Contract Name:
ETHYieldManager
Contract Source Code:
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;
import { YieldManager } from "src/mainnet-bridge/YieldManager.sol";
import { OptimismPortal } from "src/L1/OptimismPortal.sol";
import { Semver } from "src/universal/Semver.sol";
import { Predeploys } from "src/libraries/Predeploys.sol";
/// @custom:proxied
/// @title ETHYieldManager
/// @notice Coordinates the accounting, asset management and
/// yield reporting from ETH yield providers.
contract ETHYieldManager is YieldManager, Semver {
error CallerIsNotPortal();
constructor() YieldManager(address(0)) Semver(1, 0, 0) {
initialize(OptimismPortal(payable(address(0))), address(0));
}
receive() external payable {}
/// @notice initializer
/// @param _portal Address of the OptimismPortal.
/// @param _owner Address of the YieldManager owner.
function initialize(OptimismPortal _portal, address _owner) public initializer {
__YieldManager_init(_portal, _owner);
}
/// @inheritdoc YieldManager
function tokenBalance() public view override returns (uint256) {
return address(this).balance;
}
/// @notice Wrapper for WithdrawalQueue._requestWithdrawal
function requestWithdrawal(uint256 amount)
external
returns (uint256)
{
if (msg.sender != address(portal)) {
revert CallerIsNotPortal();
}
return _requestWithdrawal(address(portal), amount);
}
/// @notice Sends the yield report to the Shares contract.
/// @param data Calldata to send in the message.
function _reportYield(bytes memory data) internal override {
portal.depositTransaction(Predeploys.SHARES, 0, REPORT_YIELD_DEFAULT_GAS_LIMIT, false, data);
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;
import { EnumerableSet } from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { Ownable2StepUpgradeable } from "@openzeppelin/contracts-upgradeable/access/Ownable2StepUpgradeable.sol";
import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
import { SafeCast } from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import { WithdrawalQueue } from "src/mainnet-bridge/withdrawal-queue/WithdrawalQueue.sol";
import { YieldProvider } from "src/mainnet-bridge/yield-providers/YieldProvider.sol";
import { Types } from "src/libraries/Types.sol";
import { SafeCall } from "src/libraries/SafeCall.sol";
import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
import { SharesBase } from "src/L2/Shares.sol";
import { DelegateCalls } from "src/mainnet-bridge/DelegateCalls.sol";
import { USDConversions } from "src/mainnet-bridge/USDConversions.sol";
import { Semver } from "src/universal/Semver.sol";
import { OptimismPortal } from "src/L1/OptimismPortal.sol";
import { Predeploys } from "src/libraries/Predeploys.sol";
interface IInsurance {
function coverLoss(address token, uint256 amount) external;
}
/// @title YieldManager
/// @notice Base contract to centralize accounting, asset management and
/// yield reporting from yield providers of a common base asset.
abstract contract YieldManager is Ownable2StepUpgradeable, WithdrawalQueue, DelegateCalls {
using EnumerableSet for EnumerableSet.AddressSet;
/// @notice Maximum gas limit for the yield report call on L2.
uint32 internal constant REPORT_YIELD_DEFAULT_GAS_LIMIT = 200_000;
/// @notice Maximum insurance fee the owner is allowed to set.
uint256 public constant MAX_INSURANCE_FEE_BIPS = 10_000; // 100%
/// @notice Number of basis points representing 100 percent.
uint256 internal constant BASIS_POINTS = 10_000;
/// @notice Set of provider addresses.
EnumerableSet.AddressSet private _providers;
/// @notice Address of the admin handling regular tasks such as
/// `stake`, `unstake`, `claim`, `commitYieldReport`, and
/// `finalize`.
address public admin;
/// @notice Address of the insurance module.
address public insurance;
/// @notice Address of the L1BlastBridge.
address public blastBridge;
/// @notice Sum of negative yields to track the slippage between L2-L1 share price.
/// If negative yields accumulate, L1 withdrawals are discounted to cover the
/// loss.
uint256 public accumulatedNegativeYields;
/// @notice Current insurance fee in bips.
uint256 public insuranceFeeBips;
/// @notice Amount of additional funds to withdraw from insurance.
/// This buffer addresses the scenario where the transfer of the exact amount of accumulated
/// negative yields from insurance does not fully pay off the outstanding amount. In Lido's
/// system, the transfer logic is based on shares, which may lead to discrepancies in the
/// withdrawal of insurance funds. By including this buffer, the system ensures that when
/// insurance funds are withdrawn, the total amount withdrawn is the exact required amount
/// plus an additional buffer. This approach guarantees the complete payoff of any negative
/// yields, accommodating for any potential rounding discrepancies inherent in the share-based
/// transfer logic.
uint256 public insuranceWithdrawalBuffer;
/// @notice Address of the OptimismPortal.
OptimismPortal public portal;
/// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
/// A gap size of 41 was chosen here, so that the first slot used in a child contract
/// would be a multiple of 50.
uint256[41] private __gap;
struct ProviderInfo {
bytes32 id;
address providerAddress;
uint256 stakedBalance;
uint256 pendingBalance;
uint256 stakedPrincipal;
uint256 totalValue;
int256 yield;
}
/// @notice Emitted when the yield report is committed on L1 and
/// the yield is communicated to L2.
/// @param yield Amount of yield generated at this checkpoint.
/// @param insurancePremiumPaid Amount paid in insurance.
/// @param insuranceWithdrawn Amount withdrawn from insurance.
event YieldReport(
int256 yield,
uint256 insurancePremiumPaid,
uint256 insuranceWithdrawn
);
error CallerIsNotAdmin();
error FailedToInitializeProvider();
error ProviderAddressDoesNotMatchIndex();
error InsufficientInsuranceBalance();
error NegativeYieldFromInsuredProvider();
error TotalValueIsZero();
error CallerIsNotBlastBridge();
error ProviderNotFound();
error YieldProviderIsNotMeantForThisManager();
error NegativeYieldIncrease();
modifier onlyAdmin() {
if (msg.sender != admin) {
revert CallerIsNotAdmin();
}
_;
}
/// @notice Modifier only allowing the L1BlastBridge to call a function.
modifier onlyBlastBridge() {
if (msg.sender != blastBridge) {
revert CallerIsNotBlastBridge();
}
_;
}
/// @param _token Address of withdrawal token.
constructor(address _token) WithdrawalQueue(_token) {}
/// @notice initializer
/// @param _portal Address of the OptimismPortal.
/// @param _owner Address of the YieldManager owner.
function __YieldManager_init(OptimismPortal _portal, address _owner) internal onlyInitializing {
__Ownable2Step_init();
__WithdrawalQueue_init();
_transferOwnership(_owner);
portal = _portal;
}
/* ========== OWNER FUNCTIONS ========== */
/// @notice Set new admin account to handle regular tasks including
/// (stake, unstake, claim).
/// @param _admin Address of new admin
function setAdmin(address _admin) external onlyOwner {
require(_admin != address(0));
admin = _admin;
}
/// @notice Set the yield insurance parameters.
/// @param _insurance Address of the insurance module.
/// @param _insuranceFeeBips Insurance fee to take from positive yields.
/// @param _withdrawalBuffer Amount of additional funds to withdraw from insurance.
function setInsurance(address _insurance, uint256 _insuranceFeeBips, uint256 _withdrawalBuffer) external onlyOwner {
require(_insurance != address(0));
require(_insuranceFeeBips <= MAX_INSURANCE_FEE_BIPS);
insurance = _insurance;
insuranceFeeBips = _insuranceFeeBips;
insuranceWithdrawalBuffer = _withdrawalBuffer;
}
/// @notice Set the address of the L1BlastBridge.
/// @param _blastBridge Address of the L1BlastBridge.
function setBlastBridge(address _blastBridge) external onlyOwner {
require(_blastBridge != address(0));
blastBridge = _blastBridge;
}
/// @notice Add a yield provider contract.
/// @param provider Address of the yield provider.
function addProvider(address provider) external onlyOwner {
if (address(YieldProvider(provider).YIELD_MANAGER()) != address(this)) {
revert YieldProviderIsNotMeantForThisManager();
}
_providers.add(provider);
(bool success,) = provider.delegatecall(abi.encodeWithSignature("initialize()"));
if (!success) {
revert FailedToInitializeProvider();
}
}
/// @notice Remove a yield provider contract.
/// @param provider Address of the yield provider.
function removeProvider(address provider) external onlyOwner {
_providers.remove(provider);
}
/* ========== ADMIN FUNCTIONS ========== */
/// @notice Stake funds for a particular yield provider and record the
/// staked deposit. The stake call is made via 'delegatecall'
/// so the yield provider implementation is executed with the
/// yield manager's funds.
/// @param idx Index of the provider.
/// @param providerAddress Address of the provider at index 'idx'.
/// @param amount Amount to stake (wad).
function stake(uint256 idx, address providerAddress, uint256 amount) external onlyAdmin {
if (_providers.at(idx) != providerAddress) {
revert ProviderAddressDoesNotMatchIndex();
}
_delegatecall_stake(providerAddress, amount);
YieldProvider(providerAddress).recordStakedDeposit(amount);
}
/// @notice Unstake funds for a particular yield provider and record the
/// staked withdraw. The stake call is made via 'delegatecall'
/// so the yield provider implementation is executed with the
/// yield manager's funds.
/// @param idx Index of the provider.
/// @param providerAddress Address of the provider at index 'idx'.
/// @param amount Amount to stake (wad).
function unstake(uint256 idx, address providerAddress, uint256 amount) external onlyAdmin {
if (_providers.at(idx) != providerAddress) {
revert ProviderAddressDoesNotMatchIndex();
}
(uint256 pending, uint256 claimed) = _delegatecall_unstake(providerAddress, amount);
YieldProvider(providerAddress).recordUnstaked(pending, claimed, amount);
}
/// @notice Commit yield report.
/// @param enableInsurance Whether insurance should be taken from positive yields
/// and paid out for negative yields. If false, negative yields will
/// accumulate and withdrawals will be discounted. If true (and insurance
/// is supported by the provider), it will guarantee that committed yield
/// is always non-negative, or else revert. It also guarantees that
/// accumulated negative yields never increase.
function commitYieldReport(bool enableInsurance) public onlyAdmin {
uint256 providersLength = _providers.length();
uint256 negativeYieldBefore = accumulatedNegativeYields;
uint256 totalInsurancePremiumPaid;
uint256 totalInsuranceWithdrawal;
int256 totalYield;
// For each provider, commit yield after paying to/from the insurance as necessary
for (uint256 i; i < providersLength; i++) {
// run the pre-commit yield report hook
_delegatecall_preCommitYieldReportDelegateCallHook(_providers.at(i));
// read the current yield from the provider
int256 yield = YieldProvider(_providers.at(i)).yield();
uint256 insurancePayment;
// take care of insurance payments and withdrawals
if (
enableInsurance &&
YieldProvider(_providers.at(i)).supportsInsurancePayment() &&
insurance != address(0)
) {
if (yield > 0) {
// pay the insurance premium
insurancePayment = uint256(yield) * insuranceFeeBips / BASIS_POINTS;
_delegatecall_payInsurancePremium(_providers.at(i), insurancePayment);
totalInsurancePremiumPaid += insurancePayment;
} else if (yield < 0) {
// withdraw from the insurance to cover the loss
uint256 insuranceWithdrawal = SignedMath.abs(yield) + insuranceWithdrawalBuffer;
uint256 insuranceBalance = YieldProvider(_providers.at(i)).insuranceBalance();
if (insuranceBalance < insuranceWithdrawal) {
revert InsufficientInsuranceBalance();
}
_delegatecall_withdrawFromInsurance(_providers.at(i), insuranceWithdrawal);
totalInsuranceWithdrawal += insuranceWithdrawal;
}
}
// Commit the yield for the provider
int256 committedYield = YieldProvider(_providers.at(i)).commitYield();
// Sanity check
if (
enableInsurance &&
YieldProvider(_providers.at(i)).supportsInsurancePayment() &&
insurance != address(0)
) {
if (committedYield < 0) {
revert NegativeYieldFromInsuredProvider();
}
}
// update totalYield
totalYield += committedYield;
}
// reflect the accumulated negative yield in totalYield
if (accumulatedNegativeYields > 0) {
totalYield -= SafeCast.toInt256(accumulatedNegativeYields);
}
emit YieldReport(totalYield, totalInsurancePremiumPaid, totalInsuranceWithdrawal);
if (totalYield < 0) {
accumulatedNegativeYields = uint256(-1 * totalYield);
} else {
accumulatedNegativeYields = 0;
if (totalYield > 0) {
_reportYield(
abi.encodeWithSelector(
SharesBase.addValue.selector,
totalYield
)
);
}
}
if (enableInsurance && accumulatedNegativeYields > negativeYieldBefore) {
revert NegativeYieldIncrease();
}
}
/// @notice Helper function to atomically withdraw from insurance and commit yield report.
/// This function can be used to maintain share price = 1e27 when yield from
/// the registered providers is not sufficient to cover negative yield from
/// LidoYieldProvider._claim().
function commitYieldReportAfterInsuranceWithdrawal(
address token,
uint256 amount
) external onlyAdmin {
require(insurance != address(0));
IInsurance(insurance).coverLoss(token, amount);
commitYieldReport(true);
}
/// @notice Report realized negative yield. This is meant to be called inside a YieldProvider
/// method that is executed via 'delegatecall' by the YieldManager.
function recordNegativeYield(uint256 amount) external {
require(msg.sender == address(this), "Caller is not this contract");
accumulatedNegativeYields += amount;
}
/// @notice Finalize withdrawal requests up to 'requestId'.
/// @param requestId Last request id to finalize in this batch.
function finalize(uint256 requestId) external onlyAdmin returns (uint256 checkpointId) {
uint256 nominalAmount; uint256 realAmount;
(nominalAmount, realAmount, checkpointId) = _finalize(requestId, availableBalance(), sharePrice());
// nominalAmount - realAmount is the share of the accumulated negative yield
// that should be paid by the current withdrawal
if (nominalAmount > realAmount) {
accumulatedNegativeYields = _subClamped(accumulatedNegativeYields, nominalAmount - realAmount);
}
}
/* ========== VIRTUAL FUNCTIONS ========== */
/// @notice Get the amount of the withdrawal token that is held by the yield manager.
function tokenBalance() public view virtual returns (uint256);
/// @notice Send the yield report to the L2 contract that is responsible for
/// updating the L2 share price.
/// @param data Calldata to send in the message.
function _reportYield(bytes memory data) internal virtual;
/* ========== VIEW FUNCTIONS ========== */
/// @notice Available balance.
function availableBalance() public view returns (uint256) {
return tokenBalance() - getLockedBalance();
}
/// @notice Get the total value of all yield providers denominated in the withdrawal token.
function totalProviderValue() public view returns (uint256 sum) {
uint256 providersLength = _providers.length();
for (uint256 i; i < providersLength; i++) {
sum += YieldProvider(_providers.at(i)).totalValue();
}
}
/// @notice Get the total value of all yield providers plus the available balance value.
function totalValue() public view returns (uint256) {
return availableBalance() + totalProviderValue();
}
/// @notice Get the share price of the withdrawal token with 1e27 precision.
/// The share price is capped at 1e27 and can only go down if there
/// are accumulated negative yields.
function sharePrice() public view returns (uint256) {
uint256 value = totalValue();
if (value == 0) {
revert TotalValueIsZero();
}
return value * E27_PRECISION_BASE / (value + accumulatedNegativeYields);
}
/// @notice Get an accounting report on the current state of a yield provider.
/// Due to how EnumerableSet works, 'idx' is not guaranteed to be stable
/// across add/remove operations so admin should verify the idx before
/// calling state-changing functions (e.g. stake, unstake).
/// @param idx Index of the provider.
/// @return info Accounting report on the yield provider.
function getProviderInfoAt(uint256 idx) external view returns (ProviderInfo memory info) {
YieldProvider provider = YieldProvider(_providers.at(idx));
info.id = provider.id();
info.providerAddress = address(provider);
info.stakedBalance = provider.stakedBalance();
info.pendingBalance = provider.pendingBalance();
info.stakedPrincipal = provider.stakedPrincipal();
info.totalValue = provider.totalValue();
info.yield = provider.yield();
}
/// @notice Record an increase to the staked funds represented
/// by the provider.
/// @param providerAddress Address of yield provider.
/// @param amount Amount of additional staked funds.
function recordStakedDeposit(address providerAddress, uint256 amount) external onlyBlastBridge {
if (!_providers.contains(providerAddress)) {
revert ProviderNotFound();
}
YieldProvider(providerAddress).recordStakedDeposit(amount);
}
/// @notice Returns max(0, x - y) without reverting on underflow.
function _subClamped(uint256 x, uint256 y) internal pure returns (uint256 z) {
unchecked {
z = x > y ? x - y : 0;
}
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;
import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import { SafeCall } from "src/libraries/SafeCall.sol";
import { L2OutputOracle } from "src/L1/L2OutputOracle.sol";
import { SystemConfig } from "src/L1/SystemConfig.sol";
import { Constants } from "src/libraries/Constants.sol";
import { Types } from "src/libraries/Types.sol";
import { Hashing } from "src/libraries/Hashing.sol";
import { SecureMerkleTrie } from "src/libraries/trie/SecureMerkleTrie.sol";
import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol";
import { ResourceMetering } from "src/L1/ResourceMetering.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { ETHYieldManager } from "src/mainnet-bridge/ETHYieldManager.sol";
import { Predeploys } from "src/libraries/Predeploys.sol";
/// @custom:proxied
/// @title OptimismPortal
/// @notice The OptimismPortal is a low-level contract responsible for passing messages between L1
/// and L2. Messages sent directly to the OptimismPortal have no form of replayability.
/// Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface.
contract OptimismPortal is Initializable, ResourceMetering, ISemver {
/// @notice Represents a proven withdrawal.
/// @custom:field outputRoot Root of the L2 output this was proven against.
/// @custom:field timestamp Timestamp at which the withdrawal was proven.
/// @custom:field l2OutputIndex Index of the output this was proven against.
struct ProvenWithdrawal {
bytes32 outputRoot;
uint128 timestamp;
uint128 l2OutputIndex;
uint256 requestId;
}
/// @notice Version of the deposit event.
uint256 internal constant DEPOSIT_VERSION = 0;
/// @notice The L2 gas limit set when eth is deposited using the receive() function.
uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000;
/// @notice The L1 gas limit set when sending eth to the YieldManager.
uint64 internal constant SEND_DEFAULT_GAS_LIMIT = 100_000;
/// @notice Address of the L2 account which initiated a withdrawal in this transaction.
/// If the address of this variable is the default L2 sender address, then we
/// are NOT inside of a call to finalizeWithdrawalTransaction.
address public l2Sender;
/// @notice A list of withdrawal hashes which have been successfully finalized.
mapping(bytes32 => bool) public finalizedWithdrawals;
/// @notice A mapping of withdrawal hashes to `ProvenWithdrawal` data.
mapping(bytes32 => ProvenWithdrawal) public provenWithdrawals;
/// @notice Determines if cross domain messaging is paused.
/// When set to true, withdrawals are paused.
/// This may be removed in the future.
bool public paused;
/// @notice Address of the L2OutputOracle contract.
/// @custom:network-specific
L2OutputOracle public l2Oracle;
/// @notice Address of the SystemConfig contract.
/// @custom:network-specific
SystemConfig public systemConfig;
/// @notice Address that has the ability to pause and unpause withdrawals.
/// @custom:network-specific
address public guardian;
/// @notice Address of the ETH yield manager.
ETHYieldManager public yieldManager;
/// @notice Emitted when a transaction is deposited from L1 to L2.
/// The parameters of this event are read by the rollup node and used to derive deposit
/// transactions on L2.
/// @param from Address that triggered the deposit transaction.
/// @param to Address that the deposit transaction is directed to.
/// @param version Version of this deposit transaction event.
/// @param opaqueData ABI encoded deposit data to be parsed off-chain.
event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData);
/// @notice Emitted when a withdrawal transaction is proven.
/// @param withdrawalHash Hash of the withdrawal transaction.
/// @param from Address that triggered the withdrawal transaction.
/// @param to Address that the withdrawal transaction is directed to.
/// @param requestId Id of the withdrawal request
event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to, uint256 requestId);
/// @notice Emitted when a withdrawal transaction is finalized.
/// @param withdrawalHash Hash of the withdrawal transaction.
/// @param hintId is the checkpoint ID produce by YieldManager
/// @param success Whether the withdrawal transaction was successful.
event WithdrawalFinalized(bytes32 indexed withdrawalHash, uint256 indexed hintId, bool success);
/// @notice Emitted when the pause is triggered.
/// @param account Address of the account triggering the pause.
event Paused(address account);
/// @notice Emitted when the pause is lifted.
/// @param account Address of the account triggering the unpause.
event Unpaused(address account);
/// @notice Reverts when paused.
modifier whenNotPaused() {
require(paused == false, "OptimismPortal: paused");
_;
}
/// @notice Semantic version.
/// @custom:semver 1.10.0
string public constant version = "1.10.0";
/// @notice Constructs the OptimismPortal contract.
constructor() {
initialize({
_l2Oracle: L2OutputOracle(address(0)),
_guardian: address(0),
_systemConfig: SystemConfig(address(0)),
_paused: true,
_yieldManager: ETHYieldManager(payable(address(0)))
});
}
/// @notice Initializer.
/// @param _l2Oracle Address of the L2OutputOracle contract.
/// @param _guardian Address that can pause withdrawals.
/// @param _paused Sets the contract's pausability state.
/// @param _systemConfig Address of the SystemConfig contract.
function initialize(
L2OutputOracle _l2Oracle,
address _guardian,
SystemConfig _systemConfig,
bool _paused,
ETHYieldManager _yieldManager
)
public
reinitializer(Constants.INITIALIZER)
{
if (l2Sender == address(0)) {
l2Sender = Constants.DEFAULT_L2_SENDER;
}
l2Oracle = _l2Oracle;
systemConfig = _systemConfig;
guardian = _guardian;
paused = _paused;
yieldManager = _yieldManager;
__ResourceMetering_init();
}
/// @notice Getter for the L2OutputOracle
/// @custom:legacy
function L2_ORACLE() external view returns (L2OutputOracle) {
return l2Oracle;
}
/// @notice Getter for the SystemConfig
/// @custom:legacy
function SYSTEM_CONFIG() external view returns (SystemConfig) {
return systemConfig;
}
/// @notice Getter for the Guardian
/// @custom:legacy
function GUARDIAN() external view returns (address) {
return guardian;
}
/// @notice Pauses withdrawals.
function pause() external {
require(msg.sender == guardian, "OptimismPortal: only guardian can pause");
paused = true;
emit Paused(msg.sender);
}
/// @notice Unpauses withdrawals.
function unpause() external {
require(msg.sender == guardian, "OptimismPortal: only guardian can unpause");
paused = false;
emit Unpaused(msg.sender);
}
/// @notice Computes the minimum gas limit for a deposit.
/// The minimum gas limit linearly increases based on the size of the calldata.
/// This is to prevent users from creating L2 resource usage without paying for it.
/// This function can be used when interacting with the portal to ensure forwards
/// compatibility.
/// @param _byteCount Number of bytes in the calldata.
/// @return The minimum gas limit for a deposit.
function minimumGasLimit(uint64 _byteCount) public pure returns (uint64) {
return _byteCount * 16 + 21000;
}
/// @notice Accepts value so that users can send ETH directly to this contract and have the
/// funds be deposited to their address on L2. This is intended as a convenience
/// function for EOAs. Contracts should call the depositTransaction() function directly
/// otherwise any deposited funds will be lost due to address aliasing.
// solhint-disable-next-line ordering
receive() external payable {
if (msg.sender != address(yieldManager)) {
depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes(""));
}
}
/// @notice Getter for the resource config.
/// Used internally by the ResourceMetering contract.
/// The SystemConfig is the source of truth for the resource config.
/// @return ResourceMetering ResourceConfig
function _resourceConfig() internal view override returns (ResourceMetering.ResourceConfig memory) {
return systemConfig.resourceConfig();
}
/// @notice Proves a withdrawal transaction.
/// @param _tx Withdrawal transaction to finalize.
/// @param _l2OutputIndex L2 output index to prove against.
/// @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root.
/// @param _withdrawalProof Inclusion proof of the withdrawal in L2ToL1MessagePasser contract.
function proveWithdrawalTransaction(
Types.WithdrawalTransaction memory _tx,
uint256 _l2OutputIndex,
Types.OutputRootProof calldata _outputRootProof,
bytes[] calldata _withdrawalProof
)
external
whenNotPaused
{
// Prevent users from creating a deposit transaction where this address is the message
// sender on L2. Because this is checked here, we do not need to check again in
// `finalizeWithdrawalTransaction`.
require(_tx.target != address(this), "OptimismPortal: you cannot send messages to the portal contract");
// Get the output root and load onto the stack to prevent multiple mloads. This will
// revert if there is no output root for the given block number.
bytes32 outputRoot = l2Oracle.getL2Output(_l2OutputIndex).outputRoot;
// Verify that the output root can be generated with the elements in the proof.
require(
outputRoot == Hashing.hashOutputRootProof(_outputRootProof), "OptimismPortal: invalid output root proof"
);
// Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier.
bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
// We generally want to prevent users from proving the same withdrawal multiple times
// because each successive proof will update the timestamp. A malicious user can take
// advantage of this to prevent other users from finalizing their withdrawal. However,
// since withdrawals are proven before an output root is finalized, we need to allow users
// to re-prove their withdrawal only in the case that the output root for their specified
// output index has been updated.
require(
provenWithdrawal.timestamp == 0
|| l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex).outputRoot != provenWithdrawal.outputRoot,
"OptimismPortal: withdrawal hash has already been proven"
);
// Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract.
// Refer to the Solidity documentation for more information on how storage layouts are
// computed for mappings.
bytes32 storageKey = keccak256(
abi.encode(
withdrawalHash,
uint256(0) // The withdrawals mapping is at the first slot in the layout.
)
);
// Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract
// on L2. If this is true, under the assumption that the SecureMerkleTrie does not have
// bugs, then we know that this withdrawal was actually triggered on L2 and can therefore
// be relayed on L1.
require(
SecureMerkleTrie.verifyInclusionProof(
abi.encode(storageKey), hex"01", _withdrawalProof, _outputRootProof.messagePasserStorageRoot
),
"OptimismPortal: invalid withdrawal inclusion proof"
);
// Blast: request ether withdrawal from the yield manager. Should not request a withdrawal
// when the withdrawal is being re-proven.
uint256 requestId;
if (_tx.value > 0 && provenWithdrawal.timestamp == 0) {
requestId = yieldManager.requestWithdrawal(_tx.value);
} else {
// If withdrawal is being re-proven, then set original requestId.
requestId = provenWithdrawal.requestId;
}
require(_tx.target != address(yieldManager), "OptimismPortal: unauthorized call to yield manager");
// Designate the withdrawalHash as proven by storing the `outputRoot`, `timestamp`, and
// `l2BlockNumber` in the `provenWithdrawals` mapping. A `withdrawalHash` can only be
// proven once unless it is submitted again with a different outputRoot.
provenWithdrawals[withdrawalHash] = ProvenWithdrawal({
outputRoot: outputRoot,
timestamp: uint128(block.timestamp),
l2OutputIndex: uint128(_l2OutputIndex),
requestId: requestId
});
// Emit a `WithdrawalProven` event.
emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target, requestId);
}
/// @notice Finalizes a withdrawal transaction.
