to`.
   *
   * This internal function is equivalent to {transfer}, and can be used to
   * e.g. implement automatic token fees, slashing mechanisms, etc.
   *
   * Emits a {Transfer} event.
   *
   * NOTE: This function is not virtual, {_update} should be overridden instead.
   */
  function _transfer(
    address from,
    address to,
    uint256 value,
    bool isNFTTransfer
  ) internal virtual {
    if (from == address(0)) {
      revert ERC20InvalidSender(address(0));
    }
    if (to == address(0)) {
      revert ERC20InvalidReceiver(address(0));
    }
    if (from == to) {
      revert ERC425InvalidSelfTransfer(from, to);
    }
    _update(from, to, value, isNFTTransfer);
  }

  /**
   * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
   * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
   * this function.
   *
   * Emits a {Transfer} event.
   */
  function _update(
    address from,
    address to,
    uint256 value,
    bool isNFTTransfer
  ) internal virtual {
    uint256 fromBalance = _balances[from];
    uint256 toBalance = _balances[to];

    if (fromBalance < value) {
      revert ERC20InsufficientBalance(from, fromBalance, value);
    }
    unchecked {
      // Overflow not possible: value <= fromBalance <= totalSupply.
      _balances[from] = fromBalance - value;

      // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
      _balances[to] += value;
    }

    emit Transfer(from, to, value);

    if (isNFTTransfer) {
      // Preload for gas savings
      bool isFromNFTTransferExempt = nftsTransferExempt[from];
      bool isToNFTTransferExempt = nftsTransferExempt[to];
      uint256 wholeTokens = value / units;
      // Skip burning and/or minting of NFTs wherever needed/possible
      // to save gas, and
      // NFT transfer exempt addresses won't always have/need NFTs corresponding to their ERC20s.
      if (isFromNFTTransferExempt && isToNFTTransferExempt) {
        // Case 1. Both sender and recipient are NFT transfer exempt. So, no NFTs need to be transferred.
        // NOOP.
      } else if (isFromNFTTransferExempt) {
        // Case 2. The sender is NFT transfer exempt, but the recipient is not. Contract should not attempt
        //         to transfer NFTs from the sender, but the recipient should receive NFTs
        //         (by minting) for any whole number increase in their balance.
        // Only cares about whole number increments.
        if (wholeTokens > 0) {
          _mintWithoutCheck(to, wholeTokens);
        }
      } else if (isToNFTTransferExempt) {
        // Case 3. The sender is not NFT transfer exempt, but the recipient is. Contract should attempt
        //         to burn NFTs from the sender, but the recipient should not
        //         receive NFTs(no minting).
        // Only cares about whole number increments.
        if (wholeTokens > 0) {
          _burnBatch(from, wholeTokens);
        }
      } else {
        // Case 4. Neither the sender nor the recipient are NFT transfer exempt.
        // Strategy:
        // a. First deal with the whole tokens: Burn from sender and mint at receiver.
        // b. Look at the fractional part of the value:
        //   (i) If it causes the sender to lose a whole token that was represented by an NFT due to a
        //      fractional part being transferred, burn an additional NFT from the sender.
        //   (ii)) If it causes the receiver to gain a whole new token that should be represented by an NFT
        //      due to receiving a fractional part that completes a whole token, mint an NFT to the recevier.

        if (wholeTokens > 0) {
          _burnBatch(from, wholeTokens);
          _mintWithoutCheck(to, wholeTokens);
        }

        // Look if subtracting the fractional amount from the balance causes the balance to
        // drop below the original balance % units, which represents the number of whole tokens they started with.
        uint256 fractionalAmount = value % units;

        if ((fromBalance - fractionalAmount) / units < (fromBalance / units)) {
          _burnBatch(from, 1);
        }

        // Check if the receive causes the receiver to gain a whole new token that should be represented
        // by an NFT due to receiving a fractional part that completes a whole token.
        if ((toBalance + fractionalAmount) / units > (toBalance / units)) {
          _mintWithoutCheck(to, 1);
        }
      }
    }
  }

  /**
   * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
   *
   * This internal function is equivalent to `approve`, and can be used to
   * e.g. set automatic allowances for certain subsystems, etc.
   *
   * Emits an {Approval} event.
   *
   * Requirements:
   *
   * - `owner` cannot be the zero address.
   * - `spender` cannot be the zero address.
   *
   * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
   */
  function _approve(address owner, address spender, uint256 value) internal {
    _approve(owner, spender, value, true);
  }

  /**
   * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
   *
   * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
   * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
   * `Approval` event during `transferFrom` operations.
   *
   * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
   * true using the following override:
   * ```
   * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
   *     super._approve(owner, spender, value, true);
   * }
   * ```
   *
   * Requirements are the same as {_approve}.
   */
  function _approve(
    address owner,
    address spender,
    uint256 value,
    bool emitEvent
  ) internal virtual {
    if (owner == address(0)) {
      revert ERC20InvalidApprover(address(0));
    }
    if (spender == address(0)) {
      revert ERC20InvalidSpender(address(0));
    }
    _allowances[owner][spender] = value;
    if (emitEvent) {
      emit Approval(owner, spender, value);
    }
  }

  /**
   * @dev Updates `owner` s allowance for `spender` based on spent `value`.
   *
   * Does not update the allowance value in case of infinite allowance.
   * Revert if not enough allowance is available.
   *
   * Does not emit an {Approval} event.
   */
  function _spendAllowance(
    address owner,
    address spender,
    uint256 value
  ) internal virtual {
    uint256 currentAllowance = allowance(owner, spender);
    if (currentAllowance != type(uint256).max) {
      if (currentAllowance < value) {
        revert ERC20InsufficientAllowance(spender, currentAllowance, value);
      }
      unchecked {
        _approve(owner, spender, currentAllowance - value, false);
      }
    }
  }

  /**
   * @dev Returns the starting token ID.
   * To change the starting token ID, please override this function.
   */
  function _startTokenId() internal pure virtual returns (uint256) {
    return 1;
  }

  /**
   * @dev Returns the next token ID to be minted.
   */
  function _nextTokenId() internal view returns (uint256) {
    return _currentIndex;
  }

