ETH Price: $3,582.83 (+3.51%)

Contract Diff Checker

Contract Name:
ETHYieldManager

Contract Source Code:

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;

import { YieldManager } from "src/mainnet-bridge/YieldManager.sol";
import { OptimismPortal } from "src/L1/OptimismPortal.sol";
import { Semver } from "src/universal/Semver.sol";
import { Predeploys } from "src/libraries/Predeploys.sol";

/// @custom:proxied
/// @title ETHYieldManager
/// @notice Coordinates the accounting, asset management and
///         yield reporting from ETH yield providers.
contract ETHYieldManager is YieldManager, Semver {
    error CallerIsNotPortal();

    constructor() YieldManager(address(0)) Semver(1, 0, 0) {
        initialize(OptimismPortal(payable(address(0))), address(0));
    }

    receive() external payable {}

    /// @notice initializer
    /// @param _portal Address of the OptimismPortal.
    /// @param _owner  Address of the YieldManager owner.
    function initialize(OptimismPortal _portal, address _owner) public initializer {
        __YieldManager_init(_portal, _owner);
    }

    /// @inheritdoc YieldManager
    function tokenBalance() public view override returns (uint256) {
        return address(this).balance;
    }

    /// @notice Wrapper for WithdrawalQueue._requestWithdrawal
    function requestWithdrawal(uint256 amount)
        external
        returns (uint256)
    {
        if (msg.sender != address(portal)) {
            revert CallerIsNotPortal();
        }
        return _requestWithdrawal(address(portal), amount);
    }

    /// @notice Sends the yield report to the Shares contract.
    /// @param data Calldata to send in the message.
    function _reportYield(bytes memory data) internal override {
        portal.depositTransaction(Predeploys.SHARES, 0, REPORT_YIELD_DEFAULT_GAS_LIMIT, false, data);
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;

import { EnumerableSet } from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { Ownable2StepUpgradeable } from "@openzeppelin/contracts-upgradeable/access/Ownable2StepUpgradeable.sol";
import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
import { SafeCast } from "@openzeppelin/contracts/utils/math/SafeCast.sol";

import { WithdrawalQueue } from "src/mainnet-bridge/withdrawal-queue/WithdrawalQueue.sol";
import { YieldProvider } from "src/mainnet-bridge/yield-providers/YieldProvider.sol";
import { Types } from "src/libraries/Types.sol";
import { SafeCall } from "src/libraries/SafeCall.sol";
import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
import { SharesBase } from "src/L2/Shares.sol";
import { DelegateCalls } from "src/mainnet-bridge/DelegateCalls.sol";
import { USDConversions } from "src/mainnet-bridge/USDConversions.sol";
import { Semver } from "src/universal/Semver.sol";
import { OptimismPortal } from "src/L1/OptimismPortal.sol";
import { Predeploys } from "src/libraries/Predeploys.sol";

interface IInsurance {
    function coverLoss(address token, uint256 amount) external;
}

/// @title YieldManager
/// @notice Base contract to centralize accounting, asset management and
///         yield reporting from yield providers of a common base asset.
abstract contract YieldManager is Ownable2StepUpgradeable, WithdrawalQueue, DelegateCalls {
    using EnumerableSet for EnumerableSet.AddressSet;

    /// @notice Maximum gas limit for the yield report call on L2.
    uint32 internal constant REPORT_YIELD_DEFAULT_GAS_LIMIT = 200_000;

    /// @notice Maximum insurance fee the owner is allowed to set.
    uint256 public constant MAX_INSURANCE_FEE_BIPS = 10_000; // 100%

    /// @notice Number of basis points representing 100 percent.
    uint256 internal constant BASIS_POINTS = 10_000;

    /// @notice Set of provider addresses.
    EnumerableSet.AddressSet private _providers;

    /// @notice Address of the admin handling regular tasks such as
    ///         `stake`, `unstake`, `claim`, `commitYieldReport`, and
    ///         `finalize`.
    address public admin;

    /// @notice Address of the insurance module.
    address public insurance;

    /// @notice Address of the L1BlastBridge.
    address public blastBridge;

    /// @notice Sum of negative yields to track the slippage between L2-L1 share price.
    ///         If negative yields accumulate, L1 withdrawals are discounted to cover the
    ///         loss.
    uint256 public accumulatedNegativeYields;

    /// @notice Current insurance fee in bips.
    uint256 public insuranceFeeBips;

    /// @notice Amount of additional funds to withdraw from insurance.
    ///         This buffer addresses the scenario where the transfer of the exact amount of accumulated
    ///         negative yields from insurance does not fully pay off the outstanding amount. In Lido's
    ///         system, the transfer logic is based on shares, which may lead to discrepancies in the
    ///         withdrawal of insurance funds. By including this buffer, the system ensures that when
    ///         insurance funds are withdrawn, the total amount withdrawn is the exact required amount
    ///         plus an additional buffer. This approach guarantees the complete payoff of any negative
    ///         yields, accommodating for any potential rounding discrepancies inherent in the share-based
    ///         transfer logic.
    uint256 public insuranceWithdrawalBuffer;

    /// @notice Address of the OptimismPortal.
    OptimismPortal public portal;

    /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
    ///         A gap size of 41 was chosen here, so that the first slot used in a child contract
    ///         would be a multiple of 50.
    uint256[41] private __gap;

    struct ProviderInfo {
        bytes32 id;
        address providerAddress;
        uint256 stakedBalance;
        uint256 pendingBalance;
        uint256 stakedPrincipal;
        uint256 totalValue;
        int256 yield;
    }

    /// @notice Emitted when the yield report is committed on L1 and
    ///         the yield is communicated to L2.
    /// @param yield                Amount of yield generated at this checkpoint.
    /// @param insurancePremiumPaid Amount paid in insurance.
    /// @param insuranceWithdrawn   Amount withdrawn from insurance.
    event YieldReport(
        int256  yield,
        uint256 insurancePremiumPaid,
        uint256 insuranceWithdrawn
    );

    error CallerIsNotAdmin();
    error FailedToInitializeProvider();
    error ProviderAddressDoesNotMatchIndex();
    error InsufficientInsuranceBalance();
    error NegativeYieldFromInsuredProvider();
    error TotalValueIsZero();
    error CallerIsNotBlastBridge();
    error ProviderNotFound();
    error YieldProviderIsNotMeantForThisManager();
    error NegativeYieldIncrease();

    modifier onlyAdmin() {
        if (msg.sender != admin) {
            revert CallerIsNotAdmin();
        }
        _;
    }

    /// @notice Modifier only allowing the L1BlastBridge to call a function.
    modifier onlyBlastBridge() {
        if (msg.sender != blastBridge) {
            revert CallerIsNotBlastBridge();
        }
        _;
    }

    /// @param _token Address of withdrawal token.
    constructor(address _token) WithdrawalQueue(_token) {}

    /// @notice initializer
    /// @param _portal Address of the OptimismPortal.
    /// @param _owner  Address of the YieldManager owner.
    function __YieldManager_init(OptimismPortal _portal, address _owner) internal onlyInitializing {
        __Ownable2Step_init();
        __WithdrawalQueue_init();
        _transferOwnership(_owner);

        portal = _portal;
    }

    /* ========== OWNER FUNCTIONS ========== */

    /// @notice Set new admin account to handle regular tasks including
    ///         (stake, unstake, claim).
    /// @param _admin Address of new admin
    function setAdmin(address _admin) external onlyOwner {
        require(_admin != address(0));
        admin = _admin;
    }

    /// @notice Set the yield insurance parameters.
    /// @param _insurance        Address of the insurance module.
    /// @param _insuranceFeeBips Insurance fee to take from positive yields.
    /// @param _withdrawalBuffer Amount of additional funds to withdraw from insurance.
    function setInsurance(address _insurance, uint256 _insuranceFeeBips, uint256 _withdrawalBuffer) external onlyOwner {
        require(_insurance != address(0));
        require(_insuranceFeeBips <= MAX_INSURANCE_FEE_BIPS);
        insurance = _insurance;
        insuranceFeeBips = _insuranceFeeBips;
        insuranceWithdrawalBuffer = _withdrawalBuffer;
    }

    /// @notice Set the address of the L1BlastBridge.
    /// @param _blastBridge Address of the L1BlastBridge.
    function setBlastBridge(address _blastBridge) external onlyOwner {
        require(_blastBridge != address(0));
        blastBridge = _blastBridge;
    }

    /// @notice Add a yield provider contract.
    /// @param provider Address of the yield provider.
    function addProvider(address provider) external onlyOwner {
        if (address(YieldProvider(provider).YIELD_MANAGER()) != address(this)) {
            revert YieldProviderIsNotMeantForThisManager();
        }
        _providers.add(provider);
        (bool success,) = provider.delegatecall(abi.encodeWithSignature("initialize()"));
        if (!success) {
            revert FailedToInitializeProvider();
        }
    }

    /// @notice Remove a yield provider contract.
    /// @param provider Address of the yield provider.
    function removeProvider(address provider) external onlyOwner {
        _providers.remove(provider);
    }

    /* ========== ADMIN FUNCTIONS ========== */

    /// @notice Stake funds for a particular yield provider and record the
    ///         staked deposit. The stake call is made via 'delegatecall'
    ///         so the yield provider implementation is executed with the
    ///         yield manager's funds.
    /// @param idx             Index of the provider.
    /// @param providerAddress Address of the provider at index 'idx'.
    /// @param amount          Amount to stake (wad).
    function stake(uint256 idx, address providerAddress, uint256 amount) external onlyAdmin {
        if (_providers.at(idx) != providerAddress) {
            revert ProviderAddressDoesNotMatchIndex();
        }
        _delegatecall_stake(providerAddress, amount);
        YieldProvider(providerAddress).recordStakedDeposit(amount);
    }

    /// @notice Unstake funds for a particular yield provider and record the
    ///         staked withdraw. The stake call is made via 'delegatecall'
    ///         so the yield provider implementation is executed with the
    ///         yield manager's funds.
    /// @param idx             Index of the provider.
    /// @param providerAddress Address of the provider at index 'idx'.
    /// @param amount          Amount to stake (wad).
    function unstake(uint256 idx, address providerAddress, uint256 amount) external onlyAdmin {
        if (_providers.at(idx) != providerAddress) {
            revert ProviderAddressDoesNotMatchIndex();
        }
        (uint256 pending, uint256 claimed) = _delegatecall_unstake(providerAddress, amount);
        YieldProvider(providerAddress).recordUnstaked(pending, claimed, amount);
    }

    /// @notice Commit yield report.
    /// @param enableInsurance Whether insurance should be taken from positive yields
    ///        and paid out for negative yields. If false, negative yields will
    ///        accumulate and withdrawals will be discounted. If true (and insurance
    ///        is supported by the provider), it will guarantee that committed yield
    ///        is always non-negative, or else revert. It also guarantees that
    ///        accumulated negative yields never increase.
    function commitYieldReport(bool enableInsurance) public onlyAdmin {
        uint256 providersLength = _providers.length();
        uint256 negativeYieldBefore = accumulatedNegativeYields;
        uint256 totalInsurancePremiumPaid;
        uint256 totalInsuranceWithdrawal;
        int256 totalYield;

        // For each provider, commit yield after paying to/from the insurance as necessary
        for (uint256 i; i < providersLength; i++) {
            // run the pre-commit yield report hook
            _delegatecall_preCommitYieldReportDelegateCallHook(_providers.at(i));

            // read the current yield from the provider
            int256 yield = YieldProvider(_providers.at(i)).yield();
            uint256 insurancePayment;

            // take care of insurance payments and withdrawals
            if (
                enableInsurance &&
                YieldProvider(_providers.at(i)).supportsInsurancePayment() &&
                insurance != address(0)
            ) {
                if (yield > 0) {
                    // pay the insurance premium
                    insurancePayment = uint256(yield) * insuranceFeeBips / BASIS_POINTS;
                    _delegatecall_payInsurancePremium(_providers.at(i), insurancePayment);
                    totalInsurancePremiumPaid += insurancePayment;
                } else if (yield < 0) {
                    // withdraw from the insurance to cover the loss
                    uint256 insuranceWithdrawal = SignedMath.abs(yield) + insuranceWithdrawalBuffer;
                    uint256 insuranceBalance = YieldProvider(_providers.at(i)).insuranceBalance();
                    if (insuranceBalance < insuranceWithdrawal) {
                        revert InsufficientInsuranceBalance();
                    }
                    _delegatecall_withdrawFromInsurance(_providers.at(i), insuranceWithdrawal);
                    totalInsuranceWithdrawal += insuranceWithdrawal;
                }
            }

            // Commit the yield for the provider
            int256 committedYield = YieldProvider(_providers.at(i)).commitYield();

            // Sanity check
            if (
                enableInsurance &&
                YieldProvider(_providers.at(i)).supportsInsurancePayment() &&
                insurance != address(0)
            ) {
                if (committedYield < 0) {
                    revert NegativeYieldFromInsuredProvider();
                }
            }

            // update totalYield
            totalYield += committedYield;
        }

        // reflect the accumulated negative yield in totalYield
        if (accumulatedNegativeYields > 0) {
            totalYield -= SafeCast.toInt256(accumulatedNegativeYields);
        }

        emit YieldReport(totalYield, totalInsurancePremiumPaid, totalInsuranceWithdrawal);

        if (totalYield < 0) {
            accumulatedNegativeYields = uint256(-1 * totalYield);
        } else {
            accumulatedNegativeYields = 0;
            if (totalYield > 0) {
                _reportYield(
                    abi.encodeWithSelector(
                        SharesBase.addValue.selector,
                        totalYield
                    )
                );
            }
        }

        if (enableInsurance && accumulatedNegativeYields > negativeYieldBefore) {
            revert NegativeYieldIncrease();
        }
    }

    /// @notice Helper function to atomically withdraw from insurance and commit yield report.
    ///         This function can be used to maintain share price = 1e27 when yield from
    ///         the registered providers is not sufficient to cover negative yield from
    ///         LidoYieldProvider._claim().
    function commitYieldReportAfterInsuranceWithdrawal(
        address token,
        uint256 amount
    ) external onlyAdmin {
        require(insurance != address(0));
        IInsurance(insurance).coverLoss(token, amount);
        commitYieldReport(true);
    }

    /// @notice Report realized negative yield. This is meant to be called inside a YieldProvider
    ///         method that is executed via 'delegatecall' by the YieldManager.
    function recordNegativeYield(uint256 amount) external {
        require(msg.sender == address(this), "Caller is not this contract");
        accumulatedNegativeYields += amount;
    }

    /// @notice Finalize withdrawal requests up to 'requestId'.
    /// @param requestId Last request id to finalize in this batch.
    function finalize(uint256 requestId) external onlyAdmin returns (uint256 checkpointId) {
        uint256 nominalAmount; uint256 realAmount;
        (nominalAmount, realAmount, checkpointId) = _finalize(requestId, availableBalance(), sharePrice());
        // nominalAmount - realAmount is the share of the accumulated negative yield
        // that should be paid by the current withdrawal
        if (nominalAmount > realAmount) {
            accumulatedNegativeYields = _subClamped(accumulatedNegativeYields, nominalAmount - realAmount);
        }
    }

    /* ========== VIRTUAL FUNCTIONS ========== */

    /// @notice Get the amount of the withdrawal token that is held by the yield manager.
    function tokenBalance() public view virtual returns (uint256);

    /// @notice Send the yield report to the L2 contract that is responsible for
    ///         updating the L2 share price.
    /// @param data Calldata to send in the message.
    function _reportYield(bytes memory data) internal virtual;

    /* ========== VIEW FUNCTIONS ========== */

    /// @notice Available balance.
    function availableBalance() public view returns (uint256) {
        return tokenBalance() - getLockedBalance();
    }

    /// @notice Get the total value of all yield providers denominated in the withdrawal token.
    function totalProviderValue() public view returns (uint256 sum) {
        uint256 providersLength = _providers.length();
        for (uint256 i; i < providersLength; i++) {
            sum += YieldProvider(_providers.at(i)).totalValue();
        }
    }

    /// @notice Get the total value of all yield providers plus the available balance value.
    function totalValue() public view returns (uint256) {
        return availableBalance() + totalProviderValue();
    }

    /// @notice Get the share price of the withdrawal token with 1e27 precision.
    ///         The share price is capped at 1e27 and can only go down if there
    ///         are accumulated negative yields.
    function sharePrice() public view returns (uint256) {
        uint256 value = totalValue();
        if (value == 0) {
            revert TotalValueIsZero();
        }
        return value * E27_PRECISION_BASE / (value + accumulatedNegativeYields);
    }

    /// @notice Get an accounting report on the current state of a yield provider.
    ///         Due to how EnumerableSet works, 'idx' is not guaranteed to be stable
    ///         across add/remove operations so admin should verify the idx before
    ///         calling state-changing functions (e.g. stake, unstake).
    /// @param idx Index of the provider.
    /// @return info Accounting report on the yield provider.
    function getProviderInfoAt(uint256 idx) external view returns (ProviderInfo memory info) {
        YieldProvider provider = YieldProvider(_providers.at(idx));

        info.id = provider.id();
        info.providerAddress = address(provider);
        info.stakedBalance = provider.stakedBalance();
        info.pendingBalance = provider.pendingBalance();
        info.stakedPrincipal = provider.stakedPrincipal();
        info.totalValue = provider.totalValue();
        info.yield = provider.yield();
    }

    /// @notice Record an increase to the staked funds represented
    ///         by the provider.
    /// @param providerAddress Address of yield provider.
    /// @param amount          Amount of additional staked funds.
    function recordStakedDeposit(address providerAddress, uint256 amount) external onlyBlastBridge {
        if (!_providers.contains(providerAddress)) {
            revert ProviderNotFound();
        }
        YieldProvider(providerAddress).recordStakedDeposit(amount);
    }

    /// @notice Returns max(0, x - y) without reverting on underflow.
    function _subClamped(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x > y ? x - y : 0;
        }
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;

import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import { SafeCall } from "src/libraries/SafeCall.sol";
import { L2OutputOracle } from "src/L1/L2OutputOracle.sol";
import { SystemConfig } from "src/L1/SystemConfig.sol";
import { Constants } from "src/libraries/Constants.sol";
import { Types } from "src/libraries/Types.sol";
import { Hashing } from "src/libraries/Hashing.sol";
import { SecureMerkleTrie } from "src/libraries/trie/SecureMerkleTrie.sol";
import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol";
import { ResourceMetering } from "src/L1/ResourceMetering.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { ETHYieldManager } from "src/mainnet-bridge/ETHYieldManager.sol";
import { Predeploys } from "src/libraries/Predeploys.sol";

/// @custom:proxied
/// @title OptimismPortal
/// @notice The OptimismPortal is a low-level contract responsible for passing messages between L1
///         and L2. Messages sent directly to the OptimismPortal have no form of replayability.
///         Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface.
contract OptimismPortal is Initializable, ResourceMetering, ISemver {
    /// @notice Represents a proven withdrawal.
    /// @custom:field outputRoot    Root of the L2 output this was proven against.
    /// @custom:field timestamp     Timestamp at which the withdrawal was proven.
    /// @custom:field l2OutputIndex Index of the output this was proven against.
    struct ProvenWithdrawal {
        bytes32 outputRoot;
        uint128 timestamp;
        uint128 l2OutputIndex;
        uint256 requestId;
    }

    /// @notice Version of the deposit event.
    uint256 internal constant DEPOSIT_VERSION = 0;

    /// @notice The L2 gas limit set when eth is deposited using the receive() function.
    uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000;

    /// @notice The L1 gas limit set when sending eth to the YieldManager.
    uint64 internal constant SEND_DEFAULT_GAS_LIMIT = 100_000;

    /// @notice Address of the L2 account which initiated a withdrawal in this transaction.
    ///         If the address of this variable is the default L2 sender address, then we
    ///         are NOT inside of a call to finalizeWithdrawalTransaction.
    address public l2Sender;

    /// @notice A list of withdrawal hashes which have been successfully finalized.
    mapping(bytes32 => bool) public finalizedWithdrawals;

    /// @notice A mapping of withdrawal hashes to `ProvenWithdrawal` data.
    mapping(bytes32 => ProvenWithdrawal) public provenWithdrawals;

    /// @notice Determines if cross domain messaging is paused.
    ///         When set to true, withdrawals are paused.
    ///         This may be removed in the future.
    bool public paused;

    /// @notice Address of the L2OutputOracle contract.
    /// @custom:network-specific
    L2OutputOracle public l2Oracle;

    /// @notice Address of the SystemConfig contract.
    /// @custom:network-specific
    SystemConfig public systemConfig;

    /// @notice Address that has the ability to pause and unpause withdrawals.
    /// @custom:network-specific
    address public guardian;

    /// @notice Address of the ETH yield manager.
    ETHYieldManager public yieldManager;

    /// @notice Emitted when a transaction is deposited from L1 to L2.
    ///         The parameters of this event are read by the rollup node and used to derive deposit
    ///         transactions on L2.
    /// @param from       Address that triggered the deposit transaction.
    /// @param to         Address that the deposit transaction is directed to.
    /// @param version    Version of this deposit transaction event.
    /// @param opaqueData ABI encoded deposit data to be parsed off-chain.
    event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData);

    /// @notice Emitted when a withdrawal transaction is proven.
    /// @param withdrawalHash Hash of the withdrawal transaction.
    /// @param from           Address that triggered the withdrawal transaction.
    /// @param to             Address that the withdrawal transaction is directed to.
    /// @param requestId      Id of the withdrawal request
    event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to, uint256 requestId);

    /// @notice Emitted when a withdrawal transaction is finalized.
    /// @param withdrawalHash Hash of the withdrawal transaction.
    /// @param hintId is the checkpoint ID produce by YieldManager
    /// @param success        Whether the withdrawal transaction was successful.
    event WithdrawalFinalized(bytes32 indexed withdrawalHash, uint256 indexed hintId, bool success);

    /// @notice Emitted when the pause is triggered.
    /// @param account Address of the account triggering the pause.
    event Paused(address account);

    /// @notice Emitted when the pause is lifted.
    /// @param account Address of the account triggering the unpause.
    event Unpaused(address account);

    /// @notice Reverts when paused.
    modifier whenNotPaused() {
        require(paused == false, "OptimismPortal: paused");
        _;
    }

    /// @notice Semantic version.
    /// @custom:semver 1.10.0
    string public constant version = "1.10.0";

    /// @notice Constructs the OptimismPortal contract.
    constructor() {
        initialize({
            _l2Oracle: L2OutputOracle(address(0)),
            _guardian: address(0),
            _systemConfig: SystemConfig(address(0)),
            _paused: true,
            _yieldManager: ETHYieldManager(payable(address(0)))
        });
    }

    /// @notice Initializer.
    /// @param _l2Oracle Address of the L2OutputOracle contract.
    /// @param _guardian Address that can pause withdrawals.
    /// @param _paused Sets the contract's pausability state.
    /// @param _systemConfig Address of the SystemConfig contract.
    function initialize(
        L2OutputOracle _l2Oracle,
        address _guardian,
        SystemConfig _systemConfig,
        bool _paused,
        ETHYieldManager _yieldManager
    )
        public
        reinitializer(Constants.INITIALIZER)
    {
        if (l2Sender == address(0)) {
            l2Sender = Constants.DEFAULT_L2_SENDER;
        }
        l2Oracle = _l2Oracle;
        systemConfig = _systemConfig;
        guardian = _guardian;
        paused = _paused;
        yieldManager = _yieldManager;
        __ResourceMetering_init();
    }

    /// @notice Getter for the L2OutputOracle
    /// @custom:legacy
    function L2_ORACLE() external view returns (L2OutputOracle) {
        return l2Oracle;
    }

    /// @notice Getter for the SystemConfig
    /// @custom:legacy
    function SYSTEM_CONFIG() external view returns (SystemConfig) {
        return systemConfig;
    }

    /// @notice Getter for the Guardian
    /// @custom:legacy
    function GUARDIAN() external view returns (address) {
        return guardian;
    }

    /// @notice Pauses withdrawals.
    function pause() external {
        require(msg.sender == guardian, "OptimismPortal: only guardian can pause");
        paused = true;
        emit Paused(msg.sender);
    }

    /// @notice Unpauses withdrawals.
    function unpause() external {
        require(msg.sender == guardian, "OptimismPortal: only guardian can unpause");
        paused = false;
        emit Unpaused(msg.sender);
    }

    /// @notice Computes the minimum gas limit for a deposit.
    ///         The minimum gas limit linearly increases based on the size of the calldata.
    ///         This is to prevent users from creating L2 resource usage without paying for it.
    ///         This function can be used when interacting with the portal to ensure forwards
    ///         compatibility.
    /// @param _byteCount Number of bytes in the calldata.
    /// @return The minimum gas limit for a deposit.
    function minimumGasLimit(uint64 _byteCount) public pure returns (uint64) {
        return _byteCount * 16 + 21000;
    }

    /// @notice Accepts value so that users can send ETH directly to this contract and have the
    ///         funds be deposited to their address on L2. This is intended as a convenience
    ///         function for EOAs. Contracts should call the depositTransaction() function directly
    ///         otherwise any deposited funds will be lost due to address aliasing.
    // solhint-disable-next-line ordering
    receive() external payable {
        if (msg.sender != address(yieldManager)) {
            depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes(""));
        }
    }

    /// @notice Getter for the resource config.
    ///         Used internally by the ResourceMetering contract.
    ///         The SystemConfig is the source of truth for the resource config.
    /// @return ResourceMetering ResourceConfig
    function _resourceConfig() internal view override returns (ResourceMetering.ResourceConfig memory) {
        return systemConfig.resourceConfig();
    }

    /// @notice Proves a withdrawal transaction.
    /// @param _tx              Withdrawal transaction to finalize.
    /// @param _l2OutputIndex   L2 output index to prove against.
    /// @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root.
    /// @param _withdrawalProof Inclusion proof of the withdrawal in L2ToL1MessagePasser contract.
    function proveWithdrawalTransaction(
        Types.WithdrawalTransaction memory _tx,
        uint256 _l2OutputIndex,
        Types.OutputRootProof calldata _outputRootProof,
        bytes[] calldata _withdrawalProof
    )
        external
        whenNotPaused
    {
        // Prevent users from creating a deposit transaction where this address is the message
        // sender on L2. Because this is checked here, we do not need to check again in
        // `finalizeWithdrawalTransaction`.
        require(_tx.target != address(this), "OptimismPortal: you cannot send messages to the portal contract");

        // Get the output root and load onto the stack to prevent multiple mloads. This will
        // revert if there is no output root for the given block number.
        bytes32 outputRoot = l2Oracle.getL2Output(_l2OutputIndex).outputRoot;

        // Verify that the output root can be generated with the elements in the proof.
        require(
            outputRoot == Hashing.hashOutputRootProof(_outputRootProof), "OptimismPortal: invalid output root proof"
        );

        // Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier.
        bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
        ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];