/// @param hintId Hint ID of the withdrawal transaction to finalize. The caller can find this
/// value by calling ETHYieldManager.findCheckpointHint().
/// @param _tx Withdrawal transaction to finalize.
function finalizeWithdrawalTransaction(uint256 hintId, Types.WithdrawalTransaction memory _tx) external whenNotPaused {
// Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other
// than the default value when a withdrawal transaction is being finalized. This check is
// a defacto reentrancy guard.
require(
l2Sender == Constants.DEFAULT_L2_SENDER, "OptimismPortal: can only trigger one withdrawal per transaction"
);
// Grab the proven withdrawal from the `provenWithdrawals` map.
bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
// A withdrawal can only be finalized if it has been proven. We know that a withdrawal has
// been proven at least once when its timestamp is non-zero. Unproven withdrawals will have
// a timestamp of zero.
require(provenWithdrawal.timestamp != 0, "OptimismPortal: withdrawal has not been proven yet");
// As a sanity check, we make sure that the proven withdrawal's timestamp is greater than
// starting timestamp inside the L2OutputOracle. Not strictly necessary but extra layer of
// safety against weird bugs in the proving step.
require(
provenWithdrawal.timestamp >= l2Oracle.startingTimestamp(),
"OptimismPortal: withdrawal timestamp less than L2 Oracle starting timestamp"
);
// A proven withdrawal must wait at least the finalization period before it can be
// finalized. This waiting period can elapse in parallel with the waiting period for the
// output the withdrawal was proven against. In effect, this means that the minimum
// withdrawal time is proposal submission time + finalization period.
require(
_isFinalizationPeriodElapsed(provenWithdrawal.timestamp),
"OptimismPortal: proven withdrawal finalization period has not elapsed"
);
// Grab the OutputProposal from the L2OutputOracle, will revert if the output that
// corresponds to the given index has not been proposed yet.
Types.OutputProposal memory proposal = l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex);
// Check that the output root that was used to prove the withdrawal is the same as the
// current output root for the given output index. An output root may change if it is
// deleted by the challenger address and then re-proposed.
require(
proposal.outputRoot == provenWithdrawal.outputRoot,
"OptimismPortal: output root proven is not the same as current output root"
);
// Check that the output proposal has also been finalized.
require(
_isFinalizationPeriodElapsed(proposal.timestamp),
"OptimismPortal: output proposal finalization period has not elapsed"
);
// Check that this withdrawal has not already been finalized, this is replay protection.
require(finalizedWithdrawals[withdrawalHash] == false, "OptimismPortal: withdrawal has already been finalized");
// Mark the withdrawal as finalized so it can't be replayed.
finalizedWithdrawals[withdrawalHash] = true;
// Set the l2Sender so contracts know who triggered this withdrawal on L2.
l2Sender = _tx.sender;
// Blast: claim withdrawal for ether
uint256 txValueWithDiscount;
if (_tx.value > 0) {
uint256 etherBalance = address(this).balance;
yieldManager.claimWithdrawal(provenWithdrawal.requestId, hintId);
txValueWithDiscount = address(this).balance - etherBalance;
}
// Trigger the call to the target contract. We use a custom low level method
// SafeCall.callWithMinGas to ensure two key properties
// 1. Target contracts cannot force this call to run out of gas by returning a very large
// amount of data (and this is OK because we don't care about the returndata here).
// 2. The amount of gas provided to the execution context of the target is at least the
// gas limit specified by the user. If there is not enough gas in the current context
// to accomplish this, `callWithMinGas` will revert.
bool success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, txValueWithDiscount, _tx.data);
// Reset the l2Sender back to the default value.
l2Sender = Constants.DEFAULT_L2_SENDER;
// All withdrawals are immediately finalized. Replayability can
// be achieved through contracts built on top of this contract
emit WithdrawalFinalized(withdrawalHash, hintId, success);
// Reverting here is useful for determining the exact gas cost to successfully execute the
// sub call to the target contract if the minimum gas limit specified by the user would not
// be sufficient to execute the sub call.
if (success == false && tx.origin == Constants.ESTIMATION_ADDRESS) {
revert("OptimismPortal: withdrawal failed");
}
}
/// @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in
/// deriving deposit transactions. Note that if a deposit is made by a contract, its
/// address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider
/// using the CrossDomainMessenger contracts for a simpler developer experience.
/// @param _to Target address on L2.
/// @param _value ETH value to send to the recipient.
/// @param _gasLimit Amount of L2 gas to purchase by burning gas on L1.
/// @param _isCreation Whether or not the transaction is a contract creation.
/// @param _data Data to trigger the recipient with.
function depositTransaction(
address _to,
uint256 _value,
uint64 _gasLimit,
bool _isCreation,
bytes memory _data
)
public
payable
metered(_gasLimit)
{
// Just to be safe, make sure that people specify address(0) as the target when doing
// contract creations.
if (_isCreation) {
require(_to == address(0), "OptimismPortal: must send to address(0) when creating a contract");
}
// Prevent depositing transactions that have too small of a gas limit. Users should pay
// more for more resource usage.
require(_gasLimit >= minimumGasLimit(uint64(_data.length)), "OptimismPortal: gas limit too small");
// Prevent the creation of deposit transactions that have too much calldata. This gives an
// upper limit on the size of unsafe blocks over the p2p network. 120kb is chosen to ensure
// that the transaction can fit into the p2p network policy of 128kb even though deposit
// transactions are not gossipped over the p2p network.
require(_data.length <= 120_000, "OptimismPortal: data too large");
// Transform the from-address to its alias if the caller is a contract.
address from = msg.sender;
if (msg.sender != tx.origin) {
from = AddressAliasHelper.applyL1ToL2Alias(msg.sender);
}
// Compute the opaque data that will be emitted as part of the TransactionDeposited event.
// We use opaque data so that we can update the TransactionDeposited event in the future
// without breaking the current interface.
bytes memory opaqueData;
// Blast: When receiving already staked funds (stETH) to be bridged for ether on L2, we
// have to request that `_value` is minted on L2 without an equivalent `msg.value` being
// sent in the call. This bypass allows the L1BlastBridge to request `_value` to be minted
// in exchange for a deposit of the equivalent amount of a staked ether asset.
if (_to == Predeploys.L2_BLAST_BRIDGE) {
if (msg.sender != yieldManager.blastBridge() || yieldManager.blastBridge() == address(0)) {
// second case is when the blast bridge address has not been set on the yield manager
revert("OptimismPortal: only the BlastBridge can deposit");
}
opaqueData = abi.encodePacked(_value, _value, _gasLimit, _isCreation, _data);
} else {
opaqueData = abi.encodePacked(msg.value, _value, _gasLimit, _isCreation, _data);
}
// Blast: Send the received ether to the yield manager to handle staking the funds.
if (msg.value > 0) {
(bool success) = SafeCall.send(address(yieldManager), SEND_DEFAULT_GAS_LIMIT, msg.value);
require(success, "OptimismPortal: ETH transfer to YieldManager failed");
}
// Emit a TransactionDeposited event so that the rollup node can derive a deposit
// transaction for this deposit.
emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData);
}
/// @notice Determine if a given output is finalized.
/// Reverts if the call to L2_ORACLE.getL2Output reverts.
/// Returns a boolean otherwise.
/// @param _l2OutputIndex Index of the L2 output to check.
/// @return Whether or not the output is finalized.
function isOutputFinalized(uint256 _l2OutputIndex) external view returns (bool) {
return _isFinalizationPeriodElapsed(l2Oracle.getL2Output(_l2OutputIndex).timestamp);
}
/// @notice Determines whether the finalization period has elapsed with respect to
/// the provided block timestamp.
/// @param _timestamp Timestamp to check.
/// @return Whether or not the finalization period has elapsed.
function _isFinalizationPeriodElapsed(uint256 _timestamp) internal view returns (bool) {
return block.timestamp > _timestamp + l2Oracle.FINALIZATION_PERIOD_SECONDS();
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;
import { Strings } from "@openzeppelin/contracts/utils/Strings.sol";
/// @title Semver
/// @notice Semver is a simple contract for managing contract versions.
contract Semver {
/// @notice Contract version number (major).
uint256 private immutable MAJOR_VERSION;
/// @notice Contract version number (minor).
uint256 private immutable MINOR_VERSION;
/// @notice Contract version number (patch).
uint256 private immutable PATCH_VERSION;
/// @param _major Version number (major).
/// @param _minor Version number (minor).
/// @param _patch Version number (patch).
constructor(uint256 _major, uint256 _minor, uint256 _patch) {
MAJOR_VERSION = _major;
MINOR_VERSION = _minor;
PATCH_VERSION = _patch;
}
/// @notice Returns the full semver contract version.
/// @return Semver contract version as a string.
function version() public view returns (string memory) {
return string(
abi.encodePacked(
Strings.toString(MAJOR_VERSION),
".",
Strings.toString(MINOR_VERSION),
".",
Strings.toString(PATCH_VERSION)
)
);
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;
/// @title Predeploys
/// @notice Contains constant addresses for contracts that are pre-deployed to the L2 system.
library Predeploys {
/// @notice Address of the L2ToL1MessagePasser predeploy.
address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;
/// @notice Address of the L2CrossDomainMessenger predeploy.
address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;
/// @notice Address of the L2StandardBridge predeploy.
address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
/// @notice Address of the L2ERC721Bridge predeploy.
address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;
//// @notice Address of the SequencerFeeWallet predeploy.
address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
/// @notice Address of the OptimismMintableERC20Factory predeploy.
address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;
/// @notice Address of the OptimismMintableERC721Factory predeploy.
address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;
/// @notice Address of the L1Block predeploy.
address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
/// @notice Address of the GasPriceOracle predeploy. Includes fee information
/// and helpers for computing the L1 portion of the transaction fee.
address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
/// @custom:legacy
/// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
/// or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
/// @custom:legacy
/// @notice Address of the DeployerWhitelist predeploy. No longer active.
address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
/// @custom:legacy
/// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
/// state trie as of the Bedrock upgrade. Contract has been locked and write functions
/// can no longer be accessed.
address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
/// @custom:legacy
/// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
/// instead, which exposes more information about the L1 state.
address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
/// @custom:legacy
/// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
/// L2ToL1MessagePasser contract instead.
address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
/// @notice Address of the ProxyAdmin predeploy.
address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
/// @notice Address of the BaseFeeVault predeploy.
address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
/// @notice Address of the L1FeeVault predeploy.
address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
/// @notice Address of the GovernanceToken predeploy.
address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
/// @notice Address of the SchemaRegistry predeploy.
address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;
/// @notice Address of the EAS predeploy.
address internal constant EAS = 0x4200000000000000000000000000000000000021;
/// @notice Address of the Shares predeploy.
address internal constant SHARES = 0x4300000000000000000000000000000000000000;
/// @notice Address of the Gas predeploy.
address internal constant GAS = 0x4300000000000000000000000000000000000001;
/// @notice Address of the Blast predeploy.
address internal constant BLAST = 0x4300000000000000000000000000000000000002;
/// @notice Address of the USDB predeploy.
address internal constant USDB = 0x4300000000000000000000000000000000000003;
/// @notice Address of the WETH predeploy.
address internal constant WETH_REBASING = 0x4300000000000000000000000000000000000004;
/// @notice Address of the L2BlastBridge predeploy.
address internal constant L2_BLAST_BRIDGE = 0x4300000000000000000000000000000000000005;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/structs/EnumerableSet.sol)
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
return _values(set._inner);
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.2;
import "../../utils/AddressUpgradeable.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
* @custom:oz-retyped-from bool
*/
uint8 private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint8 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
* constructor.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
bool isTopLevelCall = !_initializing;
require(
(isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
"Initializable: contract is already initialized"
);
_initialized = 1;
if (isTopLevelCall) {
_initializing = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: setting the version to 255 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint8 version) {
require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
_initialized = version;
_initializing = true;
_;
_initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
require(_initializing, "Initializable: contract is not initializing");
_;
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
require(!_initializing, "Initializable: contract is initializing");
if (_initialized != type(uint8).max) {
_initialized = type(uint8).max;
emit Initialized(type(uint8).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint8) {
return _initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _initializing;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.0;
import "./OwnableUpgradeable.sol";
import "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2StepUpgradeable is Initializable, OwnableUpgradeable {
function __Ownable2Step_init() internal onlyInitializing {
__Ownable_init_unchained();
}
function __Ownable2Step_init_unchained() internal onlyInitializing {
}
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
_transferOwnership(sender);
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a >= b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/math/SafeCast.sol)
pragma solidity ^0.8.0;
/**
* @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*
* Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
* all math on `uint256` and `int256` and then downcasting.
*/
library SafeCast {
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*
* _Available since v4.7._
*/
function toUint248(uint256 value) internal pure returns (uint248) {
require(value <= type(uint248).max, "SafeCast: value doesn't fit in 248 bits");
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*
* _Available since v4.7._
*/
function toUint240(uint256 value) internal pure returns (uint240) {
require(value <= type(uint240).max, "SafeCast: value doesn't fit in 240 bits");
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*
* _Available since v4.7._
*/
function toUint232(uint256 value) internal pure returns (uint232) {
require(value <= type(uint232).max, "SafeCast: value doesn't fit in 232 bits");
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*
* _Available since v4.2._
*/
function toUint224(uint256 value) internal pure returns (uint224) {
require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits");
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*
* _Available since v4.7._
*/
function toUint216(uint256 value) internal pure returns (uint216) {
require(value <= type(uint216).max, "SafeCast: value doesn't fit in 216 bits");
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*
* _Available since v4.7._
*/
function toUint208(uint256 value) internal pure returns (uint208) {
require(value <= type(uint208).max, "SafeCast: value doesn't fit in 208 bits");
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*
* _Available since v4.7._
*/
function toUint200(uint256 value) internal pure returns (uint200) {
require(value <= type(uint200).max, "SafeCast: value doesn't fit in 200 bits");
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*
* _Available since v4.7._
*/
function toUint192(uint256 value) internal pure returns (uint192) {
require(value <= type(uint192).max, "SafeCast: value doesn't fit in 192 bits");
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*
* _Available since v4.7._
*/
function toUint184(uint256 value) internal pure returns (uint184) {
require(value <= type(uint184).max, "SafeCast: value doesn't fit in 184 bits");
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*
* _Available since v4.7._
*/
function toUint176(uint256 value) internal pure returns (uint176) {
require(value <= type(uint176).max, "SafeCast: value doesn't fit in 176 bits");
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*
* _Available since v4.7._
*/
function toUint168(uint256 value) internal pure returns (uint168) {
require(value <= type(uint168).max, "SafeCast: value doesn't fit in 168 bits");
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*
* _Available since v4.7._
*/
function toUint160(uint256 value) internal pure returns (uint160) {
require(value <= type(uint160).max, "SafeCast: value doesn't fit in 160 bits");
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*
* _Available since v4.7._
*/
function toUint152(uint256 value) internal pure returns (uint152) {
require(value <= type(uint152).max, "SafeCast: value doesn't fit in 152 bits");
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*
* _Available since v4.7._
*/
function toUint144(uint256 value) internal pure returns (uint144) {
require(value <= type(uint144).max, "SafeCast: value doesn't fit in 144 bits");
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*
* _Available since v4.7._
*/
function toUint136(uint256 value) internal pure returns (uint136) {
require(value <= type(uint136).max, "SafeCast: value doesn't fit in 136 bits");
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*
* _Available since v2.5._
*/
function toUint128(uint256 value) internal pure returns (uint128) {
require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits");
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*
* _Available since v4.7._
*/
function toUint120(uint256 value) internal pure returns (uint120) {
require(value <= type(uint120).max, "SafeCast: value doesn't fit in 120 bits");
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*
* _Available since v4.7._
*/
function toUint112(uint256 value) internal pure returns (uint112) {
require(value <= type(uint112).max, "SafeCast: value doesn't fit in 112 bits");
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*
* _Available since v4.7._
*/
function toUint104(uint256 value) internal pure returns (uint104) {
require(value <= type(uint104).max, "SafeCast: value doesn't fit in 104 bits");
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*
* _Available since v4.2._
*/
function toUint96(uint256 value) internal pure returns (uint96) {
require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits");
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*
* _Available since v4.7._
*/
function toUint88(uint256 value) internal pure returns (uint88) {
require(value <= type(uint88).max, "SafeCast: value doesn't fit in 88 bits");
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*
* _Available since v4.7._
*/
function toUint80(uint256 value) internal pure returns (uint80) {
require(value <= type(uint80).max, "SafeCast: value doesn't fit in 80 bits");
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*
* _Available since v4.7._
*/
function toUint72(uint256 value) internal pure returns (uint72) {
require(value <= type(uint72).max, "SafeCast: value doesn't fit in 72 bits");
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*
* _Available since v2.5._
*/
function toUint64(uint256 value) internal pure returns (uint64) {
require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits");
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*
* _Available since v4.7._
*/
function toUint56(uint256 value) internal pure returns (uint56) {
require(value <= type(uint56).max, "SafeCast: value doesn't fit in 56 bits");
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*
* _Available since v4.7._
*/
function toUint48(uint256 value) internal pure returns (uint48) {
require(value <= type(uint48).max, "SafeCast: value doesn't fit in 48 bits");
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*
* _Available since v4.7._
*/
function toUint40(uint256 value) internal pure returns (uint40) {
require(value <= type(uint40).max, "SafeCast: value doesn't fit in 40 bits");
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*
* _Available since v2.5._
*/
function toUint32(uint256 value) internal pure returns (uint32) {
require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits");
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*
* _Available since v4.7._
*/
function toUint24(uint256 value) internal pure returns (uint24) {
require(value <= type(uint24).max, "SafeCast: value doesn't fit in 24 bits");
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*
* _Available since v2.5._
*/
function toUint16(uint256 value) internal pure returns (uint16) {
require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits");
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*
* _Available since v2.5._
*/
function toUint8(uint256 value) internal pure returns (uint8) {
require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits");
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*
* _Available since v3.0._
*/
function toUint256(int256 value) internal pure returns (uint256) {
require(value >= 0, "SafeCast: value must be positive");
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*
* _Available since v4.7._
*/
function toInt248(int256 value) internal pure returns (int248) {
require(value >= type(int248).min && value <= type(int248).max, "SafeCast: value doesn't fit in 248 bits");
return int248(value);
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*
* _Available since v4.7._
*/
function toInt240(int256 value) internal pure returns (int240) {
require(value >= type(int240).min && value <= type(int240).max, "SafeCast: value doesn't fit in 240 bits");
return int240(value);
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*
* _Available since v4.7._
*/
function toInt232(int256 value) internal pure returns (int232) {
require(value >= type(int232).min && value <= type(int232).max, "SafeCast: value doesn't fit in 232 bits");
return int232(value);
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*
* _Available since v4.7._
*/
function toInt224(int256 value) internal pure returns (int224) {
require(value >= type(int224).min && value <= type(int224).max, "SafeCast: value doesn't fit in 224 bits");
return int224(value);
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*
* _Available since v4.7._
*/
function toInt216(int256 value) internal pure returns (int216) {
require(value >= type(int216).min && value <= type(int216).max, "SafeCast: value doesn't fit in 216 bits");
return int216(value);
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*
* _Available since v4.7._
*/
function toInt208(int256 value) internal pure returns (int208) {
require(value >= type(int208).min && value <= type(int208).max, "SafeCast: value doesn't fit in 208 bits");
return int208(value);
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*
* _Available since v4.7._
*/
function toInt200(int256 value) internal pure returns (int200) {
require(value >= type(int200).min && value <= type(int200).max, "SafeCast: value doesn't fit in 200 bits");
return int200(value);
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*
* _Available since v4.7._
*/
function toInt192(int256 value) internal pure returns (int192) {
require(value >= type(int192).min && value <= type(int192).max, "SafeCast: value doesn't fit in 192 bits");
return int192(value);
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*
* _Available since v4.7._
*/
function toInt184(int256 value) internal pure returns (int184) {
require(value >= type(int184).min && value <= type(int184).max, "SafeCast: value doesn't fit in 184 bits");
return int184(value);
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*
* _Available since v4.7._
*/
function toInt176(int256 value) internal pure returns (int176) {
require(value >= type(int176).min && value <= type(int176).max, "SafeCast: value doesn't fit in 176 bits");
return int176(value);
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*
* _Available since v4.7._
*/
function toInt168(int256 value) internal pure returns (int168) {
require(value >= type(int168).min && value <= type(int168).max, "SafeCast: value doesn't fit in 168 bits");
return int168(value);
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*
* _Available since v4.7._
*/
function toInt160(int256 value) internal pure returns (int160) {
require(value >= type(int160).min && value <= type(int160).max, "SafeCast: value doesn't fit in 160 bits");
return int160(value);
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*
* _Available since v4.7._
*/
function toInt152(int256 value) internal pure returns (int152) {
require(value >= type(int152).min && value <= type(int152).max, "SafeCast: value doesn't fit in 152 bits");
return int152(value);
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*
* _Available since v4.7._
*/
function toInt144(int256 value) internal pure returns (int144) {
require(value >= type(int144).min && value <= type(int144).max, "SafeCast: value doesn't fit in 144 bits");
return int144(value);
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*
* _Available since v4.7._
*/
function toInt136(int256 value) internal pure returns (int136) {
require(value >= type(int136).min && value <= type(int136).max, "SafeCast: value doesn't fit in 136 bits");
return int136(value);
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*
* _Available since v3.1._
*/
function toInt128(int256 value) internal pure returns (int128) {
require(value >= type(int128).min && value <= type(int128).max, "SafeCast: value doesn't fit in 128 bits");
return int128(value);
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*
* _Available since v4.7._
*/
function toInt120(int256 value) internal pure returns (int120) {
require(value >= type(int120).min && value <= type(int120).max, "SafeCast: value doesn't fit in 120 bits");
return int120(value);
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*
* _Available since v4.7._
*/
function toInt112(int256 value) internal pure returns (int112) {
require(value >= type(int112).min && value <= type(int112).max, "SafeCast: value doesn't fit in 112 bits");
return int112(value);
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*
* _Available since v4.7._
*/
function toInt104(int256 value) internal pure returns (int104) {
require(value >= type(int104).min && value <= type(int104).max, "SafeCast: value doesn't fit in 104 bits");
return int104(value);
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*
* _Available since v4.7._
*/
function toInt96(int256 value) internal pure returns (int96) {
require(value >= type(int96).min && value <= type(int96).max, "SafeCast: value doesn't fit in 96 bits");
return int96(value);
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*
* _Available since v4.7._
*/
function toInt88(int256 value) internal pure returns (int88) {
require(value >= type(int88).min && value <= type(int88).max, "SafeCast: value doesn't fit in 88 bits");
return int88(value);
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*
* _Available since v4.7._
*/
function toInt80(int256 value) internal pure returns (int80) {
require(value >= type(int80).min && value <= type(int80).max, "SafeCast: value doesn't fit in 80 bits");
return int80(value);
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*
* _Available since v4.7._
*/
function toInt72(int256 value) internal pure returns (int72) {
require(value >= type(int72).min && value <= type(int72).max, "SafeCast: value doesn't fit in 72 bits");
return int72(value);
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*
* _Available since v3.1._
*/
function toInt64(int256 value) internal pure returns (int64) {
require(value >= type(int64).min && value <= type(int64).max, "SafeCast: value doesn't fit in 64 bits");
return int64(value);
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*
* _Available since v4.7._
*/
function toInt56(int256 value) internal pure returns (int56) {
require(value >= type(int56).min && value <= type(int56).max, "SafeCast: value doesn't fit in 56 bits");
return int56(value);
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*
* _Available since v4.7._
*/
function toInt48(int256 value) internal pure returns (int48) {
require(value >= type(int48).min && value <= type(int48).max, "SafeCast: value doesn't fit in 48 bits");
return int48(value);
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*
* _Available since v4.7._
*/
function toInt40(int256 value) internal pure returns (int40) {
require(value >= type(int40).min && value <= type(int40).max, "SafeCast: value doesn't fit in 40 bits");
return int40(value);
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*
* _Available since v3.1._
*/
function toInt32(int256 value) internal pure returns (int32) {
require(value >= type(int32).min && value <= type(int32).max, "SafeCast: value doesn't fit in 32 bits");
return int32(value);
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*
* _Available since v4.7._
*/
function toInt24(int256 value) internal pure returns (int24) {
require(value >= type(int24).min && value <= type(int24).max, "SafeCast: value doesn't fit in 24 bits");
return int24(value);
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*
* _Available since v3.1._
*/
function toInt16(int256 value) internal pure returns (int16) {
require(value >= type(int16).min && value <= type(int16).max, "SafeCast: value doesn't fit in 16 bits");
return int16(value);
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*
* _Available since v3.1._
*/
function toInt8(int256 value) internal pure returns (int8) {
require(value >= type(int8).min && value <= type(int8).max, "SafeCast: value doesn't fit in 8 bits");
return int8(value);
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*
* _Available since v3.0._
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256");
return int256(value);
}
}
// SPDX-FileCopyrightText: 2023 Lido <[email protected]>
// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.15;
import { EnumerableSet } from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { SafeCast } from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { SafeCall } from "src/libraries/SafeCall.sol";
/// @title WithdrawalQueue
/// @notice Queue for storing and managing withdrawal requests.