  /**
   * @dev Returns the total amount of tokens minted in the contract.
   */
  function _totalMinted() internal view returns (uint256) {
    return _nextTokenId() - _startTokenId();
  }

  /// @notice tokenURI must be implemented by child contract
  function tokenURI(uint256 id_) public view virtual returns (string memory);

  /**
   * @dev Returns true if the account owns the `id` token.
   */
  function isOwnerOf(
    address account,
    uint256 id
  ) public view virtual override returns (bool) {
    return _owned[account].get(id);
  }

  /**
   * @dev See {IERC165-supportsInterface}.
   */
  function supportsInterface(
    bytes4 interfaceId
  ) public view virtual override(ERC165, IERC165) returns (bool) {
    return
      interfaceId == type(IERC1155).interfaceId ||
      interfaceId == type(IERC1155MetadataURI).interfaceId ||
      interfaceId == type(IERC425).interfaceId ||
      super.supportsInterface(interfaceId);
  }

  /**
   * @dev See {IERC1155MetadataURI-uri}.
   *
   * This implementation returns the same URI for *all* token types. It relies
   * on the token type ID substitution mechanism
   * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP].
   *
   * Clients calling this function must replace the `\{id\}` substring with the
   * actual token type ID.
   */
  function uri(uint256) public view virtual override returns (string memory) {
    return _uri;
  }

  /**
   * @dev See {IERC1155-balanceOf}.
   *
   * Requirements:
   *
   * - `account` cannot be the zero address.
   */
  function balanceOf(
    address account,
    uint256 id
  ) public view virtual override returns (uint256) {
    if (account == address(0)) {
      revert BalanceQueryForZeroAddress();
    }
    if (_owned[account].get(id)) {
      return 1;
    } else {
      return 0;
    }
  }

  /**
   * @dev See {IERC1155-balanceOfBatch}.
   *
   * Requirements:
   *
   * - `accounts` and `ids` must have the same length.
   */
  function balanceOfBatch(
    address[] memory accounts,
    uint256[] memory ids
  ) public view virtual override returns (uint256[] memory) {
    if (accounts.length != ids.length) {
      revert InputLengthMistmatch();
    }

    uint256[] memory batchBalances = new uint256[](accounts.length);

    for (uint256 i = 0; i < accounts.length; ++i) {
      batchBalances[i] = balanceOf(accounts[i], ids[i]);
    }

    return batchBalances;
  }

  /**
   * @dev See {IERC1155-setApprovalForAll}.
   */
  function setApprovalForAll(
    address operator,
    bool approved
  ) public virtual override {
    _setApprovalForAll(_msgSender(), operator, approved);
  }

  /**
   * @dev See {IERC1155-isApprovedForAll}.
   */
  function isApprovedForAll(
    address account,
    address operator
  ) public view virtual override returns (bool) {
    return _operatorApprovals[account][operator];
  }

  /**
   * @dev See {IERC1155-safeTransferFrom}.
   */
  function safeTransferFrom(
    address from,
    address to,
    uint256 id,
    uint256 amount,
    bytes memory data
  ) public virtual override {
    if (nftsTransferExempt[to]) {
      revert NFTTransferToNFTExemptAddress(to);
    } else if (from == _msgSender() || isApprovedForAll(from, _msgSender())) {
      _safeTransferFrom(from, to, id, amount, data, true);
    } else {
      revert TransferCallerNotOwnerNorApproved();
    }
  }

  /**
   * @dev See {IERC1155-safeBatchTransferFrom}.
   */
  function safeBatchTransferFrom(
    address from,
    address to,
    uint256[] memory ids,
    uint256[] memory amounts,
    bytes memory data
  ) public virtual override {
    if (!(from == _msgSender() || isApprovedForAll(from, _msgSender()))) {
      revert TransferCallerNotOwnerNorApproved();
    }
    _safeBatchTransferFrom(from, to, ids, amounts, data);
  }

  /**
   * @dev Transfers `amount` tokens of token type `id` from `from` to `to`.
   *
   * Emits a {TransferSingle} event.
   *
   * Requirements:
   *
   * - `to` cannot be the zero address.
   * - `amount` cannot be zero.
   * - `from` must have a balance of tokens of type `id` of at least `amount`.
   * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
   * acceptance magic value.
   */
  function _safeTransferFrom(
    address from,
    address to,
    uint256 id,
    uint256 amount,
    bytes memory data,
    bool approvalCheck
  ) internal virtual {
    if (to == address(0)) {
      revert TransferToZeroAddress();
    }

    address operator = _msgSender();
    uint256[] memory ids = _asSingletonArray(id);

    _beforeTokenTransfer(operator, from, to, ids);

    if (amount == 1 && _owned[from].get(id)) {
      _owned[from].unset(id);
      _owned[to].set(id);
      _transfer(from, to, 1 * units, false);
    } else {
      revert TransferFromIncorrectOwnerOrInvalidAmount();
    }

    emit TransferSingle(operator, from, to, id, amount);

    _afterTokenTransfer(operator, from, to, ids);
    if (approvalCheck) {
      _doSafeTransferAcceptanceCheck(operator, from, to, id, amount, data);
    }
  }

  /**
   * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}.
   *
   * Emits a {TransferBatch} event.
   *
   * Requirements:
   *
   * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
   * acceptance magic value.
   */
  function _safeBatchTransferFrom(
    address from,
    address to,
    uint256[] memory ids,
    uint256[] memory amounts,
    bytes memory data
  ) internal virtual {
    if (ids.length != amounts.length) {
      revert InputLengthMistmatch();
    }

    if (to == address(0)) {
      revert TransferToZeroAddress();
    }
    address operator = _msgSender();

    _beforeTokenTransfer(operator, from, to, ids);

    for (uint256 i = 0; i < ids.length; ++i) {
      uint256 id = ids[i];
      uint256 amount = amounts[i];

      if (amount == 1 && _owned[from].get(id)) {
        _owned[from].unset(id);
        _owned[to].set(id);
      } else {
        revert TransferFromIncorrectOwnerOrInvalidAmount();
      }
    }

    _transfer(from, to, 1 * units * ids.length, false);

    emit Transfer(from, to, 1 * units * ids.length);

    emit TransferBatch(operator, from, to, ids, amounts);