        // We generally want to prevent users from proving the same withdrawal multiple times
        // because each successive proof will update the timestamp. A malicious user can take
        // advantage of this to prevent other users from finalizing their withdrawal. However,
        // since withdrawals are proven before an output root is finalized, we need to allow users
        // to re-prove their withdrawal only in the case that the output root for their specified
        // output index has been updated.
        require(
            provenWithdrawal.timestamp == 0
                || l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex).outputRoot != provenWithdrawal.outputRoot,
            "OptimismPortal: withdrawal hash has already been proven"
        );

        // Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract.
        // Refer to the Solidity documentation for more information on how storage layouts are
        // computed for mappings.
        bytes32 storageKey = keccak256(
            abi.encode(
                withdrawalHash,
                uint256(0) // The withdrawals mapping is at the first slot in the layout.
            )
        );

        // Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract
        // on L2. If this is true, under the assumption that the SecureMerkleTrie does not have
        // bugs, then we know that this withdrawal was actually triggered on L2 and can therefore
        // be relayed on L1.
        require(
            SecureMerkleTrie.verifyInclusionProof(
                abi.encode(storageKey), hex"01", _withdrawalProof, _outputRootProof.messagePasserStorageRoot
            ),
            "OptimismPortal: invalid withdrawal inclusion proof"
        );

        // Blast: request ether withdrawal from the yield manager. Should not request a withdrawal
        // when the withdrawal is being re-proven.
        uint256 requestId;
        if (_tx.value > 0 && provenWithdrawal.timestamp == 0) {
            requestId = yieldManager.requestWithdrawal(_tx.value);
        } else {
            // If withdrawal is being re-proven, then set original requestId.
            requestId = provenWithdrawal.requestId;
        }

        require(_tx.target != address(yieldManager), "OptimismPortal: unauthorized call to yield manager");

        // Designate the withdrawalHash as proven by storing the `outputRoot`, `timestamp`, and
        // `l2BlockNumber` in the `provenWithdrawals` mapping. A `withdrawalHash` can only be
        // proven once unless it is submitted again with a different outputRoot.
        provenWithdrawals[withdrawalHash] = ProvenWithdrawal({
            outputRoot: outputRoot,
            timestamp: uint128(block.timestamp),
            l2OutputIndex: uint128(_l2OutputIndex),
            requestId: requestId
        });

        // Emit a `WithdrawalProven` event.
        emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target, requestId);
    }

    /// @notice Finalizes a withdrawal transaction.
    /// @param hintId Hint ID of the withdrawal transaction to finalize. The caller can find this
    ///               value by calling ETHYieldManager.findCheckpointHint().
    /// @param _tx Withdrawal transaction to finalize.
    function finalizeWithdrawalTransaction(uint256 hintId, Types.WithdrawalTransaction memory _tx) external whenNotPaused {
        // Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other
        // than the default value when a withdrawal transaction is being finalized. This check is
        // a defacto reentrancy guard.
        require(
            l2Sender == Constants.DEFAULT_L2_SENDER, "OptimismPortal: can only trigger one withdrawal per transaction"
        );

        // Grab the proven withdrawal from the `provenWithdrawals` map.
        bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
        ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];

        // A withdrawal can only be finalized if it has been proven. We know that a withdrawal has
        // been proven at least once when its timestamp is non-zero. Unproven withdrawals will have
        // a timestamp of zero.
        require(provenWithdrawal.timestamp != 0, "OptimismPortal: withdrawal has not been proven yet");

        // As a sanity check, we make sure that the proven withdrawal's timestamp is greater than
        // starting timestamp inside the L2OutputOracle. Not strictly necessary but extra layer of
        // safety against weird bugs in the proving step.
        require(
            provenWithdrawal.timestamp >= l2Oracle.startingTimestamp(),
            "OptimismPortal: withdrawal timestamp less than L2 Oracle starting timestamp"
        );

        // A proven withdrawal must wait at least the finalization period before it can be
        // finalized. This waiting period can elapse in parallel with the waiting period for the
        // output the withdrawal was proven against. In effect, this means that the minimum
        // withdrawal time is proposal submission time + finalization period.
        require(
            _isFinalizationPeriodElapsed(provenWithdrawal.timestamp),
            "OptimismPortal: proven withdrawal finalization period has not elapsed"
        );

        // Grab the OutputProposal from the L2OutputOracle, will revert if the output that
        // corresponds to the given index has not been proposed yet.
        Types.OutputProposal memory proposal = l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex);

        // Check that the output root that was used to prove the withdrawal is the same as the
        // current output root for the given output index. An output root may change if it is
        // deleted by the challenger address and then re-proposed.
        require(
            proposal.outputRoot == provenWithdrawal.outputRoot,
            "OptimismPortal: output root proven is not the same as current output root"
        );

        // Check that the output proposal has also been finalized.
        require(
            _isFinalizationPeriodElapsed(proposal.timestamp),
            "OptimismPortal: output proposal finalization period has not elapsed"
        );

        // Check that this withdrawal has not already been finalized, this is replay protection.
        require(finalizedWithdrawals[withdrawalHash] == false, "OptimismPortal: withdrawal has already been finalized");

        // Mark the withdrawal as finalized so it can't be replayed.
        finalizedWithdrawals[withdrawalHash] = true;

        // Set the l2Sender so contracts know who triggered this withdrawal on L2.
        l2Sender = _tx.sender;

        // Blast: claim withdrawal for ether
        uint256 txValueWithDiscount;
        if (_tx.value > 0) {
            uint256 etherBalance = address(this).balance;
            yieldManager.claimWithdrawal(provenWithdrawal.requestId, hintId);
            txValueWithDiscount = address(this).balance - etherBalance;
        }

        // Trigger the call to the target contract. We use a custom low level method
        // SafeCall.callWithMinGas to ensure two key properties
        //   1. Target contracts cannot force this call to run out of gas by returning a very large
        //      amount of data (and this is OK because we don't care about the returndata here).
        //   2. The amount of gas provided to the execution context of the target is at least the
        //      gas limit specified by the user. If there is not enough gas in the current context
        //      to accomplish this, `callWithMinGas` will revert.
        bool success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, txValueWithDiscount, _tx.data);

        // Reset the l2Sender back to the default value.
        l2Sender = Constants.DEFAULT_L2_SENDER;

        // All withdrawals are immediately finalized. Replayability can
        // be achieved through contracts built on top of this contract
        emit WithdrawalFinalized(withdrawalHash, hintId, success);

        // Reverting here is useful for determining the exact gas cost to successfully execute the
        // sub call to the target contract if the minimum gas limit specified by the user would not
        // be sufficient to execute the sub call.
        if (success == false && tx.origin == Constants.ESTIMATION_ADDRESS) {
            revert("OptimismPortal: withdrawal failed");
        }
    }

    /// @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in
    ///         deriving deposit transactions. Note that if a deposit is made by a contract, its
    ///         address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider
    ///         using the CrossDomainMessenger contracts for a simpler developer experience.
    /// @param _to         Target address on L2.
    /// @param _value      ETH value to send to the recipient.
    /// @param _gasLimit   Amount of L2 gas to purchase by burning gas on L1.
    /// @param _isCreation Whether or not the transaction is a contract creation.
    /// @param _data       Data to trigger the recipient with.
    function depositTransaction(
        address _to,
        uint256 _value,
        uint64 _gasLimit,
        bool _isCreation,
        bytes memory _data
    )
        public
        payable
        metered(_gasLimit)
    {
        // Just to be safe, make sure that people specify address(0) as the target when doing
        // contract creations.
        if (_isCreation) {
            require(_to == address(0), "OptimismPortal: must send to address(0) when creating a contract");
        }

        // Prevent depositing transactions that have too small of a gas limit. Users should pay
        // more for more resource usage.
        require(_gasLimit >= minimumGasLimit(uint64(_data.length)), "OptimismPortal: gas limit too small");

        // Prevent the creation of deposit transactions that have too much calldata. This gives an
        // upper limit on the size of unsafe blocks over the p2p network. 120kb is chosen to ensure
        // that the transaction can fit into the p2p network policy of 128kb even though deposit
        // transactions are not gossipped over the p2p network.
        require(_data.length <= 120_000, "OptimismPortal: data too large");

        // Transform the from-address to its alias if the caller is a contract.
        address from = msg.sender;
        if (msg.sender != tx.origin) {
            from = AddressAliasHelper.applyL1ToL2Alias(msg.sender);
        }

        // Compute the opaque data that will be emitted as part of the TransactionDeposited event.
        // We use opaque data so that we can update the TransactionDeposited event in the future
        // without breaking the current interface.
        bytes memory opaqueData;

        // Blast: When receiving already staked funds (stETH) to be bridged for ether on L2, we
        // have to request that `_value` is minted on L2 without an equivalent `msg.value` being
        // sent in the call. This bypass allows the L1BlastBridge to request `_value` to be minted
        // in exchange for a deposit of the equivalent amount of a staked ether asset.
        if (_to == Predeploys.L2_BLAST_BRIDGE) {
            if (msg.sender != yieldManager.blastBridge() || yieldManager.blastBridge() == address(0)) {
                // second case is when the blast bridge address has not been set on the yield manager
                revert("OptimismPortal: only the BlastBridge can deposit");
            }
            opaqueData = abi.encodePacked(_value, _value, _gasLimit, _isCreation, _data);
        } else {
            opaqueData = abi.encodePacked(msg.value, _value, _gasLimit, _isCreation, _data);
        }

        // Blast: Send the received ether to the yield manager to handle staking the funds.
        if (msg.value > 0) {
            (bool success) = SafeCall.send(address(yieldManager), SEND_DEFAULT_GAS_LIMIT, msg.value);
            require(success, "OptimismPortal: ETH transfer to YieldManager failed");
        }

        // Emit a TransactionDeposited event so that the rollup node can derive a deposit
        // transaction for this deposit.
        emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData);
    }

    /// @notice Determine if a given output is finalized.
    ///         Reverts if the call to L2_ORACLE.getL2Output reverts.
    ///         Returns a boolean otherwise.
    /// @param _l2OutputIndex Index of the L2 output to check.
    /// @return Whether or not the output is finalized.
    function isOutputFinalized(uint256 _l2OutputIndex) external view returns (bool) {
        return _isFinalizationPeriodElapsed(l2Oracle.getL2Output(_l2OutputIndex).timestamp);
    }

    /// @notice Determines whether the finalization period has elapsed with respect to
    ///         the provided block timestamp.
    /// @param _timestamp Timestamp to check.
    /// @return Whether or not the finalization period has elapsed.
    function _isFinalizationPeriodElapsed(uint256 _timestamp) internal view returns (bool) {
        return block.timestamp > _timestamp + l2Oracle.FINALIZATION_PERIOD_SECONDS();
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;

import { Strings } from "@openzeppelin/contracts/utils/Strings.sol";

/// @title Semver
/// @notice Semver is a simple contract for managing contract versions.
contract Semver {
    /// @notice Contract version number (major).
    uint256 private immutable MAJOR_VERSION;

    /// @notice Contract version number (minor).
    uint256 private immutable MINOR_VERSION;

    /// @notice Contract version number (patch).
    uint256 private immutable PATCH_VERSION;

    /// @param _major Version number (major).
    /// @param _minor Version number (minor).
    /// @param _patch Version number (patch).
    constructor(uint256 _major, uint256 _minor, uint256 _patch) {
        MAJOR_VERSION = _major;
        MINOR_VERSION = _minor;
        PATCH_VERSION = _patch;
    }

    /// @notice Returns the full semver contract version.
    /// @return Semver contract version as a string.
    function version() public view returns (string memory) {
        return string(
            abi.encodePacked(
                Strings.toString(MAJOR_VERSION),
                ".",
                Strings.toString(MINOR_VERSION),
                ".",
                Strings.toString(PATCH_VERSION)
            )
        );
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;

/// @title Predeploys
/// @notice Contains constant addresses for contracts that are pre-deployed to the L2 system.
library Predeploys {
    /// @notice Address of the L2ToL1MessagePasser predeploy.
    address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;

    /// @notice Address of the L2CrossDomainMessenger predeploy.
    address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;

    /// @notice Address of the L2StandardBridge predeploy.
    address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;

    /// @notice Address of the L2ERC721Bridge predeploy.
    address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;

    //// @notice Address of the SequencerFeeWallet predeploy.
    address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;

    /// @notice Address of the OptimismMintableERC20Factory predeploy.
    address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;

    /// @notice Address of the OptimismMintableERC721Factory predeploy.
    address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;

    /// @notice Address of the L1Block predeploy.
    address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;

    /// @notice Address of the GasPriceOracle predeploy. Includes fee information
    ///         and helpers for computing the L1 portion of the transaction fee.
    address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;

    /// @custom:legacy
    /// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
    ///         or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
    address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;

    /// @custom:legacy
    /// @notice Address of the DeployerWhitelist predeploy. No longer active.
    address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;

    /// @custom:legacy
    /// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
    ///         state trie as of the Bedrock upgrade. Contract has been locked and write functions
    ///         can no longer be accessed.
    address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;

    /// @custom:legacy
    /// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
    ///         instead, which exposes more information about the L1 state.
    address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;

    /// @custom:legacy
    /// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
    ///         L2ToL1MessagePasser contract instead.
    address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;

    /// @notice Address of the ProxyAdmin predeploy.
    address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;

    /// @notice Address of the BaseFeeVault predeploy.
    address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;

    /// @notice Address of the L1FeeVault predeploy.
    address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;

    /// @notice Address of the GovernanceToken predeploy.
    address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;

    /// @notice Address of the SchemaRegistry predeploy.
    address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;

    /// @notice Address of the EAS predeploy.
    address internal constant EAS = 0x4200000000000000000000000000000000000021;

    /// @notice Address of the Shares predeploy.
    address internal constant SHARES = 0x4300000000000000000000000000000000000000;

    /// @notice Address of the Gas predeploy.
    address internal constant GAS = 0x4300000000000000000000000000000000000001;

    /// @notice Address of the Blast predeploy.
    address internal constant BLAST = 0x4300000000000000000000000000000000000002;

    /// @notice Address of the USDB predeploy.
    address internal constant USDB = 0x4300000000000000000000000000000000000003;

    /// @notice Address of the WETH predeploy.
    address internal constant WETH_REBASING = 0x4300000000000000000000000000000000000004;

    /// @notice Address of the L2BlastBridge predeploy.
    address internal constant L2_BLAST_BRIDGE = 0x4300000000000000000000000000000000000005;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/structs/EnumerableSet.sol)

pragma solidity ^0.8.0;

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 *
 * [WARNING]
 * ====
 *  Trying to delete such a structure from storage will likely result in data corruption, rendering the structure unusable.
 *  See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 *  In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position of the value in the `values` array, plus 1 because index 0
        // means a value is not in the set.
        mapping(bytes32 => uint256) _indexes;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._indexes[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We read and store the value's index to prevent multiple reads from the same storage slot
        uint256 valueIndex = set._indexes[value];

        if (valueIndex != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 toDeleteIndex = valueIndex - 1;
            uint256 lastIndex = set._values.length - 1;

            if (lastIndex != toDeleteIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the last value to the index where the value to delete is
                set._values[toDeleteIndex] = lastValue;
                // Update the index for the moved value
                set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the index for the deleted slot
            delete set._indexes[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._indexes[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        return _values(set._inner);
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils/AddressUpgradeable.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
     * constructor.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: setting the version to 255 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized != type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint8) {
        return _initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _initializing;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.0;

import "./OwnableUpgradeable.sol";
import "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2StepUpgradeable is Initializable, OwnableUpgradeable {
    function __Ownable2Step_init() internal onlyInitializing {
        __Ownable_init_unchained();
    }

    function __Ownable2Step_init_unchained() internal onlyInitializing {
    }
    address private _pendingOwner;

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        return _pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        _pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        delete _pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
        _transferOwnership(sender);
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a >= b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/math/SafeCast.sol)

pragma solidity ^0.8.0;

/**
 * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 *
 * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
 * all math on `uint256` and `int256` and then downcasting.
 */
library SafeCast {
    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     *
     * _Available since v4.7._
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        require(value <= type(uint248).max, "SafeCast: value doesn't fit in 248 bits");
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     *
     * _Available since v4.7._
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        require(value <= type(uint240).max, "SafeCast: value doesn't fit in 240 bits");
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     *
     * _Available since v4.7._
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        require(value <= type(uint232).max, "SafeCast: value doesn't fit in 232 bits");
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     *
     * _Available since v4.2._
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits");
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     *
     * _Available since v4.7._
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        require(value <= type(uint216).max, "SafeCast: value doesn't fit in 216 bits");
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     *
     * _Available since v4.7._
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        require(value <= type(uint208).max, "SafeCast: value doesn't fit in 208 bits");
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     *
     * _Available since v4.7._
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        require(value <= type(uint200).max, "SafeCast: value doesn't fit in 200 bits");
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     *
     * _Available since v4.7._
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        require(value <= type(uint192).max, "SafeCast: value doesn't fit in 192 bits");
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     *
     * _Available since v4.7._
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        require(value <= type(uint184).max, "SafeCast: value doesn't fit in 184 bits");
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     *
     * _Available since v4.7._
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        require(value <= type(uint176).max, "SafeCast: value doesn't fit in 176 bits");
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     *
     * _Available since v4.7._
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        require(value <= type(uint168).max, "SafeCast: value doesn't fit in 168 bits");
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     *
     * _Available since v4.7._
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        require(value <= type(uint160).max, "SafeCast: value doesn't fit in 160 bits");
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     *
     * _Available since v4.7._
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        require(value <= type(uint152).max, "SafeCast: value doesn't fit in 152 bits");
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     *
     * _Available since v4.7._
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        require(value <= type(uint144).max, "SafeCast: value doesn't fit in 144 bits");
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     *
     * _Available since v4.7._
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        require(value <= type(uint136).max, "SafeCast: value doesn't fit in 136 bits");
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     *
     * _Available since v2.5._
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits");
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     *
     * _Available since v4.7._
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        require(value <= type(uint120).max, "SafeCast: value doesn't fit in 120 bits");
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     *
     * _Available since v4.7._
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        require(value <= type(uint112).max, "SafeCast: value doesn't fit in 112 bits");
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     *
     * _Available since v4.7._
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        require(value <= type(uint104).max, "SafeCast: value doesn't fit in 104 bits");
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     *
     * _Available since v4.2._
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits");
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     *
     * _Available since v4.7._
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        require(value <= type(uint88).max, "SafeCast: value doesn't fit in 88 bits");
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     *
     * _Available since v4.7._
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        require(value <= type(uint80).max, "SafeCast: value doesn't fit in 80 bits");
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     *
     * _Available since v4.7._
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        require(value <= type(uint72).max, "SafeCast: value doesn't fit in 72 bits");
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     *
     * _Available since v2.5._
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits");
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     *
     * _Available since v4.7._
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        require(value <= type(uint56).max, "SafeCast: value doesn't fit in 56 bits");
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     *
     * _Available since v4.7._
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        require(value <= type(uint48).max, "SafeCast: value doesn't fit in 48 bits");
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     *
     * _Available since v4.7._
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        require(value <= type(uint40).max, "SafeCast: value doesn't fit in 40 bits");
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     *
     * _Available since v2.5._
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits");
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     *
     * _Available since v4.7._
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        require(value <= type(uint24).max, "SafeCast: value doesn't fit in 24 bits");
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     *
     * _Available since v2.5._
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits");
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     *
     * _Available since v2.5._
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits");
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     *
     * _Available since v3.0._
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        require(value >= 0, "SafeCast: value must be positive");
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     *
     * _Available since v4.7._
     */
    function toInt248(int256 value) internal pure returns (int248) {
        require(value >= type(int248).min && value <= type(int248).max, "SafeCast: value doesn't fit in 248 bits");
        return int248(value);
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     *
     * _Available since v4.7._
     */
    function toInt240(int256 value) internal pure returns (int240) {
        require(value >= type(int240).min && value <= type(int240).max, "SafeCast: value doesn't fit in 240 bits");
        return int240(value);
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     *
     * _Available since v4.7._
     */
    function toInt232(int256 value) internal pure returns (int232) {
        require(value >= type(int232).min && value <= type(int232).max, "SafeCast: value doesn't fit in 232 bits");
        return int232(value);
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     *
     * _Available since v4.7._
     */
    function toInt224(int256 value) internal pure returns (int224) {
        require(value >= type(int224).min && value <= type(int224).max, "SafeCast: value doesn't fit in 224 bits");
        return int224(value);
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     *
     * _Available since v4.7._
     */
    function toInt216(int256 value) internal pure returns (int216) {
        require(value >= type(int216).min && value <= type(int216).max, "SafeCast: value doesn't fit in 216 bits");
        return int216(value);
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     *
     * _Available since v4.7._
     */
    function toInt208(int256 value) internal pure returns (int208) {
        require(value >= type(int208).min && value <= type(int208).max, "SafeCast: value doesn't fit in 208 bits");
        return int208(value);
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     *
     * _Available since v4.7._
     */
    function toInt200(int256 value) internal pure returns (int200) {
        require(value >= type(int200).min && value <= type(int200).max, "SafeCast: value doesn't fit in 200 bits");
        return int200(value);
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     *
     * _Available since v4.7._
     */
    function toInt192(int256 value) internal pure returns (int192) {
        require(value >= type(int192).min && value <= type(int192).max, "SafeCast: value doesn't fit in 192 bits");
        return int192(value);
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     *
     * _Available since v4.7._
     */
    function toInt184(int256 value) internal pure returns (int184) {
        require(value >= type(int184).min && value <= type(int184).max, "SafeCast: value doesn't fit in 184 bits");
        return int184(value);
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     *
     * _Available since v4.7._
     */
    function toInt176(int256 value) internal pure returns (int176) {
        require(value >= type(int176).min && value <= type(int176).max, "SafeCast: value doesn't fit in 176 bits");
        return int176(value);
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     *
     * _Available since v4.7._
     */
    function toInt168(int256 value) internal pure returns (int168) {
        require(value >= type(int168).min && value <= type(int168).max, "SafeCast: value doesn't fit in 168 bits");
        return int168(value);
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     *
     * _Available since v4.7._
     */
    function toInt160(int256 value) internal pure returns (int160) {
        require(value >= type(int160).min && value <= type(int160).max, "SafeCast: value doesn't fit in 160 bits");
        return int160(value);
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     *
     * _Available since v4.7._
     */
    function toInt152(int256 value) internal pure returns (int152) {
        require(value >= type(int152).min && value <= type(int152).max, "SafeCast: value doesn't fit in 152 bits");
        return int152(value);
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     *
     * _Available since v4.7._
     */
    function toInt144(int256 value) internal pure returns (int144) {
        require(value >= type(int144).min && value <= type(int144).max, "SafeCast: value doesn't fit in 144 bits");
        return int144(value);
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     *
     * _Available since v4.7._
     */
    function toInt136(int256 value) internal pure returns (int136) {
        require(value >= type(int136).min && value <= type(int136).max, "SafeCast: value doesn't fit in 136 bits");
        return int136(value);
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     *
     * _Available since v3.1._
     */
    function toInt128(int256 value) internal pure returns (int128) {
        require(value >= type(int128).min && value <= type(int128).max, "SafeCast: value doesn't fit in 128 bits");
        return int128(value);
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     *
     * _Available since v4.7._
     */
    function toInt120(int256 value) internal pure returns (int120) {
        require(value >= type(int120).min && value <= type(int120).max, "SafeCast: value doesn't fit in 120 bits");
        return int120(value);
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     *
     * _Available since v4.7._
     */
    function toInt112(int256 value) internal pure returns (int112) {
        require(value >= type(int112).min && value <= type(int112).max, "SafeCast: value doesn't fit in 112 bits");
        return int112(value);
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     *
     * _Available since v4.7._
     */
    function toInt104(int256 value) internal pure returns (int104) {
        require(value >= type(int104).min && value <= type(int104).max, "SafeCast: value doesn't fit in 104 bits");
        return int104(value);
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     *
     * _Available since v4.7._
     */
    function toInt96(int256 value) internal pure returns (int96) {
        require(value >= type(int96).min && value <= type(int96).max, "SafeCast: value doesn't fit in 96 bits");
        return int96(value);
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     *
     * _Available since v4.7._
     */
    function toInt88(int256 value) internal pure returns (int88) {
        require(value >= type(int88).min && value <= type(int88).max, "SafeCast: value doesn't fit in 88 bits");
        return int88(value);
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     *
     * _Available since v4.7._
     */
    function toInt80(int256 value) internal pure returns (int80) {
        require(value >= type(int80).min && value <= type(int80).max, "SafeCast: value doesn't fit in 80 bits");
        return int80(value);
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     *
     * _Available since v4.7._
     */
    function toInt72(int256 value) internal pure returns (int72) {
        require(value >= type(int72).min && value <= type(int72).max, "SafeCast: value doesn't fit in 72 bits");
        return int72(value);
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     *
     * _Available since v3.1._
     */
    function toInt64(int256 value) internal pure returns (int64) {
        require(value >= type(int64).min && value <= type(int64).max, "SafeCast: value doesn't fit in 64 bits");
        return int64(value);
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     *
     * _Available since v4.7._
     */
    function toInt56(int256 value) internal pure returns (int56) {
        require(value >= type(int56).min && value <= type(int56).max, "SafeCast: value doesn't fit in 56 bits");
        return int56(value);
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     *
     * _Available since v4.7._
     */
    function toInt48(int256 value) internal pure returns (int48) {
        require(value >= type(int48).min && value <= type(int48).max, "SafeCast: value doesn't fit in 48 bits");
        return int48(value);
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     *
     * _Available since v4.7._
     */
    function toInt40(int256 value) internal pure returns (int40) {
        require(value >= type(int40).min && value <= type(int40).max, "SafeCast: value doesn't fit in 40 bits");
        return int40(value);
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     *
     * _Available since v3.1._
     */
    function toInt32(int256 value) internal pure returns (int32) {
        require(value >= type(int32).min && value <= type(int32).max, "SafeCast: value doesn't fit in 32 bits");
        return int32(value);
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     *
     * _Available since v4.7._
     */
    function toInt24(int256 value) internal pure returns (int24) {
        require(value >= type(int24).min && value <= type(int24).max, "SafeCast: value doesn't fit in 24 bits");
        return int24(value);
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     *
     * _Available since v3.1._
     */
    function toInt16(int256 value) internal pure returns (int16) {
        require(value >= type(int16).min && value <= type(int16).max, "SafeCast: value doesn't fit in 16 bits");
        return int16(value);
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     *
     * _Available since v3.1._
     */
    function toInt8(int256 value) internal pure returns (int8) {
        require(value >= type(int8).min && value <= type(int8).max, "SafeCast: value doesn't fit in 8 bits");
        return int8(value);
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     *
     * _Available since v3.0._
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256");
        return int256(value);
    }
}

// SPDX-FileCopyrightText: 2023 Lido <[email protected]>
// SPDX-License-Identifier: GPL-3.0

pragma solidity 0.8.15;

import { EnumerableSet } from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { SafeCast } from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

import { SafeCall } from "src/libraries/SafeCall.sol";