/// This contract is based on Lido's WithdrawalQueue and has been
/// modified to support Blast specific logic such as withdrawal discounts.
contract WithdrawalQueue is Initializable {
using EnumerableSet for EnumerableSet.UintSet;
using SafeERC20 for IERC20;
/// @notice The L1 gas limit set when sending eth to the YieldManager.
uint256 internal constant SEND_DEFAULT_GAS_LIMIT = 100_000;
/// @notice precision base for share rate
uint256 internal constant E27_PRECISION_BASE = 1e27;
/// @notice return value for the `find...` methods in case of no result
uint256 internal constant NOT_FOUND = 0;
address public immutable TOKEN;
WithdrawalRequest[] private _requests;
mapping(address => EnumerableSet.UintSet) private _requestsByOwner;
Checkpoint[] private _checkpoints;
uint256 private lastRequestId;
uint256 private lastFinalizedRequestId;
uint256 private lastCheckpointId;
uint256 private lockedBalance;
/// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
/// A gap size of 42 was chosen here, so that the first slot used in a child contract
/// would be a multiple of 50.
uint256[42] private __gap;
/// @notice structure representing a request for withdrawal
struct WithdrawalRequest {
/// @notice sum of the all tokens submitted for withdrawals including this request (nominal amount)
uint128 cumulativeAmount;
/// @notice address that can claim the request and receives the funds
address recipient;
/// @notice block.timestamp when the request was created
uint40 timestamp;
/// @notice flag if the request was claimed
bool claimed;
}
/// @notice output format struct for `_getWithdrawalStatus()` method
struct WithdrawalRequestStatus {
/// @notice nominal token amount that was locked on withdrawal queue for this request
uint256 amount;
/// @notice address that can claim or transfer this request
address recipient;
/// @notice timestamp of when the request was created, in seconds
uint256 timestamp;
/// @notice true, if request is finalized
bool isFinalized;
/// @notice true, if request is claimed. Request is claimable if (isFinalized && !isClaimed)
bool isClaimed;
}
/// @notice structure to store discounts for requests that are affected by negative rebase
/// All requests covered by the checkpoint are affected by the same discount rate `sharePrice`.
struct Checkpoint {
uint256 fromRequestId;
uint256 sharePrice;
}
/// @dev amount represents the nominal amount of tokens that were withdrawn (burned) on L2.
event WithdrawalRequested(
uint256 indexed requestId,
address indexed requestor,
address indexed recipient,
uint256 amount
);
/// @dev amountOfETHLocked represents the real amount of ETH that was locked in the queue and will be
/// transferred to the recipient on claim.
event WithdrawalsFinalized(
uint256 indexed from,
uint256 indexed to,
uint256 indexed checkpointId,
uint256 amountOfETHLocked,
uint256 timestamp,
uint256 sharePrice
);
/// @dev amount represents the real amount of ETH that was transferred to the recipient.
event WithdrawalClaimed(
uint256 indexed requestId, address indexed recipient, uint256 amountOfETH
);
error InvalidRequestId(uint256 _requestId);
error InvalidRequestIdRange(uint256 startId, uint256 endId);
error InvalidSharePrice();
error RequestNotFoundOrNotFinalized(uint256 _requestId);
error RequestAlreadyClaimed(uint256 _requestId);
error InvalidHint(uint256 _hint);
error RequestIdsNotSorted();
error CallerIsNotRecipient();
error WithdrawalTransferFailed();
error InsufficientBalance();
constructor(address _token) {
TOKEN = _token;
}
/// @notice initialize the contract with the dummy request and checkpoint
/// as the zero elements of the corresponding arrays so that
/// the first element of the array has index 1
function __WithdrawalQueue_init() internal onlyInitializing {
_requests.push(WithdrawalRequest(0, address(0), uint40(block.timestamp), true));
_checkpoints.push(Checkpoint(0, 0));
}
function getWithdrawalStatus(uint256[] calldata _requestIds)
external
view
returns (WithdrawalRequestStatus[] memory statuses)
{
statuses = new WithdrawalRequestStatus[](_requestIds.length);
for (uint256 i = 0; i < _requestIds.length; ++i) {
statuses[i] = _getStatus(_requestIds[i]);
}
}
function getWithdrawalRequests(address _owner) external view returns (uint256[] memory requestIds) {
return _requestsByOwner[_owner].values();
}
function getClaimableEther(uint256[] calldata _requestIds, uint256[] calldata _hintIds)
external
view
returns (uint256[] memory claimableEthValues)
{
claimableEthValues = new uint256[](_requestIds.length);
for (uint256 i = 0; i < _requestIds.length; ++i) {
claimableEthValues[i] = _getClaimableEther(_requestIds[i], _hintIds[i]);
}
}
function _getClaimableEther(uint256 _requestId, uint256 _hintId) internal view returns (uint256) {
if (_requestId == 0 || _requestId > lastRequestId) revert InvalidRequestId(_requestId);
if (_requestId > lastFinalizedRequestId) return 0;
WithdrawalRequest storage request = _requests[_requestId];
if (request.claimed) return 0;
return _calculateClaimableEther(_requestId, _hintId);
}
/// @notice id of the last request
/// NB! requests are indexed from 1, so it returns 0 if there is no requests in the queue
function getLastRequestId() external view returns (uint256) {
return lastRequestId;
}
/// @notice id of the last finalized request
/// NB! requests are indexed from 1, so it returns 0 if there is no finalized requests in the queue
function getLastFinalizedRequestId() external view returns (uint256) {
return lastFinalizedRequestId;
}
/// @notice amount of ETH on this contract balance that is locked for withdrawal and available to claim
/// NB! this is the real amount of ETH (i.e. sum of (nominal amount of ETH burned on L2 * sharePrice))
function getLockedBalance() public view returns (uint256) {
return lockedBalance;
}
/// @notice return the last checkpoint id in the queue
function getLastCheckpointId() external view returns (uint256) {
return lastCheckpointId;
}
/// @notice return the number of unfinalized requests in the queue
function unfinalizedRequestNumber() public view returns (uint256) {
return lastRequestId - lastFinalizedRequestId;
}
/// @notice Returns the amount of ETH in the queue yet to be finalized
/// NB! this is the nominal amount of ETH burned on L2
function unfinalizedAmount() internal view returns (uint256) {
return
_requests[lastRequestId].cumulativeAmount - _requests[lastFinalizedRequestId].cumulativeAmount;
}
/// @dev Finalize requests in the queue
/// @notice sharePrice has 1e27 precision
/// Emits WithdrawalsFinalized event.
function _finalize(
uint256 _lastRequestIdToBeFinalized,
uint256 availableBalance,
uint256 sharePrice
) internal returns (uint256 nominalAmountToFinalize, uint256 realAmountToFinalize, uint256 checkpointId) {
// share price cannot be larger than 1e27
if (sharePrice > E27_PRECISION_BASE) {
revert InvalidSharePrice();
}
if (_lastRequestIdToBeFinalized != 0) {
if (_lastRequestIdToBeFinalized > lastRequestId) revert InvalidRequestId(_lastRequestIdToBeFinalized);
uint256 _lastFinalizedRequestId = lastFinalizedRequestId;
if (_lastRequestIdToBeFinalized <= _lastFinalizedRequestId) revert InvalidRequestId(_lastRequestIdToBeFinalized);
WithdrawalRequest memory lastFinalizedRequest = _requests[_lastFinalizedRequestId];
WithdrawalRequest memory requestToFinalize = _requests[_lastRequestIdToBeFinalized];
nominalAmountToFinalize = requestToFinalize.cumulativeAmount - lastFinalizedRequest.cumulativeAmount;
realAmountToFinalize = (nominalAmountToFinalize * sharePrice) / E27_PRECISION_BASE;
if (realAmountToFinalize > availableBalance) {
revert InsufficientBalance();
}
uint256 firstRequestIdToFinalize = _lastFinalizedRequestId + 1;
lockedBalance += realAmountToFinalize;
lastFinalizedRequestId = _lastRequestIdToBeFinalized;
checkpointId = _createCheckpoint(firstRequestIdToFinalize, sharePrice);
emit WithdrawalsFinalized(
firstRequestIdToFinalize,
_lastRequestIdToBeFinalized,
checkpointId,
realAmountToFinalize,
block.timestamp,
sharePrice
);
}
}
/// @notice Finds the list of hints for the given `_requestIds` searching among the checkpoints with indices
/// in the range `[_firstIndex, _lastIndex]`.
/// NB! Array of request ids should be sorted
/// NB! `_firstIndex` should be greater than 0, because checkpoint list is 1-based array
/// Usage: findCheckpointHints(_requestIds, 1, getLastCheckpointIndex())
/// @param _requestIds ids of the requests sorted in the ascending order to get hints for
/// @param _firstIndex left boundary of the search range. Should be greater than 0
/// @param _lastIndex right boundary of the search range. Should be less than or equal to getLastCheckpointIndex()
/// @return hintIds array of hints used to find required checkpoint for the request
function findCheckpointHints(uint256[] calldata _requestIds, uint256 _firstIndex, uint256 _lastIndex)
external
view
returns (uint256[] memory hintIds)
{
hintIds = new uint256[](_requestIds.length);
uint256 prevRequestId = 0;
for (uint256 i = 0; i < _requestIds.length; ++i) {
if (_requestIds[i] < prevRequestId) {
revert RequestIdsNotSorted();
}
hintIds[i] = findCheckpointHint(_requestIds[i], _firstIndex, _lastIndex);
_firstIndex = hintIds[i];
prevRequestId = _requestIds[i];
}
}
/// @dev View function to find a checkpoint hint to use in `claimWithdrawal()` and `getClaimableEther()`
/// Search will be performed in the range of `[_firstIndex, _lastIndex]`
///
/// @param _requestId request id to search the checkpoint for
/// @param _start index of the left boundary of the search range, should be greater than 0
/// @param _end index of the right boundary of the search range, should be less than or equal
/// to queue.lastCheckpointId
///
/// @return hint for later use in other methods or 0 if hint not found in the range
function findCheckpointHint(uint256 _requestId, uint256 _start, uint256 _end) public view returns (uint256) {
if (_requestId == 0 || _requestId > lastRequestId) {
revert InvalidRequestId(_requestId);
}
uint256 lastCheckpointIndex = lastCheckpointId;
if (_start == 0 || _end > lastCheckpointIndex) {
revert InvalidRequestIdRange(_start, _end);
}
if (lastCheckpointIndex == 0 || _requestId > lastFinalizedRequestId || _start > _end) {
return NOT_FOUND;
}
// Right boundary
if (_requestId >= _checkpoints[_end].fromRequestId) {
// it's the last checkpoint, so it's valid
if (_end == lastCheckpointIndex) {
return _end;
}
// it fits right before the next checkpoint
if (_requestId < _checkpoints[_end + 1].fromRequestId) {
return _end;
}
return NOT_FOUND;
}
// Left boundary
if (_requestId < _checkpoints[_start].fromRequestId) {
return NOT_FOUND;
}
// Binary search
uint256 min = _start;
uint256 max = _end - 1;
while (max > min) {
uint256 mid = (max + min + 1) / 2;
if (_checkpoints[mid].fromRequestId <= _requestId) {
min = mid;
} else {
max = mid - 1;
}
}
return min;
}
/// @dev Returns the status of the withdrawal request with `_requestId` id
function _getStatus(uint256 _requestId) internal view returns (WithdrawalRequestStatus memory status) {
if (_requestId == 0 || _requestId > lastRequestId) revert InvalidRequestId(_requestId);
WithdrawalRequest memory request = _requests[_requestId];
WithdrawalRequest memory previousRequest = _requests[_requestId - 1];
status = WithdrawalRequestStatus(
request.cumulativeAmount - previousRequest.cumulativeAmount,
request.recipient,
request.timestamp,
_requestId <= lastFinalizedRequestId,
request.claimed
);
}
/// @dev creates a new `WithdrawalRequest` in the queue
/// Emits WithdrawalRequested event
function _requestWithdrawal(address recipient, uint256 amount)
internal
returns (uint256 requestId)
{
uint256 _lastRequestId = lastRequestId;
WithdrawalRequest memory lastRequest = _requests[_lastRequestId];
uint128 cumulativeAmount = lastRequest.cumulativeAmount + SafeCast.toUint128(amount);
requestId = _lastRequestId + 1;
lastRequestId = requestId;
WithdrawalRequest memory newRequest = WithdrawalRequest(
cumulativeAmount,
recipient,
uint40(block.timestamp),
false
);
_requests.push(newRequest);
_requestsByOwner[recipient].add(requestId);
emit WithdrawalRequested(requestId, msg.sender, recipient, amount);
}
/// @dev assumes firstRequestIdToFinalize > _lastFinalizedRequestId && sharePrice <= 1e27
function _createCheckpoint(uint256 firstRequestIdToFinalize, uint256 sharePrice) internal returns (uint256) {
_checkpoints.push(Checkpoint(firstRequestIdToFinalize, sharePrice));
lastCheckpointId += 1;
return lastCheckpointId;
}
/// @dev can only be called by request.recipient (YieldManager)
function claimWithdrawal(uint256 _requestId, uint256 _hintId) external returns (bool success) {
if (_requestId == 0) revert InvalidRequestId(_requestId);
if (_requestId > lastFinalizedRequestId) revert RequestNotFoundOrNotFinalized(_requestId);
WithdrawalRequest storage request = _requests[_requestId];
if (request.claimed) revert RequestAlreadyClaimed(_requestId);
request.claimed = true;
address recipient = request.recipient;
if (msg.sender != recipient) {
revert CallerIsNotRecipient();
}
uint256 realAmount = _calculateClaimableEther(_requestId, _hintId);
lockedBalance -= realAmount;
if (TOKEN == address(0)) {
(success) = SafeCall.send(recipient, SEND_DEFAULT_GAS_LIMIT, realAmount);
} else {
IERC20(TOKEN).safeTransfer(recipient, realAmount);
success = true;
}
if (!success) {
revert WithdrawalTransferFailed();
}
emit WithdrawalClaimed(_requestId, recipient, realAmount);
}
/// @dev Calculate the amount of ETH that can be claimed for the withdrawal request with `_requestId`.
/// NB! This function returns the real amount of ETH that can be claimed by the recipient, not the nominal amount
/// that was burned on L2. The real amount is calculated as nominal amount * share price, which can be found
/// in the checkpoint with `_hintId`.
function _calculateClaimableEther(uint256 _requestId, uint256 _hintId)
internal
view
returns (uint256)
{
if (_hintId == 0) {
revert InvalidHint(_hintId);
}
uint256 lastCheckpointIndex = lastCheckpointId;
if (_hintId > lastCheckpointIndex) {
revert InvalidHint(_hintId);
}
Checkpoint memory checkpoint = _checkpoints[_hintId];
if (_requestId < checkpoint.fromRequestId) {
revert InvalidHint(_hintId);
}
if (_hintId < lastCheckpointIndex) {
Checkpoint memory nextCheckpoint = _checkpoints[_hintId + 1];
if (_requestId >= nextCheckpoint.fromRequestId) {
revert InvalidHint(_hintId);
}
}
WithdrawalRequest storage prevRequest = _requests[_requestId - 1];
WithdrawalRequest storage request = _requests[_requestId];
uint256 nominalAmount = request.cumulativeAmount - prevRequest.cumulativeAmount;
return (nominalAmount * checkpoint.sharePrice) / E27_PRECISION_BASE;
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;
import { YieldManager } from "src/mainnet-bridge/YieldManager.sol";
import { Semver } from "src/universal/Semver.sol";
/// @title YieldProvider
/// @notice Base contract for interacting and accounting for a
/// specific yield source.
abstract contract YieldProvider is Semver {
YieldManager public immutable YIELD_MANAGER;
uint256 public stakedPrincipal;
uint256 public pendingBalance;
event YieldCommit(bytes32 indexed provider, int256 yield);
event Staked(bytes32 indexed provider, uint256 amount);
event Unstaked(bytes32 indexed provider, uint256 amount);
event Pending(bytes32 indexed provider, uint256 amount);
event Claimed(bytes32 indexed provider, uint256 claimedAmount, uint256 expectedAmount);
event InsurancePremiumPaid(bytes32 indexed provider, uint256 amount);
event InsuranceWithdrawn(bytes32 indexed provider, uint256 amount);
error InsufficientStakableFunds();
error CallerIsNotYieldManager();
error ContextIsNotYieldManager();
error NotSupported();
modifier onlyYieldManager() {
if (msg.sender != address(YIELD_MANAGER)) {
revert CallerIsNotYieldManager();
}
_;
}
modifier onlyDelegateCall() {
if (address(this) != address(YIELD_MANAGER)) {
revert ContextIsNotYieldManager();
}
_;
}
/// @param _yieldManager Address of the yield manager for the underlying
/// yield asset of this provider.
constructor(YieldManager _yieldManager) Semver(1, 0, 0) {
require(address(_yieldManager) != address(this));
YIELD_MANAGER = _yieldManager;
}
/// @notice initialize
function initialize() external onlyDelegateCall virtual {}
function name() public pure virtual returns (string memory);
function id() public view returns (bytes32) {
return keccak256(abi.encodePacked(name(), version()));
}
/// @notice Whether staking is enabled for the given asset.
function isStakingEnabled(address token) external view virtual returns (bool);
/// @notice Current balance of the provider's staked funds.
function stakedBalance() public view virtual returns (uint256);
/// @notice Total value in the provider's yield method/protocol.
function totalValue() public view returns (uint256) {
return stakedBalance() + pendingBalance;
}
/// @notice Current amount of yield gained since the previous commit.
function yield() public view virtual returns (int256);
/// @notice Whether the provider supports yield insurance.
function supportsInsurancePayment() public view virtual returns (bool) {
return false;
}
/// @notice Gets insurance balance available for the provider's assets.
function insuranceBalance() public view virtual returns (uint256) {
revert("not supported");
}
/// @notice Commit the current amount of yield and checkpoint the accounting
/// variables.
/// @return Amount of yield at this checkpoint.
function commitYield() external onlyYieldManager returns (int256) {
_beforeCommitYield();
int256 _yield = yield();
stakedPrincipal = stakedBalance();
_afterCommitYield();
emit YieldCommit(id(), _yield);
return _yield;
}
/// @notice Stake YieldManager funds using the provider's yield method/protocol.
/// Must be called via `delegatecall` from the YieldManager.
function stake(uint256) external virtual;
/// @notice Unstake YieldManager funds from the provider's yield method/protocol.
/// Must be called via `delegatecall` from the YieldManager.
/// @return pending Amount of funds pending in an unstaking delay
/// @return claimed Amount of funds that have been claimed.
/// The yield provider is expected to return
/// (pending = 0, claimed = non-zero) if the funds are immediately
/// available for withdrawal, and (pending = non-zero, claimed = 0)
/// if the funds are in an unstaking delay.
function unstake(uint256) external virtual returns (uint256 pending, uint256 claimed);
/// @notice Pay insurance premium during a yield report. Must be called via
/// `delegatecall` from the YieldManager.
function payInsurancePremium(uint256) external virtual onlyDelegateCall {
revert NotSupported();
}
/// @notice Withdraw insurance funds to cover yield losses during a yield report.
/// Must be called via `delegatecall` from the YieldManager.
function withdrawFromInsurance(uint256) external virtual onlyDelegateCall {
revert NotSupported();
}
/// @notice Record a deposit to the stake balance of the provider to track the
/// principal balance.
/// @param amount Amount of new staked balance to record.
function recordStakedDeposit(uint256 amount) external virtual onlyYieldManager {
stakedPrincipal += amount;
emit Staked(id(), amount);
}
/// @notice Record a withdraw to the stake balance of the provider to track the
/// principal balance. This method should be called by the Yield Manager
/// after delegate-calling the provider's `unstake` method, which should
/// return the arguments to this method.
function recordUnstaked(uint256 pending, uint256 claimed, uint256 expected) external virtual onlyYieldManager {
_recordStakedWithdraw(expected);
if (pending > 0) {
require(claimed == 0 && pending == expected, "invalid yield provider implementation");
_recordPending(pending);
}
if (claimed > 0) {
require(pending == 0 && claimed == expected, "invalid yield provider implementation");
_recordClaimed(claimed, expected);
}
}
/// @notice A hook that is DELEGATE-CALLed by the Yield Manager for the provider
/// to perform any actions before the yield report process begins.
function preCommitYieldReportDelegateCallHook() external virtual onlyDelegateCall {}
/// @notice Record a withdraw the stake balance of the provider.
/// @param amount Amount of staked balance to remove.
function _recordStakedWithdraw(uint256 amount) internal virtual {
stakedPrincipal -= amount;
emit Unstaked(id(), amount);
}
/// @notice Record a pending balance to the provider. Needed only for providers
/// that use two-step withdrawals (e.g. Lido).
function _recordPending(uint256 amount) internal virtual {
pendingBalance += amount;
emit Pending(id(), amount);
}
/// @notice Record a claimed balance to the provider. For providers with one-step
/// withdrawals, this method should be overriden to just emit the event
/// to avoid integer underflow.
function _recordClaimed(uint256 claimed, uint256 expected) internal virtual {
require(claimed <= expected, "invalid yield provider implementation");
// Decrements pending balance by the expected amount, not the claimed amount.
// If claimed < expected, the difference (expected - claimed) must be considered
// as realized negative yield. To correctly reflect this, the difference is
// subtracted from the pending balance (and totalProviderValue).
pendingBalance -= expected;
emit Claimed(id(), claimed, expected);
}
function _beforeCommitYield() internal virtual {}
function _afterCommitYield() internal virtual {}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;
/// @title Types
/// @notice Contains various types used throughout the Optimism contract system.
library Types {
/// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
/// timestamp that the output root is posted. This timestamp is used to verify that the
/// finalization period has passed since the output root was submitted.
/// @custom:field outputRoot Hash of the L2 output.
/// @custom:field timestamp Timestamp of the L1 block that the output root was submitted in.
/// @custom:field l2BlockNumber L2 block number that the output corresponds to.
struct OutputProposal {
bytes32 outputRoot;
uint128 timestamp;
uint128 l2BlockNumber;
}
/// @notice Struct representing the elements that are hashed together to generate an output root
/// which itself represents a snapshot of the L2 state.
/// @custom:field version Version of the output root.
/// @custom:field stateRoot Root of the state trie at the block of this output.
/// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
/// @custom:field latestBlockhash Hash of the block this output was generated from.
struct OutputRootProof {
bytes32 version;
bytes32 stateRoot;
bytes32 messagePasserStorageRoot;
bytes32 latestBlockhash;
}
/// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
/// user (as opposed to a system deposit transaction generated by the system).
/// @custom:field from Address of the sender of the transaction.
/// @custom:field to Address of the recipient of the transaction.
/// @custom:field isCreation True if the transaction is a contract creation.
/// @custom:field value Value to send to the recipient.
/// @custom:field mint Amount of ETH to mint.
/// @custom:field gasLimit Gas limit of the transaction.
/// @custom:field data Data of the transaction.
/// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
/// @custom:field logIndex Index of the log in the block the transaction was submitted in.
struct UserDepositTransaction {
address from;
address to;
bool isCreation;
uint256 value;
uint256 mint;
uint64 gasLimit;
bytes data;
bytes32 l1BlockHash;
uint256 logIndex;
}
/// @notice Struct representing a withdrawal transaction.
/// @custom:field nonce Nonce of the withdrawal transaction
/// @custom:field sender Address of the sender of the transaction.
/// @custom:field target Address of the recipient of the transaction.
/// @custom:field value Value to send to the recipient.
/// @custom:field gasLimit Gas limit of the transaction.
/// @custom:field data Data of the transaction.
struct WithdrawalTransaction {
uint256 nonce;
address sender;
address target;
uint256 value;
uint256 gasLimit;
bytes data;
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;
/// @title SafeCall
/// @notice Perform low level safe calls
library SafeCall {
/// @notice Performs a low level call without copying any returndata.
/// @dev Passes no calldata to the call context.
/// @param _target Address to call
/// @param _gas Amount of gas to pass to the call
/// @param _value Amount of value to pass to the call
function send(address _target, uint256 _gas, uint256 _value) internal returns (bool) {
bool _success;
assembly {
_success :=
call(
_gas, // gas
_target, // recipient
_value, // ether value
0, // inloc
0, // inlen
0, // outloc
0 // outlen
)
}
return _success;
}
/// @notice Perform a low level call without copying any returndata
/// @param _target Address to call
/// @param _gas Amount of gas to pass to the call
/// @param _value Amount of value to pass to the call
/// @param _calldata Calldata to pass to the call
function call(address _target, uint256 _gas, uint256 _value, bytes memory _calldata) internal returns (bool) {
bool _success;
assembly {
_success :=
call(
_gas, // gas
_target, // recipient
_value, // ether value
add(_calldata, 32), // inloc
mload(_calldata), // inlen
0, // outloc
0 // outlen
)
}
return _success;
}
/// @notice Helper function to determine if there is sufficient gas remaining within the context
/// to guarantee that the minimum gas requirement for a call will be met as well as
/// optionally reserving a specified amount of gas for after the call has concluded.
/// @param _minGas The minimum amount of gas that may be passed to the target context.
/// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
/// of the target context.
/// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
/// context as well as reserve `_reservedGas` for the caller after the execution of
/// the target context.
/// @dev !!!!! FOOTGUN ALERT !!!!!
/// 1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
/// `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
/// `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
/// still possible to self-rekt by initiating a withdrawal with a minimum gas limit
/// that does not account for the `memory_expansion_cost` & `code_execution_cost`
/// factors of the dynamic cost of the `CALL` opcode.
/// 2.) This function should *directly* precede the external call if possible. There is an
/// added buffer to account for gas consumed between this check and the call, but it
/// is only 5,700 gas.
/// 3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
/// frame may be passed to a subcontext, we need to ensure that the gas will not be
/// truncated.
/// 4.) Use wisely. This function is not a silver bullet.
function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
bool _hasMinGas;
assembly {
// Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
_hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
}
return _hasMinGas;
}
/// @notice Perform a low level call without copying any returndata. This function
/// will revert if the call cannot be performed with the specified minimum
/// gas.
/// @param _target Address to call
/// @param _minGas The minimum amount of gas that may be passed to the call
/// @param _value Amount of value to pass to the call
/// @param _calldata Calldata to pass to the call
function callWithMinGas(
address _target,
uint256 _minGas,
uint256 _value,
bytes memory _calldata
)
internal
returns (bool)
{
bool _success;
bool _hasMinGas = hasMinGas(_minGas, 0);
assembly {
// Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
if iszero(_hasMinGas) {
// Store the "Error(string)" selector in scratch space.
mstore(0, 0x08c379a0)
// Store the pointer to the string length in scratch space.
mstore(32, 32)
// Store the string.
//
// SAFETY:
// - We pad the beginning of the string with two zero bytes as well as the
// length (24) to ensure that we override the free memory pointer at offset
// 0x40. This is necessary because the free memory pointer is likely to
// be greater than 1 byte when this function is called, but it is incredibly
// unlikely that it will be greater than 3 bytes. As for the data within
// 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
// - It's fine to clobber the free memory pointer, we're reverting.
mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
// Revert with 'Error("SafeCall: Not enough gas")'
revert(28, 100)
}
// The call will be supplied at least ((_minGas * 64) / 63) gas due to the
// above assertion. This ensures that, in all circumstances (except for when the
// `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
// factors of the dynamic cost of the `CALL` opcode), the call will receive at least
// the minimum amount of gas specified.
_success :=
call(
gas(), // gas
_target, // recipient
_value, // ether value
add(_calldata, 32), // inloc
mload(_calldata), // inlen
0x00, // outloc
0x00 // outlen
)
}
return _success;
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;
import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { SafeCall } from "src/libraries/SafeCall.sol";
import { Hashing } from "src/libraries/Hashing.sol";
import { Encoding } from "src/libraries/Encoding.sol";
import { Constants } from "src/libraries/Constants.sol";
/// @custom:legacy
/// @title CrossDomainMessengerLegacySpacer0
/// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
/// libAddressManager variable used to exist. Must be the first contract in the inheritance
/// tree of the CrossDomainMessenger.
contract CrossDomainMessengerLegacySpacer0 {
/// @custom:legacy
/// @custom:spacer libAddressManager
/// @notice Spacer for backwards compatibility.
address private spacer_0_0_20;
}
/// @custom:legacy
/// @title CrossDomainMessengerLegacySpacer1
/// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
/// PausableUpgradable and OwnableUpgradeable variables used to exist. Must be
/// the third contract in the inheritance tree of the CrossDomainMessenger.
contract CrossDomainMessengerLegacySpacer1 {
/// @custom:legacy
/// @custom:spacer ContextUpgradable's __gap
/// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
/// ContextUpgradable.
uint256[50] private spacer_1_0_1600;
/// @custom:legacy
/// @custom:spacer OwnableUpgradeable's _owner
/// @notice Spacer for backwards compatibility.