    _afterTokenTransfer(operator, from, to, ids);

    _doSafeBatchTransferAcceptanceCheck(operator, from, to, ids, amounts, data);
  }

  /**
   * @dev Sets a new URI for all token types, by relying on the token type ID
   * substitution mechanism
   * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP].
   *
   * By this mechanism, any occurrence of the `\{id\}` substring in either the
   * URI or any of the amounts in the JSON file at said URI will be replaced by
   * clients with the token type ID.
   *
   * For example, the `https://token-cdn-domain/\{id\}.json` URI would be
   * interpreted by clients as
   * `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json`
   * for token type ID 0x4cce0.
   *
   * See {uri}.
   *
   * Because these URIs cannot be meaningfully represented by the {URI} event,
   * this function emits no events.
   */
  function _setURI(string memory newuri) internal virtual {
    _uri = newuri;
  }

  function _mint(address to, uint256 amount) internal virtual {
    _mint(to, amount, "");
  }

  /**
   * @dev Creates `amount` tokens, and assigns them to `to`.
   *
   * Emits a {TransferBatch} event.
   *
   * Requirements:
   *
   * - `to` cannot be the zero address.
   * - `amount` cannot be zero.
   * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
   * acceptance magic value.
   */
  function _mint(
    address to,
    uint256 amount,
    bytes memory data
  ) internal virtual {
    (uint256[] memory ids, uint256[] memory amounts) = _mintWithoutCheck(
      to,
      amount
    );

    uint256 end = _currentIndex;
    _doSafeBatchTransferAcceptanceCheck(
      _msgSender(),
      address(0),
      to,
      ids,
      amounts,
      data
    );
    if (_currentIndex != end) revert();
  }

  function _mintWithoutCheck(
    address to,
    uint256 amount
  ) internal virtual returns (uint256[] memory ids, uint256[] memory amounts) {
    if (to == address(0)) {
      revert MintToZeroAddress();
    }
    if (amount == 0) {
      revert MintZeroQuantity();
    }

    address operator = _msgSender();

    ids = new uint256[](amount);
    amounts = new uint256[](amount);
    uint256 startTokenId = _nextTokenId();

    unchecked {
      require(type(uint256).max - amount >= startTokenId);
      for (uint256 i = 0; i < amount; i++) {
        ids[i] = startTokenId + i;
        amounts[i] = 1;
      }
    }

    _beforeTokenTransfer(operator, address(0), to, ids);

    _owned[to].setBatch(startTokenId, amount);
    _currentIndex += amount;

    emit TransferBatch(operator, address(0), to, ids, amounts);

    _afterTokenTransfer(operator, address(0), to, ids);
  }

  /**
   * @dev Destroys token of token type `id` from `from`
   *
   * Emits a {TransferSingle} event.
   *
   * Requirements:
   *
   * - `from` cannot be the zero address.
   * - `from` must have the token of token type `id`.
   */
  function _burn(address from, uint256 id) internal virtual {
    if (from == address(0)) {
      revert BurnFromZeroAddress();
    }

    address operator = _msgSender();
    uint256[] memory ids = _asSingletonArray(id);

    _beforeTokenTransfer(operator, from, address(0), ids);

    if (!_owned[from].get(id)) {
      revert BurnFromNonOnwerAddress();
    }

    _owned[from].unset(id);

    emit TransferSingle(operator, from, address(0), id, 1);

    _afterTokenTransfer(operator, from, address(0), ids);
  }

  /**
   * @dev Destroys tokens of token types in `ids` from `from`
   *
   * Emits a {TransferBatch} event.
   *
   * Requirements:
   *
   * - `from` cannot be the zero address.
   * - `from` must have the token of token types in `ids`.
   */
  function _burnBatch(address from, uint256[] memory ids) internal virtual {
    if (from == address(0)) {
      revert BurnFromZeroAddress();
    }

    address operator = _msgSender();

    uint256[] memory amounts = new uint256[](ids.length);

    _beforeTokenTransfer(operator, from, address(0), ids);

    unchecked {
      for (uint256 i = 0; i < ids.length; i++) {
        amounts[i] = 1;
        uint256 id = ids[i];
        if (!_owned[from].get(id)) {
          revert BurnFromNonOnwerAddress();
        }
        _owned[from].unset(id);
      }
    }

    emit TransferBatch(operator, from, address(0), ids, amounts);

    _afterTokenTransfer(operator, from, address(0), ids);
  }

  function _burnBatch(address from, uint256 amount) internal virtual {
    if (from == address(0)) {
      revert BurnFromZeroAddress();
    }

    address operator = _msgSender();

    uint256 searchFrom = _nextTokenId();

    uint256[] memory amounts = new uint256[](amount);
    uint256[] memory ids = new uint256[](amount);

    unchecked {
      for (uint256 i = 0; i < amount; i++) {
        amounts[i] = 1;
        uint256 id = _owned[from].findLastSet(searchFrom);
        ids[i] = id;
        _owned[from].unset(id);
        searchFrom = id;
      }
    }

    _beforeTokenTransfer(operator, from, address(0), ids);

    if (amount == 1) emit TransferSingle(operator, from, address(0), ids[0], 1);
    else emit TransferBatch(operator, from, address(0), ids, amounts);

    _afterTokenTransfer(operator, from, address(0), ids);
  }

  /**
   * @dev Approve `operator` to operate on all of `owner` tokens
   *
   * Emits an {ApprovalForAll} event.
   */
  function _setApprovalForAll(
    address owner,
    address operator,
    bool approved
  ) internal virtual {
    require(owner != operator, "ERC1155: setting approval status for self");
    _operatorApprovals[owner][operator] = approved;
    emit ApprovalForAll(owner, operator, approved);
  }