/// @title WithdrawalQueue
/// @notice Queue for storing and managing withdrawal requests.
///         This contract is based on Lido's WithdrawalQueue and has been
///         modified to support Blast specific logic such as withdrawal discounts.
contract WithdrawalQueue is Initializable {
    using EnumerableSet for EnumerableSet.UintSet;
    using SafeERC20 for IERC20;

    /// @notice The L1 gas limit set when sending eth to the YieldManager.
    uint256 internal constant SEND_DEFAULT_GAS_LIMIT = 100_000;

    /// @notice precision base for share rate
    uint256 internal constant E27_PRECISION_BASE = 1e27;

    /// @notice return value for the `find...` methods in case of no result
    uint256 internal constant NOT_FOUND = 0;

    address public immutable TOKEN;

    WithdrawalRequest[] private _requests;
    mapping(address => EnumerableSet.UintSet) private _requestsByOwner;
    Checkpoint[] private _checkpoints;
    uint256 private lastRequestId;
    uint256 private lastFinalizedRequestId;
    uint256 private lastCheckpointId;
    uint256 private lockedBalance;

    /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
    ///         A gap size of 42 was chosen here, so that the first slot used in a child contract
    ///         would be a multiple of 50.
    uint256[42] private __gap;

    /// @notice structure representing a request for withdrawal
    struct WithdrawalRequest {
        /// @notice sum of the all tokens submitted for withdrawals including this request (nominal amount)
        uint128 cumulativeAmount;
        /// @notice address that can claim the request and receives the funds
        address recipient;
        /// @notice block.timestamp when the request was created
        uint40 timestamp;
        /// @notice flag if the request was claimed
        bool claimed;
    }

    /// @notice output format struct for `_getWithdrawalStatus()` method
    struct WithdrawalRequestStatus {
        /// @notice nominal token amount that was locked on withdrawal queue for this request
        uint256 amount;
        /// @notice address that can claim or transfer this request
        address recipient;
        /// @notice timestamp of when the request was created, in seconds
        uint256 timestamp;
        /// @notice true, if request is finalized
        bool isFinalized;
        /// @notice true, if request is claimed. Request is claimable if (isFinalized && !isClaimed)
        bool isClaimed;
    }

    /// @notice structure to store discounts for requests that are affected by negative rebase
    /// All requests covered by the checkpoint are affected by the same discount rate `sharePrice`.
    struct Checkpoint {
        uint256 fromRequestId;
        uint256 sharePrice;
    }

    /// @dev amount represents the nominal amount of tokens that were withdrawn (burned) on L2.
    event WithdrawalRequested(
        uint256 indexed requestId,
        address indexed requestor,
        address indexed recipient,
        uint256 amount
    );

    /// @dev amountOfETHLocked represents the real amount of ETH that was locked in the queue and will be
    ///      transferred to the recipient on claim.
    event WithdrawalsFinalized(
        uint256 indexed from,
        uint256 indexed to,
        uint256 indexed checkpointId,
        uint256 amountOfETHLocked,
        uint256 timestamp,
        uint256 sharePrice
    );

    /// @dev amount represents the real amount of ETH that was transferred to the recipient.
    event WithdrawalClaimed(
        uint256 indexed requestId, address indexed recipient, uint256 amountOfETH
    );

    error InvalidRequestId(uint256 _requestId);
    error InvalidRequestIdRange(uint256 startId, uint256 endId);
    error InvalidSharePrice();
    error RequestNotFoundOrNotFinalized(uint256 _requestId);
    error RequestAlreadyClaimed(uint256 _requestId);
    error InvalidHint(uint256 _hint);
    error RequestIdsNotSorted();
    error CallerIsNotRecipient();
    error WithdrawalTransferFailed();
    error InsufficientBalance();

    constructor(address _token) {
        TOKEN = _token;
    }

    /// @notice initialize the contract with the dummy request and checkpoint
    ///         as the zero elements of the corresponding arrays so that
    ///         the first element of the array has index 1
    function __WithdrawalQueue_init() internal onlyInitializing {
        _requests.push(WithdrawalRequest(0, address(0), uint40(block.timestamp), true));
        _checkpoints.push(Checkpoint(0, 0));
    }

    function getWithdrawalStatus(uint256[] calldata _requestIds)
        external
        view
        returns (WithdrawalRequestStatus[] memory statuses)
    {
        statuses = new WithdrawalRequestStatus[](_requestIds.length);
        for (uint256 i = 0; i < _requestIds.length; ++i) {
            statuses[i] = _getStatus(_requestIds[i]);
        }
    }

    function getWithdrawalRequests(address _owner) external view returns (uint256[] memory requestIds) {
        return _requestsByOwner[_owner].values();
    }

    function getClaimableEther(uint256[] calldata _requestIds, uint256[] calldata _hintIds)
        external
        view
        returns (uint256[] memory claimableEthValues)
    {
        claimableEthValues = new uint256[](_requestIds.length);
        for (uint256 i = 0; i < _requestIds.length; ++i) {
            claimableEthValues[i] = _getClaimableEther(_requestIds[i], _hintIds[i]);
        }
    }

    function _getClaimableEther(uint256 _requestId, uint256 _hintId) internal view returns (uint256) {
        if (_requestId == 0 || _requestId > lastRequestId) revert InvalidRequestId(_requestId);

        if (_requestId > lastFinalizedRequestId) return 0;

        WithdrawalRequest storage request = _requests[_requestId];
        if (request.claimed) return 0;

        return _calculateClaimableEther(_requestId, _hintId);
    }

    /// @notice id of the last request
    ///  NB! requests are indexed from 1, so it returns 0 if there is no requests in the queue
    function getLastRequestId() external view returns (uint256) {
        return lastRequestId;
    }

    /// @notice id of the last finalized request
    ///  NB! requests are indexed from 1, so it returns 0 if there is no finalized requests in the queue
    function getLastFinalizedRequestId() external view returns (uint256) {
        return lastFinalizedRequestId;
    }

    /// @notice amount of ETH on this contract balance that is locked for withdrawal and available to claim
    ///  NB! this is the real amount of ETH (i.e. sum of (nominal amount of ETH burned on L2 * sharePrice))
    function getLockedBalance() public view returns (uint256) {
        return lockedBalance;
    }

    /// @notice return the last checkpoint id in the queue
    function getLastCheckpointId() external view returns (uint256) {
        return lastCheckpointId;
    }

    /// @notice return the number of unfinalized requests in the queue
    function unfinalizedRequestNumber() public view returns (uint256) {
        return lastRequestId - lastFinalizedRequestId;
    }

    /// @notice Returns the amount of ETH in the queue yet to be finalized
    ///  NB! this is the nominal amount of ETH burned on L2
    function unfinalizedAmount() internal view returns (uint256) {
        return
            _requests[lastRequestId].cumulativeAmount - _requests[lastFinalizedRequestId].cumulativeAmount;
    }

    /// @dev Finalize requests in the queue
    /// @notice sharePrice has 1e27 precision
    ///  Emits WithdrawalsFinalized event.
    function _finalize(
        uint256 _lastRequestIdToBeFinalized,
        uint256 availableBalance,
        uint256 sharePrice
    ) internal returns (uint256 nominalAmountToFinalize, uint256 realAmountToFinalize, uint256 checkpointId) {
        // share price cannot be larger than 1e27
        if (sharePrice > E27_PRECISION_BASE) {
            revert InvalidSharePrice();
        }

        if (_lastRequestIdToBeFinalized != 0) {
            if (_lastRequestIdToBeFinalized > lastRequestId) revert InvalidRequestId(_lastRequestIdToBeFinalized);
            uint256 _lastFinalizedRequestId = lastFinalizedRequestId;
            if (_lastRequestIdToBeFinalized <= _lastFinalizedRequestId) revert InvalidRequestId(_lastRequestIdToBeFinalized);

            WithdrawalRequest memory lastFinalizedRequest = _requests[_lastFinalizedRequestId];
            WithdrawalRequest memory requestToFinalize = _requests[_lastRequestIdToBeFinalized];

            nominalAmountToFinalize = requestToFinalize.cumulativeAmount - lastFinalizedRequest.cumulativeAmount;
            realAmountToFinalize = (nominalAmountToFinalize * sharePrice) / E27_PRECISION_BASE;
            if (realAmountToFinalize > availableBalance) {
                revert InsufficientBalance();
            }

            uint256 firstRequestIdToFinalize = _lastFinalizedRequestId + 1;

            lockedBalance += realAmountToFinalize;
            lastFinalizedRequestId = _lastRequestIdToBeFinalized;

            checkpointId = _createCheckpoint(firstRequestIdToFinalize, sharePrice);

            emit WithdrawalsFinalized(
                firstRequestIdToFinalize,
                _lastRequestIdToBeFinalized,
                checkpointId,
                realAmountToFinalize,
                block.timestamp,
                sharePrice
            );
        }
    }

    /// @notice Finds the list of hints for the given `_requestIds` searching among the checkpoints with indices
    ///  in the range  `[_firstIndex, _lastIndex]`.
    ///  NB! Array of request ids should be sorted
    ///  NB! `_firstIndex` should be greater than 0, because checkpoint list is 1-based array
    ///  Usage: findCheckpointHints(_requestIds, 1, getLastCheckpointIndex())
    /// @param _requestIds ids of the requests sorted in the ascending order to get hints for
    /// @param _firstIndex left boundary of the search range. Should be greater than 0
    /// @param _lastIndex right boundary of the search range. Should be less than or equal to getLastCheckpointIndex()
    /// @return hintIds array of hints used to find required checkpoint for the request
    function findCheckpointHints(uint256[] calldata _requestIds, uint256 _firstIndex, uint256 _lastIndex)
        external
        view
        returns (uint256[] memory hintIds)
    {
        hintIds = new uint256[](_requestIds.length);
        uint256 prevRequestId = 0;
        for (uint256 i = 0; i < _requestIds.length; ++i) {
            if (_requestIds[i] < prevRequestId) {
                revert RequestIdsNotSorted();
            }
            hintIds[i] = findCheckpointHint(_requestIds[i], _firstIndex, _lastIndex);
            _firstIndex = hintIds[i];
            prevRequestId = _requestIds[i];
        }
    }

    /// @dev View function to find a checkpoint hint to use in `claimWithdrawal()` and `getClaimableEther()`
    ///  Search will be performed in the range of `[_firstIndex, _lastIndex]`
    ///
    /// @param _requestId request id to search the checkpoint for
    /// @param _start index of the left boundary of the search range, should be greater than 0
    /// @param _end index of the right boundary of the search range, should be less than or equal
    ///  to queue.lastCheckpointId
    ///
    /// @return hint for later use in other methods or 0 if hint not found in the range
    function findCheckpointHint(uint256 _requestId, uint256 _start, uint256 _end) public view returns (uint256) {
        if (_requestId == 0 || _requestId > lastRequestId) {
            revert InvalidRequestId(_requestId);
        }

        uint256 lastCheckpointIndex = lastCheckpointId;
        if (_start == 0 || _end > lastCheckpointIndex) {
            revert InvalidRequestIdRange(_start, _end);
        }

        if (lastCheckpointIndex == 0 || _requestId > lastFinalizedRequestId || _start > _end) {
            return NOT_FOUND;
        }

        // Right boundary
        if (_requestId >= _checkpoints[_end].fromRequestId) {
            // it's the last checkpoint, so it's valid
            if (_end == lastCheckpointIndex) {
                return _end;
            }
            // it fits right before the next checkpoint
            if (_requestId < _checkpoints[_end + 1].fromRequestId) {
                return _end;
            }

            return NOT_FOUND;
        }
        // Left boundary
        if (_requestId < _checkpoints[_start].fromRequestId) {
            return NOT_FOUND;
        }

        // Binary search
        uint256 min = _start;
        uint256 max = _end - 1;

        while (max > min) {
            uint256 mid = (max + min + 1) / 2;
            if (_checkpoints[mid].fromRequestId <= _requestId) {
                min = mid;
            } else {
                max = mid - 1;
            }
        }
        return min;
    }

    /// @dev Returns the status of the withdrawal request with `_requestId` id
    function _getStatus(uint256 _requestId) internal view returns (WithdrawalRequestStatus memory status) {
        if (_requestId == 0 || _requestId > lastRequestId) revert InvalidRequestId(_requestId);

        WithdrawalRequest memory request = _requests[_requestId];
        WithdrawalRequest memory previousRequest = _requests[_requestId - 1];

        status = WithdrawalRequestStatus(
            request.cumulativeAmount - previousRequest.cumulativeAmount,
            request.recipient,
            request.timestamp,
            _requestId <= lastFinalizedRequestId,
            request.claimed
        );
    }

    /// @dev creates a new `WithdrawalRequest` in the queue
    ///  Emits WithdrawalRequested event
    function _requestWithdrawal(address recipient, uint256 amount)
        internal
        returns (uint256 requestId)
    {
        uint256 _lastRequestId = lastRequestId;
        WithdrawalRequest memory lastRequest = _requests[_lastRequestId];

        uint128 cumulativeAmount = lastRequest.cumulativeAmount + SafeCast.toUint128(amount);

        requestId = _lastRequestId + 1;

        lastRequestId = requestId;

        WithdrawalRequest memory newRequest = WithdrawalRequest(
            cumulativeAmount,
            recipient,
            uint40(block.timestamp),
            false
        );
        _requests.push(newRequest);
        _requestsByOwner[recipient].add(requestId);

        emit WithdrawalRequested(requestId, msg.sender, recipient, amount);
    }

    /// @dev assumes firstRequestIdToFinalize > _lastFinalizedRequestId && sharePrice <= 1e27
    function _createCheckpoint(uint256 firstRequestIdToFinalize, uint256 sharePrice) internal returns (uint256) {
        _checkpoints.push(Checkpoint(firstRequestIdToFinalize, sharePrice));
        lastCheckpointId += 1;
        return lastCheckpointId;
    }

    /// @dev can only be called by request.recipient (YieldManager)
    function claimWithdrawal(uint256 _requestId, uint256 _hintId) external returns (bool success) {
        if (_requestId == 0) revert InvalidRequestId(_requestId);
        if (_requestId > lastFinalizedRequestId) revert RequestNotFoundOrNotFinalized(_requestId);

        WithdrawalRequest storage request = _requests[_requestId];

        if (request.claimed) revert RequestAlreadyClaimed(_requestId);
        request.claimed = true;

        address recipient = request.recipient;
        if (msg.sender != recipient) {
            revert CallerIsNotRecipient();
        }

        uint256 realAmount = _calculateClaimableEther(_requestId, _hintId);
        lockedBalance -= realAmount;

        if (TOKEN == address(0)) {
            (success) = SafeCall.send(recipient, SEND_DEFAULT_GAS_LIMIT, realAmount);
        } else {
            IERC20(TOKEN).safeTransfer(recipient, realAmount);
            success = true;
        }

        if (!success) {
            revert WithdrawalTransferFailed();
        }

        emit WithdrawalClaimed(_requestId, recipient, realAmount);
    }

    /// @dev Calculate the amount of ETH that can be claimed for the withdrawal request with `_requestId`.
    ///  NB! This function returns the real amount of ETH that can be claimed by the recipient, not the nominal amount
    ///  that was burned on L2. The real amount is calculated as nominal amount * share price, which can be found
    ///  in the checkpoint with `_hintId`.
    function _calculateClaimableEther(uint256 _requestId, uint256 _hintId)
        internal
        view
        returns (uint256)
    {
        if (_hintId == 0) {
            revert InvalidHint(_hintId);
        }

        uint256 lastCheckpointIndex = lastCheckpointId;
        if (_hintId > lastCheckpointIndex) {
            revert InvalidHint(_hintId);
        }

        Checkpoint memory checkpoint = _checkpoints[_hintId];
        if (_requestId < checkpoint.fromRequestId) {
            revert InvalidHint(_hintId);
        }
        if (_hintId < lastCheckpointIndex) {
            Checkpoint memory nextCheckpoint = _checkpoints[_hintId + 1];
            if (_requestId >= nextCheckpoint.fromRequestId) {
                revert InvalidHint(_hintId);
            }
        }

        WithdrawalRequest storage prevRequest = _requests[_requestId - 1];
        WithdrawalRequest storage request = _requests[_requestId];

        uint256 nominalAmount = request.cumulativeAmount - prevRequest.cumulativeAmount;
        return (nominalAmount * checkpoint.sharePrice) / E27_PRECISION_BASE;
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;

import { YieldManager } from "src/mainnet-bridge/YieldManager.sol";
import { Semver } from "src/universal/Semver.sol";

/// @title YieldProvider
/// @notice Base contract for interacting and accounting for a
///         specific yield source.
abstract contract YieldProvider is Semver {
    YieldManager public immutable YIELD_MANAGER;

    uint256 public stakedPrincipal;
    uint256 public pendingBalance;

    event YieldCommit(bytes32 indexed provider, int256 yield);
    event Staked(bytes32 indexed provider, uint256 amount);
    event Unstaked(bytes32 indexed provider, uint256 amount);
    event Pending(bytes32 indexed provider, uint256 amount);
    event Claimed(bytes32 indexed provider, uint256 claimedAmount, uint256 expectedAmount);
    event InsurancePremiumPaid(bytes32 indexed provider, uint256 amount);
    event InsuranceWithdrawn(bytes32 indexed provider, uint256 amount);

    error InsufficientStakableFunds();
    error CallerIsNotYieldManager();
    error ContextIsNotYieldManager();
    error NotSupported();

    modifier onlyYieldManager() {
        if (msg.sender != address(YIELD_MANAGER)) {
            revert CallerIsNotYieldManager();
        }
        _;
    }

    modifier onlyDelegateCall() {
        if (address(this) != address(YIELD_MANAGER)) {
            revert ContextIsNotYieldManager();
        }
        _;
    }

    /// @param _yieldManager Address of the yield manager for the underlying
    ///        yield asset of this provider.
    constructor(YieldManager _yieldManager) Semver(1, 0, 0) {
        require(address(_yieldManager) != address(this));
        YIELD_MANAGER = _yieldManager;
    }

    /// @notice initialize
    function initialize() external onlyDelegateCall virtual {}

    function name() public pure virtual returns (string memory);

    function id() public view returns (bytes32) {
        return keccak256(abi.encodePacked(name(), version()));
    }

    /// @notice Whether staking is enabled for the given asset.
    function isStakingEnabled(address token) external view virtual returns (bool);

    /// @notice Current balance of the provider's staked funds.
    function stakedBalance() public view virtual returns (uint256);

    /// @notice Total value in the provider's yield method/protocol.
    function totalValue() public view returns (uint256) {
        return stakedBalance() + pendingBalance;
    }

    /// @notice Current amount of yield gained since the previous commit.
    function yield() public view virtual returns (int256);

    /// @notice Whether the provider supports yield insurance.
    function supportsInsurancePayment() public view virtual returns (bool) {
        return false;
    }

    /// @notice Gets insurance balance available for the provider's assets.
    function insuranceBalance() public view virtual returns (uint256) {
        revert("not supported");
    }

    /// @notice Commit the current amount of yield and checkpoint the accounting
    ///         variables.
    /// @return Amount of yield at this checkpoint.
    function commitYield() external onlyYieldManager returns (int256) {
        _beforeCommitYield();

        int256 _yield = yield();
        stakedPrincipal = stakedBalance();

        _afterCommitYield();

        emit YieldCommit(id(), _yield);
        return _yield;
    }

    /// @notice Stake YieldManager funds using the provider's yield method/protocol.
    ///         Must be called via `delegatecall` from the YieldManager.
    function stake(uint256) external virtual;

    /// @notice Unstake YieldManager funds from the provider's yield method/protocol.
    ///         Must be called via `delegatecall` from the YieldManager.
    /// @return pending Amount of funds pending in an unstaking delay
    /// @return claimed Amount of funds that have been claimed.
    ///         The yield provider is expected to return
    ///         (pending = 0, claimed = non-zero) if the funds are immediately
    ///         available for withdrawal, and (pending = non-zero, claimed = 0)
    ///         if the funds are in an unstaking delay.
    function unstake(uint256) external virtual returns (uint256 pending, uint256 claimed);

    /// @notice Pay insurance premium during a yield report. Must be called via
    ///         `delegatecall` from the YieldManager.
    function payInsurancePremium(uint256) external virtual onlyDelegateCall {
        revert NotSupported();
    }

    /// @notice Withdraw insurance funds to cover yield losses during a yield report.
    ///         Must be called via `delegatecall` from the YieldManager.
    function withdrawFromInsurance(uint256) external virtual onlyDelegateCall {
        revert NotSupported();
    }

    /// @notice Record a deposit to the stake balance of the provider to track the
    ///         principal balance.
    /// @param amount Amount of new staked balance to record.
    function recordStakedDeposit(uint256 amount) external virtual onlyYieldManager {
        stakedPrincipal += amount;
        emit Staked(id(), amount);
    }

    /// @notice Record a withdraw to the stake balance of the provider to track the
    ///         principal balance. This method should be called by the Yield Manager
    ///         after delegate-calling the provider's `unstake` method, which should
    ///         return the arguments to this method.
    function recordUnstaked(uint256 pending, uint256 claimed, uint256 expected) external virtual onlyYieldManager {
        _recordStakedWithdraw(expected);

        if (pending > 0) {
            require(claimed == 0 && pending == expected, "invalid yield provider implementation");
            _recordPending(pending);
        }

        if (claimed > 0) {
            require(pending == 0 && claimed == expected, "invalid yield provider implementation");
            _recordClaimed(claimed, expected);
        }
    }

    /// @notice A hook that is DELEGATE-CALLed by the Yield Manager for the provider
    ///         to perform any actions before the yield report process begins.
    function preCommitYieldReportDelegateCallHook() external virtual onlyDelegateCall {}

    /// @notice Record a withdraw the stake balance of the provider.
    /// @param amount Amount of staked balance to remove.
    function _recordStakedWithdraw(uint256 amount) internal virtual {
        stakedPrincipal -= amount;
        emit Unstaked(id(), amount);
    }

    /// @notice Record a pending balance to the provider. Needed only for providers
    ///         that use two-step withdrawals (e.g. Lido).
    function _recordPending(uint256 amount) internal virtual {
        pendingBalance += amount;
        emit Pending(id(), amount);
    }

    /// @notice Record a claimed balance to the provider. For providers with one-step
    ///         withdrawals, this method should be overriden to just emit the event
    ///         to avoid integer underflow.
    function _recordClaimed(uint256 claimed, uint256 expected) internal virtual {
        require(claimed <= expected, "invalid yield provider implementation");
        // Decrements pending balance by the expected amount, not the claimed amount.
        // If claimed < expected, the difference (expected - claimed) must be considered
        // as realized negative yield. To correctly reflect this, the difference is
        // subtracted from the pending balance (and totalProviderValue).
        pendingBalance -= expected;
        emit Claimed(id(), claimed, expected);
    }

    function _beforeCommitYield() internal virtual {}
    function _afterCommitYield() internal virtual {}
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;

/// @title Types
/// @notice Contains various types used throughout the Optimism contract system.
library Types {
    /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
    ///         timestamp that the output root is posted. This timestamp is used to verify that the
    ///         finalization period has passed since the output root was submitted.
    /// @custom:field outputRoot    Hash of the L2 output.
    /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
    /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
    struct OutputProposal {
        bytes32 outputRoot;
        uint128 timestamp;
        uint128 l2BlockNumber;
    }

    /// @notice Struct representing the elements that are hashed together to generate an output root
    ///         which itself represents a snapshot of the L2 state.
    /// @custom:field version                  Version of the output root.
    /// @custom:field stateRoot                Root of the state trie at the block of this output.
    /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
    /// @custom:field latestBlockhash          Hash of the block this output was generated from.
    struct OutputRootProof {
        bytes32 version;
        bytes32 stateRoot;
        bytes32 messagePasserStorageRoot;
        bytes32 latestBlockhash;
    }

    /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
    ///         user (as opposed to a system deposit transaction generated by the system).
    /// @custom:field from        Address of the sender of the transaction.
    /// @custom:field to          Address of the recipient of the transaction.
    /// @custom:field isCreation  True if the transaction is a contract creation.
    /// @custom:field value       Value to send to the recipient.
    /// @custom:field mint        Amount of ETH to mint.
    /// @custom:field gasLimit    Gas limit of the transaction.
    /// @custom:field data        Data of the transaction.
    /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
    /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
    struct UserDepositTransaction {
        address from;
        address to;
        bool isCreation;
        uint256 value;
        uint256 mint;
        uint64 gasLimit;
        bytes data;
        bytes32 l1BlockHash;
        uint256 logIndex;
    }

    /// @notice Struct representing a withdrawal transaction.
    /// @custom:field nonce    Nonce of the withdrawal transaction
    /// @custom:field sender   Address of the sender of the transaction.
    /// @custom:field target   Address of the recipient of the transaction.
    /// @custom:field value    Value to send to the recipient.
    /// @custom:field gasLimit Gas limit of the transaction.
    /// @custom:field data     Data of the transaction.
    struct WithdrawalTransaction {
        uint256 nonce;
        address sender;
        address target;
        uint256 value;
        uint256 gasLimit;
        bytes data;
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;

/// @title SafeCall
/// @notice Perform low level safe calls
library SafeCall {
    /// @notice Performs a low level call without copying any returndata.
    /// @dev Passes no calldata to the call context.
    /// @param _target   Address to call
    /// @param _gas      Amount of gas to pass to the call
    /// @param _value    Amount of value to pass to the call
    function send(address _target, uint256 _gas, uint256 _value) internal returns (bool) {
        bool _success;
        assembly {
            _success :=
                call(
                    _gas, // gas
                    _target, // recipient
                    _value, // ether value
                    0, // inloc
                    0, // inlen
                    0, // outloc
                    0 // outlen
                )
        }
        return _success;
    }

    /// @notice Perform a low level call without copying any returndata
    /// @param _target   Address to call
    /// @param _gas      Amount of gas to pass to the call
    /// @param _value    Amount of value to pass to the call
    /// @param _calldata Calldata to pass to the call
    function call(address _target, uint256 _gas, uint256 _value, bytes memory _calldata) internal returns (bool) {
        bool _success;
        assembly {
            _success :=
                call(
                    _gas, // gas
                    _target, // recipient
                    _value, // ether value
                    add(_calldata, 32), // inloc
                    mload(_calldata), // inlen
                    0, // outloc
                    0 // outlen
                )
        }
        return _success;
    }

    /// @notice Helper function to determine if there is sufficient gas remaining within the context
    ///         to guarantee that the minimum gas requirement for a call will be met as well as
    ///         optionally reserving a specified amount of gas for after the call has concluded.
    /// @param _minGas      The minimum amount of gas that may be passed to the target context.
    /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
    ///                     of the target context.
    /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
    ///         context as well as reserve `_reservedGas` for the caller after the execution of
    ///         the target context.
    /// @dev !!!!! FOOTGUN ALERT !!!!!
    ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
    ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
    ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
    ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
    ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
    ///          factors of the dynamic cost of the `CALL` opcode.
    ///      2.) This function should *directly* precede the external call if possible. There is an
    ///          added buffer to account for gas consumed between this check and the call, but it
    ///          is only 5,700 gas.
    ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
    ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
    ///          truncated.
    ///      4.) Use wisely. This function is not a silver bullet.
    function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
        bool _hasMinGas;
        assembly {
            // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
            _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
        }
        return _hasMinGas;
    }