/// Come from OpenZeppelin OwnableUpgradeable.
address private spacer_51_0_20;
/// @custom:legacy
/// @custom:spacer OwnableUpgradeable's __gap
/// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
/// OwnableUpgradeable.
uint256[49] private spacer_52_0_1568;
/// @custom:legacy
/// @custom:spacer PausableUpgradable's _paused
/// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
/// PausableUpgradable.
bool private spacer_101_0_1;
/// @custom:legacy
/// @custom:spacer PausableUpgradable's __gap
/// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
/// PausableUpgradable.
uint256[49] private spacer_102_0_1568;
/// @custom:legacy
/// @custom:spacer ReentrancyGuardUpgradeable's `_status` field.
/// @notice Spacer for backwards compatibility.
uint256 private spacer_151_0_32;
/// @custom:legacy
/// @custom:spacer ReentrancyGuardUpgradeable's __gap
/// @notice Spacer for backwards compatibility.
uint256[49] private spacer_152_0_1568;
/// @custom:legacy
/// @custom:spacer blockedMessages
/// @notice Spacer for backwards compatibility.
mapping(bytes32 => bool) private spacer_201_0_32;
/// @custom:legacy
/// @custom:spacer relayedMessages
/// @notice Spacer for backwards compatibility.
mapping(bytes32 => bool) private spacer_202_0_32;
}
/// @custom:upgradeable
/// @title CrossDomainMessenger
/// @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2
/// cross-chain messenger contracts. It's designed to be a universal interface that only
/// needs to be extended slightly to provide low-level message passing functionality on each
/// chain it's deployed on. Currently only designed for message passing between two paired
/// chains and does not support one-to-many interactions.
/// Any changes to this contract MUST result in a semver bump for contracts that inherit it.
abstract contract CrossDomainMessenger is
CrossDomainMessengerLegacySpacer0,
Initializable,
CrossDomainMessengerLegacySpacer1
{
/// @notice Current message version identifier.
uint16 public constant MESSAGE_VERSION = 1;
/// @notice Constant overhead added to the base gas for a message.
uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000;
/// @notice Numerator for dynamic overhead added to the base gas for a message.
uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64;
/// @notice Denominator for dynamic overhead added to the base gas for a message.
uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63;
/// @notice Extra gas added to base gas for each byte of calldata in a message.
uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16;
/// @notice Gas reserved for performing the external call in `relayMessage`.
uint64 public constant RELAY_CALL_OVERHEAD = 40_000;
/// @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call.
uint64 public constant RELAY_RESERVED_GAS = 60_000;
/// @notice Gas reserved for the execution between the `hasMinGas` check and the external
/// call in `relayMessage`.
uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000;
/// @notice Address of the paired CrossDomainMessenger contract on the other chain.
address public immutable OTHER_MESSENGER;
/// @notice Mapping of message hashes to boolean receipt values. Note that a message will only
/// be present in this mapping if it has successfully been relayed on this chain, and
/// can therefore not be relayed again.
mapping(bytes32 => bool) public successfulMessages;
/// @notice Address of the sender of the currently executing message on the other chain. If the
/// value of this variable is the default value (0x00000000...dead) then no message is
/// currently being executed. Use the xDomainMessageSender getter which will throw an
/// error if this is the case.
address internal xDomainMsgSender;
/// @notice Nonce for the next message to be sent, without the message version applied. Use the
/// messageNonce getter which will insert the message version into the nonce to give you
/// the actual nonce to be used for the message.
uint240 internal msgNonce;
/// @notice Mapping of message hashes to a boolean if and only if the message has failed to be
/// executed at least once. A message will not be present in this mapping if it
/// successfully executed on the first attempt.
mapping(bytes32 => bool) public failedMessages;
/// @notice Reserve extra slots in the storage layout for future upgrades.
/// A gap size of 42 was chosen here, so that the first slot used in a child contract
/// would be a multiple of 50.
uint256[42] private __gap;
/// @notice Emitted whenever a message is sent to the other chain.
/// @param target Address of the recipient of the message.
/// @param sender Address of the sender of the message.
/// @param message Message to trigger the recipient address with.
/// @param messageNonce Unique nonce attached to the message.
/// @param gasLimit Minimum gas limit that the message can be executed with.
event SentMessage(address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit);
/// @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the
/// SentMessage event without breaking the ABI of this contract, this is good enough.
/// @param sender Address of the sender of the message.
/// @param value ETH value sent along with the message to the recipient.
event SentMessageExtension1(address indexed sender, uint256 value);
/// @notice Emitted whenever a message is successfully relayed on this chain.
/// @param msgHash Hash of the message that was relayed.
event RelayedMessage(bytes32 indexed msgHash);
/// @notice Emitted whenever a message fails to be relayed on this chain.
/// @param msgHash Hash of the message that failed to be relayed.
event FailedRelayedMessage(bytes32 indexed msgHash);
/// @param _otherMessenger Address of the messenger on the paired chain.
constructor(address _otherMessenger) {
OTHER_MESSENGER = _otherMessenger;
}
/// @notice Sends a message to some target address on the other chain. Note that if the call
/// always reverts, then the message will be unrelayable, and any ETH sent will be
/// permanently locked. The same will occur if the target on the other chain is
/// considered unsafe (see the _isUnsafeTarget() function).
/// @param _target Target contract or wallet address.
/// @param _message Message to trigger the target address with.
/// @param _minGasLimit Minimum gas limit that the message can be executed with.
function sendMessage(address _target, bytes calldata _message, uint32 _minGasLimit) external payable {
// Triggers a message to the other messenger. Note that the amount of gas provided to the
// message is the amount of gas requested by the user PLUS the base gas value. We want to
// guarantee the property that the call to the target contract will always have at least
// the minimum gas limit specified by the user.
_sendMessage(
OTHER_MESSENGER,
baseGas(_message, _minGasLimit),
msg.value,
abi.encodeWithSelector(
this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message
)
);
emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit);
emit SentMessageExtension1(msg.sender, msg.value);
unchecked {
++msgNonce;
}
}
/// @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only
/// be executed via cross-chain call from the other messenger OR if the message was
/// already received once and is currently being replayed.
/// @param _nonce Nonce of the message being relayed.
/// @param _sender Address of the user who sent the message.
/// @param _target Address that the message is targeted at.
/// @param _value ETH value to send with the message.
/// @param _minGasLimit Minimum amount of gas that the message can be executed with.
/// @param _message Message to send to the target.
function relayMessage(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _minGasLimit,
bytes calldata _message
)
external
payable
virtual
{
(, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
require(version < 2, "CrossDomainMessenger: only version 0 or 1 messages are supported at this time");
// If the message is version 0, then it's a migrated legacy withdrawal. We therefore need
// to check that the legacy version of the message has not already been relayed.
if (version == 0) {
bytes32 oldHash = Hashing.hashCrossDomainMessageV0(_target, _sender, _message, _nonce);
require(successfulMessages[oldHash] == false, "CrossDomainMessenger: legacy withdrawal already relayed");
}
// We use the v1 message hash as the unique identifier for the message because it commits
// to the value and minimum gas limit of the message.
bytes32 versionedHash =
Hashing.hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _minGasLimit, _message);
if (_isOtherMessenger()) {
// These properties should always hold when the message is first submitted (as
// opposed to being replayed).
assert(msg.value == _value);
assert(!failedMessages[versionedHash]);
} else {
require(msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address");
require(failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed");
}
require(
_isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address"
);
require(successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed");
// If there is not enough gas left to perform the external call and finish the execution,
// return early and assign the message to the failedMessages mapping.
// We are asserting that we have enough gas to:
// 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER)
// 1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`.
// 2. Finish the execution after the external call (RELAY_RESERVED_GAS).
//
// If `xDomainMsgSender` is not the default L2 sender, this function
// is being re-entered. This marks the message as failed to allow it to be replayed.
if (
!SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER)
|| xDomainMsgSender != Constants.DEFAULT_L2_SENDER
) {
failedMessages[versionedHash] = true;
emit FailedRelayedMessage(versionedHash);
// Revert in this case if the transaction was triggered by the estimation address. This
// should only be possible during gas estimation or we have bigger problems. Reverting
// here will make the behavior of gas estimation change such that the gas limit
// computed will be the amount required to relay the message, even if that amount is
// greater than the minimum gas limit specified by the user.
if (tx.origin == Constants.ESTIMATION_ADDRESS) {
revert("CrossDomainMessenger: failed to relay message");
}
return;
}
xDomainMsgSender = _sender;
bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message);
xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
if (success) {
// This check is identical to one above, but it ensures that the same message cannot be relayed
// twice, and adds a layer of protection against rentrancy.
assert(successfulMessages[versionedHash] == false);
successfulMessages[versionedHash] = true;
emit RelayedMessage(versionedHash);
} else {
failedMessages[versionedHash] = true;
emit FailedRelayedMessage(versionedHash);
// Revert in this case if the transaction was triggered by the estimation address. This
// should only be possible during gas estimation or we have bigger problems. Reverting
// here will make the behavior of gas estimation change such that the gas limit
// computed will be the amount required to relay the message, even if that amount is
// greater than the minimum gas limit specified by the user.
if (tx.origin == Constants.ESTIMATION_ADDRESS) {
revert("CrossDomainMessenger: failed to relay message");
}
}
}
/// @notice Retrieves the address of the contract or wallet that initiated the currently
/// executing message on the other chain. Will throw an error if there is no message
/// currently being executed. Allows the recipient of a call to see who triggered it.
/// @return Address of the sender of the currently executing message on the other chain.
function xDomainMessageSender() external view returns (address) {
require(
xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set"
);
return xDomainMsgSender;
}
/// @notice Retrieves the next message nonce. Message version will be added to the upper two
/// bytes of the message nonce. Message version allows us to treat messages as having
/// different structures.
/// @return Nonce of the next message to be sent, with added message version.
function messageNonce() public view returns (uint256) {
return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
}
/// @notice Computes the amount of gas required to guarantee that a given message will be
/// received on the other chain without running out of gas. Guaranteeing that a message
/// will not run out of gas is important because this ensures that a message can always
/// be replayed on the other chain if it fails to execute completely.
/// @param _message Message to compute the amount of required gas for.
/// @param _minGasLimit Minimum desired gas limit when message goes to target.
/// @return Amount of gas required to guarantee message receipt.
function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) {
return
// Constant overhead
RELAY_CONSTANT_OVERHEAD
// Calldata overhead
+ (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD)
// Dynamic overhead (EIP-150)
+ ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR)
// Gas reserved for the worst-case cost of 3/5 of the `CALL` opcode's dynamic gas
// factors. (Conservative)
+ RELAY_CALL_OVERHEAD
// Relay reserved gas (to ensure execution of `relayMessage` completes after the
// subcontext finishes executing) (Conservative)
+ RELAY_RESERVED_GAS
// Gas reserved for the execution between the `hasMinGas` check and the `CALL`
// opcode. (Conservative)
+ RELAY_GAS_CHECK_BUFFER;
}
/// @notice Initializer.
// solhint-disable-next-line func-name-mixedcase
function __CrossDomainMessenger_init() internal onlyInitializing {
// We only want to set the xDomainMsgSender to the default value if it hasn't been initialized yet,
// meaning that this is a fresh contract deployment.
// This prevents resetting the xDomainMsgSender to the default value during an upgrade, which would enable
// a reentrant withdrawal to sandwich the upgrade replay a withdrawal twice.
if (xDomainMsgSender == address(0)) {
xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
}
}
/// @notice Sends a low-level message to the other messenger. Needs to be implemented by child
/// contracts because the logic for this depends on the network where the messenger is
/// being deployed.
/// @param _to Recipient of the message on the other chain.
/// @param _gasLimit Minimum gas limit the message can be executed with.
/// @param _value Amount of ETH to send with the message.
/// @param _data Message data.
function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal virtual;
/// @notice Checks whether the message is coming from the other messenger. Implemented by child
/// contracts because the logic for this depends on the network where the messenger is
/// being deployed.
/// @return Whether the message is coming from the other messenger.
function _isOtherMessenger() internal view virtual returns (bool);
/// @notice Checks whether a given call target is a system address that could cause the
/// messenger to peform an unsafe action. This is NOT a mechanism for blocking user
/// addresses. This is ONLY used to prevent the execution of messages to specific
/// system addresses that could cause security issues, e.g., having the
/// CrossDomainMessenger send messages to itself.
/// @param _target Address of the contract to check.
/// @return Whether or not the address is an unsafe system address.
function _isUnsafeTarget(address _target) internal view virtual returns (bool);
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;
import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { Semver } from "src/universal/Semver.sol";
import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol";
import { Predeploys } from "src/libraries/Predeploys.sol";
import { Blast, YieldMode, GasMode } from "src/L2/Blast.sol";
/// @custom:predeploy 0x4300000000000000000000000000000000000000
/// @title SharesBase
/// @notice Base contract to track share rebasing and yield reporting.
abstract contract SharesBase is Initializable {
/// @notice Approved yield reporter.
address public immutable REPORTER;
/// @notice Share price. This value can only increase.
uint256 public price;
/// @notice Accumulated yield that has not been distributed
/// to the share price.
uint256 public pending;
/// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
/// A gap size of 48 was chosen here, so that the first slot used in a child contract
/// would be a multiple of 50.
uint256[48] private __gap;
/// @notice Emitted when a new share price is set after a yield event.
event NewPrice(uint256 price);
error InvalidReporter();
error DistributeFailed(uint256 count, uint256 pending);
error PriceIsInitialized();
/// @param _reporter Address of the approved yield reporter.
constructor(address _reporter) {
REPORTER = _reporter;
}
/// @notice Initializer.
/// @param _price Initial share price.
// solhint-disable-next-line func-name-mixedcase
function __SharesBase_init(uint256 _price) internal onlyInitializing {
if (price != 0) {
revert PriceIsInitialized();
}
price = _price;
}
/// @notice Get the total number of shares. Needs to be
/// overridden by the child contract.
/// @return Total number of shares.
function count() public view virtual returns (uint256);
/// @notice Report a yield event and update the share price.
/// @param value Amount of new yield
function addValue(uint256 value) external {
_addValue(value);
}
function _addValue(uint256 value) internal virtual {
if (AddressAliasHelper.undoL1ToL2Alias(msg.sender) != REPORTER) {
revert InvalidReporter();
}
if (value > 0) {
pending += value;
}
_tryDistributePending();
}
/// @notice Attempt to distribute pending yields if there
/// are sufficient pending yields to increase the
/// share price.
/// @return True if there were sufficient pending yields to
/// increase the share price.
function _tryDistributePending() internal returns (bool) {
if (pending < count() || count() == 0) {
return false;
}
price += pending / count();
pending = pending % count();
emit NewPrice(price);
return true;
}
}
/// @custom:predeploy 0x4300000000000000000000000000000000000000
/// @title Shares
/// @notice Integrated EVM contract to manage native ether share
/// rebasing from yield reports.
contract Shares is SharesBase, Semver {
/// @notice Total number of shares. This value is modified directly
/// by the sequencer EVM.
uint256 private _count;
/// @notice _reporter Address of approved yield reporter.
constructor(address _reporter) SharesBase(_reporter) Semver(1, 0, 0) {
_disableInitializers();
}
/// @notice Initializer.
function initialize(uint256 _price) public initializer {
__SharesBase_init({ _price: _price });
Blast(Predeploys.BLAST).configureContract(
address(this),
YieldMode.VOID,
GasMode.VOID,
address(0xdead) /// don't set a governor
);
}
/// @inheritdoc SharesBase
function count() public view override returns (uint256) {
return _count;
}
function _addValue(uint256 value) internal override {
super._addValue(value);
SharesBase(Predeploys.WETH_REBASING).addValue(value);
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;
interface IDelegateCalls {
function payInsurancePremium(uint256) external;
function withdrawFromInsurance(uint256) external;
function stake(uint256) external;
function unstake(uint256) external returns (uint256, uint256);
function preCommitYieldReportDelegateCallHook() external;
}
abstract contract DelegateCalls {
function _delegatecall_payInsurancePremium(address provider, uint256 arg) internal {
(bool success,) = provider.delegatecall(
abi.encodeCall(IDelegateCalls.payInsurancePremium, (arg))
);
require(success, "delegatecall failed");
}
function _delegatecall_withdrawFromInsurance(address provider, uint256 arg) internal {
(bool success,) = provider.delegatecall(
abi.encodeCall(IDelegateCalls.withdrawFromInsurance, (arg))
);
require(success, "delegatecall failed");
}
function _delegatecall_stake(address provider, uint256 arg) internal {
(bool success,) = provider.delegatecall(
abi.encodeCall(IDelegateCalls.stake, (arg))
);
require(success, "delegatecall failed");
}
function _delegatecall_unstake(address provider, uint256 arg) internal returns (uint256, uint256) {
(bool success, bytes memory res) = provider.delegatecall(
abi.encodeCall(IDelegateCalls.unstake, (arg))
);
require(success, "delegatecall failed");
return abi.decode(res, (uint256, uint256));
}
function _delegatecall_preCommitYieldReportDelegateCallHook(address provider) internal {
(bool success,) = provider.delegatecall(
abi.encodeCall(IDelegateCalls.preCommitYieldReportDelegateCallHook, ())
);
require(success, "delegatecall failed");
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;
import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
import { YieldManager } from "src/mainnet-bridge/YieldManager.sol";
interface IUSDT {
function approve(address spender, uint256 amount) external;
function balanceOf(address) external view returns (uint256);
}
interface IDssPsm {
function sellGem(address usr, uint256 gemAmt) external;
function buyGem(address usr, uint256 gemAmt) external;
function gemJoin() external view returns (address);
}
interface ICurve3Pool {
function exchange(int128 i, int128 j, uint256 dx, uint256 min_dy) external;
}
/// @title USDConversions
/// @notice Stateless helper module for converting between USD tokens (DAI/USDC/USDT).
///
/// DAI and USDC are converted 1-to-1 using Maker's Peg Stability Mechanism.
/// All other tokens conversions are completed through Curve's 3Pool.
library USDConversions {
uint256 constant WAD_DECIMALS = 18;
uint256 constant USD_DECIMALS = 6;
int128 constant DAI_INDEX = 0;
int128 constant USDC_INDEX = 1;
int128 constant USDT_INDEX = 2;
IERC20 constant DAI = IERC20(0x6B175474E89094C44Da98b954EedeAC495271d0F);
IERC20 constant USDC = IERC20(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48);
IUSDT constant USDT = IUSDT(0xdAC17F958D2ee523a2206206994597C13D831ec7);
IDssPsm constant PSM = IDssPsm(0x89B78CfA322F6C5dE0aBcEecab66Aee45393cC5A);
ICurve3Pool constant CURVE_3POOL = ICurve3Pool(0xbEbc44782C7dB0a1A60Cb6fe97d0b483032FF1C7);
/// @notice immutable address of PSM's GemJoin contract
address constant GEM_JOIN = 0x0A59649758aa4d66E25f08Dd01271e891fe52199;
error InsufficientBalance();
error MinimumAmountNotMet();
error IncorrectInputAmountUsed();
error UnsupportedToken();
error InvalidExtraData();
error InvalidTokenIndex();
/// @notice Initializer
function _init() internal {
USDC.approve(address(CURVE_3POOL), type(uint256).max);
USDC.approve(GEM_JOIN, type(uint256).max);
USDT.approve(address(CURVE_3POOL), type(uint256).max);
DAI.approve(address(CURVE_3POOL), type(uint256).max);
DAI.approve(GEM_JOIN, type(uint256).max);
DAI.approve(address(PSM), type(uint256).max);
}
/// @notice Convert between the 3 stablecoin tokens using Curve's 3Pool and Maker's
/// Peg Stability Mechanism.
/// @param inputToken Input token index.
/// @param outputToken Output token index.
/// @param inputAmountWad Input amount in WAD.
/// @param minOutputAmountWad Minimum amount of output token accepted in WAD.
/// @return amountReceived Amount of output token received in the token's
/// decimal representation.
function _convert(int128 inputToken, int128 outputToken, uint256 inputAmountWad, uint256 minOutputAmountWad) internal returns (uint256 amountReceived) {
require(inputToken >= 0 && inputToken < 3 && outputToken >= 0 && outputToken < 3);
require(inputToken != outputToken);
if (inputAmountWad > 0) {
uint256 inputAmount = _convertDecimals(inputAmountWad, inputToken);
uint256 minOutputAmount = _convertDecimals(minOutputAmountWad, outputToken);
if (_tokenBalance(inputToken) < inputAmount) {
revert InsufficientBalance();
}
uint256 beforeBalance = _tokenBalance(outputToken);
if (inputToken == USDC_INDEX && outputToken == DAI_INDEX) {
PSM.sellGem(address(this), inputAmount);
} else if (inputToken == DAI_INDEX && outputToken == USDC_INDEX) {
uint256 beforeInputBalance = _tokenBalance(inputToken);
PSM.buyGem(address(this), _wadToUSD(minOutputAmountWad)); // buyGem expects the input amount in USDC
uint256 amountSent = beforeInputBalance - _tokenBalance(inputToken);
if (amountSent != inputAmountWad) {
revert IncorrectInputAmountUsed();
}
} else {
CURVE_3POOL.exchange(
inputToken,
outputToken,
inputAmount,
minOutputAmount
);
}
amountReceived = _tokenBalance(outputToken) - beforeBalance;
if (amountReceived < minOutputAmount) {
revert MinimumAmountNotMet();
}
}
}
/// @notice Convert between supported token pairs, reverting if not supported.
/// @param inputTokenAddress Address of the input token.
/// @param outputTokenAddress Address of the output token.
/// @param inputAmountWad Amount of input token to convert in WAD.
/// @param _extraData Extra data containing the minimum amount of output token to receive in WAD.
/// @return amountReceived Amount of output token received in WAD.
function _convertTo(
address inputTokenAddress,
address outputTokenAddress,
uint256 inputAmountWad,
bytes memory _extraData
) internal returns (uint256 amountReceived) {
if (inputTokenAddress == outputTokenAddress) {
return inputAmountWad;
}
if (outputTokenAddress == address(DAI)) {
return _convertToDAI(inputTokenAddress, inputAmountWad, _extraData);
} else {
revert UnsupportedToken();
}
}
/// @notice Convert USDC, USDT, and DAI to DAI. If the input token is DAI,
/// the input amount is returned without conversion.
/// @param inputTokenAddress Address of the input token.
/// @param inputAmountWad Amount of input token to convert in WAD.
/// @param _extraData Extra data containing the minimum amount of USDB to be minted in WAD.
/// Only needed for USDC and USDT. The expected format is: (uint256 minOutputAmountWad).
/// @return amountReceived Amount of DAI received.
function _convertToDAI(address inputTokenAddress, uint256 inputAmountWad, bytes memory _extraData) internal returns (uint256 amountReceived) {
if (inputTokenAddress == address(DAI)) {
return inputAmountWad;
}
if (_extraData.length != 32) {
revert InvalidExtraData();
}
uint256 minOutputAmountWad = abi.decode(_extraData, (uint256));
if (inputTokenAddress == address(USDC)) {
return USDConversions._convert(USDC_INDEX, DAI_INDEX, inputAmountWad, minOutputAmountWad);
} else if (inputTokenAddress == address(USDT)) {
return USDConversions._convert(USDT_INDEX, DAI_INDEX, inputAmountWad, minOutputAmountWad);
} else {
revert UnsupportedToken();
}
}
/// @notice Get the token address from the Curve token index.
/// @param index Curve token index.
/// @return Address of the token.
function _token(int128 index) private pure returns (address) {
if (index == USDC_INDEX) {
return address(USDC);
} else if (index == USDT_INDEX) {
return address(USDT);
} else if (index == DAI_INDEX) {
return address(DAI);
} else {
revert InvalidTokenIndex();
}
}
/// @notice Get the contract's token balance from the Curve token index.
/// @param index Curve token index.
/// @return Token balance.
function _tokenBalance(int128 index) internal view returns (uint256) {
if (_token(index) == YieldManager(address(this)).TOKEN()) {
return YieldManager(address(this)).availableBalance();
} else {
return IERC20(_token(index)).balanceOf(address(this));
}
}
/// @notice Convert WAD representation to the token's native decimal representation.
/// USDT and USDC are both 6 decimals and are converted.
/// @param wad Amount in WAD.
/// @param index Curve 3Pool index of the token.
/// @return result Amount in native decimals representation.
function _convertDecimals(uint256 wad, int128 index) internal pure returns (uint256 result) {
if (index == USDT_INDEX || index == USDC_INDEX) {
result = _wadToUSD(wad);
} else {
result = wad;
}
}
/// @notice Convert value in WAD (18 decimals) to USD (6 decimals).
/// @param wad Amount to convert in WAD.
/// @return Amount in USD.
function _wadToUSD(uint256 wad) internal pure returns (uint256) {
return _convertDecimals(wad, WAD_DECIMALS, USD_DECIMALS);
}
/// @notice Convert value in USD (6 decimals) to WAD (18 decimals).
/// @param usd Amount to convert in USD.
/// @return Amount in WAD.
function _usdToWad(uint256 usd) internal pure returns (uint256) {
return _convertDecimals(usd, USD_DECIMALS, WAD_DECIMALS);
}
/// @notice Convert value to desired output decimals representation.
/// @param input Input amount.
/// @param inputDecimals Number of decimals in the input.
/// @param outputDecimals Desired number of decimals in the output.
/// @return `input` in `outputDecimals`.
function _convertDecimals(uint256 input, uint256 inputDecimals, uint256 outputDecimals) internal pure returns (uint256) {
if (inputDecimals > outputDecimals) {
return input / (10 ** (inputDecimals - outputDecimals));
} else {
return input * (10 ** (outputDecimals - inputDecimals));
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.2;
import "../../utils/Address.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
* @custom:oz-retyped-from bool
*/
uint8 private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint8 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
*/
modifier initializer() {
bool isTopLevelCall = !_initializing;
require(
(isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
"Initializable: contract is already initialized"
);
_initialized = 1;
if (isTopLevelCall) {
_initializing = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
* initialization step. This is essential to configure modules that are added through upgrades and that require
* initialization.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*/
modifier reinitializer(uint8 version) {
require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
_initialized = version;
_initializing = true;
_;
_initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
require(_initializing, "Initializable: contract is not initializing");
_;
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*/
function _disableInitializers() internal virtual {
require(!_initializing, "Initializable: contract is initializing");
if (_initialized < type(uint8).max) {
_initialized = type(uint8).max;
emit Initialized(type(uint8).max);
}
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;
import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { Types } from "src/libraries/Types.sol";
import { Constants } from "src/libraries/Constants.sol";
/// @custom:proxied
/// @title L2OutputOracle
/// @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a
/// commitment to the state of the L2 chain. Other contracts like the OptimismPortal use
/// these outputs to verify information about the state of L2.
contract L2OutputOracle is Initializable, ISemver {
/// @notice The interval in L2 blocks at which checkpoints must be submitted.