  /**
   * @dev Hook that is called before any token transfer. This includes minting
   * and burning, as well as batched variants.
   *
   * The same hook is called on both single and batched variants. For single
   * transfers, the length of the `ids` and `amounts` arrays will be 1.
   *
   * Calling conditions (for each `id` and `amount` pair):
   *
   * - When `from` and `to` are both non-zero, `amount` of ``from``'s tokens
   * of token type `id` will be  transferred to `to`.
   * - When `from` is zero, `amount` tokens of token type `id` will be minted
   * for `to`.
   * - when `to` is zero, `amount` of ``from``'s tokens of token type `id`
   * will be burned.
   * - `from` and `to` are never both zero.
   * - `ids` and `amounts` have the same, non-zero length.
   *
   * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
   */
  function _beforeTokenTransfer(
    address operator,
    address from,
    address to,
    uint256[] memory ids
  ) internal virtual {}

  /**
   * @dev Hook that is called after any token transfer. This includes minting
   * and burning, as well as batched variants.
   *
   * The same hook is called on both single and batched variants. For single
   * transfers, the length of the `id` and `amount` arrays will be 1.
   *
   * Calling conditions (for each `id` and `amount` pair):
   *
   * - When `from` and `to` are both non-zero, `amount` of ``from``'s tokens
   * of token type `id` will be  transferred to `to`.
   * - When `from` is zero, `amount` tokens of token type `id` will be minted
   * for `to`.
   * - when `to` is zero, `amount` of ``from``'s tokens of token type `id`
   * will be burned.
   * - `from` and `to` are never both zero.
   * - `ids` and `amounts` have the same, non-zero length.
   *
   * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
   */
  function _afterTokenTransfer(
    address operator,
    address from,
    address to,
    uint256[] memory ids
  ) internal virtual {}

  function _doSafeTransferAcceptanceCheck(
    address operator,
    address from,
    address to,
    uint256 id,
    uint256 amount,
    bytes memory data
  ) private {
    if (to.isContract()) {
      try
        IERC1155Receiver(to).onERC1155Received(operator, from, id, amount, data)
      returns (bytes4 response) {
        if (response != IERC1155Receiver.onERC1155Received.selector) {
          revert TransferToNonERC1155ReceiverImplementer();
        }
      } catch Error(string memory reason) {
        revert(reason);
      } catch {
        revert TransferToNonERC1155ReceiverImplementer();
      }
    }
  }

  function _doSafeBatchTransferAcceptanceCheck(
    address operator,
    address from,
    address to,
    uint256[] memory ids,
    uint256[] memory amounts,
    bytes memory data
  ) private {
    if (to.isContract()) {
      try
        IERC1155Receiver(to).onERC1155BatchReceived(
          operator,
          from,
          ids,
          amounts,
          data
        )
      returns (bytes4 response) {
        if (response != IERC1155Receiver.onERC1155BatchReceived.selector) {
          revert TransferToNonERC1155ReceiverImplementer();
        }
      } catch Error(string memory reason) {
        revert(reason);
      } catch {
        revert TransferToNonERC1155ReceiverImplementer();
      }
    }
  }

  function _asSingletonArray(
    uint256 element
  ) private pure returns (uint256[] memory array) {
    array = new uint256[](1);
    array[0] = element;
  }

  /**
   * @dev Returns the number of ERC20 tokens owned by `owner`.
   */
  function balanceOf(address owner) public view virtual returns (uint256) {
    return _balances[owner];
  }

  /**
   * @dev Returns the number of tokens owned by `owner`.
   */
  function totalNFTsOwned(address owner) public view virtual returns (uint256) {
    return balanceOf(owner, _startTokenId(), _nextTokenId());
  }

  /**
   * @dev Returns the number of tokens owned by `owner`,
   * in the range [`start`, `stop`)
   * (i.e. `start <= tokenId < stop`).
   *
   * Requirements:
   *
   * - `start < stop`
   */
  function balanceOf(
    address owner,
    uint256 start,
    uint256 stop
  ) public view virtual override returns (uint256) {
    return _owned[owner].popCount(start, stop - start);
  }

  /**
   * @dev Returns an array of token IDs owned by `owner`,
   * in the range [`start`, `stop`)
   * (i.e. `start <= tokenId < stop`).
   *
   * This function allows for tokens to be queried if the collection
   * grows too big for a single call of {ERC1155DelataQueryable-tokensOfOwner}.
   *
   * Requirements:
   *
   * - `start < stop`
   */
  function tokensOfOwnerIn(
    address owner,
    uint256 start,
    uint256 stop
  ) public view virtual override returns (uint256[] memory) {
    unchecked {
      if (start >= stop) revert InvalidQueryRange();

      // Set `start = max(start, _startTokenId())`.
      if (start < _startTokenId()) {
        start = _startTokenId();
      }

      // Set `stop = min(stop, stopLimit)`.
      uint256 stopLimit = _nextTokenId();
      if (stop > stopLimit) {
        stop = stopLimit;
      }

      uint256 tokenIdsLength;
      if (start < stop) {
        tokenIdsLength = balanceOf(owner, start, stop);
      } else {
        tokenIdsLength = 0;
      }

      uint256[] memory tokenIds = new uint256[](tokenIdsLength);

      LibBitmap.Bitmap storage bmap = _owned[owner];

      for (
        (uint256 i, uint256 tokenIdsIdx) = (start, 0);
        tokenIdsIdx != tokenIdsLength;
        ++i
      ) {
        if (bmap.get(i)) {
          tokenIds[tokenIdsIdx++] = i;
        }
      }
      return tokenIds;
    }
  }

  /**
   * @dev Returns an array of token IDs owned by `owner`.
   *
   * This function scans the ownership mapping and is O(`totalSupply`) in complexity.
   * It is meant to be called off-chain.
   *
   * See {ERC425Queryable-tokensOfOwnerIn} for splitting the scan into
   * multiple smaller scans if the collection is large enough to cause
   * an out-of-gas error (10K collections should be fine).
   */
  function tokensOfOwner(
    address owner
  ) public view virtual override returns (uint256[] memory) {
    if (_totalMinted() == 0) {
      return new uint256[](0);
    }
    return tokensOfOwnerIn(owner, _startTokenId(), _nextTokenId());
  }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts
pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
  /**
   * @dev Returns true if `account` is a contract.
   *
   * [IMPORTANT]
   * ====
   * It is unsafe to assume that an address for which this function returns
   * false is an externally-owned account (EOA) and not a contract.
   *
   * Among others, `isContract` will return false for the following
   * types of addresses:
   *
   *  - an externally-owned account
   *  - a contract in construction
   *  - an address where a contract will be created
   *  - an address where a contract lived, but was destroyed
   * ====
   */
  function isContract(address account) internal view returns (bool) {
    // This method relies on extcodesize, which returns 0 for contracts in
    // construction, since the code is only stored at the end of the
    // constructor execution.