    /// @notice Perform a low level call without copying any returndata. This function
    ///         will revert if the call cannot be performed with the specified minimum
    ///         gas.
    /// @param _target   Address to call
    /// @param _minGas   The minimum amount of gas that may be passed to the call
    /// @param _value    Amount of value to pass to the call
    /// @param _calldata Calldata to pass to the call
    function callWithMinGas(
        address _target,
        uint256 _minGas,
        uint256 _value,
        bytes memory _calldata
    )
        internal
        returns (bool)
    {
        bool _success;
        bool _hasMinGas = hasMinGas(_minGas, 0);
        assembly {
            // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
            if iszero(_hasMinGas) {
                // Store the "Error(string)" selector in scratch space.
                mstore(0, 0x08c379a0)
                // Store the pointer to the string length in scratch space.
                mstore(32, 32)
                // Store the string.
                //
                // SAFETY:
                // - We pad the beginning of the string with two zero bytes as well as the
                // length (24) to ensure that we override the free memory pointer at offset
                // 0x40. This is necessary because the free memory pointer is likely to
                // be greater than 1 byte when this function is called, but it is incredibly
                // unlikely that it will be greater than 3 bytes. As for the data within
                // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                // - It's fine to clobber the free memory pointer, we're reverting.
                mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)

                // Revert with 'Error("SafeCall: Not enough gas")'
                revert(28, 100)
            }

            // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
            // above assertion. This ensures that, in all circumstances (except for when the
            // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
            // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
            // the minimum amount of gas specified.
            _success :=
                call(
                    gas(), // gas
                    _target, // recipient
                    _value, // ether value
                    add(_calldata, 32), // inloc
                    mload(_calldata), // inlen
                    0x00, // outloc
                    0x00 // outlen
                )
        }
        return _success;
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;

import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { SafeCall } from "src/libraries/SafeCall.sol";
import { Hashing } from "src/libraries/Hashing.sol";
import { Encoding } from "src/libraries/Encoding.sol";
import { Constants } from "src/libraries/Constants.sol";

/// @custom:legacy
/// @title CrossDomainMessengerLegacySpacer0
/// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
///         libAddressManager variable used to exist. Must be the first contract in the inheritance
///         tree of the CrossDomainMessenger.
contract CrossDomainMessengerLegacySpacer0 {
    /// @custom:legacy
    /// @custom:spacer libAddressManager
    /// @notice Spacer for backwards compatibility.
    address private spacer_0_0_20;
}

/// @custom:legacy
/// @title CrossDomainMessengerLegacySpacer1
/// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
///         PausableUpgradable and OwnableUpgradeable variables used to exist. Must be
///         the third contract in the inheritance tree of the CrossDomainMessenger.
contract CrossDomainMessengerLegacySpacer1 {
    /// @custom:legacy
    /// @custom:spacer ContextUpgradable's __gap
    /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
    ///         ContextUpgradable.
    uint256[50] private spacer_1_0_1600;

    /// @custom:legacy
    /// @custom:spacer OwnableUpgradeable's _owner
    /// @notice Spacer for backwards compatibility.
    ///         Come from OpenZeppelin OwnableUpgradeable.
    address private spacer_51_0_20;

    /// @custom:legacy
    /// @custom:spacer OwnableUpgradeable's __gap
    /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
    ///         OwnableUpgradeable.
    uint256[49] private spacer_52_0_1568;

    /// @custom:legacy
    /// @custom:spacer PausableUpgradable's _paused
    /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
    ///         PausableUpgradable.
    bool private spacer_101_0_1;

    /// @custom:legacy
    /// @custom:spacer PausableUpgradable's __gap
    /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
    ///         PausableUpgradable.
    uint256[49] private spacer_102_0_1568;

    /// @custom:legacy
    /// @custom:spacer ReentrancyGuardUpgradeable's `_status` field.
    /// @notice Spacer for backwards compatibility.
    uint256 private spacer_151_0_32;

    /// @custom:legacy
    /// @custom:spacer ReentrancyGuardUpgradeable's __gap
    /// @notice Spacer for backwards compatibility.
    uint256[49] private spacer_152_0_1568;

    /// @custom:legacy
    /// @custom:spacer blockedMessages
    /// @notice Spacer for backwards compatibility.
    mapping(bytes32 => bool) private spacer_201_0_32;

    /// @custom:legacy
    /// @custom:spacer relayedMessages
    /// @notice Spacer for backwards compatibility.
    mapping(bytes32 => bool) private spacer_202_0_32;
}

/// @custom:upgradeable
/// @title CrossDomainMessenger
/// @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2
///         cross-chain messenger contracts. It's designed to be a universal interface that only
///         needs to be extended slightly to provide low-level message passing functionality on each
///         chain it's deployed on. Currently only designed for message passing between two paired
///         chains and does not support one-to-many interactions.
///         Any changes to this contract MUST result in a semver bump for contracts that inherit it.
abstract contract CrossDomainMessenger is
    CrossDomainMessengerLegacySpacer0,
    Initializable,
    CrossDomainMessengerLegacySpacer1
{
    /// @notice Current message version identifier.
    uint16 public constant MESSAGE_VERSION = 1;

    /// @notice Constant overhead added to the base gas for a message.
    uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000;

    /// @notice Numerator for dynamic overhead added to the base gas for a message.
    uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64;

    /// @notice Denominator for dynamic overhead added to the base gas for a message.
    uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63;

    /// @notice Extra gas added to base gas for each byte of calldata in a message.
    uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16;

    /// @notice Gas reserved for performing the external call in `relayMessage`.
    uint64 public constant RELAY_CALL_OVERHEAD = 40_000;

    /// @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call.
    uint64 public constant RELAY_RESERVED_GAS = 60_000;

    /// @notice Gas reserved for the execution between the `hasMinGas` check and the external
    ///         call in `relayMessage`.
    uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000;

    /// @notice Address of the paired CrossDomainMessenger contract on the other chain.
    address public immutable OTHER_MESSENGER;

    /// @notice Mapping of message hashes to boolean receipt values. Note that a message will only
    ///         be present in this mapping if it has successfully been relayed on this chain, and
    ///         can therefore not be relayed again.
    mapping(bytes32 => bool) public successfulMessages;

    /// @notice Address of the sender of the currently executing message on the other chain. If the
    ///         value of this variable is the default value (0x00000000...dead) then no message is
    ///         currently being executed. Use the xDomainMessageSender getter which will throw an
    ///         error if this is the case.
    address internal xDomainMsgSender;

    /// @notice Nonce for the next message to be sent, without the message version applied. Use the
    ///         messageNonce getter which will insert the message version into the nonce to give you
    ///         the actual nonce to be used for the message.
    uint240 internal msgNonce;

    /// @notice Mapping of message hashes to a boolean if and only if the message has failed to be
    ///         executed at least once. A message will not be present in this mapping if it
    ///         successfully executed on the first attempt.
    mapping(bytes32 => bool) public failedMessages;

    /// @notice Reserve extra slots in the storage layout for future upgrades.
    ///         A gap size of 42 was chosen here, so that the first slot used in a child contract
    ///         would be a multiple of 50.
    uint256[42] private __gap;

    /// @notice Emitted whenever a message is sent to the other chain.
    /// @param target       Address of the recipient of the message.
    /// @param sender       Address of the sender of the message.
    /// @param message      Message to trigger the recipient address with.
    /// @param messageNonce Unique nonce attached to the message.
    /// @param gasLimit     Minimum gas limit that the message can be executed with.
    event SentMessage(address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit);

    /// @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the
    ///         SentMessage event without breaking the ABI of this contract, this is good enough.
    /// @param sender Address of the sender of the message.
    /// @param value  ETH value sent along with the message to the recipient.
    event SentMessageExtension1(address indexed sender, uint256 value);

    /// @notice Emitted whenever a message is successfully relayed on this chain.
    /// @param msgHash Hash of the message that was relayed.
    event RelayedMessage(bytes32 indexed msgHash);

    /// @notice Emitted whenever a message fails to be relayed on this chain.
    /// @param msgHash Hash of the message that failed to be relayed.
    event FailedRelayedMessage(bytes32 indexed msgHash);

    /// @param _otherMessenger Address of the messenger on the paired chain.
    constructor(address _otherMessenger) {
        OTHER_MESSENGER = _otherMessenger;
    }

    /// @notice Sends a message to some target address on the other chain. Note that if the call
    ///         always reverts, then the message will be unrelayable, and any ETH sent will be
    ///         permanently locked. The same will occur if the target on the other chain is
    ///         considered unsafe (see the _isUnsafeTarget() function).
    /// @param _target      Target contract or wallet address.
    /// @param _message     Message to trigger the target address with.
    /// @param _minGasLimit Minimum gas limit that the message can be executed with.
    function sendMessage(address _target, bytes calldata _message, uint32 _minGasLimit) external payable {
        // Triggers a message to the other messenger. Note that the amount of gas provided to the
        // message is the amount of gas requested by the user PLUS the base gas value. We want to
        // guarantee the property that the call to the target contract will always have at least
        // the minimum gas limit specified by the user.
        _sendMessage(
            OTHER_MESSENGER,
            baseGas(_message, _minGasLimit),
            msg.value,
            abi.encodeWithSelector(
                this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message
            )
        );

        emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit);
        emit SentMessageExtension1(msg.sender, msg.value);

        unchecked {
            ++msgNonce;
        }
    }

    /// @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only
    ///         be executed via cross-chain call from the other messenger OR if the message was
    ///         already received once and is currently being replayed.
    /// @param _nonce       Nonce of the message being relayed.
    /// @param _sender      Address of the user who sent the message.
    /// @param _target      Address that the message is targeted at.
    /// @param _value       ETH value to send with the message.
    /// @param _minGasLimit Minimum amount of gas that the message can be executed with.
    /// @param _message     Message to send to the target.
    function relayMessage(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _minGasLimit,
        bytes calldata _message
    )
        external
        payable
        virtual
    {
        (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
        require(version < 2, "CrossDomainMessenger: only version 0 or 1 messages are supported at this time");

        // If the message is version 0, then it's a migrated legacy withdrawal. We therefore need
        // to check that the legacy version of the message has not already been relayed.
        if (version == 0) {
            bytes32 oldHash = Hashing.hashCrossDomainMessageV0(_target, _sender, _message, _nonce);
            require(successfulMessages[oldHash] == false, "CrossDomainMessenger: legacy withdrawal already relayed");
        }

        // We use the v1 message hash as the unique identifier for the message because it commits
        // to the value and minimum gas limit of the message.
        bytes32 versionedHash =
            Hashing.hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _minGasLimit, _message);

        if (_isOtherMessenger()) {
            // These properties should always hold when the message is first submitted (as
            // opposed to being replayed).
            assert(msg.value == _value);
            assert(!failedMessages[versionedHash]);
        } else {
            require(msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address");

            require(failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed");
        }

        require(
            _isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address"
        );

        require(successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed");

        // If there is not enough gas left to perform the external call and finish the execution,
        // return early and assign the message to the failedMessages mapping.
        // We are asserting that we have enough gas to:
        // 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER)
        //   1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`.
        // 2. Finish the execution after the external call (RELAY_RESERVED_GAS).
        //
        // If `xDomainMsgSender` is not the default L2 sender, this function
        // is being re-entered. This marks the message as failed to allow it to be replayed.
        if (
            !SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER)
                || xDomainMsgSender != Constants.DEFAULT_L2_SENDER
        ) {
            failedMessages[versionedHash] = true;
            emit FailedRelayedMessage(versionedHash);

            // Revert in this case if the transaction was triggered by the estimation address. This
            // should only be possible during gas estimation or we have bigger problems. Reverting
            // here will make the behavior of gas estimation change such that the gas limit
            // computed will be the amount required to relay the message, even if that amount is
            // greater than the minimum gas limit specified by the user.
            if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                revert("CrossDomainMessenger: failed to relay message");
            }

            return;
        }

        xDomainMsgSender = _sender;
        bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message);
        xDomainMsgSender = Constants.DEFAULT_L2_SENDER;

        if (success) {
            // This check is identical to one above, but it ensures that the same message cannot be relayed
            // twice, and adds a layer of protection against rentrancy.
            assert(successfulMessages[versionedHash] == false);
            successfulMessages[versionedHash] = true;
            emit RelayedMessage(versionedHash);
        } else {
            failedMessages[versionedHash] = true;
            emit FailedRelayedMessage(versionedHash);

            // Revert in this case if the transaction was triggered by the estimation address. This
            // should only be possible during gas estimation or we have bigger problems. Reverting
            // here will make the behavior of gas estimation change such that the gas limit
            // computed will be the amount required to relay the message, even if that amount is
            // greater than the minimum gas limit specified by the user.
            if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                revert("CrossDomainMessenger: failed to relay message");
            }
        }
    }

    /// @notice Retrieves the address of the contract or wallet that initiated the currently
    ///         executing message on the other chain. Will throw an error if there is no message
    ///         currently being executed. Allows the recipient of a call to see who triggered it.
    /// @return Address of the sender of the currently executing message on the other chain.
    function xDomainMessageSender() external view returns (address) {
        require(
            xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set"
        );

        return xDomainMsgSender;
    }

    /// @notice Retrieves the next message nonce. Message version will be added to the upper two
    ///         bytes of the message nonce. Message version allows us to treat messages as having
    ///         different structures.
    /// @return Nonce of the next message to be sent, with added message version.
    function messageNonce() public view returns (uint256) {
        return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
    }

    /// @notice Computes the amount of gas required to guarantee that a given message will be
    ///         received on the other chain without running out of gas. Guaranteeing that a message
    ///         will not run out of gas is important because this ensures that a message can always
    ///         be replayed on the other chain if it fails to execute completely.
    /// @param _message     Message to compute the amount of required gas for.
    /// @param _minGasLimit Minimum desired gas limit when message goes to target.
    /// @return Amount of gas required to guarantee message receipt.
    function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) {
        return
        // Constant overhead
        RELAY_CONSTANT_OVERHEAD
        // Calldata overhead
        + (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD)
        // Dynamic overhead (EIP-150)
        + ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR)
        // Gas reserved for the worst-case cost of 3/5 of the `CALL` opcode's dynamic gas
        // factors. (Conservative)
        + RELAY_CALL_OVERHEAD
        // Relay reserved gas (to ensure execution of `relayMessage` completes after the
        // subcontext finishes executing) (Conservative)
        + RELAY_RESERVED_GAS
        // Gas reserved for the execution between the `hasMinGas` check and the `CALL`
        // opcode. (Conservative)
        + RELAY_GAS_CHECK_BUFFER;
    }

    /// @notice Initializer.
    // solhint-disable-next-line func-name-mixedcase
    function __CrossDomainMessenger_init() internal onlyInitializing {
        // We only want to set the xDomainMsgSender to the default value if it hasn't been initialized yet,
        // meaning that this is a fresh contract deployment.
        // This prevents resetting the xDomainMsgSender to the default value during an upgrade, which would enable
        // a reentrant withdrawal to sandwich the upgrade replay a withdrawal twice.
        if (xDomainMsgSender == address(0)) {
            xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
        }
    }

    /// @notice Sends a low-level message to the other messenger. Needs to be implemented by child
    ///         contracts because the logic for this depends on the network where the messenger is
    ///         being deployed.
    /// @param _to       Recipient of the message on the other chain.
    /// @param _gasLimit Minimum gas limit the message can be executed with.
    /// @param _value    Amount of ETH to send with the message.
    /// @param _data     Message data.
    function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal virtual;

    /// @notice Checks whether the message is coming from the other messenger. Implemented by child
    ///         contracts because the logic for this depends on the network where the messenger is
    ///         being deployed.
    /// @return Whether the message is coming from the other messenger.
    function _isOtherMessenger() internal view virtual returns (bool);

    /// @notice Checks whether a given call target is a system address that could cause the
    ///         messenger to peform an unsafe action. This is NOT a mechanism for blocking user
    ///         addresses. This is ONLY used to prevent the execution of messages to specific
    ///         system addresses that could cause security issues, e.g., having the
    ///         CrossDomainMessenger send messages to itself.
    /// @param _target Address of the contract to check.
    /// @return Whether or not the address is an unsafe system address.
    function _isUnsafeTarget(address _target) internal view virtual returns (bool);
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;

import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";

import { Semver } from "src/universal/Semver.sol";
import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol";
import { Predeploys } from "src/libraries/Predeploys.sol";
import { Blast, YieldMode, GasMode } from "src/L2/Blast.sol";

/// @custom:predeploy 0x4300000000000000000000000000000000000000
/// @title SharesBase
/// @notice Base contract to track share rebasing and yield reporting.
abstract contract SharesBase is Initializable {
    /// @notice Approved yield reporter.
    address public immutable REPORTER;

    /// @notice Share price. This value can only increase.
    uint256 public price;

    /// @notice Accumulated yield that has not been distributed
    ///         to the share price.
    uint256 public pending;

    /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
    ///         A gap size of 48 was chosen here, so that the first slot used in a child contract
    ///         would be a multiple of 50.
    uint256[48] private __gap;

    /// @notice Emitted when a new share price is set after a yield event.
    event NewPrice(uint256 price);

    error InvalidReporter();
    error DistributeFailed(uint256 count, uint256 pending);
    error PriceIsInitialized();

    /// @param _reporter Address of the approved yield reporter.
    constructor(address _reporter) {
        REPORTER = _reporter;
    }

    /// @notice Initializer.
    /// @param _price Initial share price.
    // solhint-disable-next-line func-name-mixedcase
    function __SharesBase_init(uint256 _price) internal onlyInitializing {
        if (price != 0) {
            revert PriceIsInitialized();
        }
        price = _price;
    }

    /// @notice Get the total number of shares. Needs to be
    ///         overridden by the child contract.
    /// @return Total number of shares.
    function count() public view virtual returns (uint256);

    /// @notice Report a yield event and update the share price.
    /// @param value Amount of new yield
    function addValue(uint256 value) external {
        _addValue(value);
    }

    function _addValue(uint256 value) internal virtual {
        if (AddressAliasHelper.undoL1ToL2Alias(msg.sender) != REPORTER) {
            revert InvalidReporter();
        }

        if (value > 0) {
            pending += value;
        }

        _tryDistributePending();
    }

    /// @notice Attempt to distribute pending yields if there
    ///         are sufficient pending yields to increase the
    ///         share price.
    /// @return True if there were sufficient pending yields to
    ///         increase the share price.
    function _tryDistributePending() internal returns (bool) {
        if (pending < count() || count() == 0) {
            return false;
        }

        price += pending / count();
        pending = pending % count();

        emit NewPrice(price);

        return true;
    }
}

/// @custom:predeploy 0x4300000000000000000000000000000000000000
/// @title Shares
/// @notice Integrated EVM contract to manage native ether share
///         rebasing from yield reports.
contract Shares is SharesBase, Semver {
    /// @notice Total number of shares. This value is modified directly
    ///         by the sequencer EVM.
    uint256 private _count;

    /// @notice _reporter Address of approved yield reporter.
    constructor(address _reporter) SharesBase(_reporter) Semver(1, 0, 0) {
        _disableInitializers();
    }

    /// @notice Initializer.
    function initialize(uint256 _price) public initializer {
        __SharesBase_init({ _price: _price });
        Blast(Predeploys.BLAST).configureContract(
            address(this),
            YieldMode.VOID,
            GasMode.VOID,
            address(0xdead) /// don't set a governor
        );
    }

    /// @inheritdoc SharesBase
    function count() public view override returns (uint256) {
        return _count;
    }

    function _addValue(uint256 value) internal override {
        super._addValue(value);

        SharesBase(Predeploys.WETH_REBASING).addValue(value);
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;

interface IDelegateCalls {
    function payInsurancePremium(uint256) external;
    function withdrawFromInsurance(uint256) external;
    function stake(uint256) external;
    function unstake(uint256) external returns (uint256, uint256);
    function preCommitYieldReportDelegateCallHook() external;
}

abstract contract DelegateCalls {
    function _delegatecall_payInsurancePremium(address provider, uint256 arg) internal {
        (bool success,) = provider.delegatecall(
            abi.encodeCall(IDelegateCalls.payInsurancePremium, (arg))
        );
        require(success, "delegatecall failed");
    }

    function _delegatecall_withdrawFromInsurance(address provider, uint256 arg) internal {
        (bool success,) = provider.delegatecall(
            abi.encodeCall(IDelegateCalls.withdrawFromInsurance, (arg))
        );
        require(success, "delegatecall failed");
    }

    function _delegatecall_stake(address provider, uint256 arg) internal {
        (bool success,) = provider.delegatecall(
            abi.encodeCall(IDelegateCalls.stake, (arg))
        );
        require(success, "delegatecall failed");
    }

    function _delegatecall_unstake(address provider, uint256 arg) internal returns (uint256, uint256) {
        (bool success, bytes memory res) = provider.delegatecall(
            abi.encodeCall(IDelegateCalls.unstake, (arg))
        );
        require(success, "delegatecall failed");
        return abi.decode(res, (uint256, uint256));
    }

    function _delegatecall_preCommitYieldReportDelegateCallHook(address provider) internal {
        (bool success,) = provider.delegatecall(
            abi.encodeCall(IDelegateCalls.preCommitYieldReportDelegateCallHook, ())
        );
        require(success, "delegatecall failed");
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;

import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";

import { YieldManager } from "src/mainnet-bridge/YieldManager.sol";

interface IUSDT {
    function approve(address spender, uint256 amount) external;
    function balanceOf(address) external view returns (uint256);
}

interface IDssPsm {
    function sellGem(address usr, uint256 gemAmt) external;
    function buyGem(address usr, uint256 gemAmt) external;
    function gemJoin() external view returns (address);
}

interface ICurve3Pool {
    function exchange(int128 i, int128 j, uint256 dx, uint256 min_dy) external;
}

/// @title USDConversions
/// @notice Stateless helper module for converting between USD tokens (DAI/USDC/USDT).
///
///         DAI and USDC are converted 1-to-1 using Maker's Peg Stability Mechanism.
///         All other tokens conversions are completed through Curve's 3Pool.
library USDConversions {
    uint256 constant WAD_DECIMALS = 18;
    uint256 constant USD_DECIMALS = 6;
    int128 constant DAI_INDEX = 0;
    int128 constant USDC_INDEX = 1;
    int128 constant USDT_INDEX = 2;

    IERC20 constant DAI = IERC20(0x6B175474E89094C44Da98b954EedeAC495271d0F);
    IERC20 constant USDC = IERC20(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48);
    IUSDT constant USDT = IUSDT(0xdAC17F958D2ee523a2206206994597C13D831ec7);
    IDssPsm constant PSM = IDssPsm(0x89B78CfA322F6C5dE0aBcEecab66Aee45393cC5A);
    ICurve3Pool constant CURVE_3POOL = ICurve3Pool(0xbEbc44782C7dB0a1A60Cb6fe97d0b483032FF1C7);

    /// @notice immutable address of PSM's GemJoin contract
    address constant GEM_JOIN = 0x0A59649758aa4d66E25f08Dd01271e891fe52199;

    error InsufficientBalance();
    error MinimumAmountNotMet();
    error IncorrectInputAmountUsed();
    error UnsupportedToken();
    error InvalidExtraData();
    error InvalidTokenIndex();

    /// @notice Initializer
    function _init() internal {
        USDC.approve(address(CURVE_3POOL), type(uint256).max);
        USDC.approve(GEM_JOIN, type(uint256).max);
        USDT.approve(address(CURVE_3POOL), type(uint256).max);
        DAI.approve(address(CURVE_3POOL), type(uint256).max);
        DAI.approve(GEM_JOIN, type(uint256).max);
        DAI.approve(address(PSM), type(uint256).max);
    }

    /// @notice Convert between the 3 stablecoin tokens using Curve's 3Pool and Maker's
    ///         Peg Stability Mechanism.
    /// @param inputToken         Input token index.
    /// @param outputToken        Output token index.
    /// @param inputAmountWad     Input amount in WAD.
    /// @param minOutputAmountWad Minimum amount of output token accepted in WAD.
    /// @return amountReceived Amount of output token received in the token's
    ///         decimal representation.
    function _convert(int128 inputToken, int128 outputToken, uint256 inputAmountWad, uint256 minOutputAmountWad) internal returns (uint256 amountReceived) {
        require(inputToken >= 0 && inputToken < 3 && outputToken >= 0 && outputToken < 3);
        require(inputToken != outputToken);
        if (inputAmountWad > 0) {
            uint256 inputAmount = _convertDecimals(inputAmountWad, inputToken);
            uint256 minOutputAmount = _convertDecimals(minOutputAmountWad, outputToken);
            if (_tokenBalance(inputToken) < inputAmount) {
                revert InsufficientBalance();
            }
            uint256 beforeBalance = _tokenBalance(outputToken);
            if (inputToken == USDC_INDEX && outputToken == DAI_INDEX) {
                PSM.sellGem(address(this), inputAmount);
            } else if (inputToken == DAI_INDEX && outputToken == USDC_INDEX) {
                uint256 beforeInputBalance = _tokenBalance(inputToken);
                PSM.buyGem(address(this), _wadToUSD(minOutputAmountWad)); // buyGem expects the input amount in USDC
                uint256 amountSent = beforeInputBalance - _tokenBalance(inputToken);
                if (amountSent != inputAmountWad) {
                    revert IncorrectInputAmountUsed();
                }
            } else {
                CURVE_3POOL.exchange(
                    inputToken,
                    outputToken,
                    inputAmount,
                    minOutputAmount
                );
            }
            amountReceived = _tokenBalance(outputToken) - beforeBalance;
            if (amountReceived < minOutputAmount) {
                revert MinimumAmountNotMet();
            }
        }
    }

    /// @notice Convert between supported token pairs, reverting if not supported.
    /// @param inputTokenAddress  Address of the input token.
    /// @param outputTokenAddress Address of the output token.
    /// @param inputAmountWad     Amount of input token to convert in WAD.
    /// @param _extraData         Extra data containing the minimum amount of output token to receive in WAD.
    /// @return amountReceived Amount of output token received in WAD.
    function _convertTo(
        address inputTokenAddress,
        address outputTokenAddress,
        uint256 inputAmountWad,
        bytes memory _extraData
    ) internal returns (uint256 amountReceived) {
        if (inputTokenAddress == outputTokenAddress) {
            return inputAmountWad;
        }

        if (outputTokenAddress == address(DAI)) {
            return _convertToDAI(inputTokenAddress, inputAmountWad, _extraData);
        } else {
            revert UnsupportedToken();
        }
    }