/// Although this is immutable, it can safely be modified by upgrading the
/// implementation contract.
/// Public getter is legacy and will be removed in the future. Use `submissionInterval`
/// instead.
/// @custom:legacy
uint256 public immutable SUBMISSION_INTERVAL;
/// @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified.
/// Public getter is legacy and will be removed in the future. Use `l2BlockTime`
/// instead.
/// @custom:legacy
uint256 public immutable L2_BLOCK_TIME;
/// @notice The minimum time (in seconds) that must elapse before a withdrawal can be finalized.
/// Public getter is legacy and will be removed in the future. Use
// `finalizationPeriodSeconds` instead.
/// @custom:legacy
uint256 public immutable FINALIZATION_PERIOD_SECONDS;
/// @notice The number of the first L2 block recorded in this contract.
uint256 public startingBlockNumber;
/// @notice The timestamp of the first L2 block recorded in this contract.
uint256 public startingTimestamp;
/// @notice An array of L2 output proposals.
Types.OutputProposal[] internal l2Outputs;
/// @notice The address of the challenger. Can be updated via reinitialize.
/// @custom:network-specific
address public challenger;
/// @notice The address of the proposer. Can be updated via reinitialize.
/// @custom:network-specific
address public proposer;
/// @notice Emitted when an output is proposed.
/// @param outputRoot The output root.
/// @param l2OutputIndex The index of the output in the l2Outputs array.
/// @param l2BlockNumber The L2 block number of the output root.
/// @param l1Timestamp The L1 timestamp when proposed.
event OutputProposed(
bytes32 indexed outputRoot, uint256 indexed l2OutputIndex, uint256 indexed l2BlockNumber, uint256 l1Timestamp
);
/// @notice Emitted when outputs are deleted.
/// @param prevNextOutputIndex Next L2 output index before the deletion.
/// @param newNextOutputIndex Next L2 output index after the deletion.
event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex);
/// @notice Semantic version.
/// @custom:semver 1.6.0
string public constant version = "1.6.0";
/// @notice Constructs the L2OutputOracle contract.
/// @param _submissionInterval Interval in blocks at which checkpoints must be submitted.
/// @param _l2BlockTime The time per L2 block, in seconds.
/// @param _finalizationPeriodSeconds The amount of time that must pass for an output proposal
// to be considered canonical.
constructor(uint256 _submissionInterval, uint256 _l2BlockTime, uint256 _finalizationPeriodSeconds) {
require(_l2BlockTime > 0, "L2OutputOracle: L2 block time must be greater than 0");
require(_submissionInterval > 0, "L2OutputOracle: submission interval must be greater than 0");
SUBMISSION_INTERVAL = _submissionInterval;
L2_BLOCK_TIME = _l2BlockTime;
FINALIZATION_PERIOD_SECONDS = _finalizationPeriodSeconds;
initialize({ _startingBlockNumber: 0, _startingTimestamp: 0, _proposer: address(0), _challenger: address(0) });
}
/// @notice Initializer.
/// @param _startingBlockNumber Block number for the first recoded L2 block.
/// @param _startingTimestamp Timestamp for the first recoded L2 block.
/// @param _proposer The address of the proposer.
/// @param _challenger The address of the challenger.
function initialize(
uint256 _startingBlockNumber,
uint256 _startingTimestamp,
address _proposer,
address _challenger
)
public
reinitializer(Constants.INITIALIZER)
{
require(
_startingTimestamp <= block.timestamp,
"L2OutputOracle: starting L2 timestamp must be less than current time"
);
startingTimestamp = _startingTimestamp;
startingBlockNumber = _startingBlockNumber;
proposer = _proposer;
challenger = _challenger;
}
/// @notice Getter for the output proposal submission interval.
function submissionInterval() external view returns (uint256) {
return SUBMISSION_INTERVAL;
}
/// @notice Getter for the L2 block time.
function l2BlockTime() external view returns (uint256) {
return L2_BLOCK_TIME;
}
/// @notice Getter for the finalization period.
function finalizationPeriodSeconds() external view returns (uint256) {
return FINALIZATION_PERIOD_SECONDS;
}
/// @notice Getter for the challenger address. This will be removed
/// in the future, use `challenger` instead.
/// @custom:legacy
function CHALLENGER() external view returns (address) {
return challenger;
}
/// @notice Getter for the proposer address. This will be removed in the
/// future, use `proposer` instead.
/// @custom:legacy
function PROPOSER() external view returns (address) {
return proposer;
}
/// @notice Deletes all output proposals after and including the proposal that corresponds to
/// the given output index. Only the challenger address can delete outputs.
/// @param _l2OutputIndex Index of the first L2 output to be deleted.
/// All outputs after this output will also be deleted.
// solhint-disable-next-line ordering
function deleteL2Outputs(uint256 _l2OutputIndex) external {
require(msg.sender == challenger, "L2OutputOracle: only the challenger address can delete outputs");
// Make sure we're not *increasing* the length of the array.
require(
_l2OutputIndex < l2Outputs.length, "L2OutputOracle: cannot delete outputs after the latest output index"
);
// Do not allow deleting any outputs that have already been finalized.
require(
block.timestamp - l2Outputs[_l2OutputIndex].timestamp < FINALIZATION_PERIOD_SECONDS,
"L2OutputOracle: cannot delete outputs that have already been finalized"
);
uint256 prevNextL2OutputIndex = nextOutputIndex();
// Use assembly to delete the array elements because Solidity doesn't allow it.
assembly {
sstore(l2Outputs.slot, _l2OutputIndex)
}
emit OutputsDeleted(prevNextL2OutputIndex, _l2OutputIndex);
}
/// @notice Accepts an outputRoot and the timestamp of the corresponding L2 block.
/// The timestamp must be equal to the current value returned by `nextTimestamp()` in
/// order to be accepted. This function may only be called by the Proposer.
/// @param _outputRoot The L2 output of the checkpoint block.
/// @param _l2BlockNumber The L2 block number that resulted in _outputRoot.
/// @param _l1BlockHash A block hash which must be included in the current chain.
/// @param _l1BlockNumber The block number with the specified block hash.
function proposeL2Output(
bytes32 _outputRoot,
uint256 _l2BlockNumber,
bytes32 _l1BlockHash,
uint256 _l1BlockNumber
)
external
payable
{
require(msg.sender == proposer, "L2OutputOracle: only the proposer address can propose new outputs");
require(
_l2BlockNumber == nextBlockNumber(),
"L2OutputOracle: block number must be equal to next expected block number"
);
require(
computeL2Timestamp(_l2BlockNumber) < block.timestamp,
"L2OutputOracle: cannot propose L2 output in the future"
);
require(_outputRoot != bytes32(0), "L2OutputOracle: L2 output proposal cannot be the zero hash");
if (_l1BlockHash != bytes32(0)) {
// This check allows the proposer to propose an output based on a given L1 block,
// without fear that it will be reorged out.
// It will also revert if the blockheight provided is more than 256 blocks behind the
// chain tip (as the hash will return as zero). This does open the door to a griefing
// attack in which the proposer's submission is censored until the block is no longer
// retrievable, if the proposer is experiencing this attack it can simply leave out the
// blockhash value, and delay submission until it is confident that the L1 block is
// finalized.
require(
blockhash(_l1BlockNumber) == _l1BlockHash,
"L2OutputOracle: block hash does not match the hash at the expected height"
);
}
emit OutputProposed(_outputRoot, nextOutputIndex(), _l2BlockNumber, block.timestamp);
l2Outputs.push(
Types.OutputProposal({
outputRoot: _outputRoot,
timestamp: uint128(block.timestamp),
l2BlockNumber: uint128(_l2BlockNumber)
})
);
}
/// @notice Returns an output by index. Needed to return a struct instead of a tuple.
/// @param _l2OutputIndex Index of the output to return.
/// @return The output at the given index.
function getL2Output(uint256 _l2OutputIndex) external view returns (Types.OutputProposal memory) {
return l2Outputs[_l2OutputIndex];
}
/// @notice Returns the index of the L2 output that checkpoints a given L2 block number.
/// Uses a binary search to find the first output greater than or equal to the given
/// block.
/// @param _l2BlockNumber L2 block number to find a checkpoint for.
/// @return Index of the first checkpoint that commits to the given L2 block number.
function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) {
// Make sure an output for this block number has actually been proposed.
require(
_l2BlockNumber <= latestBlockNumber(),
"L2OutputOracle: cannot get output for a block that has not been proposed"
);
// Make sure there's at least one output proposed.
require(l2Outputs.length > 0, "L2OutputOracle: cannot get output as no outputs have been proposed yet");
// Find the output via binary search, guaranteed to exist.
uint256 lo = 0;
uint256 hi = l2Outputs.length;
while (lo < hi) {
uint256 mid = (lo + hi) / 2;
if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) {
lo = mid + 1;
} else {
hi = mid;
}
}
return lo;
}
/// @notice Returns the L2 output proposal that checkpoints a given L2 block number.
/// Uses a binary search to find the first output greater than or equal to the given
/// block.
/// @param _l2BlockNumber L2 block number to find a checkpoint for.
/// @return First checkpoint that commits to the given L2 block number.
function getL2OutputAfter(uint256 _l2BlockNumber) external view returns (Types.OutputProposal memory) {
return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)];
}
/// @notice Returns the number of outputs that have been proposed.
/// Will revert if no outputs have been proposed yet.
/// @return The number of outputs that have been proposed.
function latestOutputIndex() external view returns (uint256) {
return l2Outputs.length - 1;
}
/// @notice Returns the index of the next output to be proposed.
/// @return The index of the next output to be proposed.
function nextOutputIndex() public view returns (uint256) {
return l2Outputs.length;
}
/// @notice Returns the block number of the latest submitted L2 output proposal.
/// If no proposals been submitted yet then this function will return the starting
/// block number.
/// @return Latest submitted L2 block number.
function latestBlockNumber() public view returns (uint256) {
return l2Outputs.length == 0 ? startingBlockNumber : l2Outputs[l2Outputs.length - 1].l2BlockNumber;
}
/// @notice Computes the block number of the next L2 block that needs to be checkpointed.
/// @return Next L2 block number.
function nextBlockNumber() public view returns (uint256) {
return latestBlockNumber() + SUBMISSION_INTERVAL;
}
/// @notice Returns the L2 timestamp corresponding to a given L2 block number.
/// @param _l2BlockNumber The L2 block number of the target block.
/// @return L2 timestamp of the given block.
function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) {
return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * L2_BLOCK_TIME);
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;
import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { ResourceMetering } from "src/L1/ResourceMetering.sol";
import { Storage } from "src/libraries/Storage.sol";
import { Constants } from "src/libraries/Constants.sol";
/// @title SystemConfig
/// @notice The SystemConfig contract is used to manage configuration of an Optimism network.
/// All configuration is stored on L1 and picked up by L2 as part of the derviation of
/// the L2 chain.
contract SystemConfig is OwnableUpgradeable, ISemver {
/// @notice Enum representing different types of updates.
/// @custom:value BATCHER Represents an update to the batcher hash.
/// @custom:value GAS_CONFIG Represents an update to txn fee config on L2.
/// @custom:value GAS_LIMIT Represents an update to gas limit on L2.
/// @custom:value UNSAFE_BLOCK_SIGNER Represents an update to the signer key for unsafe
/// block distrubution.
enum UpdateType {
BATCHER,
GAS_CONFIG,
GAS_LIMIT,
UNSAFE_BLOCK_SIGNER
}
/// @notice Struct representing the addresses of L1 system contracts. These should be the
/// proxies and will differ for each OP Stack chain.
struct Addresses {
address l1CrossDomainMessenger;
address l1ERC721Bridge;
address l1StandardBridge;
address l2OutputOracle;
address optimismPortal;
address optimismMintableERC20Factory;
}
/// @notice Version identifier, used for upgrades.
uint256 public constant VERSION = 0;
/// @notice Storage slot that the unsafe block signer is stored at.
/// Storing it at this deterministic storage slot allows for decoupling the storage
/// layout from the way that `solc` lays out storage. The `op-node` uses a storage
/// proof to fetch this value.
/// @dev NOTE: this value will be migrated to another storage slot in a future version.
/// User input should not be placed in storage in this contract until this migration
/// happens. It is unlikely that keccak second preimage resistance will be broken,
/// but it is better to be safe than sorry.
bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner");
/// @notice Storage slot that the L1CrossDomainMessenger address is stored at.
bytes32 public constant L1_CROSS_DOMAIN_MESSENGER_SLOT =
bytes32(uint256(keccak256("systemconfig.l1crossdomainmessenger")) - 1);
/// @notice Storage slot that the L1ERC721Bridge address is stored at.
bytes32 public constant L1_ERC_721_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1erc721bridge")) - 1);
/// @notice Storage slot that the L1StandardBridge address is stored at.
bytes32 public constant L1_STANDARD_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1standardbridge")) - 1);
/// @notice Storage slot that the L2OutputOracle address is stored at.
bytes32 public constant L2_OUTPUT_ORACLE_SLOT = bytes32(uint256(keccak256("systemconfig.l2outputoracle")) - 1);
/// @notice Storage slot that the OptimismPortal address is stored at.
bytes32 public constant OPTIMISM_PORTAL_SLOT = bytes32(uint256(keccak256("systemconfig.optimismportal")) - 1);
/// @notice Storage slot that the OptimismMintableERC20Factory address is stored at.
bytes32 public constant OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT =
bytes32(uint256(keccak256("systemconfig.optimismmintableerc20factory")) - 1);
/// @notice Storage slot that the batch inbox address is stored at.
bytes32 public constant BATCH_INBOX_SLOT = bytes32(uint256(keccak256("systemconfig.batchinbox")) - 1);
/// @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation.
uint256 public overhead;
/// @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation.
uint256 public scalar;
/// @notice Identifier for the batcher.
/// For version 1 of this configuration, this is represented as an address left-padded
/// with zeros to 32 bytes.
bytes32 public batcherHash;
/// @notice L2 block gas limit.
uint64 public gasLimit;
/// @notice The configuration for the deposit fee market.
/// Used by the OptimismPortal to meter the cost of buying L2 gas on L1.
/// Set as internal with a getter so that the struct is returned instead of a tuple.
ResourceMetering.ResourceConfig internal _resourceConfig;
/// @notice Emitted when configuration is updated.
/// @param version SystemConfig version.
/// @param updateType Type of update.
/// @param data Encoded update data.
event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
/// @notice The block at which the op-node can start searching for logs from.
uint256 public startBlock;
/// @notice Semantic version.
/// @custom:semver 1.10.0
string public constant version = "1.10.0";
/// @notice Constructs the SystemConfig contract. Cannot set
/// the owner to `address(0)` due to the Ownable contract's
/// implementation, so set it to `address(0xdEaD)`
constructor() {
initialize({
_owner: address(0xdEaD),
_overhead: 0,
_scalar: 0,
_batcherHash: bytes32(0),
_gasLimit: 1,
_unsafeBlockSigner: address(0),
_config: ResourceMetering.ResourceConfig({
maxResourceLimit: 1,
elasticityMultiplier: 1,
baseFeeMaxChangeDenominator: 2,
minimumBaseFee: 0,
systemTxMaxGas: 0,
maximumBaseFee: 0
}),
_startBlock: type(uint256).max,
_batchInbox: address(0),
_addresses: SystemConfig.Addresses({
l1CrossDomainMessenger: address(0),
l1ERC721Bridge: address(0),
l1StandardBridge: address(0),
l2OutputOracle: address(0),
optimismPortal: address(0),
optimismMintableERC20Factory: address(0)
})
});
}
/// @notice Initializer.
/// The resource config must be set before the require check.
/// @param _owner Initial owner of the contract.
/// @param _overhead Initial overhead value.
/// @param _scalar Initial scalar value.
/// @param _batcherHash Initial batcher hash.
/// @param _gasLimit Initial gas limit.
/// @param _unsafeBlockSigner Initial unsafe block signer address.
/// @param _config Initial ResourceConfig.
/// @param _startBlock Starting block for the op-node to search for logs from.
/// Contracts that were deployed before this field existed
/// need to have this field set manually via an override.
/// Newly deployed contracts should set this value to uint256(0).
/// @param _batchInbox Batch inbox address. An identifier for the op-node to find
/// canonical data.
/// @param _addresses Set of L1 contract addresses. These should be the proxies.
function initialize(
address _owner,
uint256 _overhead,
uint256 _scalar,
bytes32 _batcherHash,
uint64 _gasLimit,
address _unsafeBlockSigner,
ResourceMetering.ResourceConfig memory _config,
uint256 _startBlock,
address _batchInbox,
SystemConfig.Addresses memory _addresses
)
public
reinitializer(Constants.INITIALIZER)
{
__Ownable_init();
transferOwnership(_owner);
// These are set in ascending order of their UpdateTypes.
_setBatcherHash(_batcherHash);
_setGasConfig({ _overhead: _overhead, _scalar: _scalar });
_setGasLimit(_gasLimit);
_setUnsafeBlockSigner(_unsafeBlockSigner);
Storage.setAddress(BATCH_INBOX_SLOT, _batchInbox);
Storage.setAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT, _addresses.l1CrossDomainMessenger);
Storage.setAddress(L1_ERC_721_BRIDGE_SLOT, _addresses.l1ERC721Bridge);
Storage.setAddress(L1_STANDARD_BRIDGE_SLOT, _addresses.l1StandardBridge);
Storage.setAddress(L2_OUTPUT_ORACLE_SLOT, _addresses.l2OutputOracle);
Storage.setAddress(OPTIMISM_PORTAL_SLOT, _addresses.optimismPortal);
Storage.setAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT, _addresses.optimismMintableERC20Factory);
_setStartBlock(_startBlock);
_setResourceConfig(_config);
require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
}
/// @notice Returns the minimum L2 gas limit that can be safely set for the system to
/// operate. The L2 gas limit must be larger than or equal to the amount of
/// gas that is allocated for deposits per block plus the amount of gas that
/// is allocated for the system transaction.
/// This function is used to determine if changes to parameters are safe.
/// @return uint64 Minimum gas limit.
function minimumGasLimit() public view returns (uint64) {
return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas);
}
/// @notice High level getter for the unsafe block signer address.
/// Unsafe blocks can be propagated across the p2p network if they are signed by the
/// key corresponding to this address.
/// @return addr_ Address of the unsafe block signer.
// solhint-disable-next-line ordering
function unsafeBlockSigner() public view returns (address addr_) {
addr_ = Storage.getAddress(UNSAFE_BLOCK_SIGNER_SLOT);
}
/// @notice Getter for the L1CrossDomainMessenger address.
function l1CrossDomainMessenger() external view returns (address addr_) {
addr_ = Storage.getAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT);
}
/// @notice Getter for the L1ERC721Bridge address.
function l1ERC721Bridge() external view returns (address addr_) {
addr_ = Storage.getAddress(L1_ERC_721_BRIDGE_SLOT);
}
/// @notice Getter for the L1StandardBridge address.
function l1StandardBridge() external view returns (address addr_) {
addr_ = Storage.getAddress(L1_STANDARD_BRIDGE_SLOT);
}
/// @notice Getter for the L2OutputOracle address.
function l2OutputOracle() external view returns (address addr_) {
addr_ = Storage.getAddress(L2_OUTPUT_ORACLE_SLOT);
}
/// @notice Getter for the OptimismPortal address.
function optimismPortal() external view returns (address addr_) {
addr_ = Storage.getAddress(OPTIMISM_PORTAL_SLOT);
}
/// @notice Getter for the OptimismMintableERC20Factory address.
function optimismMintableERC20Factory() external view returns (address addr_) {
addr_ = Storage.getAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT);
}
/// @notice Getter for the BatchInbox address.
function batchInbox() external view returns (address addr_) {
addr_ = Storage.getAddress(BATCH_INBOX_SLOT);
}
/// @notice Sets the start block in a backwards compatible way. Proxies
/// that were initialized before the startBlock existed in storage
/// can have their start block set by a user provided override.
/// A start block of 0 indicates that there is no override and the
/// start block will be set by `block.number`.
/// @dev This logic is used to patch legacy deployments with new storage values.
/// Use the override if it is provided as a non zero value and the value
/// has not already been set in storage. Use `block.number` if the value
/// has already been set in storage
/// @param _startBlock The start block override to set in storage.
function _setStartBlock(uint256 _startBlock) internal {
if (_startBlock != 0 && startBlock == 0) {
// There is an override and it is not already set, this is for legacy chains.
startBlock = _startBlock;
} else if (startBlock == 0) {
// There is no override and it is not set in storage. Set it to the block number.
// This is for newly deployed chains.
startBlock = block.number;
}
}
/// @notice Updates the unsafe block signer address. Can only be called by the owner.
/// @param _unsafeBlockSigner New unsafe block signer address.
function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner {
_setUnsafeBlockSigner(_unsafeBlockSigner);
}
/// @notice Updates the unsafe block signer address.
/// @param _unsafeBlockSigner New unsafe block signer address.
function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal {
Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner);
bytes memory data = abi.encode(_unsafeBlockSigner);
emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data);
}
/// @notice Updates the batcher hash. Can only be called by the owner.
/// @param _batcherHash New batcher hash.
function setBatcherHash(bytes32 _batcherHash) external onlyOwner {
_setBatcherHash(_batcherHash);
}
/// @notice Internal function for updating the batcher hash.
/// @param _batcherHash New batcher hash.
function _setBatcherHash(bytes32 _batcherHash) internal {
batcherHash = _batcherHash;
bytes memory data = abi.encode(_batcherHash);
emit ConfigUpdate(VERSION, UpdateType.BATCHER, data);
}
/// @notice Updates gas config. Can only be called by the owner.
/// @param _overhead New overhead value.
/// @param _scalar New scalar value.
function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner {
_setGasConfig(_overhead, _scalar);
}
/// @notice Internal function for updating the gas config.
/// @param _overhead New overhead value.
/// @param _scalar New scalar value.
function _setGasConfig(uint256 _overhead, uint256 _scalar) internal {
overhead = _overhead;
scalar = _scalar;
bytes memory data = abi.encode(_overhead, _scalar);
emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data);
}
/// @notice Updates the L2 gas limit. Can only be called by the owner.
/// @param _gasLimit New gas limit.
function setGasLimit(uint64 _gasLimit) external onlyOwner {
_setGasLimit(_gasLimit);
}
/// @notice Internal function for updating the L2 gas limit.
/// @param _gasLimit New gas limit.
function _setGasLimit(uint64 _gasLimit) internal {
require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
gasLimit = _gasLimit;
bytes memory data = abi.encode(_gasLimit);
emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data);
}
/// @notice A getter for the resource config.
/// Ensures that the struct is returned instead of a tuple.
/// @return ResourceConfig
function resourceConfig() external view returns (ResourceMetering.ResourceConfig memory) {
return _resourceConfig;
}
/// @notice An external setter for the resource config.
/// In the future, this method may emit an event that the `op-node` picks up
/// for when the resource config is changed.
/// @param _config The new resource config values.
function setResourceConfig(ResourceMetering.ResourceConfig memory _config) external onlyOwner {
_setResourceConfig(_config);
}
/// @notice An internal setter for the resource config.
/// Ensures that the config is sane before storing it by checking for invariants.
/// @param _config The new resource config.
function _setResourceConfig(ResourceMetering.ResourceConfig memory _config) internal {
// Min base fee must be less than or equal to max base fee.
require(
_config.minimumBaseFee <= _config.maximumBaseFee, "SystemConfig: min base fee must be less than max base"
);
// Base fee change denominator must be greater than 1.
require(_config.baseFeeMaxChangeDenominator > 1, "SystemConfig: denominator must be larger than 1");
// Max resource limit plus system tx gas must be less than or equal to the L2 gas limit.
// The gas limit must be increased before these values can be increased.
require(_config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit, "SystemConfig: gas limit too low");
// Elasticity multiplier must be greater than 0.
require(_config.elasticityMultiplier > 0, "SystemConfig: elasticity multiplier cannot be 0");
// No precision loss when computing target resource limit.
require(
((_config.maxResourceLimit / _config.elasticityMultiplier) * _config.elasticityMultiplier)
== _config.maxResourceLimit,
"SystemConfig: precision loss with target resource limit"
);
_resourceConfig = _config;
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;
import { ResourceMetering } from "../L1/ResourceMetering.sol";
/// @title Constants
/// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
/// the stuff used in multiple contracts. Constants that only apply to a single contract
/// should be defined in that contract instead.
library Constants {
/// @notice Special address to be used as the tx origin for gas estimation calls in the
/// OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
/// the minimum gas limit specified by the user is not actually enough to execute the
/// given message and you're attempting to estimate the actual necessary gas limit. We
/// use address(1) because it's the ecrecover precompile and therefore guaranteed to
/// never have any code on any EVM chain.
address internal constant ESTIMATION_ADDRESS = address(1);
/// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
/// CrossDomainMessenger contracts before an actual sender is set. This value is
/// non-zero to reduce the gas cost of message passing transactions.
address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
/// @notice The storage slot that holds the address of a proxy implementation.
/// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
/// @notice The storage slot that holds the address of the owner.
/// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
/// @notice Returns the default values for the ResourceConfig. These are the recommended values
/// for a production network.
function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
maxResourceLimit: 20_000_000,
elasticityMultiplier: 10,
baseFeeMaxChangeDenominator: 8,
minimumBaseFee: 1 gwei,
systemTxMaxGas: 1_000_000,
maximumBaseFee: type(uint128).max
});
return config;
}
/// @notice The `reinitailizer` input for upgradable contracts. This value must be updated
/// each time that the contracts are deployed.
uint8 internal constant INITIALIZER = 1;
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;
import { Types } from "./Types.sol";
import { Encoding } from "./Encoding.sol";
/// @title Hashing
/// @notice Hashing handles Optimism's various different hashing schemes.
library Hashing {
/// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
/// given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
/// system.
/// @param _tx User deposit transaction to hash.
/// @return Hash of the RLP encoded L2 deposit transaction.
function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
return keccak256(Encoding.encodeDepositTransaction(_tx));
}
/// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
/// of the L2 transaction that corresponds to a deposit is unique and is
/// deterministically generated from L1 transaction data.
/// @param _l1BlockHash Hash of the L1 block where the deposit was included.
/// @param _logIndex The index of the log that created the deposit transaction.
/// @return Hash of the deposit transaction's "source hash".
function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
return keccak256(abi.encode(bytes32(0), depositId));
}
/// @notice Hashes the cross domain message based on the version that is encoded into the
/// message nonce.
/// @param _nonce Message nonce with version encoded into the first two bytes.
/// @param _sender Address of the sender of the message.
/// @param _target Address of the target of the message.
/// @param _value ETH value to send to the target.
/// @param _gasLimit Gas limit to use for the message.