    uint256 size;
    assembly {
      size := extcodesize(account)
    }
    return size > 0;
  }

  /**
   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
   * `recipient`, forwarding all available gas and reverting on errors.
   *
   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
   * of certain opcodes, possibly making contracts go over the 2300 gas limit
   * imposed by `transfer`, making them unable to receive funds via
   * `transfer`. {sendValue} removes this limitation.
   *
   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
   *
   * IMPORTANT: because control is transferred to `recipient`, care must be
   * taken to not create reentrancy vulnerabilities. Consider using
   * {ReentrancyGuard} or the
   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
   */
  function sendValue(address payable recipient, uint256 amount) internal {
    require(address(this).balance >= amount, "Address: insufficient balance");

    (bool success, ) = recipient.call{value: amount}("");
    require(
      success,
      "Address: unable to send value, recipient may have reverted"
    );
  }

  /**
   * @dev Performs a Solidity function call using a low level `call`. A
   * plain `call` is an unsafe replacement for a function call: use this
   * function instead.
   *
   * If `target` reverts with a revert reason, it is bubbled up by this
   * function (like regular Solidity function calls).
   *
   * Returns the raw returned data. To convert to the expected return value,
   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
   *
   * Requirements:
   *
   * - `target` must be a contract.
   * - calling `target` with `data` must not revert.
   *
   * _Available since v3.1._
   */
  function functionCall(
    address target,
    bytes memory data
  ) internal returns (bytes memory) {
    return functionCall(target, data, "Address: low-level call failed");
  }

  /**
   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
   * `errorMessage` as a fallback revert reason when `target` reverts.
   *
   * _Available since v3.1._
   */
  function functionCall(
    address target,
    bytes memory data,
    string memory errorMessage
  ) internal returns (bytes memory) {
    return functionCallWithValue(target, data, 0, errorMessage);
  }

  /**
   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
   * but also transferring `value` wei to `target`.
   *
   * Requirements:
   *
   * - the calling contract must have an ETH balance of at least `value`.
   * - the called Solidity function must be `payable`.
   *
   * _Available since v3.1._
   */
  function functionCallWithValue(
    address target,
    bytes memory data,
    uint256 value
  ) internal returns (bytes memory) {
    return
      functionCallWithValue(
        target,
        data,
        value,
        "Address: low-level call with value failed"
      );
  }

  /**
   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
   * with `errorMessage` as a fallback revert reason when `target` reverts.
   *
   * _Available since v3.1._
   */
  function functionCallWithValue(
    address target,
    bytes memory data,
    uint256 value,
    string memory errorMessage
  ) internal returns (bytes memory) {
    require(
      address(this).balance >= value,
      "Address: insufficient balance for call"
    );
    require(isContract(target), "Address: call to non-contract");

    (bool success, bytes memory returndata) = target.call{value: value}(data);
    return verifyCallResult(success, returndata, errorMessage);
  }

  /**
   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
   * but performing a static call.
   *
   * _Available since v3.3._
   */
  function functionStaticCall(
    address target,
    bytes memory data
  ) internal view returns (bytes memory) {
    return
      functionStaticCall(target, data, "Address: low-level static call failed");
  }

  /**
   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
   * but performing a static call.
   *
   * _Available since v3.3._
   */
  function functionStaticCall(
    address target,
    bytes memory data,
    string memory errorMessage
  ) internal view returns (bytes memory) {
    require(isContract(target), "Address: static call to non-contract");

    (bool success, bytes memory returndata) = target.staticcall(data);
    return verifyCallResult(success, returndata, errorMessage);
  }

  /**
   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
   * but performing a delegate call.
   *
   * _Available since v3.4._
   */
  function functionDelegateCall(
    address target,
    bytes memory data
  ) internal returns (bytes memory) {
    return
      functionDelegateCall(
        target,
        data,
        "Address: low-level delegate call failed"
      );
  }

  /**
   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
   * but performing a delegate call.
   *
   * _Available since v3.4._
   */
  function functionDelegateCall(
    address target,
    bytes memory data,
    string memory errorMessage
  ) internal returns (bytes memory) {
    require(isContract(target), "Address: delegate call to non-contract");

    (bool success, bytes memory returndata) = target.delegatecall(data);
    return verifyCallResult(success, returndata, errorMessage);
  }

  /**
   * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
   * revert reason using the provided one.
   *
   * _Available since v4.3._
   */
  function verifyCallResult(
    bool success,
    bytes memory returndata,
    string memory errorMessage
  ) internal pure returns (bytes memory) {
    if (success) {
      return returndata;
    } else {
      // Look for revert reason and bubble it up if present
      if (returndata.length > 0) {
        // The easiest way to bubble the revert reason is using memory via assembly

        assembly {
          let returndata_size := mload(returndata)
          revert(add(32, returndata), returndata_size)
        }
      } else {
        revert(errorMessage);
      }
    }
  }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IERC425 {
  /**
   * The caller must own the token or be an approved operator.
   */
  error ApprovalCallerNotOwnerNorApproved();

  /**
   * Cannot query the balance for the zero address.
   */
  error BalanceQueryForZeroAddress();

  /**
   * Cannot mint to the zero address.
   */
  error MintToZeroAddress();

  /**
   * The quantity of tokens minted must be more than zero.
   */
  error MintZeroQuantity();

  /**
   * Cannot burn from the zero address.
   */
  error BurnFromZeroAddress();

  /**
   * Cannot burn from the address that doesn't owne the token.
   */
  error BurnFromNonOnwerAddress();

  /**
   * The caller must own the token or be an approved operator.
   */
  error TransferCallerNotOwnerNorApproved();

  /**
   * The token must be owned by `from` or the `amount` is not 1.
   */
  error TransferFromIncorrectOwnerOrInvalidAmount();