    /// @notice Convert USDC, USDT, and DAI to DAI. If the input token is DAI,
    ///         the input amount is returned without conversion.
    /// @param inputTokenAddress Address of the input token.
    /// @param inputAmountWad    Amount of input token to convert in WAD.
    /// @param _extraData        Extra data containing the minimum amount of USDB to be minted in WAD.
    ///                          Only needed for USDC and USDT. The expected format is: (uint256 minOutputAmountWad).
    /// @return amountReceived Amount of DAI received.
    function _convertToDAI(address inputTokenAddress, uint256 inputAmountWad, bytes memory _extraData) internal returns (uint256 amountReceived) {
        if (inputTokenAddress == address(DAI)) {
            return inputAmountWad;
        }

        if (_extraData.length != 32) {
            revert InvalidExtraData();
        }

        uint256 minOutputAmountWad = abi.decode(_extraData, (uint256));

        if (inputTokenAddress == address(USDC)) {
            return USDConversions._convert(USDC_INDEX, DAI_INDEX, inputAmountWad, minOutputAmountWad);
        } else if (inputTokenAddress == address(USDT)) {
            return USDConversions._convert(USDT_INDEX, DAI_INDEX, inputAmountWad, minOutputAmountWad);
        } else {
            revert UnsupportedToken();
        }
    }

    /// @notice Get the token address from the Curve token index.
    /// @param index Curve token index.
    /// @return Address of the token.
    function _token(int128 index) private pure returns (address) {
        if (index == USDC_INDEX) {
            return address(USDC);
        } else if (index == USDT_INDEX) {
            return address(USDT);
        } else if (index == DAI_INDEX) {
            return address(DAI);
        } else {
            revert InvalidTokenIndex();
        }
    }

    /// @notice Get the contract's token balance from the Curve token index.
    /// @param index Curve token index.
    /// @return Token balance.
    function _tokenBalance(int128 index) internal view returns (uint256) {
        if (_token(index) == YieldManager(address(this)).TOKEN()) {
            return YieldManager(address(this)).availableBalance();
        } else {
            return IERC20(_token(index)).balanceOf(address(this));
        }
    }

    /// @notice Convert WAD representation to the token's native decimal representation.
    ///         USDT and USDC are both 6 decimals and are converted.
    /// @param wad   Amount in WAD.
    /// @param index Curve 3Pool index of the token.
    /// @return result Amount in native decimals representation.
    function _convertDecimals(uint256 wad, int128 index) internal pure returns (uint256 result) {
        if (index == USDT_INDEX || index == USDC_INDEX) {
            result = _wadToUSD(wad);
        } else {
            result = wad;
        }
    }

    /// @notice Convert value in WAD (18 decimals) to USD (6 decimals).
    /// @param wad Amount to convert in WAD.
    /// @return Amount in USD.
    function _wadToUSD(uint256 wad) internal pure returns (uint256) {
        return _convertDecimals(wad, WAD_DECIMALS, USD_DECIMALS);
    }

    /// @notice Convert value in USD (6 decimals) to WAD (18 decimals).
    /// @param usd Amount to convert in USD.
    /// @return Amount in WAD.
    function _usdToWad(uint256 usd) internal pure returns (uint256) {
        return _convertDecimals(usd, USD_DECIMALS, WAD_DECIMALS);
    }

    /// @notice Convert value to desired output decimals representation.
    /// @param input          Input amount.
    /// @param inputDecimals  Number of decimals in the input.
    /// @param outputDecimals Desired number of decimals in the output.
    /// @return `input` in `outputDecimals`.
    function _convertDecimals(uint256 input, uint256 inputDecimals, uint256 outputDecimals) internal pure returns (uint256) {
        if (inputDecimals > outputDecimals) {
            return input / (10 ** (inputDecimals - outputDecimals));
        } else {
            return input * (10 ** (outputDecimals - inputDecimals));
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils/Address.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
     * initialization step. This is essential to configure modules that are added through upgrades and that require
     * initialization.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized < type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;

import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { Types } from "src/libraries/Types.sol";
import { Constants } from "src/libraries/Constants.sol";

/// @custom:proxied
/// @title L2OutputOracle
/// @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a
///         commitment to the state of the L2 chain. Other contracts like the OptimismPortal use
///         these outputs to verify information about the state of L2.
contract L2OutputOracle is Initializable, ISemver {
    /// @notice The interval in L2 blocks at which checkpoints must be submitted.
    ///         Although this is immutable, it can safely be modified by upgrading the
    ///         implementation contract.
    ///         Public getter is legacy and will be removed in the future. Use `submissionInterval`
    ///         instead.
    /// @custom:legacy
    uint256 public immutable SUBMISSION_INTERVAL;

    /// @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified.
    ///         Public getter is legacy and will be removed in the future. Use `l2BlockTime`
    ///         instead.
    /// @custom:legacy
    uint256 public immutable L2_BLOCK_TIME;

    /// @notice The minimum time (in seconds) that must elapse before a withdrawal can be finalized.
    ///         Public getter is legacy and will be removed in the future. Use
    //          `finalizationPeriodSeconds` instead.
    /// @custom:legacy
    uint256 public immutable FINALIZATION_PERIOD_SECONDS;

    /// @notice The number of the first L2 block recorded in this contract.
    uint256 public startingBlockNumber;

    /// @notice The timestamp of the first L2 block recorded in this contract.
    uint256 public startingTimestamp;

    /// @notice An array of L2 output proposals.
    Types.OutputProposal[] internal l2Outputs;

    /// @notice The address of the challenger. Can be updated via reinitialize.
    /// @custom:network-specific
    address public challenger;

    /// @notice The address of the proposer. Can be updated via reinitialize.
    /// @custom:network-specific
    address public proposer;

    /// @notice Emitted when an output is proposed.
    /// @param outputRoot    The output root.
    /// @param l2OutputIndex The index of the output in the l2Outputs array.
    /// @param l2BlockNumber The L2 block number of the output root.
    /// @param l1Timestamp   The L1 timestamp when proposed.
    event OutputProposed(
        bytes32 indexed outputRoot, uint256 indexed l2OutputIndex, uint256 indexed l2BlockNumber, uint256 l1Timestamp
    );

    /// @notice Emitted when outputs are deleted.
    /// @param prevNextOutputIndex Next L2 output index before the deletion.
    /// @param newNextOutputIndex  Next L2 output index after the deletion.
    event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex);

    /// @notice Semantic version.
    /// @custom:semver 1.6.0
    string public constant version = "1.6.0";

    /// @notice Constructs the L2OutputOracle contract.
    /// @param _submissionInterval  Interval in blocks at which checkpoints must be submitted.
    /// @param _l2BlockTime         The time per L2 block, in seconds.
    /// @param _finalizationPeriodSeconds The amount of time that must pass for an output proposal
    //                                    to be considered canonical.
    constructor(uint256 _submissionInterval, uint256 _l2BlockTime, uint256 _finalizationPeriodSeconds) {
        require(_l2BlockTime > 0, "L2OutputOracle: L2 block time must be greater than 0");
        require(_submissionInterval > 0, "L2OutputOracle: submission interval must be greater than 0");

        SUBMISSION_INTERVAL = _submissionInterval;
        L2_BLOCK_TIME = _l2BlockTime;
        FINALIZATION_PERIOD_SECONDS = _finalizationPeriodSeconds;

        initialize({ _startingBlockNumber: 0, _startingTimestamp: 0, _proposer: address(0), _challenger: address(0) });
    }

    /// @notice Initializer.
    /// @param _startingBlockNumber Block number for the first recoded L2 block.
    /// @param _startingTimestamp   Timestamp for the first recoded L2 block.
    /// @param _proposer            The address of the proposer.
    /// @param _challenger          The address of the challenger.
    function initialize(
        uint256 _startingBlockNumber,
        uint256 _startingTimestamp,
        address _proposer,
        address _challenger
    )
        public
        reinitializer(Constants.INITIALIZER)
    {
        require(
            _startingTimestamp <= block.timestamp,
            "L2OutputOracle: starting L2 timestamp must be less than current time"
        );

        startingTimestamp = _startingTimestamp;
        startingBlockNumber = _startingBlockNumber;
        proposer = _proposer;
        challenger = _challenger;
    }

    /// @notice Getter for the output proposal submission interval.
    function submissionInterval() external view returns (uint256) {
        return SUBMISSION_INTERVAL;
    }

    /// @notice Getter for the L2 block time.
    function l2BlockTime() external view returns (uint256) {
        return L2_BLOCK_TIME;
    }

    /// @notice Getter for the finalization period.
    function finalizationPeriodSeconds() external view returns (uint256) {
        return FINALIZATION_PERIOD_SECONDS;
    }

    /// @notice Getter for the challenger address. This will be removed
    ///         in the future, use `challenger` instead.
    /// @custom:legacy
    function CHALLENGER() external view returns (address) {
        return challenger;
    }

    /// @notice Getter for the proposer address. This will be removed in the
    ///         future, use `proposer` instead.
    /// @custom:legacy
    function PROPOSER() external view returns (address) {
        return proposer;
    }

    /// @notice Deletes all output proposals after and including the proposal that corresponds to
    ///         the given output index. Only the challenger address can delete outputs.
    /// @param _l2OutputIndex Index of the first L2 output to be deleted.
    ///                       All outputs after this output will also be deleted.
    // solhint-disable-next-line ordering
    function deleteL2Outputs(uint256 _l2OutputIndex) external {
        require(msg.sender == challenger, "L2OutputOracle: only the challenger address can delete outputs");

        // Make sure we're not *increasing* the length of the array.
        require(
            _l2OutputIndex < l2Outputs.length, "L2OutputOracle: cannot delete outputs after the latest output index"
        );

        // Do not allow deleting any outputs that have already been finalized.
        require(
            block.timestamp - l2Outputs[_l2OutputIndex].timestamp < FINALIZATION_PERIOD_SECONDS,
            "L2OutputOracle: cannot delete outputs that have already been finalized"
        );

        uint256 prevNextL2OutputIndex = nextOutputIndex();

        // Use assembly to delete the array elements because Solidity doesn't allow it.
        assembly {
            sstore(l2Outputs.slot, _l2OutputIndex)
        }

        emit OutputsDeleted(prevNextL2OutputIndex, _l2OutputIndex);
    }

    /// @notice Accepts an outputRoot and the timestamp of the corresponding L2 block.
    ///         The timestamp must be equal to the current value returned by `nextTimestamp()` in
    ///         order to be accepted. This function may only be called by the Proposer.
    /// @param _outputRoot    The L2 output of the checkpoint block.
    /// @param _l2BlockNumber The L2 block number that resulted in _outputRoot.
    /// @param _l1BlockHash   A block hash which must be included in the current chain.
    /// @param _l1BlockNumber The block number with the specified block hash.
    function proposeL2Output(
        bytes32 _outputRoot,
        uint256 _l2BlockNumber,
        bytes32 _l1BlockHash,
        uint256 _l1BlockNumber
    )
        external
        payable
    {
        require(msg.sender == proposer, "L2OutputOracle: only the proposer address can propose new outputs");

        require(
            _l2BlockNumber == nextBlockNumber(),
            "L2OutputOracle: block number must be equal to next expected block number"
        );

        require(
            computeL2Timestamp(_l2BlockNumber) < block.timestamp,
            "L2OutputOracle: cannot propose L2 output in the future"
        );

        require(_outputRoot != bytes32(0), "L2OutputOracle: L2 output proposal cannot be the zero hash");

        if (_l1BlockHash != bytes32(0)) {
            // This check allows the proposer to propose an output based on a given L1 block,
            // without fear that it will be reorged out.
            // It will also revert if the blockheight provided is more than 256 blocks behind the
            // chain tip (as the hash will return as zero). This does open the door to a griefing
            // attack in which the proposer's submission is censored until the block is no longer
            // retrievable, if the proposer is experiencing this attack it can simply leave out the
            // blockhash value, and delay submission until it is confident that the L1 block is
            // finalized.
            require(
                blockhash(_l1BlockNumber) == _l1BlockHash,
                "L2OutputOracle: block hash does not match the hash at the expected height"
            );
        }

        emit OutputProposed(_outputRoot, nextOutputIndex(), _l2BlockNumber, block.timestamp);

        l2Outputs.push(
            Types.OutputProposal({
                outputRoot: _outputRoot,
                timestamp: uint128(block.timestamp),
                l2BlockNumber: uint128(_l2BlockNumber)
            })
        );
    }

    /// @notice Returns an output by index. Needed to return a struct instead of a tuple.
    /// @param _l2OutputIndex Index of the output to return.
    /// @return The output at the given index.
    function getL2Output(uint256 _l2OutputIndex) external view returns (Types.OutputProposal memory) {
        return l2Outputs[_l2OutputIndex];
    }

    /// @notice Returns the index of the L2 output that checkpoints a given L2 block number.
    ///         Uses a binary search to find the first output greater than or equal to the given
    ///         block.
    /// @param _l2BlockNumber L2 block number to find a checkpoint for.
    /// @return Index of the first checkpoint that commits to the given L2 block number.
    function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) {
        // Make sure an output for this block number has actually been proposed.
        require(
            _l2BlockNumber <= latestBlockNumber(),
            "L2OutputOracle: cannot get output for a block that has not been proposed"
        );

        // Make sure there's at least one output proposed.
        require(l2Outputs.length > 0, "L2OutputOracle: cannot get output as no outputs have been proposed yet");

        // Find the output via binary search, guaranteed to exist.
        uint256 lo = 0;
        uint256 hi = l2Outputs.length;
        while (lo < hi) {
            uint256 mid = (lo + hi) / 2;
            if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) {
                lo = mid + 1;
            } else {
                hi = mid;
            }
        }

        return lo;
    }

    /// @notice Returns the L2 output proposal that checkpoints a given L2 block number.
    ///         Uses a binary search to find the first output greater than or equal to the given
    ///         block.
    /// @param _l2BlockNumber L2 block number to find a checkpoint for.
    /// @return First checkpoint that commits to the given L2 block number.
    function getL2OutputAfter(uint256 _l2BlockNumber) external view returns (Types.OutputProposal memory) {
        return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)];
    }

    /// @notice Returns the number of outputs that have been proposed.
    ///         Will revert if no outputs have been proposed yet.
    /// @return The number of outputs that have been proposed.
    function latestOutputIndex() external view returns (uint256) {
        return l2Outputs.length - 1;
    }

    /// @notice Returns the index of the next output to be proposed.
    /// @return The index of the next output to be proposed.
    function nextOutputIndex() public view returns (uint256) {
        return l2Outputs.length;
    }

    /// @notice Returns the block number of the latest submitted L2 output proposal.
    ///         If no proposals been submitted yet then this function will return the starting
    ///         block number.
    /// @return Latest submitted L2 block number.
    function latestBlockNumber() public view returns (uint256) {
        return l2Outputs.length == 0 ? startingBlockNumber : l2Outputs[l2Outputs.length - 1].l2BlockNumber;
    }

    /// @notice Computes the block number of the next L2 block that needs to be checkpointed.
    /// @return Next L2 block number.
    function nextBlockNumber() public view returns (uint256) {
        return latestBlockNumber() + SUBMISSION_INTERVAL;
    }

    /// @notice Returns the L2 timestamp corresponding to a given L2 block number.
    /// @param _l2BlockNumber The L2 block number of the target block.
    /// @return L2 timestamp of the given block.
    function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) {
        return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * L2_BLOCK_TIME);
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;

import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { ResourceMetering } from "src/L1/ResourceMetering.sol";
import { Storage } from "src/libraries/Storage.sol";
import { Constants } from "src/libraries/Constants.sol";

/// @title SystemConfig
/// @notice The SystemConfig contract is used to manage configuration of an Optimism network.
///         All configuration is stored on L1 and picked up by L2 as part of the derviation of
///         the L2 chain.
contract SystemConfig is OwnableUpgradeable, ISemver {
    /// @notice Enum representing different types of updates.
    /// @custom:value BATCHER              Represents an update to the batcher hash.
    /// @custom:value GAS_CONFIG           Represents an update to txn fee config on L2.
    /// @custom:value GAS_LIMIT            Represents an update to gas limit on L2.
    /// @custom:value UNSAFE_BLOCK_SIGNER  Represents an update to the signer key for unsafe
    ///                                    block distrubution.
    enum UpdateType {
        BATCHER,
        GAS_CONFIG,
        GAS_LIMIT,
        UNSAFE_BLOCK_SIGNER
    }

    /// @notice Struct representing the addresses of L1 system contracts. These should be the
    ///         proxies and will differ for each OP Stack chain.
    struct Addresses {
        address l1CrossDomainMessenger;
        address l1ERC721Bridge;
        address l1StandardBridge;
        address l2OutputOracle;
        address optimismPortal;
        address optimismMintableERC20Factory;
    }

    /// @notice Version identifier, used for upgrades.
    uint256 public constant VERSION = 0;

    /// @notice Storage slot that the unsafe block signer is stored at.
    ///         Storing it at this deterministic storage slot allows for decoupling the storage
    ///         layout from the way that `solc` lays out storage. The `op-node` uses a storage
    ///         proof to fetch this value.
    /// @dev    NOTE: this value will be migrated to another storage slot in a future version.
    ///         User input should not be placed in storage in this contract until this migration
    ///         happens. It is unlikely that keccak second preimage resistance will be broken,
    ///         but it is better to be safe than sorry.
    bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner");

    /// @notice Storage slot that the L1CrossDomainMessenger address is stored at.
    bytes32 public constant L1_CROSS_DOMAIN_MESSENGER_SLOT =
        bytes32(uint256(keccak256("systemconfig.l1crossdomainmessenger")) - 1);

    /// @notice Storage slot that the L1ERC721Bridge address is stored at.
    bytes32 public constant L1_ERC_721_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1erc721bridge")) - 1);

    /// @notice Storage slot that the L1StandardBridge address is stored at.
    bytes32 public constant L1_STANDARD_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1standardbridge")) - 1);

    /// @notice Storage slot that the L2OutputOracle address is stored at.
    bytes32 public constant L2_OUTPUT_ORACLE_SLOT = bytes32(uint256(keccak256("systemconfig.l2outputoracle")) - 1);

    /// @notice Storage slot that the OptimismPortal address is stored at.
    bytes32 public constant OPTIMISM_PORTAL_SLOT = bytes32(uint256(keccak256("systemconfig.optimismportal")) - 1);

    /// @notice Storage slot that the OptimismMintableERC20Factory address is stored at.
    bytes32 public constant OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT =
        bytes32(uint256(keccak256("systemconfig.optimismmintableerc20factory")) - 1);

    /// @notice Storage slot that the batch inbox address is stored at.
    bytes32 public constant BATCH_INBOX_SLOT = bytes32(uint256(keccak256("systemconfig.batchinbox")) - 1);

    /// @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation.
    uint256 public overhead;

    /// @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation.
    uint256 public scalar;

    /// @notice Identifier for the batcher.
    ///         For version 1 of this configuration, this is represented as an address left-padded
    ///         with zeros to 32 bytes.
    bytes32 public batcherHash;

    /// @notice L2 block gas limit.
    uint64 public gasLimit;

    /// @notice The configuration for the deposit fee market.
    ///         Used by the OptimismPortal to meter the cost of buying L2 gas on L1.
    ///         Set as internal with a getter so that the struct is returned instead of a tuple.
    ResourceMetering.ResourceConfig internal _resourceConfig;

    /// @notice Emitted when configuration is updated.
    /// @param version    SystemConfig version.
    /// @param updateType Type of update.
    /// @param data       Encoded update data.
    event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);

    /// @notice The block at which the op-node can start searching for logs from.
    uint256 public startBlock;

    /// @notice Semantic version.
    /// @custom:semver 1.10.0
    string public constant version = "1.10.0";

    /// @notice Constructs the SystemConfig contract. Cannot set
    ///         the owner to `address(0)` due to the Ownable contract's
    ///         implementation, so set it to `address(0xdEaD)`
    constructor() {
        initialize({
            _owner: address(0xdEaD),
            _overhead: 0,
            _scalar: 0,
            _batcherHash: bytes32(0),
            _gasLimit: 1,
            _unsafeBlockSigner: address(0),
            _config: ResourceMetering.ResourceConfig({
                maxResourceLimit: 1,
                elasticityMultiplier: 1,
                baseFeeMaxChangeDenominator: 2,
                minimumBaseFee: 0,
                systemTxMaxGas: 0,
                maximumBaseFee: 0
            }),
            _startBlock: type(uint256).max,
            _batchInbox: address(0),
            _addresses: SystemConfig.Addresses({
                l1CrossDomainMessenger: address(0),
                l1ERC721Bridge: address(0),
                l1StandardBridge: address(0),
                l2OutputOracle: address(0),
                optimismPortal: address(0),
                optimismMintableERC20Factory: address(0)
            })
        });
    }

    /// @notice Initializer.
    ///         The resource config must be set before the require check.
    /// @param _owner             Initial owner of the contract.
    /// @param _overhead          Initial overhead value.
    /// @param _scalar            Initial scalar value.
    /// @param _batcherHash       Initial batcher hash.
    /// @param _gasLimit          Initial gas limit.
    /// @param _unsafeBlockSigner Initial unsafe block signer address.
    /// @param _config            Initial ResourceConfig.
    /// @param _startBlock        Starting block for the op-node to search for logs from.
    ///                           Contracts that were deployed before this field existed
    ///                           need to have this field set manually via an override.
    ///                           Newly deployed contracts should set this value to uint256(0).
    /// @param _batchInbox        Batch inbox address. An identifier for the op-node to find
    ///                           canonical data.
    /// @param _addresses         Set of L1 contract addresses. These should be the proxies.
    function initialize(
        address _owner,
        uint256 _overhead,
        uint256 _scalar,
        bytes32 _batcherHash,
        uint64 _gasLimit,
        address _unsafeBlockSigner,
        ResourceMetering.ResourceConfig memory _config,
        uint256 _startBlock,
        address _batchInbox,
        SystemConfig.Addresses memory _addresses
    )
        public
        reinitializer(Constants.INITIALIZER)
    {
        __Ownable_init();
        transferOwnership(_owner);

        // These are set in ascending order of their UpdateTypes.
        _setBatcherHash(_batcherHash);
        _setGasConfig({ _overhead: _overhead, _scalar: _scalar });
        _setGasLimit(_gasLimit);
        _setUnsafeBlockSigner(_unsafeBlockSigner);

        Storage.setAddress(BATCH_INBOX_SLOT, _batchInbox);
        Storage.setAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT, _addresses.l1CrossDomainMessenger);
        Storage.setAddress(L1_ERC_721_BRIDGE_SLOT, _addresses.l1ERC721Bridge);
        Storage.setAddress(L1_STANDARD_BRIDGE_SLOT, _addresses.l1StandardBridge);
        Storage.setAddress(L2_OUTPUT_ORACLE_SLOT, _addresses.l2OutputOracle);
        Storage.setAddress(OPTIMISM_PORTAL_SLOT, _addresses.optimismPortal);
        Storage.setAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT, _addresses.optimismMintableERC20Factory);

        _setStartBlock(_startBlock);

        _setResourceConfig(_config);
        require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
    }

    /// @notice Returns the minimum L2 gas limit that can be safely set for the system to
    ///         operate. The L2 gas limit must be larger than or equal to the amount of
    ///         gas that is allocated for deposits per block plus the amount of gas that
    ///         is allocated for the system transaction.
    ///         This function is used to determine if changes to parameters are safe.
    /// @return uint64 Minimum gas limit.
    function minimumGasLimit() public view returns (uint64) {
        return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas);
    }

    /// @notice High level getter for the unsafe block signer address.
    ///         Unsafe blocks can be propagated across the p2p network if they are signed by the
    ///         key corresponding to this address.
    /// @return addr_ Address of the unsafe block signer.
    // solhint-disable-next-line ordering
    function unsafeBlockSigner() public view returns (address addr_) {
        addr_ = Storage.getAddress(UNSAFE_BLOCK_SIGNER_SLOT);
    }

    /// @notice Getter for the L1CrossDomainMessenger address.
    function l1CrossDomainMessenger() external view returns (address addr_) {
        addr_ = Storage.getAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT);
    }

    /// @notice Getter for the L1ERC721Bridge address.
    function l1ERC721Bridge() external view returns (address addr_) {
        addr_ = Storage.getAddress(L1_ERC_721_BRIDGE_SLOT);
    }

    /// @notice Getter for the L1StandardBridge address.
    function l1StandardBridge() external view returns (address addr_) {
        addr_ = Storage.getAddress(L1_STANDARD_BRIDGE_SLOT);
    }

    /// @notice Getter for the L2OutputOracle address.
    function l2OutputOracle() external view returns (address addr_) {
        addr_ = Storage.getAddress(L2_OUTPUT_ORACLE_SLOT);
    }

    /// @notice Getter for the OptimismPortal address.
    function optimismPortal() external view returns (address addr_) {
        addr_ = Storage.getAddress(OPTIMISM_PORTAL_SLOT);
    }

    /// @notice Getter for the OptimismMintableERC20Factory address.
    function optimismMintableERC20Factory() external view returns (address addr_) {
        addr_ = Storage.getAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT);
    }

    /// @notice Getter for the BatchInbox address.
    function batchInbox() external view returns (address addr_) {
        addr_ = Storage.getAddress(BATCH_INBOX_SLOT);
    }

    /// @notice Sets the start block in a backwards compatible way. Proxies
    ///         that were initialized before the startBlock existed in storage
    ///         can have their start block set by a user provided override.
    ///         A start block of 0 indicates that there is no override and the
    ///         start block will be set by `block.number`.
    /// @dev    This logic is used to patch legacy deployments with new storage values.
    ///         Use the override if it is provided as a non zero value and the value
    ///         has not already been set in storage. Use `block.number` if the value
    ///         has already been set in storage
    /// @param  _startBlock The start block override to set in storage.
    function _setStartBlock(uint256 _startBlock) internal {
        if (_startBlock != 0 && startBlock == 0) {
            // There is an override and it is not already set, this is for legacy chains.
            startBlock = _startBlock;
        } else if (startBlock == 0) {
            // There is no override and it is not set in storage. Set it to the block number.
            // This is for newly deployed chains.
            startBlock = block.number;
        }
    }

    /// @notice Updates the unsafe block signer address. Can only be called by the owner.
    /// @param _unsafeBlockSigner New unsafe block signer address.
    function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner {
        _setUnsafeBlockSigner(_unsafeBlockSigner);
    }

    /// @notice Updates the unsafe block signer address.
    /// @param _unsafeBlockSigner New unsafe block signer address.
    function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal {
        Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner);

        bytes memory data = abi.encode(_unsafeBlockSigner);
        emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data);
    }

    /// @notice Updates the batcher hash. Can only be called by the owner.
    /// @param _batcherHash New batcher hash.
    function setBatcherHash(bytes32 _batcherHash) external onlyOwner {
        _setBatcherHash(_batcherHash);
    }