/// @param _data Data to send with the message.
/// @return Hashed cross domain message.
function hashCrossDomainMessage(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
)
internal
pure
returns (bytes32)
{
(, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
if (version == 0) {
return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
} else if (version == 1) {
return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
} else {
revert("Hashing: unknown cross domain message version");
}
}
/// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
/// @param _target Address of the target of the message.
/// @param _sender Address of the sender of the message.
/// @param _data Data to send with the message.
/// @param _nonce Message nonce.
/// @return Hashed cross domain message.
function hashCrossDomainMessageV0(
address _target,
address _sender,
bytes memory _data,
uint256 _nonce
)
internal
pure
returns (bytes32)
{
return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
}
/// @notice Hashes a cross domain message based on the V1 (current) encoding.
/// @param _nonce Message nonce.
/// @param _sender Address of the sender of the message.
/// @param _target Address of the target of the message.
/// @param _value ETH value to send to the target.
/// @param _gasLimit Gas limit to use for the message.
/// @param _data Data to send with the message.
/// @return Hashed cross domain message.
function hashCrossDomainMessageV1(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
)
internal
pure
returns (bytes32)
{
return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
}
/// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
/// @param _tx Withdrawal transaction to hash.
/// @return Hashed withdrawal transaction.
function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
}
/// @notice Hashes the various elements of an output root proof into an output root hash which
/// can be used to check if the proof is valid.
/// @param _outputRootProof Output root proof which should hash to an output root.
/// @return Hashed output root proof.
function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
return keccak256(
abi.encode(
_outputRootProof.version,
_outputRootProof.stateRoot,
_outputRootProof.messagePasserStorageRoot,
_outputRootProof.latestBlockhash
)
);
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;
import { MerkleTrie } from "./MerkleTrie.sol";
/// @title SecureMerkleTrie
/// @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input
/// keys. Ethereum's state trie hashes input keys before storing them.
library SecureMerkleTrie {
/// @notice Verifies a proof that a given key/value pair is present in the Merkle trie.
/// @param _key Key of the node to search for, as a hex string.
/// @param _value Value of the node to search for, as a hex string.
/// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
/// trees, this proof is executed top-down and consists of a list of RLP-encoded
/// nodes that make a path down to the target node.
/// @param _root Known root of the Merkle trie. Used to verify that the included proof is
/// correctly constructed.
/// @return valid_ Whether or not the proof is valid.
function verifyInclusionProof(
bytes memory _key,
bytes memory _value,
bytes[] memory _proof,
bytes32 _root
)
internal
pure
returns (bool valid_)
{
bytes memory key = _getSecureKey(_key);
valid_ = MerkleTrie.verifyInclusionProof(key, _value, _proof, _root);
}
/// @notice Retrieves the value associated with a given key.
/// @param _key Key to search for, as hex bytes.
/// @param _proof Merkle trie inclusion proof for the key.
/// @param _root Known root of the Merkle trie.
/// @return value_ Value of the key if it exists.
function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
bytes memory key = _getSecureKey(_key);
value_ = MerkleTrie.get(key, _proof, _root);
}
/// @notice Computes the hashed version of the input key.
/// @param _key Key to hash.
/// @return hash_ Hashed version of the key.
function _getSecureKey(bytes memory _key) private pure returns (bytes memory hash_) {
hash_ = abi.encodePacked(keccak256(_key));
}
}
// SPDX-License-Identifier: Apache-2.0
/*
* Copyright 2019-2021, Offchain Labs, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity ^0.8.0;
library AddressAliasHelper {
uint160 constant offset = uint160(0x1111000000000000000000000000000000001111);
/// @notice Utility function that converts the address in the L1 that submitted a tx to
/// the inbox to the msg.sender viewed in the L2
/// @param l1Address the address in the L1 that triggered the tx to L2
/// @return l2Address L2 address as viewed in msg.sender
function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) {
unchecked {
l2Address = address(uint160(l1Address) + offset);
}
}
/// @notice Utility function that converts the msg.sender viewed in the L2 to the
/// address in the L1 that submitted a tx to the inbox
/// @param l2Address L2 address as viewed in msg.sender
/// @return l1Address the address in the L1 that triggered the tx to L2
function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) {
unchecked {
l1Address = address(uint160(l2Address) - offset);
}
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;
import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { Burn } from "src/libraries/Burn.sol";
import { Arithmetic } from "src/libraries/Arithmetic.sol";
/// @custom:upgradeable
/// @title ResourceMetering
/// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
/// updates automatically based on current demand.
abstract contract ResourceMetering is Initializable {
/// @notice Represents the various parameters that control the way in which resources are
/// metered. Corresponds to the EIP-1559 resource metering system.
/// @custom:field prevBaseFee Base fee from the previous block(s).
/// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
/// @custom:field prevBlockNum Last block number that the base fee was updated.
struct ResourceParams {
uint128 prevBaseFee;
uint64 prevBoughtGas;
uint64 prevBlockNum;
}
/// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
/// market. These values should be set with care as it is possible to set them in
/// a way that breaks the deposit gas market. The target resource limit is defined as
/// maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
/// single word. There is additional space for additions in the future.
/// @custom:field maxResourceLimit Represents the maximum amount of deposit gas that
/// can be purchased per block.
/// @custom:field elasticityMultiplier Determines the target resource limit along with
/// the resource limit.
/// @custom:field baseFeeMaxChangeDenominator Determines max change on fee per block.
/// @custom:field minimumBaseFee The min deposit base fee, it is clamped to this
/// value.
/// @custom:field systemTxMaxGas The amount of gas supplied to the system
/// transaction. This should be set to the same
/// number that the op-node sets as the gas limit
/// for the system transaction.
/// @custom:field maximumBaseFee The max deposit base fee, it is clamped to this
/// value.
struct ResourceConfig {
uint32 maxResourceLimit;
uint8 elasticityMultiplier;
uint8 baseFeeMaxChangeDenominator;
uint32 minimumBaseFee;
uint32 systemTxMaxGas;
uint128 maximumBaseFee;
}
/// @notice EIP-1559 style gas parameters.
ResourceParams public params;
/// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
uint256[48] private __gap;
/// @notice Meters access to a function based an amount of a requested resource.
/// @param _amount Amount of the resource requested.
modifier metered(uint64 _amount) {
// Record initial gas amount so we can refund for it later.
uint256 initialGas = gasleft();
// Run the underlying function.
_;
// Run the metering function.
_metered(_amount, initialGas);
}
/// @notice An internal function that holds all of the logic for metering a resource.
/// @param _amount Amount of the resource requested.
/// @param _initialGas The amount of gas before any modifier execution.
function _metered(uint64 _amount, uint256 _initialGas) internal {
// Update block number and base fee if necessary.
uint256 blockDiff = block.number - params.prevBlockNum;
ResourceConfig memory config = _resourceConfig();
int256 targetResourceLimit =
int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
if (blockDiff > 0) {
// Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
// at which deposits can be created and therefore limit the potential for deposits to
// spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
/ (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
// Update base fee by adding the base fee delta and clamp the resulting value between
// min and max.
int256 newBaseFee = Arithmetic.clamp({
_value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
_min: int256(uint256(config.minimumBaseFee)),
_max: int256(uint256(config.maximumBaseFee))
});
// If we skipped more than one block, we also need to account for every empty block.
// Empty block means there was no demand for deposits in that block, so we should
// reflect this lack of demand in the fee.
if (blockDiff > 1) {
// Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
// blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
// between min and max.
newBaseFee = Arithmetic.clamp({
_value: Arithmetic.cdexp({
_coefficient: newBaseFee,
_denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
_exponent: int256(blockDiff - 1)
}),
_min: int256(uint256(config.minimumBaseFee)),
_max: int256(uint256(config.maximumBaseFee))
});
}
// Update new base fee, reset bought gas, and update block number.
params.prevBaseFee = uint128(uint256(newBaseFee));
params.prevBoughtGas = 0;
params.prevBlockNum = uint64(block.number);
}
// Make sure we can actually buy the resource amount requested by the user.
params.prevBoughtGas += _amount;
require(
int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
"ResourceMetering: cannot buy more gas than available gas limit"
);
// Determine the amount of ETH to be paid.
uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
// We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
// into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
// division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
// periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
// during any 1 day period in the last 5 years, so should be fine.
uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
// Give the user a refund based on the amount of gas they used to do all of the work up to
// this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
// effectively like a dynamic stipend (with a minimum value).
uint256 usedGas = _initialGas - gasleft();
if (gasCost > usedGas) {
Burn.gas(gasCost - usedGas);
}
}
/// @notice Virtual function that returns the resource config.
/// Contracts that inherit this contract must implement this function.
/// @return ResourceConfig
function _resourceConfig() internal virtual returns (ResourceConfig memory);
/// @notice Sets initial resource parameter values.
/// This function must either be called by the initializer function of an upgradeable
/// child contract.
// solhint-disable-next-line func-name-mixedcase
function __ResourceMetering_init() internal onlyInitializing {
if (params.prevBlockNum == 0) {
params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
}
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;
/// @title ISemver
/// @notice ISemver is a simple contract for ensuring that contracts are
/// versioned using semantic versioning.
interface ISemver {
/// @notice Getter for the semantic version of the contract. This is not
/// meant to be used onchain but instead meant to be used by offchain
/// tooling.
/// @return Semver contract version as a string.
function version() external view returns (string memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
// Inspired by OraclizeAPI's implementation - MIT licence
// https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
if (value == 0) {
return "0";
}
uint256 temp = value;
uint256 digits;
while (temp != 0) {
digits++;
temp /= 10;
}
bytes memory buffer = new bytes(digits);
while (value != 0) {
digits -= 1;
buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
value /= 10;
}
return string(buffer);
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
if (value == 0) {
return "0x00";
}
uint256 temp = value;
uint256 length = 0;
while (temp != 0) {
length++;
temp >>= 8;
}
return toHexString(value, length);
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _HEX_SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library AddressUpgradeable {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/ContextUpgradeable.sol";
import "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
function __Ownable_init() internal onlyInitializing {
__Ownable_init_unchained();
}
function __Ownable_init_unchained() internal onlyInitializing {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC20.sol)
pragma solidity ^0.8.0;
import "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;
import { Types } from "./Types.sol";
import { Hashing } from "./Hashing.sol";
import { RLPWriter } from "./rlp/RLPWriter.sol";
/// @title Encoding
/// @notice Encoding handles Optimism's various different encoding schemes.
library Encoding {
/// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
/// to the L2 system. Useful for searching for a deposit in the L2 system. The
/// transaction is prefixed with 0x7e to identify its EIP-2718 type.
/// @param _tx User deposit transaction to encode.
/// @return RLP encoded L2 deposit transaction.
function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
bytes[] memory raw = new bytes[](8);
raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
raw[1] = RLPWriter.writeAddress(_tx.from);
raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
raw[3] = RLPWriter.writeUint(_tx.mint);
raw[4] = RLPWriter.writeUint(_tx.value);
raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
raw[6] = RLPWriter.writeBool(false);
raw[7] = RLPWriter.writeBytes(_tx.data);
return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
}
/// @notice Encodes the cross domain message based on the version that is encoded into the
/// message nonce.
/// @param _nonce Message nonce with version encoded into the first two bytes.
/// @param _sender Address of the sender of the message.
/// @param _target Address of the target of the message.
/// @param _value ETH value to send to the target.
/// @param _gasLimit Gas limit to use for the message.
/// @param _data Data to send with the message.
/// @return Encoded cross domain message.
function encodeCrossDomainMessage(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
)
internal
pure
returns (bytes memory)
{
(, uint16 version) = decodeVersionedNonce(_nonce);
if (version == 0) {
return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
} else if (version == 1) {
return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
} else {
revert("Encoding: unknown cross domain message version");
}
}
/// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
/// @param _target Address of the target of the message.
/// @param _sender Address of the sender of the message.
/// @param _data Data to send with the message.
/// @param _nonce Message nonce.
/// @return Encoded cross domain message.
function encodeCrossDomainMessageV0(
address _target,
address _sender,
bytes memory _data,
uint256 _nonce
)
internal
pure
returns (bytes memory)
{
return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
}
/// @notice Encodes a cross domain message based on the V1 (current) encoding.
/// @param _nonce Message nonce.
/// @param _sender Address of the sender of the message.
/// @param _target Address of the target of the message.
/// @param _value ETH value to send to the target.
/// @param _gasLimit Gas limit to use for the message.
/// @param _data Data to send with the message.
/// @return Encoded cross domain message.
function encodeCrossDomainMessageV1(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
)
internal
pure
returns (bytes memory)
{
return abi.encodeWithSignature(
"relayMessage(uint256,address,address,uint256,uint256,bytes)",
_nonce,
_sender,
_target,
_value,
_gasLimit,
_data
);
}
/// @notice Adds a version number into the first two bytes of a message nonce.
/// @param _nonce Message nonce to encode into.
/// @param _version Version number to encode into the message nonce.
/// @return Message nonce with version encoded into the first two bytes.
function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
uint256 nonce;
assembly {
nonce := or(shl(240, _version), _nonce)
}
return nonce;
}
/// @notice Pulls the version out of a version-encoded nonce.
/// @param _nonce Message nonce with version encoded into the first two bytes.
/// @return Nonce without encoded version.
/// @return Version of the message.
function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
uint240 nonce;
uint16 version;
assembly {
nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
version := shr(240, _nonce)
}
return (nonce, version);
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;
import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { Semver } from "src/universal/Semver.sol";
import { GasMode, IGas } from "src/L2/Gas.sol";
enum YieldMode {
AUTOMATIC,
VOID,
CLAIMABLE
}
interface IYield {
function configure(address contractAddress, uint8 flags) external returns (uint256);
function claim(address contractAddress, address recipientOfYield, uint256 desiredAmount) external returns (uint256);
function getClaimableAmount(address contractAddress) external view returns (uint256);
function getConfiguration(address contractAddress) external view returns (uint8);
}
interface IBlast{
// configure
function configureContract(address contractAddress, YieldMode _yield, GasMode gasMode, address governor) external;
function configure(YieldMode _yield, GasMode gasMode, address governor) external;
// base configuration options
function configureClaimableYield() external;
function configureClaimableYieldOnBehalf(address contractAddress) external;
function configureAutomaticYield() external;
function configureAutomaticYieldOnBehalf(address contractAddress) external;
function configureVoidYield() external;
function configureVoidYieldOnBehalf(address contractAddress) external;
function configureClaimableGas() external;
function configureClaimableGasOnBehalf(address contractAddress) external;
function configureVoidGas() external;
function configureVoidGasOnBehalf(address contractAddress) external;
function configureGovernor(address _governor) external;
function configureGovernorOnBehalf(address _newGovernor, address contractAddress) external;
// claim yield
function claimYield(address contractAddress, address recipientOfYield, uint256 amount) external returns (uint256);
function claimAllYield(address contractAddress, address recipientOfYield) external returns (uint256);
// claim gas
function claimAllGas(address contractAddress, address recipientOfGas) external returns (uint256);
// NOTE: can be off by 1 bip
function claimGasAtMinClaimRate(address contractAddress, address recipientOfGas, uint256 minClaimRateBips) external returns (uint256);
function claimMaxGas(address contractAddress, address recipientOfGas) external returns (uint256);
function claimGas(address contractAddress, address recipientOfGas, uint256 gasToClaim, uint256 gasSecondsToConsume) external returns (uint256);
// read functions
function readClaimableYield(address contractAddress) external view returns (uint256);
function readYieldConfiguration(address contractAddress) external view returns (uint8);
function readGasParams(address contractAddress) external view returns (uint256 etherSeconds, uint256 etherBalance, uint256 lastUpdated, GasMode);
}
/// @custom:predeploy 0x4300000000000000000000000000000000000002
/// @title Blast
contract Blast is IBlast, Initializable, Semver {
address public immutable YIELD_CONTRACT;
address public immutable GAS_CONTRACT;
mapping(address => address) public governorMap;
constructor(address _gasContract, address _yieldContract) Semver(1, 0, 0) {
GAS_CONTRACT = _gasContract;
YIELD_CONTRACT = _yieldContract;
_disableInitializers();
}
function initialize() public initializer {}
/**
* @notice Checks if the caller is the governor of the contract
* @param contractAddress The address of the contract
* @return A boolean indicating if the caller is the governor
*/
function isGovernor(address contractAddress) public view returns (bool) {
return msg.sender == governorMap[contractAddress];
}
/**
* @notice Checks if the governor is not set for the contract
* @param contractAddress The address of the contract
* @return boolean indicating if the governor is not set
*/
function governorNotSet(address contractAddress) internal view returns (bool) {
return governorMap[contractAddress] == address(0);
}
/**
* @notice Checks if the caller is authorized
* @param contractAddress The address of the contract
* @return A boolean indicating if the caller is authorized
*/
function isAuthorized(address contractAddress) public view returns (bool) {
return isGovernor(contractAddress) || (governorNotSet(contractAddress) && msg.sender == contractAddress);
}
/**
* @notice contract configures its yield and gas modes and sets the governor. called by contract
* @param _yieldMode The yield mode to be set
* @param _gasMode The gas mode to be set
* @param governor The address of the governor to be set
*/
function configure(YieldMode _yieldMode, GasMode _gasMode, address governor) external {
// requires that no governor is set for contract
require(isAuthorized(msg.sender), "not authorized to configure contract");
// set governor
governorMap[msg.sender] = governor;
// set gas mode
IGas(GAS_CONTRACT).setGasMode(msg.sender, _gasMode);
// set yield mode
IYield(YIELD_CONTRACT).configure(msg.sender, uint8(_yieldMode));
}
/**
* @notice Configures the yield and gas modes and sets the governor for a specific contract. called by authorized user
* @param contractAddress The address of the contract to be configured
* @param _yieldMode The yield mode to be set
* @param _gasMode The gas mode to be set
* @param _newGovernor The address of the new governor to be set
*/
function configureContract(address contractAddress, YieldMode _yieldMode, GasMode _gasMode, address _newGovernor) external {
// only allow governor, or if no governor is set, the contract itself to configure
require(isAuthorized(contractAddress), "not authorized to configure contract");
// set governor
governorMap[contractAddress] = _newGovernor;
// set gas mode
IGas(GAS_CONTRACT).setGasMode(contractAddress, _gasMode);
// set yield mode
IYield(YIELD_CONTRACT).configure(contractAddress, uint8(_yieldMode));
}
/**
* @notice Configures the yield mode to CLAIMABLE for the contract that calls this function
*/
function configureClaimableYield() external {
require(isAuthorized(msg.sender), "not authorized to configure contract");
IYield(YIELD_CONTRACT).configure(msg.sender, uint8(YieldMode.CLAIMABLE));
}
/**
* @notice Configures the yield mode to CLAIMABLE for a specific contract. Called by an authorized user
* @param contractAddress The address of the contract to be configured
*/
function configureClaimableYieldOnBehalf(address contractAddress) external {
require(isAuthorized(contractAddress), "not authorized to configure contract");
IYield(YIELD_CONTRACT).configure(contractAddress, uint8(YieldMode.CLAIMABLE));
}
/**
* @notice Configures the yield mode to AUTOMATIC for the contract that calls this function
*/
function configureAutomaticYield() external {
require(isAuthorized(msg.sender), "not authorized to configure contract");
IYield(YIELD_CONTRACT).configure(msg.sender, uint8(YieldMode.AUTOMATIC));
}
/**
* @notice Configures the yield mode to AUTOMATIC for a specific contract. Called by an authorized user
* @param contractAddress The address of the contract to be configured
*/
function configureAutomaticYieldOnBehalf(address contractAddress) external {
require(isAuthorized(contractAddress), "not authorized to configure contract");
IYield(YIELD_CONTRACT).configure(contractAddress, uint8(YieldMode.AUTOMATIC));
}
/**
* @notice Configures the yield mode to VOID for the contract that calls this function
*/
function configureVoidYield() external {
require(isAuthorized(msg.sender), "not authorized to configure contract");
IYield(YIELD_CONTRACT).configure(msg.sender, uint8(YieldMode.VOID));
}
/**
* @notice Configures the yield mode to VOID for a specific contract. Called by an authorized user
* @param contractAddress The address of the contract to be configured
*/
function configureVoidYieldOnBehalf(address contractAddress) external {
require(isAuthorized(contractAddress), "not authorized to configure contract");
IYield(YIELD_CONTRACT).configure(contractAddress, uint8(YieldMode.VOID));
}
/**
* @notice Configures the gas mode to CLAIMABLE for the contract that calls this function
*/
function configureClaimableGas() external {
require(isAuthorized(msg.sender), "not authorized to configure contract");
IGas(GAS_CONTRACT).setGasMode(msg.sender, GasMode.CLAIMABLE);
}
/**
* @notice Configures the gas mode to CLAIMABLE for a specific contract. Called by an authorized user
* @param contractAddress The address of the contract to be configured
*/
function configureClaimableGasOnBehalf(address contractAddress) external {
require(isAuthorized(contractAddress), "not authorized to configure contract");
IGas(GAS_CONTRACT).setGasMode(contractAddress, GasMode.CLAIMABLE);
}
/**
* @notice Configures the gas mode to VOID for the contract that calls this function
*/
function configureVoidGas() external {
require(isAuthorized(msg.sender), "not authorized to configure contract");
IGas(GAS_CONTRACT).setGasMode(msg.sender, GasMode.VOID);
}
/**
* @notice Configures the gas mode to void for a specific contract. Called by an authorized user
* @param contractAddress The address of the contract to be configured
*/
function configureVoidGasOnBehalf(address contractAddress) external {
require(isAuthorized(contractAddress), "not authorized to configure contract");
IGas(GAS_CONTRACT).setGasMode(contractAddress, GasMode.VOID);
}
/**
* @notice Configures the governor for the contract that calls this function
*/
function configureGovernor(address _governor) external {
require(isAuthorized(msg.sender), "not authorized to configure contract");
governorMap[msg.sender] = _governor;
}
/**
* @notice Configures the governor for a specific contract. Called by an authorized user
* @param contractAddress The address of the contract to be configured
*/
function configureGovernorOnBehalf(address _newGovernor, address contractAddress) external {
require(isAuthorized(contractAddress), "not authorized to configure contract");
governorMap[contractAddress] = _newGovernor;
}
// claim methods
/**
* @notice Claims yield for a specific contract. Called by an authorized user
* @param contractAddress The address of the contract for which yield is to be claimed
* @param recipientOfYield The address of the recipient of the yield
* @param amount The amount of yield to be claimed
* @return The amount of yield that was claimed
*/
function claimYield(address contractAddress, address recipientOfYield, uint256 amount) external returns (uint256) {
require(isAuthorized(contractAddress), "Not authorized to claim yield");
return IYield(YIELD_CONTRACT).claim(contractAddress, recipientOfYield, amount);
}
/**
* @notice Claims all yield for a specific contract. Called by an authorized user
* @param contractAddress The address of the contract for which all yield is to be claimed
* @param recipientOfYield The address of the recipient of the yield
* @return The amount of yield that was claimed
*/
function claimAllYield(address contractAddress, address recipientOfYield) external returns (uint256) {
require(isAuthorized(contractAddress), "Not authorized to claim yield");
uint256 amount = IYield(YIELD_CONTRACT).getClaimableAmount(contractAddress);
return IYield(YIELD_CONTRACT).claim(contractAddress, recipientOfYield, amount);
}
/**
* @notice Claims all gas for a specific contract. Called by an authorized user
* @param contractAddress The address of the contract for which all gas is to be claimed
* @param recipientOfGas The address of the recipient of the gas
* @return The amount of gas that was claimed
*/
function claimAllGas(address contractAddress, address recipientOfGas) external returns (uint256) {
require(isAuthorized(contractAddress), "Not allowed to claim all gas");
return IGas(GAS_CONTRACT).claimAll(contractAddress, recipientOfGas);
}
/**
* @notice Claims gas at a minimum claim rate for a specific contract, with error rate '1'. Called by an authorized user
* @param contractAddress The address of the contract for which gas is to be claimed
* @param recipientOfGas The address of the recipient of the gas
* @param minClaimRateBips The minimum claim rate in basis points
* @return The amount of gas that was claimed
*/
function claimGasAtMinClaimRate(address contractAddress, address recipientOfGas, uint256 minClaimRateBips) external returns (uint256) {
require(isAuthorized(contractAddress), "Not allowed to claim gas at min claim rate");
return IGas(GAS_CONTRACT).claimGasAtMinClaimRate(contractAddress, recipientOfGas, minClaimRateBips);
}
/**
* @notice Claims gas available to be claimed at max claim rate for a specific contract. Called by an authorized user
* @param contractAddress The address of the contract for which maximum gas is to be claimed
* @param recipientOfGas The address of the recipient of the gas
* @return The amount of gas that was claimed
*/
function claimMaxGas(address contractAddress, address recipientOfGas) external returns (uint256) {
require(isAuthorized(contractAddress), "Not allowed to claim max gas");
return IGas(GAS_CONTRACT).claimMax(contractAddress, recipientOfGas);
}
/**
* @notice Claims a specific amount of gas for a specific contract. claim rate governed by integral of gas over time
* @param contractAddress The address of the contract for which gas is to be claimed
* @param recipientOfGas The address of the recipient of the gas
* @param gasToClaim The amount of gas to be claimed
* @param gasSecondsToConsume The amount of gas seconds to consume
* @return The amount of gas that was claimed
*/
function claimGas(address contractAddress, address recipientOfGas, uint256 gasToClaim, uint256 gasSecondsToConsume) external returns (uint256) {
require(isAuthorized(contractAddress), "Not allowed to claim gas");
return IGas(GAS_CONTRACT).claim(contractAddress, recipientOfGas, gasToClaim, gasSecondsToConsume);
}
/**
* @notice Reads the claimable yield for a specific contract
* @param contractAddress The address of the contract for which the claimable yield is to be read
* @return claimable yield
*/
function readClaimableYield(address contractAddress) public view returns (uint256) {
return IYield(YIELD_CONTRACT).getClaimableAmount(contractAddress);
}
/**
* @notice Reads the yield configuration for a specific contract
* @param contractAddress The address of the contract for which the yield configuration is to be read
* @return uint8 representing yield enum
*/
function readYieldConfiguration(address contractAddress) public view returns (uint8) {
return IYield(YIELD_CONTRACT).getConfiguration(contractAddress);
}
/**
* @notice Reads the gas parameters for a specific contract
* @param contractAddress The address of the contract for which the gas parameters are to be read
* @return uint256 representing the accumulated ether seconds
* @return uint256 representing ether balance
* @return uint256 representing last update timestamp
* @return GasMode representing the gas mode (VOID, CLAIMABLE)
*/
function readGasParams(address contractAddress) public view returns (uint256, uint256, uint256, GasMode) {
return IGas(GAS_CONTRACT).readGasParams(contractAddress);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;
/// @title Storage
/// @notice Storage handles reading and writing to arbitary storage locations
library Storage {
/// @notice Returns an address stored in an arbitrary storage slot.
/// These storage slots decouple the storage layout from
/// solc's automation.