  /**
   * Cannot safely transfer to a contract that does not implement the
   * ERC1155Receiver interface.
   */
  error TransferToNonERC1155ReceiverImplementer();

  /**
   * Cannot transfer to the zero address.
   */
  error TransferToZeroAddress();

  /**
   * The length of input arraies is not matching.
   */
  error InputLengthMistmatch();

  error InvalidQueryRange();

  error DecimalsTooLow();

  error ERC425InvalidSelfTransfer(address from, address to);

  error NFTTransferToNFTExemptAddress(address to);

  error CannotRemoveFromNFTsTransferExempt();

  error InvalidNFTId();

  function isOwnerOf(address account, uint256 id) external view returns (bool);

  function balanceOf(
    address owner,
    uint256 start,
    uint256 stop
  ) external view returns (uint256);

  function totalNFTsOwned(address owner) external view returns (uint256);

  function tokensOfOwnerIn(
    address owner,
    uint256 start,
    uint256 stop
  ) external view returns (uint256[] memory);

  function tokensOfOwner(
    address owner
  ) external view returns (uint256[] memory);

  function tokenURI(uint256 id_) external view returns (string memory);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

import {LibBit} from "./LibBit.sol";

/// @notice Library for storage of packed unsigned booleans.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibBitmap.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibBitmap.sol)
/// @author Modified from Solidity-Bits (https://github.com/estarriolvetch/solidity-bits/blob/main/contracts/BitMaps.sol)
library LibBitmap {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The constant returned when a bitmap scan does not find a result.
    uint256 internal constant NOT_FOUND = type(uint256).max;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STRUCTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev A bitmap in storage.
    struct Bitmap {
        mapping(uint256 => uint256) map;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         OPERATIONS                         */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the boolean value of the bit at `index` in `bitmap`.
    function get(Bitmap storage bitmap, uint256 index) internal view returns (bool isSet) {
        // It is better to set `isSet` to either 0 or 1, than zero vs non-zero.
        // Both cost the same amount of gas, but the former allows the returned value
        // to be reused without cleaning the upper bits.
        uint256 b = (bitmap.map[index >> 8] >> (index & 0xff)) & 1;
        /// @solidity memory-safe-assembly
        assembly {
            isSet := b
        }
    }

    /// @dev Updates the bit at `index` in `bitmap` to true.
    function set(Bitmap storage bitmap, uint256 index) internal {
        bitmap.map[index >> 8] |= (1 << (index & 0xff));
    }

    /// @dev Updates the bit at `index` in `bitmap` to false.
    function unset(Bitmap storage bitmap, uint256 index) internal {
        bitmap.map[index >> 8] &= ~(1 << (index & 0xff));
    }

    /// @dev Flips the bit at `index` in `bitmap`.
    /// Returns the boolean result of the flipped bit.
    function toggle(Bitmap storage bitmap, uint256 index) internal returns (bool newIsSet) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x20, bitmap.slot)
            mstore(0x00, shr(8, index))
            let storageSlot := keccak256(0x00, 0x40)
            let shift := and(index, 0xff)
            let storageValue := xor(sload(storageSlot), shl(shift, 1))
            // It makes sense to return the `newIsSet`,
            // as it allow us to skip an additional warm `sload`,
            // and it costs minimal gas (about 15),
            // which may be optimized away if the returned value is unused.
            newIsSet := and(1, shr(shift, storageValue))
            sstore(storageSlot, storageValue)
        }
    }

    /// @dev Updates the bit at `index` in `bitmap` to `shouldSet`.
    function setTo(Bitmap storage bitmap, uint256 index, bool shouldSet) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x20, bitmap.slot)
            mstore(0x00, shr(8, index))
            let storageSlot := keccak256(0x00, 0x40)
            let storageValue := sload(storageSlot)
            let shift := and(index, 0xff)
            sstore(
                storageSlot,
                // Unsets the bit at `shift` via `and`, then sets its new value via `or`.
                or(and(storageValue, not(shl(shift, 1))), shl(shift, iszero(iszero(shouldSet))))
            )
        }
    }

    /// @dev Consecutively sets `amount` of bits starting from the bit at `start`.
    function setBatch(Bitmap storage bitmap, uint256 start, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            let max := not(0)
            let shift := and(start, 0xff)
            mstore(0x20, bitmap.slot)
            mstore(0x00, shr(8, start))
            if iszero(lt(add(shift, amount), 257)) {
                let storageSlot := keccak256(0x00, 0x40)
                sstore(storageSlot, or(sload(storageSlot), shl(shift, max)))
                let bucket := add(mload(0x00), 1)
                let bucketEnd := add(mload(0x00), shr(8, add(amount, shift)))
                amount := and(add(amount, shift), 0xff)
                shift := 0
                for {} iszero(eq(bucket, bucketEnd)) { bucket := add(bucket, 1) } {
                    mstore(0x00, bucket)
                    sstore(keccak256(0x00, 0x40), max)
                }
                mstore(0x00, bucket)
            }
            let storageSlot := keccak256(0x00, 0x40)
            sstore(storageSlot, or(sload(storageSlot), shl(shift, shr(sub(256, amount), max))))
        }
    }

    /// @dev Consecutively unsets `amount` of bits starting from the bit at `start`.
    function unsetBatch(Bitmap storage bitmap, uint256 start, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            let shift := and(start, 0xff)
            mstore(0x20, bitmap.slot)
            mstore(0x00, shr(8, start))
            if iszero(lt(add(shift, amount), 257)) {
                let storageSlot := keccak256(0x00, 0x40)
                sstore(storageSlot, and(sload(storageSlot), not(shl(shift, not(0)))))
                let bucket := add(mload(0x00), 1)
                let bucketEnd := add(mload(0x00), shr(8, add(amount, shift)))
                amount := and(add(amount, shift), 0xff)
                shift := 0
                for {} iszero(eq(bucket, bucketEnd)) { bucket := add(bucket, 1) } {
                    mstore(0x00, bucket)
                    sstore(keccak256(0x00, 0x40), 0)
                }
                mstore(0x00, bucket)
            }
            let storageSlot := keccak256(0x00, 0x40)
            sstore(
                storageSlot, and(sload(storageSlot), not(shl(shift, shr(sub(256, amount), not(0)))))
            )
        }
    }