    /// @notice Internal function for updating the batcher hash.
    /// @param _batcherHash New batcher hash.
    function _setBatcherHash(bytes32 _batcherHash) internal {
        batcherHash = _batcherHash;

        bytes memory data = abi.encode(_batcherHash);
        emit ConfigUpdate(VERSION, UpdateType.BATCHER, data);
    }

    /// @notice Updates gas config. Can only be called by the owner.
    /// @param _overhead New overhead value.
    /// @param _scalar   New scalar value.
    function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner {
        _setGasConfig(_overhead, _scalar);
    }

    /// @notice Internal function for updating the gas config.
    /// @param _overhead New overhead value.
    /// @param _scalar   New scalar value.
    function _setGasConfig(uint256 _overhead, uint256 _scalar) internal {
        overhead = _overhead;
        scalar = _scalar;

        bytes memory data = abi.encode(_overhead, _scalar);
        emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data);
    }

    /// @notice Updates the L2 gas limit. Can only be called by the owner.
    /// @param _gasLimit New gas limit.
    function setGasLimit(uint64 _gasLimit) external onlyOwner {
        _setGasLimit(_gasLimit);
    }

    /// @notice Internal function for updating the L2 gas limit.
    /// @param _gasLimit New gas limit.
    function _setGasLimit(uint64 _gasLimit) internal {
        require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
        gasLimit = _gasLimit;

        bytes memory data = abi.encode(_gasLimit);
        emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data);
    }

    /// @notice A getter for the resource config.
    ///         Ensures that the struct is returned instead of a tuple.
    /// @return ResourceConfig
    function resourceConfig() external view returns (ResourceMetering.ResourceConfig memory) {
        return _resourceConfig;
    }

    /// @notice An external setter for the resource config.
    ///         In the future, this method may emit an event that the `op-node` picks up
    ///         for when the resource config is changed.
    /// @param _config The new resource config values.
    function setResourceConfig(ResourceMetering.ResourceConfig memory _config) external onlyOwner {
        _setResourceConfig(_config);
    }

    /// @notice An internal setter for the resource config.
    ///         Ensures that the config is sane before storing it by checking for invariants.
    /// @param _config The new resource config.
    function _setResourceConfig(ResourceMetering.ResourceConfig memory _config) internal {
        // Min base fee must be less than or equal to max base fee.
        require(
            _config.minimumBaseFee <= _config.maximumBaseFee, "SystemConfig: min base fee must be less than max base"
        );
        // Base fee change denominator must be greater than 1.
        require(_config.baseFeeMaxChangeDenominator > 1, "SystemConfig: denominator must be larger than 1");
        // Max resource limit plus system tx gas must be less than or equal to the L2 gas limit.
        // The gas limit must be increased before these values can be increased.
        require(_config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit, "SystemConfig: gas limit too low");
        // Elasticity multiplier must be greater than 0.
        require(_config.elasticityMultiplier > 0, "SystemConfig: elasticity multiplier cannot be 0");
        // No precision loss when computing target resource limit.
        require(
            ((_config.maxResourceLimit / _config.elasticityMultiplier) * _config.elasticityMultiplier)
                == _config.maxResourceLimit,
            "SystemConfig: precision loss with target resource limit"
        );

        _resourceConfig = _config;
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;

import { ResourceMetering } from "../L1/ResourceMetering.sol";

/// @title Constants
/// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
///         the stuff used in multiple contracts. Constants that only apply to a single contract
///         should be defined in that contract instead.
library Constants {
    /// @notice Special address to be used as the tx origin for gas estimation calls in the
    ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
    ///         the minimum gas limit specified by the user is not actually enough to execute the
    ///         given message and you're attempting to estimate the actual necessary gas limit. We
    ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
    ///         never have any code on any EVM chain.
    address internal constant ESTIMATION_ADDRESS = address(1);

    /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
    ///         CrossDomainMessenger contracts before an actual sender is set. This value is
    ///         non-zero to reduce the gas cost of message passing transactions.
    address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;

    /// @notice The storage slot that holds the address of a proxy implementation.
    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
    bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /// @notice The storage slot that holds the address of the owner.
    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
    bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

    /// @notice Returns the default values for the ResourceConfig. These are the recommended values
    ///         for a production network.
    function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
        ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
            maxResourceLimit: 20_000_000,
            elasticityMultiplier: 10,
            baseFeeMaxChangeDenominator: 8,
            minimumBaseFee: 1 gwei,
            systemTxMaxGas: 1_000_000,
            maximumBaseFee: type(uint128).max
        });
        return config;
    }

    /// @notice The `reinitailizer` input for upgradable contracts. This value must be updated
    ///         each time that the contracts are deployed.
    uint8 internal constant INITIALIZER = 1;
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;

import { Types } from "./Types.sol";
import { Encoding } from "./Encoding.sol";

/// @title Hashing
/// @notice Hashing handles Optimism's various different hashing schemes.
library Hashing {
    /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
    ///         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
    ///         system.
    /// @param _tx User deposit transaction to hash.
    /// @return Hash of the RLP encoded L2 deposit transaction.
    function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
        return keccak256(Encoding.encodeDepositTransaction(_tx));
    }

    /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
    ///         of the L2 transaction that corresponds to a deposit is unique and is
    ///         deterministically generated from L1 transaction data.
    /// @param _l1BlockHash Hash of the L1 block where the deposit was included.
    /// @param _logIndex    The index of the log that created the deposit transaction.
    /// @return Hash of the deposit transaction's "source hash".
    function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
        bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
        return keccak256(abi.encode(bytes32(0), depositId));
    }

    /// @notice Hashes the cross domain message based on the version that is encoded into the
    ///         message nonce.
    /// @param _nonce    Message nonce with version encoded into the first two bytes.
    /// @param _sender   Address of the sender of the message.
    /// @param _target   Address of the target of the message.
    /// @param _value    ETH value to send to the target.
    /// @param _gasLimit Gas limit to use for the message.
    /// @param _data     Data to send with the message.
    /// @return Hashed cross domain message.
    function hashCrossDomainMessage(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _gasLimit,
        bytes memory _data
    )
        internal
        pure
        returns (bytes32)
    {
        (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
        if (version == 0) {
            return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
        } else if (version == 1) {
            return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
        } else {
            revert("Hashing: unknown cross domain message version");
        }
    }

    /// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
    /// @param _target Address of the target of the message.
    /// @param _sender Address of the sender of the message.
    /// @param _data   Data to send with the message.
    /// @param _nonce  Message nonce.
    /// @return Hashed cross domain message.
    function hashCrossDomainMessageV0(
        address _target,
        address _sender,
        bytes memory _data,
        uint256 _nonce
    )
        internal
        pure
        returns (bytes32)
    {
        return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
    }

    /// @notice Hashes a cross domain message based on the V1 (current) encoding.
    /// @param _nonce    Message nonce.
    /// @param _sender   Address of the sender of the message.
    /// @param _target   Address of the target of the message.
    /// @param _value    ETH value to send to the target.
    /// @param _gasLimit Gas limit to use for the message.
    /// @param _data     Data to send with the message.
    /// @return Hashed cross domain message.
    function hashCrossDomainMessageV1(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _gasLimit,
        bytes memory _data
    )
        internal
        pure
        returns (bytes32)
    {
        return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
    }

    /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
    /// @param _tx Withdrawal transaction to hash.
    /// @return Hashed withdrawal transaction.
    function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
        return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
    }

    /// @notice Hashes the various elements of an output root proof into an output root hash which
    ///         can be used to check if the proof is valid.
    /// @param _outputRootProof Output root proof which should hash to an output root.
    /// @return Hashed output root proof.
    function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
        return keccak256(
            abi.encode(
                _outputRootProof.version,
                _outputRootProof.stateRoot,
                _outputRootProof.messagePasserStorageRoot,
                _outputRootProof.latestBlockhash
            )
        );
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;

import { MerkleTrie } from "./MerkleTrie.sol";

/// @title SecureMerkleTrie
/// @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input
///         keys. Ethereum's state trie hashes input keys before storing them.
library SecureMerkleTrie {
    /// @notice Verifies a proof that a given key/value pair is present in the Merkle trie.
    /// @param _key   Key of the node to search for, as a hex string.
    /// @param _value Value of the node to search for, as a hex string.
    /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
    ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
    ///               nodes that make a path down to the target node.
    /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
    ///               correctly constructed.
    /// @return valid_ Whether or not the proof is valid.
    function verifyInclusionProof(
        bytes memory _key,
        bytes memory _value,
        bytes[] memory _proof,
        bytes32 _root
    )
        internal
        pure
        returns (bool valid_)
    {
        bytes memory key = _getSecureKey(_key);
        valid_ = MerkleTrie.verifyInclusionProof(key, _value, _proof, _root);
    }

    /// @notice Retrieves the value associated with a given key.
    /// @param _key   Key to search for, as hex bytes.
    /// @param _proof Merkle trie inclusion proof for the key.
    /// @param _root  Known root of the Merkle trie.
    /// @return value_ Value of the key if it exists.
    function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
        bytes memory key = _getSecureKey(_key);
        value_ = MerkleTrie.get(key, _proof, _root);
    }

    /// @notice Computes the hashed version of the input key.
    /// @param _key Key to hash.
    /// @return hash_ Hashed version of the key.
    function _getSecureKey(bytes memory _key) private pure returns (bytes memory hash_) {
        hash_ = abi.encodePacked(keccak256(_key));
    }
}

// SPDX-License-Identifier: Apache-2.0

/*
 * Copyright 2019-2021, Offchain Labs, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

pragma solidity ^0.8.0;

library AddressAliasHelper {
    uint160 constant offset = uint160(0x1111000000000000000000000000000000001111);

    /// @notice Utility function that converts the address in the L1 that submitted a tx to
    /// the inbox to the msg.sender viewed in the L2
    /// @param l1Address the address in the L1 that triggered the tx to L2
    /// @return l2Address L2 address as viewed in msg.sender
    function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) {
        unchecked {
            l2Address = address(uint160(l1Address) + offset);
        }
    }

    /// @notice Utility function that converts the msg.sender viewed in the L2 to the
    /// address in the L1 that submitted a tx to the inbox
    /// @param l2Address L2 address as viewed in msg.sender
    /// @return l1Address the address in the L1 that triggered the tx to L2
    function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) {
        unchecked {
            l1Address = address(uint160(l2Address) - offset);
        }
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;

import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { Burn } from "src/libraries/Burn.sol";
import { Arithmetic } from "src/libraries/Arithmetic.sol";

/// @custom:upgradeable
/// @title ResourceMetering
/// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
///         updates automatically based on current demand.
abstract contract ResourceMetering is Initializable {
    /// @notice Represents the various parameters that control the way in which resources are
    ///         metered. Corresponds to the EIP-1559 resource metering system.
    /// @custom:field prevBaseFee   Base fee from the previous block(s).
    /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
    /// @custom:field prevBlockNum  Last block number that the base fee was updated.
    struct ResourceParams {
        uint128 prevBaseFee;
        uint64 prevBoughtGas;
        uint64 prevBlockNum;
    }

    /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
    ///         market. These values should be set with care as it is possible to set them in
    ///         a way that breaks the deposit gas market. The target resource limit is defined as
    ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
    ///         single word. There is additional space for additions in the future.
    /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
    ///                                            can be purchased per block.
    /// @custom:field elasticityMultiplier         Determines the target resource limit along with
    ///                                            the resource limit.
    /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
    /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
    ///                                            value.
    /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
    ///                                            transaction. This should be set to the same
    ///                                            number that the op-node sets as the gas limit
    ///                                            for the system transaction.
    /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
    ///                                            value.
    struct ResourceConfig {
        uint32 maxResourceLimit;
        uint8 elasticityMultiplier;
        uint8 baseFeeMaxChangeDenominator;
        uint32 minimumBaseFee;
        uint32 systemTxMaxGas;
        uint128 maximumBaseFee;
    }

    /// @notice EIP-1559 style gas parameters.
    ResourceParams public params;

    /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
    uint256[48] private __gap;

    /// @notice Meters access to a function based an amount of a requested resource.
    /// @param _amount Amount of the resource requested.
    modifier metered(uint64 _amount) {
        // Record initial gas amount so we can refund for it later.
        uint256 initialGas = gasleft();

        // Run the underlying function.
        _;

        // Run the metering function.
        _metered(_amount, initialGas);
    }

    /// @notice An internal function that holds all of the logic for metering a resource.
    /// @param _amount     Amount of the resource requested.
    /// @param _initialGas The amount of gas before any modifier execution.
    function _metered(uint64 _amount, uint256 _initialGas) internal {
        // Update block number and base fee if necessary.
        uint256 blockDiff = block.number - params.prevBlockNum;

        ResourceConfig memory config = _resourceConfig();
        int256 targetResourceLimit =
            int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));

        if (blockDiff > 0) {
            // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
            // at which deposits can be created and therefore limit the potential for deposits to
            // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
            int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
            int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));

            // Update base fee by adding the base fee delta and clamp the resulting value between
            // min and max.
            int256 newBaseFee = Arithmetic.clamp({
                _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                _min: int256(uint256(config.minimumBaseFee)),
                _max: int256(uint256(config.maximumBaseFee))
            });

            // If we skipped more than one block, we also need to account for every empty block.
            // Empty block means there was no demand for deposits in that block, so we should
            // reflect this lack of demand in the fee.
            if (blockDiff > 1) {
                // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                // between min and max.
                newBaseFee = Arithmetic.clamp({
                    _value: Arithmetic.cdexp({
                        _coefficient: newBaseFee,
                        _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                        _exponent: int256(blockDiff - 1)
                    }),
                    _min: int256(uint256(config.minimumBaseFee)),
                    _max: int256(uint256(config.maximumBaseFee))
                });
            }

            // Update new base fee, reset bought gas, and update block number.
            params.prevBaseFee = uint128(uint256(newBaseFee));
            params.prevBoughtGas = 0;
            params.prevBlockNum = uint64(block.number);
        }

        // Make sure we can actually buy the resource amount requested by the user.
        params.prevBoughtGas += _amount;
        require(
            int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
            "ResourceMetering: cannot buy more gas than available gas limit"
        );

        // Determine the amount of ETH to be paid.
        uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);

        // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
        // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
        // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
        // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
        // during any 1 day period in the last 5 years, so should be fine.
        uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);

        // Give the user a refund based on the amount of gas they used to do all of the work up to
        // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
        // effectively like a dynamic stipend (with a minimum value).
        uint256 usedGas = _initialGas - gasleft();
        if (gasCost > usedGas) {
            Burn.gas(gasCost - usedGas);
        }
    }

    /// @notice Virtual function that returns the resource config.
    ///         Contracts that inherit this contract must implement this function.
    /// @return ResourceConfig
    function _resourceConfig() internal virtual returns (ResourceConfig memory);

    /// @notice Sets initial resource parameter values.
    ///         This function must either be called by the initializer function of an upgradeable
    ///         child contract.
    // solhint-disable-next-line func-name-mixedcase
    function __ResourceMetering_init() internal onlyInitializing {
        if (params.prevBlockNum == 0) {
            params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
        }
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;

/// @title ISemver
/// @notice ISemver is a simple contract for ensuring that contracts are
///         versioned using semantic versioning.
interface ISemver {
    /// @notice Getter for the semantic version of the contract. This is not
    ///         meant to be used onchain but instead meant to be used by offchain
    ///         tooling.
    /// @return Semver contract version as a string.
    function version() external view returns (string memory);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        // Inspired by OraclizeAPI's implementation - MIT licence
        // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol

        if (value == 0) {
            return "0";
        }
        uint256 temp = value;
        uint256 digits;
        while (temp != 0) {
            digits++;
            temp /= 10;
        }
        bytes memory buffer = new bytes(digits);
        while (value != 0) {
            digits -= 1;
            buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
            value /= 10;
        }
        return string(buffer);
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        if (value == 0) {
            return "0x00";
        }
        uint256 temp = value;
        uint256 length = 0;
        while (temp != 0) {
            length++;
            temp >>= 8;
        }
        return toHexString(value, length);
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _HEX_SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/ContextUpgradeable.sol";
import "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    function __Ownable_init() internal onlyInitializing {
        __Ownable_init_unchained();
    }

    function __Ownable_init_unchained() internal onlyInitializing {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC20.sol)

pragma solidity ^0.8.0;

import "../token/ERC20/IERC20.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    }

    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) {
            // Return data is optional
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;

import { Types } from "./Types.sol";
import { Hashing } from "./Hashing.sol";
import { RLPWriter } from "./rlp/RLPWriter.sol";

/// @title Encoding
/// @notice Encoding handles Optimism's various different encoding schemes.
library Encoding {
    /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
    ///         to the L2 system. Useful for searching for a deposit in the L2 system. The
    ///         transaction is prefixed with 0x7e to identify its EIP-2718 type.
    /// @param _tx User deposit transaction to encode.
    /// @return RLP encoded L2 deposit transaction.
    function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
        bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
        bytes[] memory raw = new bytes[](8);
        raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
        raw[1] = RLPWriter.writeAddress(_tx.from);
        raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
        raw[3] = RLPWriter.writeUint(_tx.mint);
        raw[4] = RLPWriter.writeUint(_tx.value);
        raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
        raw[6] = RLPWriter.writeBool(false);
        raw[7] = RLPWriter.writeBytes(_tx.data);
        return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
    }

    /// @notice Encodes the cross domain message based on the version that is encoded into the
    ///         message nonce.
    /// @param _nonce    Message nonce with version encoded into the first two bytes.
    /// @param _sender   Address of the sender of the message.
    /// @param _target   Address of the target of the message.
    /// @param _value    ETH value to send to the target.
    /// @param _gasLimit Gas limit to use for the message.
    /// @param _data     Data to send with the message.
    /// @return Encoded cross domain message.
    function encodeCrossDomainMessage(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _gasLimit,
        bytes memory _data
    )
        internal
        pure
        returns (bytes memory)
    {
        (, uint16 version) = decodeVersionedNonce(_nonce);
        if (version == 0) {
            return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
        } else if (version == 1) {
            return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
        } else {
            revert("Encoding: unknown cross domain message version");
        }
    }

    /// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
    /// @param _target Address of the target of the message.
    /// @param _sender Address of the sender of the message.
    /// @param _data   Data to send with the message.
    /// @param _nonce  Message nonce.
    /// @return Encoded cross domain message.
    function encodeCrossDomainMessageV0(
        address _target,
        address _sender,
        bytes memory _data,
        uint256 _nonce
    )
        internal
        pure
        returns (bytes memory)
    {
        return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
    }

    /// @notice Encodes a cross domain message based on the V1 (current) encoding.
    /// @param _nonce    Message nonce.
    /// @param _sender   Address of the sender of the message.
    /// @param _target   Address of the target of the message.
    /// @param _value    ETH value to send to the target.
    /// @param _gasLimit Gas limit to use for the message.
    /// @param _data     Data to send with the message.
    /// @return Encoded cross domain message.
    function encodeCrossDomainMessageV1(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _gasLimit,
        bytes memory _data
    )
        internal
        pure
        returns (bytes memory)
    {
        return abi.encodeWithSignature(
            "relayMessage(uint256,address,address,uint256,uint256,bytes)",
            _nonce,
            _sender,
            _target,
            _value,
            _gasLimit,
            _data
        );
    }

    /// @notice Adds a version number into the first two bytes of a message nonce.
    /// @param _nonce   Message nonce to encode into.
    /// @param _version Version number to encode into the message nonce.
    /// @return Message nonce with version encoded into the first two bytes.
    function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
        uint256 nonce;
        assembly {
            nonce := or(shl(240, _version), _nonce)
        }
        return nonce;
    }

    /// @notice Pulls the version out of a version-encoded nonce.
    /// @param _nonce Message nonce with version encoded into the first two bytes.
    /// @return Nonce without encoded version.
    /// @return Version of the message.
    function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
        uint240 nonce;
        uint16 version;
        assembly {
            nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
            version := shr(240, _nonce)
        }
        return (nonce, version);
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;

import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";

import { Semver } from "src/universal/Semver.sol";
import { GasMode, IGas } from "src/L2/Gas.sol";

enum YieldMode {
    AUTOMATIC,
    VOID,
    CLAIMABLE
}

interface IYield {
    function configure(address contractAddress, uint8 flags) external returns (uint256);
    function claim(address contractAddress, address recipientOfYield, uint256 desiredAmount) external returns (uint256);
    function getClaimableAmount(address contractAddress) external view returns (uint256);
    function getConfiguration(address contractAddress) external view returns (uint8);
}

interface IBlast{
    // configure
    function configureContract(address contractAddress, YieldMode _yield, GasMode gasMode, address governor) external;
    function configure(YieldMode _yield, GasMode gasMode, address governor) external;

    // base configuration options
    function configureClaimableYield() external;
    function configureClaimableYieldOnBehalf(address contractAddress) external;
    function configureAutomaticYield() external;
    function configureAutomaticYieldOnBehalf(address contractAddress) external;
    function configureVoidYield() external;
    function configureVoidYieldOnBehalf(address contractAddress) external;
    function configureClaimableGas() external;
    function configureClaimableGasOnBehalf(address contractAddress) external;
    function configureVoidGas() external;
    function configureVoidGasOnBehalf(address contractAddress) external;
    function configureGovernor(address _governor) external;
    function configureGovernorOnBehalf(address _newGovernor, address contractAddress) external;

    // claim yield
    function claimYield(address contractAddress, address recipientOfYield, uint256 amount) external returns (uint256);
    function claimAllYield(address contractAddress, address recipientOfYield) external returns (uint256);

    // claim gas
    function claimAllGas(address contractAddress, address recipientOfGas) external returns (uint256);
    // NOTE: can be off by 1 bip
    function claimGasAtMinClaimRate(address contractAddress, address recipientOfGas, uint256 minClaimRateBips) external returns (uint256);
    function claimMaxGas(address contractAddress, address recipientOfGas) external returns (uint256);
    function claimGas(address contractAddress, address recipientOfGas, uint256 gasToClaim, uint256 gasSecondsToConsume) external returns (uint256);

    // read functions
    function readClaimableYield(address contractAddress) external view returns (uint256);
    function readYieldConfiguration(address contractAddress) external view returns (uint8);
    function readGasParams(address contractAddress) external view returns (uint256 etherSeconds, uint256 etherBalance, uint256 lastUpdated, GasMode);
}

/// @custom:predeploy 0x4300000000000000000000000000000000000002
/// @title Blast
contract Blast is IBlast, Initializable, Semver {
    address public immutable YIELD_CONTRACT;
    address public immutable GAS_CONTRACT;

    mapping(address => address) public governorMap;

    constructor(address _gasContract, address _yieldContract) Semver(1, 0, 0) {
        GAS_CONTRACT = _gasContract;
        YIELD_CONTRACT = _yieldContract;
        _disableInitializers();
    }

    function initialize() public initializer {}

    /**
     * @notice Checks if the caller is the governor of the contract
     * @param contractAddress The address of the contract
     * @return A boolean indicating if the caller is the governor
     */
    function isGovernor(address contractAddress) public view returns (bool) {
        return msg.sender == governorMap[contractAddress];
    }
    /**
     * @notice Checks if the governor is not set for the contract
     * @param contractAddress The address of the contract
     * @return boolean indicating if the governor is not set
     */
    function governorNotSet(address contractAddress) internal view returns (bool) {
        return governorMap[contractAddress] == address(0);
    }
    /**
     * @notice Checks if the caller is authorized
     * @param contractAddress The address of the contract
     * @return A boolean indicating if the caller is authorized
     */
    function isAuthorized(address contractAddress) public view returns (bool) {
        return isGovernor(contractAddress) || (governorNotSet(contractAddress) && msg.sender == contractAddress);
    }

    /**
     * @notice contract configures its yield and gas modes and sets the governor. called by contract
     * @param _yieldMode The yield mode to be set
     * @param _gasMode The gas mode to be set
     * @param governor The address of the governor to be set
     */
    function configure(YieldMode _yieldMode, GasMode _gasMode, address governor) external {
        // requires that no governor is set for contract
        require(isAuthorized(msg.sender), "not authorized to configure contract");
        // set governor
        governorMap[msg.sender] = governor;
        // set gas mode
        IGas(GAS_CONTRACT).setGasMode(msg.sender, _gasMode);
        // set yield mode
        IYield(YIELD_CONTRACT).configure(msg.sender, uint8(_yieldMode));
    }

    /**
     * @notice Configures the yield and gas modes and sets the governor for a specific contract. called by authorized user
     * @param contractAddress The address of the contract to be configured
     * @param _yieldMode The yield mode to be set
     * @param _gasMode The gas mode to be set
     * @param _newGovernor The address of the new governor to be set
     */
    function configureContract(address contractAddress, YieldMode _yieldMode, GasMode _gasMode, address _newGovernor) external {
        // only allow governor, or if no governor is set, the contract itself to configure
        require(isAuthorized(contractAddress), "not authorized to configure contract");
        // set governor
        governorMap[contractAddress] = _newGovernor;
        // set gas mode
        IGas(GAS_CONTRACT).setGasMode(contractAddress, _gasMode);
        // set yield mode
        IYield(YIELD_CONTRACT).configure(contractAddress, uint8(_yieldMode));
    }

    /**
     * @notice Configures the yield mode to CLAIMABLE for the contract that calls this function
     */
    function configureClaimableYield() external {
        require(isAuthorized(msg.sender), "not authorized to configure contract");
        IYield(YIELD_CONTRACT).configure(msg.sender, uint8(YieldMode.CLAIMABLE));
    }

    /**
     * @notice Configures the yield mode to CLAIMABLE for a specific contract. Called by an authorized user
     * @param contractAddress The address of the contract to be configured
     */
    function configureClaimableYieldOnBehalf(address contractAddress) external {
        require(isAuthorized(contractAddress), "not authorized to configure contract");
        IYield(YIELD_CONTRACT).configure(contractAddress, uint8(YieldMode.CLAIMABLE));
    }

    /**
     * @notice Configures the yield mode to AUTOMATIC for the contract that calls this function
     */
    function configureAutomaticYield() external {
        require(isAuthorized(msg.sender), "not authorized to configure contract");
        IYield(YIELD_CONTRACT).configure(msg.sender, uint8(YieldMode.AUTOMATIC));
    }

    /**
     * @notice Configures the yield mode to AUTOMATIC for a specific contract. Called by an authorized user
     * @param contractAddress The address of the contract to be configured
     */
    function configureAutomaticYieldOnBehalf(address contractAddress) external {
        require(isAuthorized(contractAddress), "not authorized to configure contract");
        IYield(YIELD_CONTRACT).configure(contractAddress, uint8(YieldMode.AUTOMATIC));
    }

    /**
     * @notice Configures the yield mode to VOID for the contract that calls this function
     */
    function configureVoidYield() external {
        require(isAuthorized(msg.sender), "not authorized to configure contract");
        IYield(YIELD_CONTRACT).configure(msg.sender, uint8(YieldMode.VOID));
    }

    /**
     * @notice Configures the yield mode to VOID for a specific contract. Called by an authorized user
     * @param contractAddress The address of the contract to be configured
     */
    function configureVoidYieldOnBehalf(address contractAddress) external {
        require(isAuthorized(contractAddress), "not authorized to configure contract");
        IYield(YIELD_CONTRACT).configure(contractAddress, uint8(YieldMode.VOID));
    }