/// @param _slot The storage slot to retrieve the address from.
function getAddress(bytes32 _slot) internal view returns (address addr_) {
assembly {
addr_ := sload(_slot)
}
}
/// @notice Stores an address in an arbitrary storage slot, `_slot`.
/// @param _slot The storage slot to store the address in.
/// @param _address The protocol version to store
/// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses
/// in arbitrary storage slots.
function setAddress(bytes32 _slot, address _address) internal {
assembly {
sstore(_slot, _address)
}
}
/// @notice Returns a uint256 stored in an arbitrary storage slot.
/// These storage slots decouple the storage layout from
/// solc's automation.
/// @param _slot The storage slot to retrieve the address from.
function getUint(bytes32 _slot) internal view returns (uint256 value_) {
assembly {
value_ := sload(_slot)
}
}
/// @notice Stores a value in an arbitrary storage slot, `_slot`.
/// @param _slot The storage slot to store the address in.
/// @param _value The protocol version to store
/// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
/// in arbitrary storage slots.
function setUint(bytes32 _slot, uint256 _value) internal {
assembly {
sstore(_slot, _value)
}
}
/// @notice Returns a bytes32 stored in an arbitrary storage slot.
/// These storage slots decouple the storage layout from
/// solc's automation.
/// @param _slot The storage slot to retrieve the address from.
function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) {
assembly {
value_ := sload(_slot)
}
}
/// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`.
/// @param _slot The storage slot to store the address in.
/// @param _value The protocol version to store
/// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
/// in arbitrary storage slots.
function setBytes32(bytes32 _slot, bytes32 _value) internal {
assembly {
sstore(_slot, _value)
}
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;
import { Bytes } from "../Bytes.sol";
import { RLPReader } from "../rlp/RLPReader.sol";
/// @title MerkleTrie
/// @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie
/// inclusion proofs. By default, this library assumes a hexary trie. One can change the
/// trie radix constant to support other trie radixes.
library MerkleTrie {
/// @notice Struct representing a node in the trie.
/// @custom:field encoded The RLP-encoded node.
/// @custom:field decoded The RLP-decoded node.
struct TrieNode {
bytes encoded;
RLPReader.RLPItem[] decoded;
}
/// @notice Determines the number of elements per branch node.
uint256 internal constant TREE_RADIX = 16;
/// @notice Branch nodes have TREE_RADIX elements and one value element.
uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1;
/// @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`.
uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2;
/// @notice Prefix for even-nibbled extension node paths.
uint8 internal constant PREFIX_EXTENSION_EVEN = 0;
/// @notice Prefix for odd-nibbled extension node paths.
uint8 internal constant PREFIX_EXTENSION_ODD = 1;
/// @notice Prefix for even-nibbled leaf node paths.
uint8 internal constant PREFIX_LEAF_EVEN = 2;
/// @notice Prefix for odd-nibbled leaf node paths.
uint8 internal constant PREFIX_LEAF_ODD = 3;
/// @notice Verifies a proof that a given key/value pair is present in the trie.
/// @param _key Key of the node to search for, as a hex string.
/// @param _value Value of the node to search for, as a hex string.
/// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
/// trees, this proof is executed top-down and consists of a list of RLP-encoded
/// nodes that make a path down to the target node.
/// @param _root Known root of the Merkle trie. Used to verify that the included proof is
/// correctly constructed.
/// @return valid_ Whether or not the proof is valid.
function verifyInclusionProof(
bytes memory _key,
bytes memory _value,
bytes[] memory _proof,
bytes32 _root
)
internal
pure
returns (bool valid_)
{
valid_ = Bytes.equal(_value, get(_key, _proof, _root));
}
/// @notice Retrieves the value associated with a given key.
/// @param _key Key to search for, as hex bytes.
/// @param _proof Merkle trie inclusion proof for the key.
/// @param _root Known root of the Merkle trie.
/// @return value_ Value of the key if it exists.
function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
require(_key.length > 0, "MerkleTrie: empty key");
TrieNode[] memory proof = _parseProof(_proof);
bytes memory key = Bytes.toNibbles(_key);
bytes memory currentNodeID = abi.encodePacked(_root);
uint256 currentKeyIndex = 0;
// Proof is top-down, so we start at the first element (root).
for (uint256 i = 0; i < proof.length; i++) {
TrieNode memory currentNode = proof[i];
// Key index should never exceed total key length or we'll be out of bounds.
require(currentKeyIndex <= key.length, "MerkleTrie: key index exceeds total key length");
if (currentKeyIndex == 0) {
// First proof element is always the root node.
require(
Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
"MerkleTrie: invalid root hash"
);
} else if (currentNode.encoded.length >= 32) {
// Nodes 32 bytes or larger are hashed inside branch nodes.
require(
Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
"MerkleTrie: invalid large internal hash"
);
} else {
// Nodes smaller than 32 bytes aren't hashed.
require(Bytes.equal(currentNode.encoded, currentNodeID), "MerkleTrie: invalid internal node hash");
}
if (currentNode.decoded.length == BRANCH_NODE_LENGTH) {
if (currentKeyIndex == key.length) {
// Value is the last element of the decoded list (for branch nodes). There's
// some ambiguity in the Merkle trie specification because bytes(0) is a
// valid value to place into the trie, but for branch nodes bytes(0) can exist
// even when the value wasn't explicitly placed there. Geth treats a value of
// bytes(0) as "key does not exist" and so we do the same.
value_ = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]);
require(value_.length > 0, "MerkleTrie: value length must be greater than zero (branch)");
// Extra proof elements are not allowed.
require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (branch)");
return value_;
} else {
// We're not at the end of the key yet.
// Figure out what the next node ID should be and continue.
uint8 branchKey = uint8(key[currentKeyIndex]);
RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey];
currentNodeID = _getNodeID(nextNode);
currentKeyIndex += 1;
}
} else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
bytes memory path = _getNodePath(currentNode);
uint8 prefix = uint8(path[0]);
uint8 offset = 2 - (prefix % 2);
bytes memory pathRemainder = Bytes.slice(path, offset);
bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex);
uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder);
// Whether this is a leaf node or an extension node, the path remainder MUST be a
// prefix of the key remainder (or be equal to the key remainder) or the proof is
// considered invalid.
require(
pathRemainder.length == sharedNibbleLength,
"MerkleTrie: path remainder must share all nibbles with key"
);
if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
// Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid,
// the key remainder must be exactly equal to the path remainder. We already
// did the necessary byte comparison, so it's more efficient here to check that
// the key remainder length equals the shared nibble length, which implies
// equality with the path remainder (since we already did the same check with
// the path remainder and the shared nibble length).
require(
keyRemainder.length == sharedNibbleLength,
"MerkleTrie: key remainder must be identical to path remainder"
);
// Our Merkle Trie is designed specifically for the purposes of the Ethereum
// state trie. Empty values are not allowed in the state trie, so we can safely
// say that if the value is empty, the key should not exist and the proof is
// invalid.
value_ = RLPReader.readBytes(currentNode.decoded[1]);
require(value_.length > 0, "MerkleTrie: value length must be greater than zero (leaf)");
// Extra proof elements are not allowed.
require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (leaf)");
return value_;
} else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
// Prefix of 0 or 1 means this is an extension node. We move onto the next node
// in the proof and increment the key index by the length of the path remainder
// which is equal to the shared nibble length.
currentNodeID = _getNodeID(currentNode.decoded[1]);
currentKeyIndex += sharedNibbleLength;
} else {
revert("MerkleTrie: received a node with an unknown prefix");
}
} else {
revert("MerkleTrie: received an unparseable node");
}
}
revert("MerkleTrie: ran out of proof elements");
}
/// @notice Parses an array of proof elements into a new array that contains both the original
/// encoded element and the RLP-decoded element.
/// @param _proof Array of proof elements to parse.
/// @return proof_ Proof parsed into easily accessible structs.
function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory proof_) {
uint256 length = _proof.length;
proof_ = new TrieNode[](length);
for (uint256 i = 0; i < length;) {
proof_[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) });
unchecked {
++i;
}
}
}
/// @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the
/// specification, but nodes < 32 bytes are not actually hashed.
/// @param _node Node to pull an ID for.
/// @return id_ ID for the node, depending on the size of its contents.
function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory id_) {
id_ = _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node);
}
/// @notice Gets the path for a leaf or extension node.
/// @param _node Node to get a path for.
/// @return nibbles_ Node path, converted to an array of nibbles.
function _getNodePath(TrieNode memory _node) private pure returns (bytes memory nibbles_) {
nibbles_ = Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0]));
}
/// @notice Utility; determines the number of nibbles shared between two nibble arrays.
/// @param _a First nibble array.
/// @param _b Second nibble array.
/// @return shared_ Number of shared nibbles.
function _getSharedNibbleLength(bytes memory _a, bytes memory _b) private pure returns (uint256 shared_) {
uint256 max = (_a.length < _b.length) ? _a.length : _b.length;
for (; shared_ < max && _a[shared_] == _b[shared_];) {
unchecked {
++shared_;
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a >= b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`.
// We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
// This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
// Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
// good first aproximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1;
uint256 x = a;
if (x >> 128 > 0) {
x >>= 128;
result <<= 64;
}
if (x >> 64 > 0) {
x >>= 64;
result <<= 32;
}
if (x >> 32 > 0) {
x >>= 32;
result <<= 16;
}
if (x >> 16 > 0) {
x >>= 16;
result <<= 8;
}
if (x >> 8 > 0) {
x >>= 8;
result <<= 4;
}
if (x >> 4 > 0) {
x >>= 4;
result <<= 2;
}
if (x >> 2 > 0) {
result <<= 1;
}
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
uint256 result = sqrt(a);
if (rounding == Rounding.Up && result * result < a) {
result += 1;
}
return result;
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;
/// @title Burn
/// @notice Utilities for burning stuff.
library Burn {
/// @notice Burns a given amount of ETH.
/// @param _amount Amount of ETH to burn.
function eth(uint256 _amount) internal {
new Burner{ value: _amount }();
}
/// @notice Burns a given amount of gas.
/// @param _amount Amount of gas to burn.
function gas(uint256 _amount) internal view {
uint256 i = 0;
uint256 initialGas = gasleft();
while (initialGas - gasleft() < _amount) {
++i;
}
}
}
/// @title Burner
/// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
/// the contract from the circulating supply. Self-destructing is the only way to remove ETH
/// from the circulating supply.
contract Burner {
constructor() payable {
selfdestruct(payable(address(this)));
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;
import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
/// @title Arithmetic
/// @notice Even more math than before.
library Arithmetic {
/// @notice Clamps a value between a minimum and maximum.
/// @param _value The value to clamp.
/// @param _min The minimum value.
/// @param _max The maximum value.
/// @return The clamped value.
function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
return SignedMath.min(SignedMath.max(_value, _min), _max);
}
/// @notice (c)oefficient (d)enominator (exp)onentiation function.
/// Returns the result of: c * (1 - 1/d)^exp.
/// @param _coefficient Coefficient of the function.
/// @param _denominator Fractional denominator.
/// @param _exponent Power function exponent.
/// @return Result of c * (1 - 1/d)^exp.
function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
import "../proxy/utils/Initializable.sol";
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal onlyInitializing {
}
function __Context_init_unchained() internal onlyInitializing {
}
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;
/// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
/// @title RLPWriter
/// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
/// RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
/// modifications to improve legibility.
library RLPWriter {
/// @notice RLP encodes a byte string.
/// @param _in The byte string to encode.
/// @return out_ The RLP encoded string in bytes.
function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
if (_in.length == 1 && uint8(_in[0]) < 128) {
out_ = _in;
} else {
out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
}
}
/// @notice RLP encodes a list of RLP encoded byte byte strings.
/// @param _in The list of RLP encoded byte strings.
/// @return list_ The RLP encoded list of items in bytes.
function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
list_ = _flatten(_in);
list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
}
/// @notice RLP encodes a string.
/// @param _in The string to encode.
/// @return out_ The RLP encoded string in bytes.
function writeString(string memory _in) internal pure returns (bytes memory out_) {
out_ = writeBytes(bytes(_in));
}
/// @notice RLP encodes an address.
/// @param _in The address to encode.
/// @return out_ The RLP encoded address in bytes.
function writeAddress(address _in) internal pure returns (bytes memory out_) {
out_ = writeBytes(abi.encodePacked(_in));
}
/// @notice RLP encodes a uint.
/// @param _in The uint256 to encode.
/// @return out_ The RLP encoded uint256 in bytes.
function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
out_ = writeBytes(_toBinary(_in));
}
/// @notice RLP encodes a bool.
/// @param _in The bool to encode.
/// @return out_ The RLP encoded bool in bytes.
function writeBool(bool _in) internal pure returns (bytes memory out_) {
out_ = new bytes(1);
out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
}
/// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
/// @param _len The length of the string or the payload.
/// @param _offset 128 if item is string, 192 if item is list.
/// @return out_ RLP encoded bytes.
function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
if (_len < 56) {
out_ = new bytes(1);
out_[0] = bytes1(uint8(_len) + uint8(_offset));
} else {
uint256 lenLen;
uint256 i = 1;
while (_len / i != 0) {
lenLen++;
i *= 256;
}
out_ = new bytes(lenLen + 1);
out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
for (i = 1; i <= lenLen; i++) {
out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
}
}
}
/// @notice Encode integer in big endian binary form with no leading zeroes.
/// @param _x The integer to encode.
/// @return out_ RLP encoded bytes.
function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
bytes memory b = abi.encodePacked(_x);
uint256 i = 0;
for (; i < 32; i++) {
if (b[i] != 0) {
break;
}
}
out_ = new bytes(32 - i);
for (uint256 j = 0; j < out_.length; j++) {
out_[j] = b[i++];
}
}
/// @custom:attribution https://github.com/Arachnid/solidity-stringutils
/// @notice Copies a piece of memory to another location.
/// @param _dest Destination location.
/// @param _src Source location.
/// @param _len Length of memory to copy.
function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
uint256 dest = _dest;
uint256 src = _src;
uint256 len = _len;
for (; len >= 32; len -= 32) {
assembly {
mstore(dest, mload(src))
}
dest += 32;
src += 32;
}
uint256 mask;
unchecked {
mask = 256 ** (32 - len) - 1;
}
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
}
/// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
/// @notice Flattens a list of byte strings into one byte string.
/// @param _list List of byte strings to flatten.
/// @return out_ The flattened byte string.
function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
if (_list.length == 0) {
return new bytes(0);
}
uint256 len;
uint256 i = 0;
for (; i < _list.length; i++) {
len += _list[i].length;
}
out_ = new bytes(len);
uint256 flattenedPtr;
assembly {
flattenedPtr := add(out_, 0x20)
}
for (i = 0; i < _list.length; i++) {
bytes memory item = _list[i];
uint256 listPtr;
assembly {
listPtr := add(item, 0x20)
}
_memcpy(flattenedPtr, listPtr, item.length);
flattenedPtr += _list[i].length;
}
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;
import { SafeTransferLib } from "solmate/utils/SafeTransferLib.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { Semver } from "src/universal/Semver.sol";
enum GasMode {
VOID,
CLAIMABLE
}
interface IGas {
function readGasParams(address contractAddress) external view returns (uint256, uint256, uint256, GasMode);
function setGasMode(address contractAddress, GasMode mode) external;
function claimGasAtMinClaimRate(address contractAddress, address recipient, uint256 minClaimRateBips) external returns (uint256);
function claimAll(address contractAddress, address recipient) external returns (uint256);
function claimMax(address contractAddress, address recipient) external returns (uint256);
function claim(address contractAddress, address recipient, uint256 gasToClaim, uint256 gasSecondsToConsume) external returns (uint256);
}
/// @custom:predeploy 0x4300000000000000000000000000000000000001
/// @title Gas
contract Gas is IGas, Initializable, Semver {
address public immutable admin;
// Blast.sol --> controls all dAPP accesses to Gas.sol
address public immutable blastConfigurationContract;
// BaseFeeVault.sol -> fees from gas claims directed here
address public immutable blastFeeVault;
// zero claim rate in bps -> percent of gas user is able to claim
// without consuming any gas seconds
uint256 public zeroClaimRate; // bps
// base claim rate in bps -> percent of gas user is able to claim
// by consuming base gas seconds
uint256 public baseGasSeconds;
uint256 public baseClaimRate; // bps
// ceil claim rate in bps -> percent of gas user is able to claim
// by consuming ceil gas seconds or more
uint256 public ceilGasSeconds;
uint256 public ceilClaimRate; // bps
/**
* @notice Constructs the blast gas contract.
* @param _admin The address of the admin.
* @param _blastConfigurationContract The address of the Blast configuration contract.
* @param _blastFeeVault The address of the Blast fee vault.
*/
constructor (
address _admin,
address _blastConfigurationContract,
address _blastFeeVault
) Semver(1, 0, 0) {
admin = _admin;
blastConfigurationContract = _blastConfigurationContract;
blastFeeVault = _blastFeeVault;
_disableInitializers();
}
/**
* @notice Initializer.
* @param _zeroClaimRate The zero claim rate.
* @param _baseGasSeconds The base gas seconds.
* @param _baseClaimRate The base claim rate.
* @param _ceilGasSeconds The ceiling gas seconds.
* @param _ceilClaimRate The ceiling claim rate.
*/
function initialize(
uint256 _zeroClaimRate,
uint256 _baseGasSeconds,
uint256 _baseClaimRate,
uint256 _ceilGasSeconds,
uint256 _ceilClaimRate
) public initializer {
require(_zeroClaimRate < _baseClaimRate, "zero claim rate must be < base claim rate");
require(_baseClaimRate < _ceilClaimRate, "base claim rate must be < ceil claim rate");
require(_baseGasSeconds < _ceilGasSeconds, "base gas seconds must be < ceil gas seconds");
require(_baseGasSeconds > 0, "base gas seconds must be > 0");
require(_ceilClaimRate <= 10000, "ceil claim rate must be less than or equal to 10_000 bips");
// admin vars
zeroClaimRate = _zeroClaimRate;
baseGasSeconds = _baseGasSeconds;
baseClaimRate = _baseClaimRate;
ceilGasSeconds = _ceilGasSeconds;
ceilClaimRate = _ceilClaimRate;
}
/**
* @notice Allows only the admin to call a function
*/
modifier onlyAdmin() {
require(msg.sender == admin, "Caller is not the admin");
_;
}
/**
* @notice Allows only the Blast Configuration Contract to call a function
*/
modifier onlyBlastConfigurationContract() {
require(msg.sender == blastConfigurationContract, "Caller must be blast configuration contract");
_;
}
/**
* @notice Allows the admin to update the parameters
* @param _zeroClaimRate The new zero claim rate
* @param _baseGasSeconds The new base gas seconds
* @param _baseClaimRate The new base claim rate
* @param _ceilGasSeconds The new ceiling gas seconds
* @param _ceilClaimRate The new ceiling claim rate
*/
function updateAdminParameters(
uint256 _zeroClaimRate,
uint256 _baseGasSeconds,
uint256 _baseClaimRate,
uint256 _ceilGasSeconds,
uint256 _ceilClaimRate
) external onlyAdmin {
require(_zeroClaimRate < _baseClaimRate, "zero claim rate must be < base claim rate");
require(_baseClaimRate < _ceilClaimRate, "base claim rate must be < ceil claim rate");
require(_baseGasSeconds < _ceilGasSeconds, "base gas seconds must be < ceil gas seconds");
require(_baseGasSeconds > 0, "base gas seconds must be > 0");
require(_ceilClaimRate <= 10000, "ceil claim rate must be less than or equal to 10_000 bips");
zeroClaimRate = _zeroClaimRate;
baseGasSeconds = _baseGasSeconds;
baseClaimRate = _baseClaimRate;
ceilGasSeconds = _ceilGasSeconds;
ceilClaimRate = _ceilClaimRate;
}
/**
* @notice Allows the admin to claim the gas of any address
* @param contractAddress The address of the contract
* @return The amount of ether balance claimed
*/
function adminClaimGas(address contractAddress) external onlyAdmin returns (uint256) {
(, uint256 etherBalance,,) = readGasParams(contractAddress);
_updateGasParams(contractAddress, 0, 0, GasMode.VOID);
SafeTransferLib.safeTransferETH(blastFeeVault, etherBalance);
return etherBalance;
}
/**
* @notice Allows an authorized user to set the gas mode for a contract via the BlastConfigurationContract
* @param contractAddress The address of the contract
* @param mode The new gas mode for the contract
*/
function setGasMode(address contractAddress, GasMode mode) external onlyBlastConfigurationContract {
// retrieve gas params
(uint256 etherSeconds, uint256 etherBalance,,) = readGasParams(contractAddress);
_updateGasParams(contractAddress, etherSeconds, etherBalance, mode);
}
/**
* @notice Allows a user to claim gas at a minimum claim rate (error = 1 bip)
* @param contractAddress The address of the contract
* @param recipientOfGas The address of the recipient of the gas
* @param minClaimRateBips The minimum claim rate in basis points
* @return The amount of gas claimed
*/
function claimGasAtMinClaimRate(address contractAddress, address recipientOfGas, uint256 minClaimRateBips) public returns (uint256) {
require(minClaimRateBips <= ceilClaimRate, "desired claim rate exceeds maximum");
(uint256 etherSeconds, uint256 etherBalance,,) = readGasParams(contractAddress);
if (minClaimRateBips <= zeroClaimRate) {
return claimAll(contractAddress, recipientOfGas);
}
// set minClaimRate to baseClaimRate in this case
if (minClaimRateBips < baseClaimRate) {
minClaimRateBips = baseClaimRate;
}
uint256 bipsDiff = minClaimRateBips - baseClaimRate;
uint256 secondsDiff = ceilGasSeconds - baseGasSeconds;
uint256 rateDiff = ceilClaimRate - baseClaimRate;
uint256 minSecondsStaked = baseGasSeconds + Math.ceilDiv(bipsDiff * secondsDiff, rateDiff);
uint256 maxEtherClaimable = etherSeconds / minSecondsStaked;
if (maxEtherClaimable > etherBalance) {
maxEtherClaimable = etherBalance;
}
uint256 secondsToConsume = maxEtherClaimable * minSecondsStaked;
return claim(contractAddress, recipientOfGas, maxEtherClaimable, secondsToConsume);
}
/**
* @notice Allows a contract to claim all gas
* @param contractAddress The address of the contract
* @param recipientOfGas The address of the recipient of the gas
* @return The amount of gas claimed
*/
function claimAll(address contractAddress, address recipientOfGas) public returns (uint256) {
(uint256 etherSeconds, uint256 etherBalance,,) = readGasParams(contractAddress);
return claim(contractAddress, recipientOfGas, etherBalance, etherSeconds);
}
/**
* @notice Allows a contract to claim all gas at the highest possible claim rate
* @param contractAddress The address of the contract
* @param recipientOfGas The address of the recipient of the gas
* @return The amount of gas claimed
*/
function claimMax(address contractAddress, address recipientOfGas) public returns (uint256) {
return claimGasAtMinClaimRate(contractAddress, recipientOfGas, ceilClaimRate);
}
/**
* @notice Allows a contract to claim a specified amount of gas, at a claim rate set by the number of gas seconds
* @param contractAddress The address of the contract
* @param recipientOfGas The address of the recipient of the gas
* @param gasToClaim The amount of gas to claim
* @param gasSecondsToConsume The amount of gas seconds to consume
* @return The amount of gas claimed (gasToClaim - penalty)
*/
function claim(address contractAddress, address recipientOfGas, uint256 gasToClaim, uint256 gasSecondsToConsume) public onlyBlastConfigurationContract() returns (uint256) {
// retrieve gas params
(uint256 etherSeconds, uint256 etherBalance,, GasMode mode) = readGasParams(contractAddress);
// check validity requirements
require(gasToClaim > 0, "must withdraw non-zero amount");
require(gasToClaim <= etherBalance, "too much to withdraw");
require(gasSecondsToConsume <= etherSeconds, "not enough gas seconds");
// get claim rate
(uint256 claimRate, uint256 gasSecondsToConsumeNormalized) = getClaimRateBps(gasSecondsToConsume, gasToClaim);
// calculate tax
uint256 userEther = gasToClaim * claimRate / 10_000;
uint256 penalty = gasToClaim - userEther;
_updateGasParams(contractAddress, etherSeconds - gasSecondsToConsumeNormalized, etherBalance - gasToClaim, mode);
SafeTransferLib.safeTransferETH(recipientOfGas, userEther);
if (penalty > 0) {
SafeTransferLib.safeTransferETH(blastFeeVault, penalty);
}
return userEther;
}
/**
* @notice Calculates the claim rate in basis points based on gasSeconds, gasToClaim
* @param gasSecondsToConsume The amount of gas seconds to consume
* @param gasToClaim The amount of gas to claim
* @return claimRate The calculated claim rate in basis points
* @return gasSecondsToConsume The normalized gas seconds to consume (<= gasSecondsToConsume)
*/
function getClaimRateBps(uint256 gasSecondsToConsume, uint256 gasToClaim) public view returns (uint256, uint256) {
uint256 secondsStaked = gasSecondsToConsume / gasToClaim;
if (secondsStaked < baseGasSeconds) {
return (zeroClaimRate, 0);
}
if (secondsStaked >= ceilGasSeconds) {
uint256 gasToConsumeNormalized = gasToClaim * ceilGasSeconds;
return (ceilClaimRate, gasToConsumeNormalized);
}
uint256 rateDiff = ceilClaimRate - baseClaimRate;
uint256 secondsDiff = ceilGasSeconds - baseGasSeconds;
uint256 secondsStakedDiff = secondsStaked - baseGasSeconds;
uint256 additionalClaimRate = rateDiff * secondsStakedDiff / secondsDiff;
uint256 claimRate = baseClaimRate + additionalClaimRate;
return (claimRate, gasSecondsToConsume);
}
/**
* @notice Reads the gas parameters for a given user
* @param user The address of the user
* @return etherSeconds The integral of ether over time (ether * seconds vested)
* @return etherBalance The total ether balance for the user
* @return lastUpdated The last updated timestamp for the user's gas parameters
* @return mode The current gas mode for the user
*/
function readGasParams(address user) public view returns (uint256 etherSeconds, uint256 etherBalance, uint256 lastUpdated, GasMode mode) {
bytes32 paramsHash = keccak256(abi.encodePacked(user, "parameters"));
bytes32 packedParams;
// read params
assembly {
packedParams := sload(paramsHash)
}
// unpack params
// - The first byte (most significant byte) represents the mode
// - The next 12 bytes represent the etherBalance
// - The following 15 bytes represent the etherSeconds
// - The last 4 bytes (least significant bytes) represent the lastUpdated timestamp
mode = GasMode(uint8(packedParams[0]));
etherBalance = uint256((packedParams << (1 * 8)) >> ((32 - 12) * 8));
etherSeconds = uint256((packedParams << ((1 + 12) * 8)) >> ((32 - 15) * 8));
lastUpdated = uint256((packedParams << ((1 + 12 + 15) * 8)) >> ((32 - 4) * 8));
// update ether seconds
etherSeconds = etherSeconds + etherBalance * (block.timestamp - lastUpdated);
}
/**
* @notice Updates the gas parameters for a given contract address
* @param contractAddress The address of the contract
* @param etherSeconds The integral of ether over time (ether * seconds vested)
* @param etherBalance The total ether balance for the contract
*/
function _updateGasParams(address contractAddress, uint256 etherSeconds, uint256 etherBalance, GasMode mode) internal {
if (
etherBalance >= 1 << (12 * 8) ||
etherSeconds >= 1 << (15 * 8)
) {
revert("Unexpected packing issue due to overflow");
}
uint256 updatedTimestamp = block.timestamp; // Known to fit in 4 bytes
bytes32 paramsHash = keccak256(abi.encodePacked(contractAddress, "parameters"));
bytes32 packedParams;
packedParams = (
(bytes32(uint256(mode)) << ((12 + 15 + 4) * 8)) | // Shift mode to the most significant byte
(bytes32(etherBalance) << ((15 + 4) * 8)) | // Shift etherBalance to start after 1 byte of mode
(bytes32(etherSeconds) << (4 * 8)) | // Shift etherSeconds to start after mode and etherBalance
bytes32(updatedTimestamp) // Keep updatedTimestamp in the least significant bytes
);
assembly {
sstore(paramsHash, packedParams)
}
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;
/// @title Bytes
/// @notice Bytes is a library for manipulating byte arrays.
library Bytes {
/// @custom:attribution https://github.com/GNSPS/solidity-bytes-utils
/// @notice Slices a byte array with a given starting index and length. Returns a new byte array
/// as opposed to a pointer to the original array. Will throw if trying to slice more
/// bytes than exist in the array.