    /// @dev Returns number of set bits within a range by
    /// scanning `amount` of bits starting from the bit at `start`.
    function popCount(Bitmap storage bitmap, uint256 start, uint256 amount)
        internal
        view
        returns (uint256 count)
    {
        unchecked {
            uint256 bucket = start >> 8;
            uint256 shift = start & 0xff;
            if (!(amount + shift < 257)) {
                count = LibBit.popCount(bitmap.map[bucket] >> shift);
                uint256 bucketEnd = bucket + ((amount + shift) >> 8);
                amount = (amount + shift) & 0xff;
                shift = 0;
                for (++bucket; bucket != bucketEnd; ++bucket) {
                    count += LibBit.popCount(bitmap.map[bucket]);
                }
            }
            count += LibBit.popCount((bitmap.map[bucket] >> shift) << (256 - amount));
        }
    }

    /// @dev Returns the index of the most significant set bit in `[0..upTo]`.
    /// If no set bit is found, returns `NOT_FOUND`.
    function findLastSet(Bitmap storage bitmap, uint256 upTo)
        internal
        view
        returns (uint256 setBitIndex)
    {
        uint256 bucket;
        uint256 bucketBits;
        /// @solidity memory-safe-assembly
        assembly {
            setBitIndex := not(0)
            bucket := shr(8, upTo)
            mstore(0x00, bucket)
            mstore(0x20, bitmap.slot)
            let offset := and(0xff, not(upTo)) // `256 - (255 & upTo) - 1`.
            bucketBits := shr(offset, shl(offset, sload(keccak256(0x00, 0x40))))
            if iszero(or(bucketBits, iszero(bucket))) {
                for {} 1 {} {
                    bucket := add(bucket, setBitIndex) // `sub(bucket, 1)`.
                    mstore(0x00, bucket)
                    bucketBits := sload(keccak256(0x00, 0x40))
                    if or(bucketBits, iszero(bucket)) { break }
                }
            }
        }
        if (bucketBits != 0) {
            setBitIndex = (bucket << 8) | LibBit.fls(bucketBits);
            /// @solidity memory-safe-assembly
            assembly {
                setBitIndex := or(setBitIndex, sub(0, gt(setBitIndex, upTo)))
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (token/ERC1155/IERC1155.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC1155 compliant contract, as defined in the
 * https://eips.ethereum.org/EIPS/eip-1155[EIP].
 */
interface IERC1155 is IERC165 {
    /**
     * @dev Emitted when `value` amount of tokens of type `id` are transferred from `from` to `to` by `operator`.
     */
    event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);

    /**
     * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
     * transfers.
     */
    event TransferBatch(
        address indexed operator,
        address indexed from,
        address indexed to,
        uint256[] ids,
        uint256[] values
    );

    /**
     * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
     * `approved`.
     */
    event ApprovalForAll(address indexed account, address indexed operator, bool approved);

    /**
     * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
     *
     * If an {URI} event was emitted for `id`, the standard
     * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
     * returned by {IERC1155MetadataURI-uri}.
     */
    event URI(string value, uint256 indexed id);

    /**
     * @dev Returns the value of tokens of token type `id` owned by `account`.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function balanceOf(address account, uint256 id) external view returns (uint256);

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
     *
     * Requirements:
     *
     * - `accounts` and `ids` must have the same length.
     */
    function balanceOfBatch(
        address[] calldata accounts,
        uint256[] calldata ids
    ) external view returns (uint256[] memory);

    /**
     * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
     *
     * Emits an {ApprovalForAll} event.
     *
     * Requirements:
     *
     * - `operator` cannot be the caller.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
     *
     * See {setApprovalForAll}.
     */
    function isApprovedForAll(address account, address operator) external view returns (bool);

    /**
     * @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`.
     *
     * WARNING: This function can potentially allow a reentrancy attack when transferring tokens
     * to an untrusted contract, when invoking {onERC1155Received} on the receiver.
     * Ensure to follow the checks-effects-interactions pattern and consider employing
     * reentrancy guards when interacting with untrusted contracts.
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
     * - `from` must have a balance of tokens of type `id` of at least `value` amount.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
     * acceptance magic value.
     */
    function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes calldata data) external;

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
     *
     * WARNING: This function can potentially allow a reentrancy attack when transferring tokens
     * to an untrusted contract, when invoking {onERC1155BatchReceived} on the receiver.
     * Ensure to follow the checks-effects-interactions pattern and consider employing
     * reentrancy guards when interacting with untrusted contracts.
     *
     * Emits either a {TransferSingle} or a {TransferBatch} event, depending on the length of the array arguments.
     *
     * Requirements:
     *
     * - `ids` and `values` must have the same length.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
     * acceptance magic value.
     */
    function safeBatchTransferFrom(
        address from,
        address to,
        uint256[] calldata ids,
        uint256[] calldata values,
        bytes calldata data
    ) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/extensions/IERC1155MetadataURI.sol)

pragma solidity ^0.8.20;

import {IERC1155} from "../IERC1155.sol";

/**
 * @dev Interface of the optional ERC1155MetadataExtension interface, as defined
 * in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[EIP].
 */
interface IERC1155MetadataURI is IERC1155 {
    /**
     * @dev Returns the URI for token type `id`.
     *
     * If the `\{id\}` substring is present in the URI, it must be replaced by
     * clients with the actual token type ID.
     */
    function uri(uint256 id) external view returns (string memory);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/IERC1155Receiver.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Interface that must be implemented by smart contracts in order to receive
 * ERC-1155 token transfers.
 */
interface IERC1155Receiver is IERC165 {
    /**
     * @dev Handles the receipt of a single ERC1155 token type. This function is
     * called at the end of a `safeTransferFrom` after the balance has been updated.
     *
     * NOTE: To accept the transfer, this must return
     * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
     * (i.e. 0xf23a6e61, or its own function selector).
     *
     * @param operator The address which initiated the transfer (i.e. msg.sender)
     * @param from The address which previously owned the token
     * @param id The ID of the token being transferred
     * @param value The amount of tokens being transferred
     * @param data Additional data with no specified format
     * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
     */
    function onERC1155Received(
        address operator,
        address from,
        uint256 id,
        uint256 value,
        bytes calldata data
    ) external returns (bytes4);