    /**
     * @notice Configures the gas mode to CLAIMABLE for the contract that calls this function
     */
    function configureClaimableGas() external {
        require(isAuthorized(msg.sender), "not authorized to configure contract");
        IGas(GAS_CONTRACT).setGasMode(msg.sender, GasMode.CLAIMABLE);
    }

    /**
     * @notice Configures the gas mode to CLAIMABLE for a specific contract. Called by an authorized user
     * @param contractAddress The address of the contract to be configured
     */
    function configureClaimableGasOnBehalf(address contractAddress) external {
        require(isAuthorized(contractAddress), "not authorized to configure contract");
        IGas(GAS_CONTRACT).setGasMode(contractAddress, GasMode.CLAIMABLE);
    }

    /**
     * @notice Configures the gas mode to VOID for the contract that calls this function
     */
    function configureVoidGas() external {
        require(isAuthorized(msg.sender), "not authorized to configure contract");
        IGas(GAS_CONTRACT).setGasMode(msg.sender, GasMode.VOID);
    }

    /**
     * @notice Configures the gas mode to void for a specific contract. Called by an authorized user
     * @param contractAddress The address of the contract to be configured
     */
    function configureVoidGasOnBehalf(address contractAddress) external {
        require(isAuthorized(contractAddress), "not authorized to configure contract");
        IGas(GAS_CONTRACT).setGasMode(contractAddress, GasMode.VOID);
    }

    /**
     * @notice Configures the governor for the contract that calls this function
     */
    function configureGovernor(address _governor) external {
        require(isAuthorized(msg.sender), "not authorized to configure contract");
        governorMap[msg.sender] = _governor;
    }

    /**
     * @notice Configures the governor for a specific contract. Called by an authorized user
     * @param contractAddress The address of the contract to be configured
     */
    function configureGovernorOnBehalf(address _newGovernor, address contractAddress) external {
        require(isAuthorized(contractAddress), "not authorized to configure contract");
        governorMap[contractAddress] = _newGovernor;
    }


    // claim methods

    /**
     * @notice Claims yield for a specific contract. Called by an authorized user
     * @param contractAddress The address of the contract for which yield is to be claimed
     * @param recipientOfYield The address of the recipient of the yield
     * @param amount The amount of yield to be claimed
     * @return The amount of yield that was claimed
     */
    function claimYield(address contractAddress, address recipientOfYield, uint256 amount) external returns (uint256) {
        require(isAuthorized(contractAddress), "Not authorized to claim yield");
        return  IYield(YIELD_CONTRACT).claim(contractAddress, recipientOfYield, amount);
    }
    /**
     * @notice Claims all yield for a specific contract. Called by an authorized user
     * @param contractAddress The address of the contract for which all yield is to be claimed
     * @param recipientOfYield The address of the recipient of the yield
     * @return The amount of yield that was claimed
     */
    function claimAllYield(address contractAddress, address recipientOfYield) external returns (uint256) {
        require(isAuthorized(contractAddress), "Not authorized to claim yield");
        uint256 amount = IYield(YIELD_CONTRACT).getClaimableAmount(contractAddress);
        return  IYield(YIELD_CONTRACT).claim(contractAddress, recipientOfYield, amount);
    }

    /**
     * @notice Claims all gas for a specific contract. Called by an authorized user
     * @param contractAddress The address of the contract for which all gas is to be claimed
     * @param recipientOfGas The address of the recipient of the gas
     * @return The amount of gas that was claimed
     */
    function claimAllGas(address contractAddress, address recipientOfGas) external returns (uint256) {
        require(isAuthorized(contractAddress), "Not allowed to claim all gas");
        return IGas(GAS_CONTRACT).claimAll(contractAddress, recipientOfGas);
    }

    /**
     * @notice Claims gas at a minimum claim rate for a specific contract, with error rate '1'. Called by an authorized user
     * @param contractAddress The address of the contract for which gas is to be claimed
     * @param recipientOfGas The address of the recipient of the gas
     * @param minClaimRateBips The minimum claim rate in basis points
     * @return The amount of gas that was claimed
     */
    function claimGasAtMinClaimRate(address contractAddress, address recipientOfGas, uint256 minClaimRateBips) external returns (uint256) {
        require(isAuthorized(contractAddress), "Not allowed to claim gas at min claim rate");
        return IGas(GAS_CONTRACT).claimGasAtMinClaimRate(contractAddress, recipientOfGas, minClaimRateBips);
    }

    /**
     * @notice Claims gas available to be claimed at max claim rate for a specific contract. Called by an authorized user
     * @param contractAddress The address of the contract for which maximum gas is to be claimed
     * @param recipientOfGas The address of the recipient of the gas
     * @return The amount of gas that was claimed
     */
    function claimMaxGas(address contractAddress, address recipientOfGas) external returns (uint256) {
        require(isAuthorized(contractAddress), "Not allowed to claim max gas");
        return IGas(GAS_CONTRACT).claimMax(contractAddress, recipientOfGas);
    }
    /**
     * @notice Claims a specific amount of gas for a specific contract. claim rate governed by integral of gas over time
     * @param contractAddress The address of the contract for which gas is to be claimed
     * @param recipientOfGas The address of the recipient of the gas
     * @param gasToClaim The amount of gas to be claimed
     * @param gasSecondsToConsume The amount of gas seconds to consume
     * @return The amount of gas that was claimed
     */
    function claimGas(address contractAddress, address recipientOfGas, uint256 gasToClaim, uint256 gasSecondsToConsume) external returns (uint256) {
        require(isAuthorized(contractAddress), "Not allowed to claim gas");
        return IGas(GAS_CONTRACT).claim(contractAddress, recipientOfGas, gasToClaim, gasSecondsToConsume);
    }

    /**
     * @notice Reads the claimable yield for a specific contract
     * @param contractAddress The address of the contract for which the claimable yield is to be read
     * @return claimable yield
     */
    function readClaimableYield(address contractAddress) public view returns (uint256) {
        return IYield(YIELD_CONTRACT).getClaimableAmount(contractAddress);
    }
    /**
     * @notice Reads the yield configuration for a specific contract
     * @param contractAddress The address of the contract for which the yield configuration is to be read
     * @return uint8 representing yield enum
     */

    function readYieldConfiguration(address contractAddress) public view returns (uint8) {
        return IYield(YIELD_CONTRACT).getConfiguration(contractAddress);
    }
    /**
     * @notice Reads the gas parameters for a specific contract
     * @param contractAddress The address of the contract for which the gas parameters are to be read
     * @return uint256 representing the accumulated ether seconds
     * @return uint256 representing ether balance
     * @return uint256 representing last update timestamp
     * @return GasMode representing the gas mode (VOID, CLAIMABLE)
     */
    function readGasParams(address contractAddress) public view returns (uint256, uint256, uint256, GasMode) {
        return IGas(GAS_CONTRACT).readGasParams(contractAddress);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(isContract(target), "Address: delegate call to non-contract");

        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;

/// @title Storage
/// @notice Storage handles reading and writing to arbitary storage locations
library Storage {
    /// @notice Returns an address stored in an arbitrary storage slot.
    ///         These storage slots decouple the storage layout from
    ///         solc's automation.
    /// @param _slot The storage slot to retrieve the address from.
    function getAddress(bytes32 _slot) internal view returns (address addr_) {
        assembly {
            addr_ := sload(_slot)
        }
    }

    /// @notice Stores an address in an arbitrary storage slot, `_slot`.
    /// @param _slot The storage slot to store the address in.
    /// @param _address The protocol version to store
    /// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses
    ///      in arbitrary storage slots.
    function setAddress(bytes32 _slot, address _address) internal {
        assembly {
            sstore(_slot, _address)
        }
    }

    /// @notice Returns a uint256 stored in an arbitrary storage slot.
    ///         These storage slots decouple the storage layout from
    ///         solc's automation.
    /// @param _slot The storage slot to retrieve the address from.
    function getUint(bytes32 _slot) internal view returns (uint256 value_) {
        assembly {
            value_ := sload(_slot)
        }
    }

    /// @notice Stores a value in an arbitrary storage slot, `_slot`.
    /// @param _slot The storage slot to store the address in.
    /// @param _value The protocol version to store
    /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
    ///      in arbitrary storage slots.
    function setUint(bytes32 _slot, uint256 _value) internal {
        assembly {
            sstore(_slot, _value)
        }
    }

    /// @notice Returns a bytes32 stored in an arbitrary storage slot.
    ///         These storage slots decouple the storage layout from
    ///         solc's automation.
    /// @param _slot The storage slot to retrieve the address from.
    function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) {
        assembly {
            value_ := sload(_slot)
        }
    }

    /// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`.
    /// @param _slot The storage slot to store the address in.
    /// @param _value The protocol version to store
    /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
    ///      in arbitrary storage slots.
    function setBytes32(bytes32 _slot, bytes32 _value) internal {
        assembly {
            sstore(_slot, _value)
        }
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;

import { Bytes } from "../Bytes.sol";
import { RLPReader } from "../rlp/RLPReader.sol";

/// @title MerkleTrie
/// @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie
///         inclusion proofs. By default, this library assumes a hexary trie. One can change the
///         trie radix constant to support other trie radixes.
library MerkleTrie {
    /// @notice Struct representing a node in the trie.
    /// @custom:field encoded The RLP-encoded node.
    /// @custom:field decoded The RLP-decoded node.
    struct TrieNode {
        bytes encoded;
        RLPReader.RLPItem[] decoded;
    }

    /// @notice Determines the number of elements per branch node.
    uint256 internal constant TREE_RADIX = 16;

    /// @notice Branch nodes have TREE_RADIX elements and one value element.
    uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1;

    /// @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`.
    uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2;

    /// @notice Prefix for even-nibbled extension node paths.
    uint8 internal constant PREFIX_EXTENSION_EVEN = 0;

    /// @notice Prefix for odd-nibbled extension node paths.
    uint8 internal constant PREFIX_EXTENSION_ODD = 1;

    /// @notice Prefix for even-nibbled leaf node paths.
    uint8 internal constant PREFIX_LEAF_EVEN = 2;

    /// @notice Prefix for odd-nibbled leaf node paths.
    uint8 internal constant PREFIX_LEAF_ODD = 3;

    /// @notice Verifies a proof that a given key/value pair is present in the trie.
    /// @param _key   Key of the node to search for, as a hex string.
    /// @param _value Value of the node to search for, as a hex string.
    /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
    ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
    ///               nodes that make a path down to the target node.
    /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
    ///               correctly constructed.
    /// @return valid_ Whether or not the proof is valid.
    function verifyInclusionProof(
        bytes memory _key,
        bytes memory _value,
        bytes[] memory _proof,
        bytes32 _root
    )
        internal
        pure
        returns (bool valid_)
    {
        valid_ = Bytes.equal(_value, get(_key, _proof, _root));
    }

    /// @notice Retrieves the value associated with a given key.
    /// @param _key   Key to search for, as hex bytes.
    /// @param _proof Merkle trie inclusion proof for the key.
    /// @param _root  Known root of the Merkle trie.
    /// @return value_ Value of the key if it exists.
    function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
        require(_key.length > 0, "MerkleTrie: empty key");

        TrieNode[] memory proof = _parseProof(_proof);
        bytes memory key = Bytes.toNibbles(_key);
        bytes memory currentNodeID = abi.encodePacked(_root);
        uint256 currentKeyIndex = 0;

        // Proof is top-down, so we start at the first element (root).
        for (uint256 i = 0; i < proof.length; i++) {
            TrieNode memory currentNode = proof[i];

            // Key index should never exceed total key length or we'll be out of bounds.
            require(currentKeyIndex <= key.length, "MerkleTrie: key index exceeds total key length");

            if (currentKeyIndex == 0) {
                // First proof element is always the root node.
                require(
                    Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                    "MerkleTrie: invalid root hash"
                );
            } else if (currentNode.encoded.length >= 32) {
                // Nodes 32 bytes or larger are hashed inside branch nodes.
                require(
                    Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                    "MerkleTrie: invalid large internal hash"
                );
            } else {
                // Nodes smaller than 32 bytes aren't hashed.
                require(Bytes.equal(currentNode.encoded, currentNodeID), "MerkleTrie: invalid internal node hash");
            }

            if (currentNode.decoded.length == BRANCH_NODE_LENGTH) {
                if (currentKeyIndex == key.length) {
                    // Value is the last element of the decoded list (for branch nodes). There's
                    // some ambiguity in the Merkle trie specification because bytes(0) is a
                    // valid value to place into the trie, but for branch nodes bytes(0) can exist
                    // even when the value wasn't explicitly placed there. Geth treats a value of
                    // bytes(0) as "key does not exist" and so we do the same.
                    value_ = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]);
                    require(value_.length > 0, "MerkleTrie: value length must be greater than zero (branch)");

                    // Extra proof elements are not allowed.
                    require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (branch)");

                    return value_;
                } else {
                    // We're not at the end of the key yet.
                    // Figure out what the next node ID should be and continue.
                    uint8 branchKey = uint8(key[currentKeyIndex]);
                    RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey];
                    currentNodeID = _getNodeID(nextNode);
                    currentKeyIndex += 1;
                }
            } else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
                bytes memory path = _getNodePath(currentNode);
                uint8 prefix = uint8(path[0]);
                uint8 offset = 2 - (prefix % 2);
                bytes memory pathRemainder = Bytes.slice(path, offset);
                bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex);
                uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder);

                // Whether this is a leaf node or an extension node, the path remainder MUST be a
                // prefix of the key remainder (or be equal to the key remainder) or the proof is
                // considered invalid.
                require(
                    pathRemainder.length == sharedNibbleLength,
                    "MerkleTrie: path remainder must share all nibbles with key"
                );

                if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
                    // Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid,
                    // the key remainder must be exactly equal to the path remainder. We already
                    // did the necessary byte comparison, so it's more efficient here to check that
                    // the key remainder length equals the shared nibble length, which implies
                    // equality with the path remainder (since we already did the same check with
                    // the path remainder and the shared nibble length).
                    require(
                        keyRemainder.length == sharedNibbleLength,
                        "MerkleTrie: key remainder must be identical to path remainder"
                    );

                    // Our Merkle Trie is designed specifically for the purposes of the Ethereum
                    // state trie. Empty values are not allowed in the state trie, so we can safely
                    // say that if the value is empty, the key should not exist and the proof is
                    // invalid.
                    value_ = RLPReader.readBytes(currentNode.decoded[1]);
                    require(value_.length > 0, "MerkleTrie: value length must be greater than zero (leaf)");

                    // Extra proof elements are not allowed.
                    require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (leaf)");

                    return value_;
                } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
                    // Prefix of 0 or 1 means this is an extension node. We move onto the next node
                    // in the proof and increment the key index by the length of the path remainder
                    // which is equal to the shared nibble length.
                    currentNodeID = _getNodeID(currentNode.decoded[1]);
                    currentKeyIndex += sharedNibbleLength;
                } else {
                    revert("MerkleTrie: received a node with an unknown prefix");
                }
            } else {
                revert("MerkleTrie: received an unparseable node");
            }
        }

        revert("MerkleTrie: ran out of proof elements");
    }

    /// @notice Parses an array of proof elements into a new array that contains both the original
    ///         encoded element and the RLP-decoded element.
    /// @param _proof Array of proof elements to parse.
    /// @return proof_ Proof parsed into easily accessible structs.
    function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory proof_) {
        uint256 length = _proof.length;
        proof_ = new TrieNode[](length);
        for (uint256 i = 0; i < length;) {
            proof_[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) });
            unchecked {
                ++i;
            }
        }
    }

    /// @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the
    ///         specification, but nodes < 32 bytes are not actually hashed.
    /// @param _node Node to pull an ID for.
    /// @return id_ ID for the node, depending on the size of its contents.
    function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory id_) {
        id_ = _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node);
    }

    /// @notice Gets the path for a leaf or extension node.
    /// @param _node Node to get a path for.
    /// @return nibbles_ Node path, converted to an array of nibbles.
    function _getNodePath(TrieNode memory _node) private pure returns (bytes memory nibbles_) {
        nibbles_ = Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0]));
    }

    /// @notice Utility; determines the number of nibbles shared between two nibble arrays.
    /// @param _a First nibble array.
    /// @param _b Second nibble array.
    /// @return shared_ Number of shared nibbles.
    function _getSharedNibbleLength(bytes memory _a, bytes memory _b) private pure returns (uint256 shared_) {
        uint256 max = (_a.length < _b.length) ? _a.length : _b.length;
        for (; shared_ < max && _a[shared_] == _b[shared_];) {
            unchecked {
                ++shared_;
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a >= b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`.
        // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
        // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
        // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
        // good first aproximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1;
        uint256 x = a;
        if (x >> 128 > 0) {
            x >>= 128;
            result <<= 64;
        }
        if (x >> 64 > 0) {
            x >>= 64;
            result <<= 32;
        }
        if (x >> 32 > 0) {
            x >>= 32;
            result <<= 16;
        }
        if (x >> 16 > 0) {
            x >>= 16;
            result <<= 8;
        }
        if (x >> 8 > 0) {
            x >>= 8;
            result <<= 4;
        }
        if (x >> 4 > 0) {
            x >>= 4;
            result <<= 2;
        }
        if (x >> 2 > 0) {
            result <<= 1;
        }

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        uint256 result = sqrt(a);
        if (rounding == Rounding.Up && result * result < a) {
            result += 1;
        }
        return result;
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;

/// @title Burn
/// @notice Utilities for burning stuff.
library Burn {
    /// @notice Burns a given amount of ETH.
    /// @param _amount Amount of ETH to burn.
    function eth(uint256 _amount) internal {
        new Burner{ value: _amount }();
    }

    /// @notice Burns a given amount of gas.
    /// @param _amount Amount of gas to burn.
    function gas(uint256 _amount) internal view {
        uint256 i = 0;
        uint256 initialGas = gasleft();
        while (initialGas - gasleft() < _amount) {
            ++i;
        }
    }
}

/// @title Burner
/// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
///         from the circulating supply.
contract Burner {
    constructor() payable {
        selfdestruct(payable(address(this)));
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;

import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";

/// @title Arithmetic
/// @notice Even more math than before.
library Arithmetic {
    /// @notice Clamps a value between a minimum and maximum.
    /// @param _value The value to clamp.
    /// @param _min   The minimum value.
    /// @param _max   The maximum value.
    /// @return The clamped value.
    function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
        return SignedMath.min(SignedMath.max(_value, _min), _max);
    }

    /// @notice (c)oefficient (d)enominator (exp)onentiation function.
    ///         Returns the result of: c * (1 - 1/d)^exp.
    /// @param _coefficient Coefficient of the function.
    /// @param _denominator Fractional denominator.
    /// @param _exponent    Power function exponent.
    /// @return Result of c * (1 - 1/d)^exp.
    function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
        return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;
import "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[50] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;

/// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
/// @title RLPWriter
/// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
///         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
///         modifications to improve legibility.
library RLPWriter {
    /// @notice RLP encodes a byte string.
    /// @param _in The byte string to encode.
    /// @return out_ The RLP encoded string in bytes.
    function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
        if (_in.length == 1 && uint8(_in[0]) < 128) {
            out_ = _in;
        } else {
            out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
        }
    }

    /// @notice RLP encodes a list of RLP encoded byte byte strings.
    /// @param _in The list of RLP encoded byte strings.
    /// @return list_ The RLP encoded list of items in bytes.
    function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
        list_ = _flatten(_in);
        list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
    }

    /// @notice RLP encodes a string.
    /// @param _in The string to encode.
    /// @return out_ The RLP encoded string in bytes.
    function writeString(string memory _in) internal pure returns (bytes memory out_) {
        out_ = writeBytes(bytes(_in));
    }

    /// @notice RLP encodes an address.
    /// @param _in The address to encode.
    /// @return out_ The RLP encoded address in bytes.
    function writeAddress(address _in) internal pure returns (bytes memory out_) {
        out_ = writeBytes(abi.encodePacked(_in));
    }

    /// @notice RLP encodes a uint.
    /// @param _in The uint256 to encode.
    /// @return out_ The RLP encoded uint256 in bytes.
    function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
        out_ = writeBytes(_toBinary(_in));
    }

    /// @notice RLP encodes a bool.
    /// @param _in The bool to encode.
    /// @return out_ The RLP encoded bool in bytes.
    function writeBool(bool _in) internal pure returns (bytes memory out_) {
        out_ = new bytes(1);
        out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
    }

    /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
    /// @param _len    The length of the string or the payload.
    /// @param _offset 128 if item is string, 192 if item is list.
    /// @return out_ RLP encoded bytes.
    function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
        if (_len < 56) {
            out_ = new bytes(1);
            out_[0] = bytes1(uint8(_len) + uint8(_offset));
        } else {
            uint256 lenLen;
            uint256 i = 1;
            while (_len / i != 0) {
                lenLen++;
                i *= 256;
            }

            out_ = new bytes(lenLen + 1);
            out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
            for (i = 1; i <= lenLen; i++) {
                out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
            }
        }
    }

    /// @notice Encode integer in big endian binary form with no leading zeroes.
    /// @param _x The integer to encode.
    /// @return out_ RLP encoded bytes.
    function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
        bytes memory b = abi.encodePacked(_x);

        uint256 i = 0;
        for (; i < 32; i++) {
            if (b[i] != 0) {
                break;
            }
        }

        out_ = new bytes(32 - i);
        for (uint256 j = 0; j < out_.length; j++) {
            out_[j] = b[i++];
        }
    }

    /// @custom:attribution https://github.com/Arachnid/solidity-stringutils
    /// @notice Copies a piece of memory to another location.
    /// @param _dest Destination location.
    /// @param _src  Source location.
    /// @param _len  Length of memory to copy.
    function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
        uint256 dest = _dest;
        uint256 src = _src;
        uint256 len = _len;

        for (; len >= 32; len -= 32) {
            assembly {
                mstore(dest, mload(src))
            }
            dest += 32;
            src += 32;
        }

        uint256 mask;
        unchecked {
            mask = 256 ** (32 - len) - 1;
        }
        assembly {
            let srcpart := and(mload(src), not(mask))
            let destpart := and(mload(dest), mask)
            mstore(dest, or(destpart, srcpart))
        }
    }

    /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
    /// @notice Flattens a list of byte strings into one byte string.
    /// @param _list List of byte strings to flatten.
    /// @return out_ The flattened byte string.
    function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
        if (_list.length == 0) {
            return new bytes(0);
        }

        uint256 len;
        uint256 i = 0;
        for (; i < _list.length; i++) {
            len += _list[i].length;
        }

        out_ = new bytes(len);
        uint256 flattenedPtr;
        assembly {
            flattenedPtr := add(out_, 0x20)
        }

        for (i = 0; i < _list.length; i++) {
            bytes memory item = _list[i];

            uint256 listPtr;
            assembly {
                listPtr := add(item, 0x20)
            }

            _memcpy(flattenedPtr, listPtr, item.length);
            flattenedPtr += _list[i].length;
        }
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;

import { SafeTransferLib } from "solmate/utils/SafeTransferLib.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";

import { Semver } from "src/universal/Semver.sol";

enum GasMode {
    VOID,
    CLAIMABLE
}

interface IGas {
    function readGasParams(address contractAddress) external view returns (uint256, uint256, uint256, GasMode);
    function setGasMode(address contractAddress, GasMode mode) external;
    function claimGasAtMinClaimRate(address contractAddress, address recipient, uint256 minClaimRateBips) external returns (uint256);
    function claimAll(address contractAddress, address recipient) external returns (uint256);
    function claimMax(address contractAddress, address recipient) external returns (uint256);
    function claim(address contractAddress, address recipient, uint256 gasToClaim, uint256 gasSecondsToConsume) external returns (uint256);
}

/// @custom:predeploy 0x4300000000000000000000000000000000000001
/// @title Gas
contract Gas is IGas, Initializable, Semver {
    address public immutable admin;

    // Blast.sol --> controls all dAPP accesses to Gas.sol
    address public immutable blastConfigurationContract;

    // BaseFeeVault.sol -> fees from gas claims directed here
    address public immutable blastFeeVault;

    // zero claim rate in bps -> percent of gas user is able to claim
    // without consuming any gas seconds
    uint256 public zeroClaimRate; // bps

    // base claim rate in bps -> percent of gas user is able to claim
    // by consuming base gas seconds
    uint256 public baseGasSeconds;
    uint256 public baseClaimRate; // bps

    // ceil claim rate in bps -> percent of gas user is able to claim
    // by consuming ceil gas seconds or more
    uint256 public ceilGasSeconds;
    uint256 public ceilClaimRate; // bps

    /**
     * @notice Constructs the blast gas contract.
     * @param _admin The address of the admin.
     * @param _blastConfigurationContract The address of the Blast configuration contract.
     * @param _blastFeeVault The address of the Blast fee vault.
    */
    constructor (
        address _admin,
        address _blastConfigurationContract,
        address _blastFeeVault
    ) Semver(1, 0, 0) {
        admin =  _admin;
        blastConfigurationContract = _blastConfigurationContract;
        blastFeeVault = _blastFeeVault;
        _disableInitializers();
    }

    /**
     * @notice Initializer.
     * @param _zeroClaimRate The zero claim rate.
     * @param _baseGasSeconds The base gas seconds.
     * @param _baseClaimRate The base claim rate.
     * @param _ceilGasSeconds The ceiling gas seconds.
     * @param _ceilClaimRate The ceiling claim rate.
     */
    function initialize(
        uint256 _zeroClaimRate,
        uint256 _baseGasSeconds,
        uint256 _baseClaimRate,
        uint256 _ceilGasSeconds,
        uint256 _ceilClaimRate
    ) public initializer {
        require(_zeroClaimRate < _baseClaimRate, "zero claim rate must be < base claim rate");
        require(_baseClaimRate < _ceilClaimRate, "base claim rate must be < ceil claim rate");
        require(_baseGasSeconds < _ceilGasSeconds, "base gas seconds must be < ceil gas seconds");
        require(_baseGasSeconds > 0, "base gas seconds must be > 0");
        require(_ceilClaimRate <= 10000, "ceil claim rate must be less than or equal to 10_000 bips");
        // admin vars
        zeroClaimRate = _zeroClaimRate;
        baseGasSeconds = _baseGasSeconds;
        baseClaimRate = _baseClaimRate;
        ceilGasSeconds = _ceilGasSeconds;
        ceilClaimRate = _ceilClaimRate;
    }

    /**
     * @notice Allows only the admin to call a function
     */
    modifier onlyAdmin() {
        require(msg.sender == admin, "Caller is not the admin");
        _;
    }
    /**
     * @notice Allows only the Blast Configuration Contract to call a function
     */
    modifier onlyBlastConfigurationContract() {
        require(msg.sender == blastConfigurationContract, "Caller must be blast configuration contract");
        _;
    }