/// @param _bytes Byte array to slice.
/// @param _start Starting index of the slice.
/// @param _length Length of the slice.
/// @return Slice of the input byte array.
function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
unchecked {
require(_length + 31 >= _length, "slice_overflow");
require(_start + _length >= _start, "slice_overflow");
require(_bytes.length >= _start + _length, "slice_outOfBounds");
}
bytes memory tempBytes;
assembly {
switch iszero(_length)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(_length, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
let end := add(mc, _length)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} { mstore(mc, mload(cc)) }
mstore(tempBytes, _length)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
//zero out the 32 bytes slice we are about to return
//we need to do it because Solidity does not garbage collect
mstore(tempBytes, 0)
mstore(0x40, add(tempBytes, 0x20))
}
}
return tempBytes;
}
/// @notice Slices a byte array with a given starting index up to the end of the original byte
/// array. Returns a new array rathern than a pointer to the original.
/// @param _bytes Byte array to slice.
/// @param _start Starting index of the slice.
/// @return Slice of the input byte array.
function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) {
if (_start >= _bytes.length) {
return bytes("");
}
return slice(_bytes, _start, _bytes.length - _start);
}
/// @notice Converts a byte array into a nibble array by splitting each byte into two nibbles.
/// Resulting nibble array will be exactly twice as long as the input byte array.
/// @param _bytes Input byte array to convert.
/// @return Resulting nibble array.
function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
bytes memory _nibbles;
assembly {
// Grab a free memory offset for the new array
_nibbles := mload(0x40)
// Load the length of the passed bytes array from memory
let bytesLength := mload(_bytes)
// Calculate the length of the new nibble array
// This is the length of the input array times 2
let nibblesLength := shl(0x01, bytesLength)
// Update the free memory pointer to allocate memory for the new array.
// To do this, we add the length of the new array + 32 bytes for the array length
// rounded up to the nearest 32 byte boundary to the current free memory pointer.
mstore(0x40, add(_nibbles, and(not(0x1F), add(nibblesLength, 0x3F))))
// Store the length of the new array in memory
mstore(_nibbles, nibblesLength)
// Store the memory offset of the _bytes array's contents on the stack
let bytesStart := add(_bytes, 0x20)
// Store the memory offset of the nibbles array's contents on the stack
let nibblesStart := add(_nibbles, 0x20)
// Loop through each byte in the input array
for { let i := 0x00 } lt(i, bytesLength) { i := add(i, 0x01) } {
// Get the starting offset of the next 2 bytes in the nibbles array
let offset := add(nibblesStart, shl(0x01, i))
// Load the byte at the current index within the `_bytes` array
let b := byte(0x00, mload(add(bytesStart, i)))
// Pull out the first nibble and store it in the new array
mstore8(offset, shr(0x04, b))
// Pull out the second nibble and store it in the new array
mstore8(add(offset, 0x01), and(b, 0x0F))
}
}
return _nibbles;
}
/// @notice Compares two byte arrays by comparing their keccak256 hashes.
/// @param _bytes First byte array to compare.
/// @param _other Second byte array to compare.
/// @return True if the two byte arrays are equal, false otherwise.
function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) {
return keccak256(_bytes) == keccak256(_other);
}
}
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.8;
/// @custom:attribution https://github.com/hamdiallam/Solidity-RLP
/// @title RLPReader
/// @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted
/// from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with
/// various tweaks to improve readability.
library RLPReader {
/// @notice Custom pointer type to avoid confusion between pointers and uint256s.
type MemoryPointer is uint256;
/// @notice RLP item types.
/// @custom:value DATA_ITEM Represents an RLP data item (NOT a list).
/// @custom:value LIST_ITEM Represents an RLP list item.
enum RLPItemType {
DATA_ITEM,
LIST_ITEM
}
/// @notice Struct representing an RLP item.
/// @custom:field length Length of the RLP item.
/// @custom:field ptr Pointer to the RLP item in memory.
struct RLPItem {
uint256 length;
MemoryPointer ptr;
}
/// @notice Max list length that this library will accept.
uint256 internal constant MAX_LIST_LENGTH = 32;
/// @notice Converts bytes to a reference to memory position and length.
/// @param _in Input bytes to convert.
/// @return out_ Output memory reference.
function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory out_) {
// Empty arrays are not RLP items.
require(_in.length > 0, "RLPReader: length of an RLP item must be greater than zero to be decodable");
MemoryPointer ptr;
assembly {
ptr := add(_in, 32)
}
out_ = RLPItem({ length: _in.length, ptr: ptr });
}
/// @notice Reads an RLP list value into a list of RLP items.
/// @param _in RLP list value.
/// @return out_ Decoded RLP list items.
function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory out_) {
(uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in);
require(itemType == RLPItemType.LIST_ITEM, "RLPReader: decoded item type for list is not a list item");
require(listOffset + listLength == _in.length, "RLPReader: list item has an invalid data remainder");
// Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by
// writing to the length. Since we can't know the number of RLP items without looping over
// the entire input, we'd have to loop twice to accurately size this array. It's easier to
// simply set a reasonable maximum list length and decrease the size before we finish.
out_ = new RLPItem[](MAX_LIST_LENGTH);
uint256 itemCount = 0;
uint256 offset = listOffset;
while (offset < _in.length) {
(uint256 itemOffset, uint256 itemLength,) = _decodeLength(
RLPItem({ length: _in.length - offset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) })
);
// We don't need to check itemCount < out.length explicitly because Solidity already
// handles this check on our behalf, we'd just be wasting gas.
out_[itemCount] = RLPItem({
length: itemLength + itemOffset,
ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset)
});
itemCount += 1;
offset += itemOffset + itemLength;
}
// Decrease the array size to match the actual item count.
assembly {
mstore(out_, itemCount)
}
}
/// @notice Reads an RLP list value into a list of RLP items.
/// @param _in RLP list value.
/// @return out_ Decoded RLP list items.
function readList(bytes memory _in) internal pure returns (RLPItem[] memory out_) {
out_ = readList(toRLPItem(_in));
}
/// @notice Reads an RLP bytes value into bytes.
/// @param _in RLP bytes value.
/// @return out_ Decoded bytes.
function readBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
(uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in);
require(itemType == RLPItemType.DATA_ITEM, "RLPReader: decoded item type for bytes is not a data item");
require(_in.length == itemOffset + itemLength, "RLPReader: bytes value contains an invalid remainder");
out_ = _copy(_in.ptr, itemOffset, itemLength);
}
/// @notice Reads an RLP bytes value into bytes.
/// @param _in RLP bytes value.
/// @return out_ Decoded bytes.
function readBytes(bytes memory _in) internal pure returns (bytes memory out_) {
out_ = readBytes(toRLPItem(_in));
}
/// @notice Reads the raw bytes of an RLP item.
/// @param _in RLP item to read.
/// @return out_ Raw RLP bytes.
function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
out_ = _copy(_in.ptr, 0, _in.length);
}
/// @notice Decodes the length of an RLP item.
/// @param _in RLP item to decode.
/// @return offset_ Offset of the encoded data.
/// @return length_ Length of the encoded data.
/// @return type_ RLP item type (LIST_ITEM or DATA_ITEM).
function _decodeLength(RLPItem memory _in)
private
pure
returns (uint256 offset_, uint256 length_, RLPItemType type_)
{
// Short-circuit if there's nothing to decode, note that we perform this check when
// the user creates an RLP item via toRLPItem, but it's always possible for them to bypass
// that function and create an RLP item directly. So we need to check this anyway.
require(_in.length > 0, "RLPReader: length of an RLP item must be greater than zero to be decodable");
MemoryPointer ptr = _in.ptr;
uint256 prefix;
assembly {
prefix := byte(0, mload(ptr))
}
if (prefix <= 0x7f) {
// Single byte.
return (0, 1, RLPItemType.DATA_ITEM);
} else if (prefix <= 0xb7) {
// Short string.
// slither-disable-next-line variable-scope
uint256 strLen = prefix - 0x80;
require(
_in.length > strLen, "RLPReader: length of content must be greater than string length (short string)"
);
bytes1 firstByteOfContent;
assembly {
firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
}
require(
strLen != 1 || firstByteOfContent >= 0x80,
"RLPReader: invalid prefix, single byte < 0x80 are not prefixed (short string)"
);
return (1, strLen, RLPItemType.DATA_ITEM);
} else if (prefix <= 0xbf) {
// Long string.
uint256 lenOfStrLen = prefix - 0xb7;
require(
_in.length > lenOfStrLen,
"RLPReader: length of content must be > than length of string length (long string)"
);
bytes1 firstByteOfContent;
assembly {
firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
}
require(
firstByteOfContent != 0x00, "RLPReader: length of content must not have any leading zeros (long string)"
);
uint256 strLen;
assembly {
strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1)))
}
require(strLen > 55, "RLPReader: length of content must be greater than 55 bytes (long string)");
require(
_in.length > lenOfStrLen + strLen,
"RLPReader: length of content must be greater than total length (long string)"
);
return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM);
} else if (prefix <= 0xf7) {
// Short list.
// slither-disable-next-line variable-scope
uint256 listLen = prefix - 0xc0;
require(_in.length > listLen, "RLPReader: length of content must be greater than list length (short list)");
return (1, listLen, RLPItemType.LIST_ITEM);
} else {
// Long list.
uint256 lenOfListLen = prefix - 0xf7;
require(
_in.length > lenOfListLen,
"RLPReader: length of content must be > than length of list length (long list)"
);
bytes1 firstByteOfContent;
assembly {
firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
}
require(
firstByteOfContent != 0x00, "RLPReader: length of content must not have any leading zeros (long list)"
);
uint256 listLen;
assembly {
listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1)))
}
require(listLen > 55, "RLPReader: length of content must be greater than 55 bytes (long list)");
require(
_in.length > lenOfListLen + listLen,
"RLPReader: length of content must be greater than total length (long list)"
);
return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM);
}
}
/// @notice Copies the bytes from a memory location.
/// @param _src Pointer to the location to read from.
/// @param _offset Offset to start reading from.
/// @param _length Number of bytes to read.
/// @return out_ Copied bytes.
function _copy(MemoryPointer _src, uint256 _offset, uint256 _length) private pure returns (bytes memory out_) {
out_ = new bytes(_length);
if (_length == 0) {
return out_;
}
// Mostly based on Solidity's copy_memory_to_memory:
// solhint-disable max-line-length
// https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114
uint256 src = MemoryPointer.unwrap(_src) + _offset;
assembly {
let dest := add(out_, 32)
let i := 0
for { } lt(i, _length) { i := add(i, 32) } { mstore(add(dest, i), mload(add(src, i))) }
if gt(i, _length) { mstore(add(dest, _length), 0) }
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;
/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
/*//////////////////////////////////////////////////////////////
SIMPLIFIED FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
}
function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
}
function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
}
function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
}
function powWad(int256 x, int256 y) internal pure returns (int256) {
// Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
}
function expWad(int256 x) internal pure returns (int256 r) {
unchecked {
// When the result is < 0.5 we return zero. This happens when
// x <= floor(log(0.5e18) * 1e18) ~ -42e18
if (x <= -42139678854452767551) return 0;
// When the result is > (2**255 - 1) / 1e18 we can not represent it as an
// int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
// x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
// for more intermediate precision and a binary basis. This base conversion
// is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
x = (x << 78) / 5**18;
// Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
// of two such that exp(x) = exp(x') * 2**k, where k is an integer.
// Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
x = x - k * 54916777467707473351141471128;
// k is in the range [-61, 195].
// Evaluate using a (6, 7)-term rational approximation.
// p is made monic, we'll multiply by a scale factor later.
int256 y = x + 1346386616545796478920950773328;
y = ((y * x) >> 96) + 57155421227552351082224309758442;
int256 p = y + x - 94201549194550492254356042504812;
p = ((p * y) >> 96) + 28719021644029726153956944680412240;
p = p * x + (4385272521454847904659076985693276 << 96);
// We leave p in 2**192 basis so we don't need to scale it back up for the division.
int256 q = x - 2855989394907223263936484059900;
q = ((q * x) >> 96) + 50020603652535783019961831881945;
q = ((q * x) >> 96) - 533845033583426703283633433725380;
q = ((q * x) >> 96) + 3604857256930695427073651918091429;
q = ((q * x) >> 96) - 14423608567350463180887372962807573;
q = ((q * x) >> 96) + 26449188498355588339934803723976023;
assembly {
// Div in assembly because solidity adds a zero check despite the unchecked.
// The q polynomial won't have zeros in the domain as all its roots are complex.
// No scaling is necessary because p is already 2**96 too large.
r := sdiv(p, q)
}
// r should be in the range (0.09, 0.25) * 2**96.
// We now need to multiply r by:
// * the scale factor s = ~6.031367120.
// * the 2**k factor from the range reduction.
// * the 1e18 / 2**96 factor for base conversion.
// We do this all at once, with an intermediate result in 2**213
// basis, so the final right shift is always by a positive amount.
r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
}
}
function lnWad(int256 x) internal pure returns (int256 r) {
unchecked {
require(x > 0, "UNDEFINED");
// We want to convert x from 10**18 fixed point to 2**96 fixed point.
// We do this by multiplying by 2**96 / 10**18. But since
// ln(x * C) = ln(x) + ln(C), we can simply do nothing here
// and add ln(2**96 / 10**18) at the end.
// Reduce range of x to (1, 2) * 2**96
// ln(2^k * x) = k * ln(2) + ln(x)
int256 k = int256(log2(uint256(x))) - 96;
x <<= uint256(159 - k);
x = int256(uint256(x) >> 159);
// Evaluate using a (8, 8)-term rational approximation.
// p is made monic, we will multiply by a scale factor later.
int256 p = x + 3273285459638523848632254066296;
p = ((p * x) >> 96) + 24828157081833163892658089445524;
p = ((p * x) >> 96) + 43456485725739037958740375743393;
p = ((p * x) >> 96) - 11111509109440967052023855526967;
p = ((p * x) >> 96) - 45023709667254063763336534515857;
p = ((p * x) >> 96) - 14706773417378608786704636184526;
p = p * x - (795164235651350426258249787498 << 96);
// We leave p in 2**192 basis so we don't need to scale it back up for the division.
// q is monic by convention.
int256 q = x + 5573035233440673466300451813936;
q = ((q * x) >> 96) + 71694874799317883764090561454958;
q = ((q * x) >> 96) + 283447036172924575727196451306956;
q = ((q * x) >> 96) + 401686690394027663651624208769553;
q = ((q * x) >> 96) + 204048457590392012362485061816622;
q = ((q * x) >> 96) + 31853899698501571402653359427138;
q = ((q * x) >> 96) + 909429971244387300277376558375;
assembly {
// Div in assembly because solidity adds a zero check despite the unchecked.
// The q polynomial is known not to have zeros in the domain.
// No scaling required because p is already 2**96 too large.
r := sdiv(p, q)
}
// r is in the range (0, 0.125) * 2**96
// Finalization, we need to:
// * multiply by the scale factor s = 5.549…
// * add ln(2**96 / 10**18)
// * add k * ln(2)
// * multiply by 10**18 / 2**96 = 5**18 >> 78
// mul s * 5e18 * 2**96, base is now 5**18 * 2**192
r *= 1677202110996718588342820967067443963516166;
// add ln(2) * k * 5e18 * 2**192
r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
// add ln(2**96 / 10**18) * 5e18 * 2**192
r += 600920179829731861736702779321621459595472258049074101567377883020018308;
// base conversion: mul 2**18 / 2**192
r >>= 174;
}
}
/*//////////////////////////////////////////////////////////////
LOW LEVEL FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
function mulDivDown(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 z) {
assembly {
// Store x * y in z for now.
z := mul(x, y)
// Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
revert(0, 0)
}
// Divide z by the denominator.
z := div(z, denominator)
}
}
function mulDivUp(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 z) {
assembly {
// Store x * y in z for now.
z := mul(x, y)
// Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
revert(0, 0)
}
// First, divide z - 1 by the denominator and add 1.
// We allow z - 1 to underflow if z is 0, because we multiply the
// end result by 0 if z is zero, ensuring we return 0 if z is zero.
z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
}
}
function rpow(
uint256 x,
uint256 n,
uint256 scalar
) internal pure returns (uint256 z) {
assembly {
switch x
case 0 {
switch n
case 0 {
// 0 ** 0 = 1
z := scalar
}
default {
// 0 ** n = 0
z := 0
}
}
default {
switch mod(n, 2)
case 0 {
// If n is even, store scalar in z for now.
z := scalar
}
default {
// If n is odd, store x in z for now.
z := x
}
// Shifting right by 1 is like dividing by 2.
let half := shr(1, scalar)
for {
// Shift n right by 1 before looping to halve it.
n := shr(1, n)
} n {
// Shift n right by 1 each iteration to halve it.
n := shr(1, n)
} {
// Revert immediately if x ** 2 would overflow.
// Equivalent to iszero(eq(div(xx, x), x)) here.
if shr(128, x) {
revert(0, 0)
}
// Store x squared.
let xx := mul(x, x)
// Round to the nearest number.
let xxRound := add(xx, half)
// Revert if xx + half overflowed.
if lt(xxRound, xx) {
revert(0, 0)
}
// Set x to scaled xxRound.
x := div(xxRound, scalar)
// If n is even:
if mod(n, 2) {
// Compute z * x.
let zx := mul(z, x)
// If z * x overflowed:
if iszero(eq(div(zx, x), z)) {
// Revert if x is non-zero.
if iszero(iszero(x)) {
revert(0, 0)
}
}
// Round to the nearest number.
let zxRound := add(zx, half)
// Revert if zx + half overflowed.
if lt(zxRound, zx) {
revert(0, 0)
}
// Return properly scaled zxRound.
z := div(zxRound, scalar)
}
}
}
}
}
/*//////////////////////////////////////////////////////////////
GENERAL NUMBER UTILITIES
//////////////////////////////////////////////////////////////*/
function sqrt(uint256 x) internal pure returns (uint256 z) {
assembly {
let y := x // We start y at x, which will help us make our initial estimate.
z := 181 // The "correct" value is 1, but this saves a multiplication later.
// This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
// start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
// We check y >= 2^(k + 8) but shift right by k bits
// each branch to ensure that if x >= 256, then y >= 256.
if iszero(lt(y, 0x10000000000000000000000000000000000)) {
y := shr(128, y)
z := shl(64, z)
}
if iszero(lt(y, 0x1000000000000000000)) {
y := shr(64, y)
z := shl(32, z)
}
if iszero(lt(y, 0x10000000000)) {
y := shr(32, y)
z := shl(16, z)
}
if iszero(lt(y, 0x1000000)) {
y := shr(16, y)
z := shl(8, z)
}
// Goal was to get z*z*y within a small factor of x. More iterations could
// get y in a tighter range. Currently, we will have y in [256, 256*2^16).
// We ensured y >= 256 so that the relative difference between y and y+1 is small.
// That's not possible if x < 256 but we can just verify those cases exhaustively.
// Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
// Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
// Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
// For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
// (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
// Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
// sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
// There is no overflow risk here since y < 2^136 after the first branch above.
z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
// Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
// If x+1 is a perfect square, the Babylonian method cycles between
// floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
// See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
// Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
// If you don't care whether the floor or ceil square root is returned, you can remove this statement.
z := sub(z, lt(div(x, z), z))
}
}
function log2(uint256 x) internal pure returns (uint256 r) {
require(x > 0, "UNDEFINED");
assembly {
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
r := or(r, shl(2, lt(0xf, shr(r, x))))
r := or(r, shl(1, lt(0x3, shr(r, x))))
r := or(r, lt(0x1, shr(r, x)))
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;
import {ERC20} from "../tokens/ERC20.sol";
/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @dev Caution! This library won't check that a token has code, responsibility is delegated to the caller.
library SafeTransferLib {
/*//////////////////////////////////////////////////////////////
ETH OPERATIONS
//////////////////////////////////////////////////////////////*/
function safeTransferETH(address to, uint256 amount) internal {
bool success;
assembly {
// Transfer the ETH and store if it succeeded or not.
success := call(gas(), to, amount, 0, 0, 0, 0)
}
require(success, "ETH_TRANSFER_FAILED");
}
/*//////////////////////////////////////////////////////////////
ERC20 OPERATIONS
//////////////////////////////////////////////////////////////*/
function safeTransferFrom(
ERC20 token,
address from,
address to,
uint256 amount
) internal {
bool success;
assembly {
// We'll write our calldata to this slot below, but restore it later.
let memPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(0, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
mstore(4, from) // Append the "from" argument.
mstore(36, to) // Append the "to" argument.
mstore(68, amount) // Append the "amount" argument.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
// We use 100 because that's the total length of our calldata (4 + 32 * 3)
// Counterintuitively, this call() must be positioned after the or() in the
// surrounding and() because and() evaluates its arguments from right to left.
call(gas(), token, 0, 0, 100, 0, 32)
)
mstore(0x60, 0) // Restore the zero slot to zero.
mstore(0x40, memPointer) // Restore the memPointer.
}
require(success, "TRANSFER_FROM_FAILED");
}
function safeTransfer(
ERC20 token,
address to,
uint256 amount
) internal {
bool success;
assembly {
// We'll write our calldata to this slot below, but restore it later.
let memPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(0, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
mstore(4, to) // Append the "to" argument.
mstore(36, amount) // Append the "amount" argument.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
// We use 68 because that's the total length of our calldata (4 + 32 * 2)
// Counterintuitively, this call() must be positioned after the or() in the
// surrounding and() because and() evaluates its arguments from right to left.
call(gas(), token, 0, 0, 68, 0, 32)
)
mstore(0x60, 0) // Restore the zero slot to zero.
mstore(0x40, memPointer) // Restore the memPointer.
}
require(success, "TRANSFER_FAILED");
}
function safeApprove(
ERC20 token,
address to,
uint256 amount
) internal {
bool success;
assembly {
// We'll write our calldata to this slot below, but restore it later.
let memPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(0, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
mstore(4, to) // Append the "to" argument.
mstore(36, amount) // Append the "amount" argument.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
// We use 68 because that's the total length of our calldata (4 + 32 * 2)
// Counterintuitively, this call() must be positioned after the or() in the
// surrounding and() because and() evaluates its arguments from right to left.
call(gas(), token, 0, 0, 68, 0, 32)
)
mstore(0x60, 0) // Restore the zero slot to zero.
mstore(0x40, memPointer) // Restore the memPointer.
}
require(success, "APPROVE_FAILED");
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;
/// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
/// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
abstract contract ERC20 {
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event Transfer(address indexed from, address indexed to, uint256 amount);
event Approval(address indexed owner, address indexed spender, uint256 amount);
/*//////////////////////////////////////////////////////////////
METADATA STORAGE
//////////////////////////////////////////////////////////////*/
string public name;
string public symbol;
uint8 public immutable decimals;
/*//////////////////////////////////////////////////////////////
ERC20 STORAGE
//////////////////////////////////////////////////////////////*/
uint256 public totalSupply;
mapping(address => uint256) public balanceOf;
mapping(address => mapping(address => uint256)) public allowance;
/*//////////////////////////////////////////////////////////////
EIP-2612 STORAGE
//////////////////////////////////////////////////////////////*/
uint256 internal immutable INITIAL_CHAIN_ID;
bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;
mapping(address => uint256) public nonces;
/*//////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////*/
constructor(
string memory _name,
string memory _symbol,
uint8 _decimals
) {
name = _name;
symbol = _symbol;
decimals = _decimals;
INITIAL_CHAIN_ID = block.chainid;
INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
}
/*//////////////////////////////////////////////////////////////
ERC20 LOGIC
//////////////////////////////////////////////////////////////*/
function approve(address spender, uint256 amount) public virtual returns (bool) {
allowance[msg.sender][spender] = amount;
emit Approval(msg.sender, spender, amount);
return true;
}
function transfer(address to, uint256 amount) public virtual returns (bool) {
balanceOf[msg.sender] -= amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(msg.sender, to, amount);
return true;
}
function transferFrom(
address from,
address to,
uint256 amount
) public virtual returns (bool) {
uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.
if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;
balanceOf[from] -= amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(from, to, amount);
return true;
}
/*//////////////////////////////////////////////////////////////
EIP-2612 LOGIC
//////////////////////////////////////////////////////////////*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual {
require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");
// Unchecked because the only math done is incrementing
// the owner's nonce which cannot realistically overflow.
unchecked {
address recoveredAddress = ecrecover(
keccak256(
abi.encodePacked(
"\x19\x01",
DOMAIN_SEPARATOR(),
keccak256(
abi.encode(
keccak256(
"Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
),
owner,
spender,
value,
nonces[owner]++,
deadline
)
)
)
),
v,
r,
s
);
require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");
allowance[recoveredAddress][spender] = value;
}
emit Approval(owner, spender, value);
}
function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
}
function computeDomainSeparator() internal view virtual returns (bytes32) {
return
keccak256(
abi.encode(
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
keccak256(bytes(name)),
keccak256("1"),
block.chainid,
address(this)
)
);
}
/*//////////////////////////////////////////////////////////////
INTERNAL MINT/BURN LOGIC
//////////////////////////////////////////////////////////////*/
function _mint(address to, uint256 amount) internal virtual {
totalSupply += amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(address(0), to, amount);
}
function _burn(address from, uint256 amount) internal virtual {
balanceOf[from] -= amount;
// Cannot underflow because a user's balance
// will never be larger than the total supply.
unchecked {
totalSupply -= amount;
}
emit Transfer(from, address(0), amount);
}
}