    /**
     * @dev Handles the receipt of a multiple ERC1155 token types. This function
     * is called at the end of a `safeBatchTransferFrom` after the balances have
     * been updated.
     *
     * NOTE: To accept the transfer(s), this must return
     * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
     * (i.e. 0xbc197c81, or its own function selector).
     *
     * @param operator The address which initiated the batch transfer (i.e. msg.sender)
     * @param from The address which previously owned the token
     * @param ids An array containing ids of each token being transferred (order and length must match values array)
     * @param values An array containing amounts of each token being transferred (order and length must match ids array)
     * @param data Additional data with no specified format
     * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
     */
    function onERC1155BatchReceived(
        address operator,
        address from,
        uint256[] calldata ids,
        uint256[] calldata values,
        bytes calldata data
    ) external returns (bytes4);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Library for bit twiddling and boolean operations.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibBit.sol)
/// @author Inspired by (https://graphics.stanford.edu/~seander/bithacks.html)
library LibBit {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  BIT TWIDDLING OPERATIONS                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Find last set.
    /// Returns the index of the most significant bit of `x`,
    /// counting from the least significant bit position.
    /// If `x` is zero, returns 256.
    function fls(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := or(shl(8, iszero(x)), shl(7, lt(0xffffffffffffffffffffffffffffffff, x)))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0x0706060506020504060203020504030106050205030304010505030400000000))
        }
    }

    /// @dev Count leading zeros.
    /// Returns the number of zeros preceding the most significant one bit.
    /// If `x` is zero, returns 256.
    function clz(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            r := add(xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff)), iszero(x))
        }
    }

    /// @dev Find first set.
    /// Returns the index of the least significant bit of `x`,
    /// counting from the least significant bit position.
    /// If `x` is zero, returns 256.
    /// Equivalent to `ctz` (count trailing zeros), which gives
    /// the number of zeros following the least significant one bit.
    function ffs(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // Isolate the least significant bit.
            let b := and(x, add(not(x), 1))

            r := or(shl(8, iszero(x)), shl(7, lt(0xffffffffffffffffffffffffffffffff, b)))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, b))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, b))))

            // For the remaining 32 bits, use a De Bruijn lookup.
            // forgefmt: disable-next-item
            r := or(r, byte(and(div(0xd76453e0, shr(r, b)), 0x1f),
                0x001f0d1e100c1d070f090b19131c1706010e11080a1a141802121b1503160405))
        }
    }

    /// @dev Returns the number of set bits in `x`.
    function popCount(uint256 x) internal pure returns (uint256 c) {
        /// @solidity memory-safe-assembly
        assembly {
            let max := not(0)
            let isMax := eq(x, max)
            x := sub(x, and(shr(1, x), div(max, 3)))
            x := add(and(x, div(max, 5)), and(shr(2, x), div(max, 5)))
            x := and(add(x, shr(4, x)), div(max, 17))
            c := or(shl(8, isMax), shr(248, mul(x, div(max, 255))))
        }
    }

    /// @dev Returns whether `x` is a power of 2.
    function isPo2(uint256 x) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `x && !(x & (x - 1))`.
            result := iszero(add(and(x, sub(x, 1)), iszero(x)))
        }
    }

    /// @dev Returns `x` reversed at the bit level.
    function reverseBits(uint256 x) internal pure returns (uint256 r) {
        uint256 m0 = 0x0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f;
        uint256 m1 = m0 ^ (m0 << 2);
        uint256 m2 = m1 ^ (m1 << 1);
        r = reverseBytes(x);
        r = (m2 & (r >> 1)) | ((m2 & r) << 1);
        r = (m1 & (r >> 2)) | ((m1 & r) << 2);
        r = (m0 & (r >> 4)) | ((m0 & r) << 4);
    }

    /// @dev Returns `x` reversed at the byte level.
    function reverseBytes(uint256 x) internal pure returns (uint256 r) {
        unchecked {
            // Computing masks on-the-fly reduces bytecode size by about 200 bytes.
            uint256 m0 = 0x100000000000000000000000000000001 * (~toUint(x == 0) >> 192);
            uint256 m1 = m0 ^ (m0 << 32);
            uint256 m2 = m1 ^ (m1 << 16);
            uint256 m3 = m2 ^ (m2 << 8);
            r = (m3 & (x >> 8)) | ((m3 & x) << 8);
            r = (m2 & (r >> 16)) | ((m2 & r) << 16);
            r = (m1 & (r >> 32)) | ((m1 & r) << 32);
            r = (m0 & (r >> 64)) | ((m0 & r) << 64);
            r = (r >> 128) | (r << 128);
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     BOOLEAN OPERATIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // A Solidity bool on the stack or memory is represented as a 256-bit word.
    // Non-zero values are true, zero is false.
    // A clean bool is either 0 (false) or 1 (true) under the hood.
    // Usually, if not always, the bool result of a regular Solidity expression,
    // or the argument of a public/external function will be a clean bool.
    // You can usually use the raw variants for more performance.
    // If uncertain, test (best with exact compiler settings).
    // Or use the non-raw variants (compiler can sometimes optimize out the double `iszero`s).

    /// @dev Returns `x & y`. Inputs must be clean.
    function rawAnd(bool x, bool y) internal pure returns (bool z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := and(x, y)
        }
    }

    /// @dev Returns `x & y`.
    function and(bool x, bool y) internal pure returns (bool z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := and(iszero(iszero(x)), iszero(iszero(y)))
        }
    }

    /// @dev Returns `x | y`. Inputs must be clean.
    function rawOr(bool x, bool y) internal pure returns (bool z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(x, y)
        }
    }

    /// @dev Returns `x | y`.
    function or(bool x, bool y) internal pure returns (bool z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(iszero(iszero(x)), iszero(iszero(y)))
        }
    }

    /// @dev Returns 1 if `b` is true, else 0. Input must be clean.
    function rawToUint(bool b) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := b
        }
    }

    /// @dev Returns 1 if `b` is true, else 0.
    function toUint(bool b) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):