    /**
     * @notice Allows the admin to update the parameters
     * @param _zeroClaimRate The new zero claim rate
     * @param _baseGasSeconds The new base gas seconds
     * @param _baseClaimRate The new base claim rate
     * @param _ceilGasSeconds The new ceiling gas seconds
     * @param _ceilClaimRate The new ceiling claim rate
     */
    function updateAdminParameters(
        uint256 _zeroClaimRate,
        uint256 _baseGasSeconds,
        uint256 _baseClaimRate,
        uint256 _ceilGasSeconds,
        uint256 _ceilClaimRate
    ) external onlyAdmin {
        require(_zeroClaimRate < _baseClaimRate, "zero claim rate must be < base claim rate");
        require(_baseClaimRate < _ceilClaimRate, "base claim rate must be < ceil claim rate");
        require(_baseGasSeconds < _ceilGasSeconds, "base gas seconds must be < ceil gas seconds");
        require(_baseGasSeconds > 0, "base gas seconds must be > 0");
        require(_ceilClaimRate <= 10000, "ceil claim rate must be less than or equal to 10_000 bips");

        zeroClaimRate = _zeroClaimRate;
        baseGasSeconds = _baseGasSeconds;
        baseClaimRate = _baseClaimRate;
        ceilGasSeconds = _ceilGasSeconds;
        ceilClaimRate = _ceilClaimRate;
    }

    /**
     * @notice Allows the admin to claim the gas of any address
     * @param contractAddress The address of the contract
     * @return The amount of ether balance claimed
     */
    function adminClaimGas(address contractAddress) external onlyAdmin returns (uint256) {
        (, uint256 etherBalance,,) = readGasParams(contractAddress);
        _updateGasParams(contractAddress, 0, 0, GasMode.VOID);
        SafeTransferLib.safeTransferETH(blastFeeVault, etherBalance);
        return etherBalance;
    }
    /**
     * @notice Allows an authorized user to set the gas mode for a contract via the BlastConfigurationContract
     * @param contractAddress The address of the contract
     * @param mode The new gas mode for the contract
     */
    function setGasMode(address contractAddress, GasMode mode) external onlyBlastConfigurationContract {
        // retrieve gas params
        (uint256 etherSeconds, uint256 etherBalance,,) = readGasParams(contractAddress);
        _updateGasParams(contractAddress, etherSeconds, etherBalance, mode);
    }

    /**
     * @notice Allows a user to claim gas at a minimum claim rate (error = 1 bip)
     * @param contractAddress The address of the contract
     * @param recipientOfGas The address of the recipient of the gas
     * @param minClaimRateBips The minimum claim rate in basis points
     * @return The amount of gas claimed
     */
    function claimGasAtMinClaimRate(address contractAddress, address recipientOfGas, uint256 minClaimRateBips) public returns (uint256) {
        require(minClaimRateBips <= ceilClaimRate, "desired claim rate exceeds maximum");

        (uint256 etherSeconds, uint256 etherBalance,,) = readGasParams(contractAddress);
        if (minClaimRateBips <= zeroClaimRate) {
            return claimAll(contractAddress, recipientOfGas);
        }

        // set minClaimRate to baseClaimRate in this case
        if (minClaimRateBips < baseClaimRate) {
            minClaimRateBips = baseClaimRate;
        }

        uint256 bipsDiff = minClaimRateBips - baseClaimRate;
        uint256 secondsDiff = ceilGasSeconds - baseGasSeconds;
        uint256 rateDiff = ceilClaimRate - baseClaimRate;
        uint256 minSecondsStaked = baseGasSeconds + Math.ceilDiv(bipsDiff * secondsDiff, rateDiff);
        uint256 maxEtherClaimable = etherSeconds / minSecondsStaked;
        if (maxEtherClaimable > etherBalance)  {
            maxEtherClaimable = etherBalance;
        }
        uint256 secondsToConsume = maxEtherClaimable * minSecondsStaked;
        return claim(contractAddress, recipientOfGas, maxEtherClaimable, secondsToConsume);
    }

    /**
     * @notice Allows a contract to claim all gas
     * @param contractAddress The address of the contract
     * @param recipientOfGas The address of the recipient of the gas
     * @return The amount of gas claimed
     */
    function claimAll(address contractAddress, address recipientOfGas) public returns (uint256) {
        (uint256 etherSeconds, uint256 etherBalance,,) = readGasParams(contractAddress);
        return claim(contractAddress, recipientOfGas, etherBalance, etherSeconds);
    }

    /**
     * @notice Allows a contract to claim all gas at the highest possible claim rate
     * @param contractAddress The address of the contract
     * @param recipientOfGas The address of the recipient of the gas
     * @return The amount of gas claimed
     */
    function claimMax(address contractAddress, address recipientOfGas) public returns (uint256) {
        return claimGasAtMinClaimRate(contractAddress, recipientOfGas, ceilClaimRate);
    }
    /**
     * @notice Allows a contract to claim a specified amount of gas, at a claim rate set by the number of gas seconds
     * @param contractAddress The address of the contract
     * @param recipientOfGas The address of the recipient of the gas
     * @param gasToClaim The amount of gas to claim
     * @param gasSecondsToConsume The amount of gas seconds to consume
     * @return The amount of gas claimed (gasToClaim - penalty)
     */

    function claim(address contractAddress, address recipientOfGas, uint256 gasToClaim, uint256 gasSecondsToConsume) public onlyBlastConfigurationContract() returns (uint256)  {
        // retrieve gas params
        (uint256 etherSeconds, uint256 etherBalance,, GasMode mode) = readGasParams(contractAddress);

        // check validity requirements
        require(gasToClaim > 0, "must withdraw non-zero amount");
        require(gasToClaim <= etherBalance, "too much to withdraw");
        require(gasSecondsToConsume <= etherSeconds, "not enough gas seconds");

        // get claim rate
        (uint256 claimRate, uint256 gasSecondsToConsumeNormalized) = getClaimRateBps(gasSecondsToConsume, gasToClaim);

        // calculate tax
        uint256 userEther = gasToClaim * claimRate / 10_000;
        uint256 penalty = gasToClaim - userEther;

        _updateGasParams(contractAddress, etherSeconds - gasSecondsToConsumeNormalized, etherBalance - gasToClaim, mode);

        SafeTransferLib.safeTransferETH(recipientOfGas, userEther);
        if (penalty > 0) {
            SafeTransferLib.safeTransferETH(blastFeeVault, penalty);
        }

        return userEther;
    }
    /**
     * @notice Calculates the claim rate in basis points based on gasSeconds, gasToClaim
     * @param gasSecondsToConsume The amount of gas seconds to consume
     * @param gasToClaim The amount of gas to claim
     * @return claimRate The calculated claim rate in basis points
     * @return gasSecondsToConsume The normalized gas seconds to consume (<= gasSecondsToConsume)
     */
    function getClaimRateBps(uint256 gasSecondsToConsume, uint256 gasToClaim) public view returns (uint256, uint256) {
        uint256 secondsStaked = gasSecondsToConsume / gasToClaim;
        if (secondsStaked < baseGasSeconds) {
            return (zeroClaimRate, 0);
        }
        if (secondsStaked >= ceilGasSeconds) {
            uint256 gasToConsumeNormalized = gasToClaim * ceilGasSeconds;
            return (ceilClaimRate, gasToConsumeNormalized);
        }

        uint256 rateDiff = ceilClaimRate - baseClaimRate;
        uint256 secondsDiff = ceilGasSeconds - baseGasSeconds;
        uint256 secondsStakedDiff = secondsStaked - baseGasSeconds;
        uint256 additionalClaimRate = rateDiff * secondsStakedDiff / secondsDiff;
        uint256 claimRate = baseClaimRate + additionalClaimRate;
        return (claimRate, gasSecondsToConsume);
    }

    /**
     * @notice Reads the gas parameters for a given user
     * @param user The address of the user
     * @return etherSeconds The integral of ether over time (ether * seconds vested)
     * @return etherBalance The total ether balance for the user
     * @return lastUpdated The last updated timestamp for the user's gas parameters
     * @return mode The current gas mode for the user
     */
     function readGasParams(address user) public view returns (uint256 etherSeconds, uint256 etherBalance, uint256 lastUpdated, GasMode mode) {
        bytes32 paramsHash = keccak256(abi.encodePacked(user, "parameters"));
        bytes32 packedParams;
        // read params
        assembly {
            packedParams := sload(paramsHash)
        }

        // unpack params
        // - The first byte (most significant byte) represents the mode
        // - The next 12 bytes represent the etherBalance
        // - The following 15 bytes represent the etherSeconds
        // - The last 4 bytes (least significant bytes) represent the lastUpdated timestamp
        mode         = GasMode(uint8(packedParams[0]));
        etherBalance = uint256((packedParams << (1             * 8)) >> ((32 - 12) * 8));
        etherSeconds = uint256((packedParams << ((1 + 12)      * 8)) >> ((32 - 15) * 8));
        lastUpdated  = uint256((packedParams << ((1 + 12 + 15) * 8)) >> ((32 -  4) * 8));

        // update ether seconds
        etherSeconds = etherSeconds + etherBalance * (block.timestamp - lastUpdated);
    }

    /**
     * @notice Updates the gas parameters for a given contract address
     * @param contractAddress The address of the contract
     * @param etherSeconds The integral of ether over time (ether * seconds vested)
     * @param etherBalance The total ether balance for the contract
     */
    function _updateGasParams(address contractAddress, uint256 etherSeconds, uint256 etherBalance, GasMode mode) internal {
        if (
            etherBalance >= 1 << (12 * 8) ||
            etherSeconds >= 1 << (15 * 8)
        ) {
            revert("Unexpected packing issue due to overflow");
        }

        uint256 updatedTimestamp = block.timestamp; // Known to fit in 4 bytes

        bytes32 paramsHash = keccak256(abi.encodePacked(contractAddress, "parameters"));
        bytes32 packedParams;
        packedParams = (
            (bytes32(uint256(mode)) << ((12 + 15 + 4) * 8)) | // Shift mode to the most significant byte
            (bytes32(etherBalance)  << ((15 + 4) * 8))      | // Shift etherBalance to start after 1 byte of mode
            (bytes32(etherSeconds)  << (4 * 8))             | // Shift etherSeconds to start after mode and etherBalance
            bytes32(updatedTimestamp)                         // Keep updatedTimestamp in the least significant bytes
        );

        assembly {
            sstore(paramsHash, packedParams)
        }
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;

/// @title Bytes
/// @notice Bytes is a library for manipulating byte arrays.
library Bytes {
    /// @custom:attribution https://github.com/GNSPS/solidity-bytes-utils
    /// @notice Slices a byte array with a given starting index and length. Returns a new byte array
    ///         as opposed to a pointer to the original array. Will throw if trying to slice more
    ///         bytes than exist in the array.
    /// @param _bytes Byte array to slice.
    /// @param _start Starting index of the slice.
    /// @param _length Length of the slice.
    /// @return Slice of the input byte array.
    function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
        unchecked {
            require(_length + 31 >= _length, "slice_overflow");
            require(_start + _length >= _start, "slice_overflow");
            require(_bytes.length >= _start + _length, "slice_outOfBounds");
        }

        bytes memory tempBytes;

        assembly {
            switch iszero(_length)
            case 0 {
                // Get a location of some free memory and store it in tempBytes as
                // Solidity does for memory variables.
                tempBytes := mload(0x40)

                // The first word of the slice result is potentially a partial
                // word read from the original array. To read it, we calculate
                // the length of that partial word and start copying that many
                // bytes into the array. The first word we copy will start with
                // data we don't care about, but the last `lengthmod` bytes will
                // land at the beginning of the contents of the new array. When
                // we're done copying, we overwrite the full first word with
                // the actual length of the slice.
                let lengthmod := and(_length, 31)

                // The multiplication in the next line is necessary
                // because when slicing multiples of 32 bytes (lengthmod == 0)
                // the following copy loop was copying the origin's length
                // and then ending prematurely not copying everything it should.
                let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                let end := add(mc, _length)

                for {
                    // The multiplication in the next line has the same exact purpose
                    // as the one above.
                    let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                } lt(mc, end) {
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } { mstore(mc, mload(cc)) }

                mstore(tempBytes, _length)

                //update free-memory pointer
                //allocating the array padded to 32 bytes like the compiler does now
                mstore(0x40, and(add(mc, 31), not(31)))
            }
            //if we want a zero-length slice let's just return a zero-length array
            default {
                tempBytes := mload(0x40)

                //zero out the 32 bytes slice we are about to return
                //we need to do it because Solidity does not garbage collect
                mstore(tempBytes, 0)

                mstore(0x40, add(tempBytes, 0x20))
            }
        }

        return tempBytes;
    }

    /// @notice Slices a byte array with a given starting index up to the end of the original byte
    ///         array. Returns a new array rathern than a pointer to the original.
    /// @param _bytes Byte array to slice.
    /// @param _start Starting index of the slice.
    /// @return Slice of the input byte array.
    function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) {
        if (_start >= _bytes.length) {
            return bytes("");
        }
        return slice(_bytes, _start, _bytes.length - _start);
    }

    /// @notice Converts a byte array into a nibble array by splitting each byte into two nibbles.
    ///         Resulting nibble array will be exactly twice as long as the input byte array.
    /// @param _bytes Input byte array to convert.
    /// @return Resulting nibble array.
    function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
        bytes memory _nibbles;
        assembly {
            // Grab a free memory offset for the new array
            _nibbles := mload(0x40)

            // Load the length of the passed bytes array from memory
            let bytesLength := mload(_bytes)

            // Calculate the length of the new nibble array
            // This is the length of the input array times 2
            let nibblesLength := shl(0x01, bytesLength)

            // Update the free memory pointer to allocate memory for the new array.
            // To do this, we add the length of the new array + 32 bytes for the array length
            // rounded up to the nearest 32 byte boundary to the current free memory pointer.
            mstore(0x40, add(_nibbles, and(not(0x1F), add(nibblesLength, 0x3F))))

            // Store the length of the new array in memory
            mstore(_nibbles, nibblesLength)

            // Store the memory offset of the _bytes array's contents on the stack
            let bytesStart := add(_bytes, 0x20)

            // Store the memory offset of the nibbles array's contents on the stack
            let nibblesStart := add(_nibbles, 0x20)

            // Loop through each byte in the input array
            for { let i := 0x00 } lt(i, bytesLength) { i := add(i, 0x01) } {
                // Get the starting offset of the next 2 bytes in the nibbles array
                let offset := add(nibblesStart, shl(0x01, i))
                // Load the byte at the current index within the `_bytes` array
                let b := byte(0x00, mload(add(bytesStart, i)))

                // Pull out the first nibble and store it in the new array
                mstore8(offset, shr(0x04, b))
                // Pull out the second nibble and store it in the new array
                mstore8(add(offset, 0x01), and(b, 0x0F))
            }
        }
        return _nibbles;
    }

    /// @notice Compares two byte arrays by comparing their keccak256 hashes.
    /// @param _bytes First byte array to compare.
    /// @param _other Second byte array to compare.
    /// @return True if the two byte arrays are equal, false otherwise.
    function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) {
        return keccak256(_bytes) == keccak256(_other);
    }
}

// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.8;

/// @custom:attribution https://github.com/hamdiallam/Solidity-RLP
/// @title RLPReader
/// @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted
///         from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with
///         various tweaks to improve readability.
library RLPReader {
    /// @notice Custom pointer type to avoid confusion between pointers and uint256s.
    type MemoryPointer is uint256;

    /// @notice RLP item types.
    /// @custom:value DATA_ITEM Represents an RLP data item (NOT a list).
    /// @custom:value LIST_ITEM Represents an RLP list item.
    enum RLPItemType {
        DATA_ITEM,
        LIST_ITEM
    }

    /// @notice Struct representing an RLP item.
    /// @custom:field length Length of the RLP item.
    /// @custom:field ptr    Pointer to the RLP item in memory.
    struct RLPItem {
        uint256 length;
        MemoryPointer ptr;
    }

    /// @notice Max list length that this library will accept.
    uint256 internal constant MAX_LIST_LENGTH = 32;

    /// @notice Converts bytes to a reference to memory position and length.
    /// @param _in Input bytes to convert.
    /// @return out_ Output memory reference.
    function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory out_) {
        // Empty arrays are not RLP items.
        require(_in.length > 0, "RLPReader: length of an RLP item must be greater than zero to be decodable");

        MemoryPointer ptr;
        assembly {
            ptr := add(_in, 32)
        }

        out_ = RLPItem({ length: _in.length, ptr: ptr });
    }

    /// @notice Reads an RLP list value into a list of RLP items.
    /// @param _in RLP list value.
    /// @return out_ Decoded RLP list items.
    function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory out_) {
        (uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in);

        require(itemType == RLPItemType.LIST_ITEM, "RLPReader: decoded item type for list is not a list item");

        require(listOffset + listLength == _in.length, "RLPReader: list item has an invalid data remainder");

        // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by
        // writing to the length. Since we can't know the number of RLP items without looping over
        // the entire input, we'd have to loop twice to accurately size this array. It's easier to
        // simply set a reasonable maximum list length and decrease the size before we finish.
        out_ = new RLPItem[](MAX_LIST_LENGTH);

        uint256 itemCount = 0;
        uint256 offset = listOffset;
        while (offset < _in.length) {
            (uint256 itemOffset, uint256 itemLength,) = _decodeLength(
                RLPItem({ length: _in.length - offset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) })
            );

            // We don't need to check itemCount < out.length explicitly because Solidity already
            // handles this check on our behalf, we'd just be wasting gas.
            out_[itemCount] = RLPItem({
                length: itemLength + itemOffset,
                ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset)
            });

            itemCount += 1;
            offset += itemOffset + itemLength;
        }

        // Decrease the array size to match the actual item count.
        assembly {
            mstore(out_, itemCount)
        }
    }

    /// @notice Reads an RLP list value into a list of RLP items.
    /// @param _in RLP list value.
    /// @return out_ Decoded RLP list items.
    function readList(bytes memory _in) internal pure returns (RLPItem[] memory out_) {
        out_ = readList(toRLPItem(_in));
    }

    /// @notice Reads an RLP bytes value into bytes.
    /// @param _in RLP bytes value.
    /// @return out_ Decoded bytes.
    function readBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
        (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in);

        require(itemType == RLPItemType.DATA_ITEM, "RLPReader: decoded item type for bytes is not a data item");

        require(_in.length == itemOffset + itemLength, "RLPReader: bytes value contains an invalid remainder");

        out_ = _copy(_in.ptr, itemOffset, itemLength);
    }

    /// @notice Reads an RLP bytes value into bytes.
    /// @param _in RLP bytes value.
    /// @return out_ Decoded bytes.
    function readBytes(bytes memory _in) internal pure returns (bytes memory out_) {
        out_ = readBytes(toRLPItem(_in));
    }

    /// @notice Reads the raw bytes of an RLP item.
    /// @param _in RLP item to read.
    /// @return out_ Raw RLP bytes.
    function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
        out_ = _copy(_in.ptr, 0, _in.length);
    }

    /// @notice Decodes the length of an RLP item.
    /// @param _in RLP item to decode.
    /// @return offset_ Offset of the encoded data.
    /// @return length_ Length of the encoded data.
    /// @return type_ RLP item type (LIST_ITEM or DATA_ITEM).
    function _decodeLength(RLPItem memory _in)
        private
        pure
        returns (uint256 offset_, uint256 length_, RLPItemType type_)
    {
        // Short-circuit if there's nothing to decode, note that we perform this check when
        // the user creates an RLP item via toRLPItem, but it's always possible for them to bypass
        // that function and create an RLP item directly. So we need to check this anyway.
        require(_in.length > 0, "RLPReader: length of an RLP item must be greater than zero to be decodable");

        MemoryPointer ptr = _in.ptr;
        uint256 prefix;
        assembly {
            prefix := byte(0, mload(ptr))
        }

        if (prefix <= 0x7f) {
            // Single byte.
            return (0, 1, RLPItemType.DATA_ITEM);
        } else if (prefix <= 0xb7) {
            // Short string.

            // slither-disable-next-line variable-scope
            uint256 strLen = prefix - 0x80;

            require(
                _in.length > strLen, "RLPReader: length of content must be greater than string length (short string)"
            );

            bytes1 firstByteOfContent;
            assembly {
                firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
            }

            require(
                strLen != 1 || firstByteOfContent >= 0x80,
                "RLPReader: invalid prefix, single byte < 0x80 are not prefixed (short string)"
            );

            return (1, strLen, RLPItemType.DATA_ITEM);
        } else if (prefix <= 0xbf) {
            // Long string.
            uint256 lenOfStrLen = prefix - 0xb7;

            require(
                _in.length > lenOfStrLen,
                "RLPReader: length of content must be > than length of string length (long string)"
            );

            bytes1 firstByteOfContent;
            assembly {
                firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
            }

            require(
                firstByteOfContent != 0x00, "RLPReader: length of content must not have any leading zeros (long string)"
            );

            uint256 strLen;
            assembly {
                strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1)))
            }

            require(strLen > 55, "RLPReader: length of content must be greater than 55 bytes (long string)");

            require(
                _in.length > lenOfStrLen + strLen,
                "RLPReader: length of content must be greater than total length (long string)"
            );

            return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM);
        } else if (prefix <= 0xf7) {
            // Short list.
            // slither-disable-next-line variable-scope
            uint256 listLen = prefix - 0xc0;

            require(_in.length > listLen, "RLPReader: length of content must be greater than list length (short list)");

            return (1, listLen, RLPItemType.LIST_ITEM);
        } else {
            // Long list.
            uint256 lenOfListLen = prefix - 0xf7;

            require(
                _in.length > lenOfListLen,
                "RLPReader: length of content must be > than length of list length (long list)"
            );

            bytes1 firstByteOfContent;
            assembly {
                firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
            }

            require(
                firstByteOfContent != 0x00, "RLPReader: length of content must not have any leading zeros (long list)"
            );

            uint256 listLen;
            assembly {
                listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1)))
            }

            require(listLen > 55, "RLPReader: length of content must be greater than 55 bytes (long list)");

            require(
                _in.length > lenOfListLen + listLen,
                "RLPReader: length of content must be greater than total length (long list)"
            );

            return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM);
        }
    }

    /// @notice Copies the bytes from a memory location.
    /// @param _src    Pointer to the location to read from.
    /// @param _offset Offset to start reading from.
    /// @param _length Number of bytes to read.
    /// @return out_ Copied bytes.
    function _copy(MemoryPointer _src, uint256 _offset, uint256 _length) private pure returns (bytes memory out_) {
        out_ = new bytes(_length);
        if (_length == 0) {
            return out_;
        }

        // Mostly based on Solidity's copy_memory_to_memory:
        // solhint-disable max-line-length
        // https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114
        uint256 src = MemoryPointer.unwrap(_src) + _offset;
        assembly {
            let dest := add(out_, 32)
            let i := 0
            for { } lt(i, _length) { i := add(i, 32) } { mstore(add(dest, i), mload(add(src, i))) }

            if gt(i, _length) { mstore(add(dest, _length), 0) }
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*//////////////////////////////////////////////////////////////
                    SIMPLIFIED FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.

    function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
    }

    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
    }

    function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
    }

    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
    }

    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
        return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
    }

    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is < 0.5 we return zero. This happens when
            // x <= floor(log(0.5e18) * 1e18) ~ -42e18
            if (x <= -42139678854452767551) return 0;

            // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
            // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
            if (x >= 135305999368893231589) revert("EXP_OVERFLOW");

            // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5**18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // k is in the range [-61, 195].

            // Evaluate using a (6, 7)-term rational approximation.
            // p is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already 2**96 too large.
                r := sdiv(p, q)
            }

            // r should be in the range (0.09, 0.25) * 2**96.

            // We now need to multiply r by:
            // * the scale factor s = ~6.031367120.
            // * the 2**k factor from the range reduction.
            // * the 1e18 / 2**96 factor for base conversion.
            // We do this all at once, with an intermediate result in 2**213
            // basis, so the final right shift is always by a positive amount.
            r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
        }
    }

    function lnWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            require(x > 0, "UNDEFINED");

            // We want to convert x from 10**18 fixed point to 2**96 fixed point.
            // We do this by multiplying by 2**96 / 10**18. But since
            // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
            // and add ln(2**96 / 10**18) at the end.

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            int256 k = int256(log2(uint256(x))) - 96;
            x <<= uint256(159 - k);
            x = int256(uint256(x) >> 159);

            // Evaluate using a (8, 8)-term rational approximation.
            // p is made monic, we will multiply by a scale factor later.
            int256 p = x + 3273285459638523848632254066296;
            p = ((p * x) >> 96) + 24828157081833163892658089445524;
            p = ((p * x) >> 96) + 43456485725739037958740375743393;
            p = ((p * x) >> 96) - 11111509109440967052023855526967;
            p = ((p * x) >> 96) - 45023709667254063763336534515857;
            p = ((p * x) >> 96) - 14706773417378608786704636184526;
            p = p * x - (795164235651350426258249787498 << 96);

            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
            // q is monic by convention.
            int256 q = x + 5573035233440673466300451813936;
            q = ((q * x) >> 96) + 71694874799317883764090561454958;
            q = ((q * x) >> 96) + 283447036172924575727196451306956;
            q = ((q * x) >> 96) + 401686690394027663651624208769553;
            q = ((q * x) >> 96) + 204048457590392012362485061816622;
            q = ((q * x) >> 96) + 31853899698501571402653359427138;
            q = ((q * x) >> 96) + 909429971244387300277376558375;
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial is known not to have zeros in the domain.
                // No scaling required because p is already 2**96 too large.
                r := sdiv(p, q)
            }

            // r is in the range (0, 0.125) * 2**96

            // Finalization, we need to:
            // * multiply by the scale factor s = 5.549…
            // * add ln(2**96 / 10**18)
            // * add k * ln(2)
            // * multiply by 10**18 / 2**96 = 5**18 >> 78

            // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
            r *= 1677202110996718588342820967067443963516166;
            // add ln(2) * k * 5e18 * 2**192
            r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
            // add ln(2**96 / 10**18) * 5e18 * 2**192
            r += 600920179829731861736702779321621459595472258049074101567377883020018308;
            // base conversion: mul 2**18 / 2**192
            r >>= 174;
        }
    }

    /*//////////////////////////////////////////////////////////////
                    LOW LEVEL FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function mulDivDown(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        assembly {
            // Store x * y in z for now.
            z := mul(x, y)

            // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
            if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                revert(0, 0)
            }

            // Divide z by the denominator.
            z := div(z, denominator)
        }
    }

    function mulDivUp(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        assembly {
            // Store x * y in z for now.
            z := mul(x, y)

            // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
            if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                revert(0, 0)
            }

            // First, divide z - 1 by the denominator and add 1.
            // We allow z - 1 to underflow if z is 0, because we multiply the
            // end result by 0 if z is zero, ensuring we return 0 if z is zero.
            z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
        }
    }

    function rpow(
        uint256 x,
        uint256 n,
        uint256 scalar
    ) internal pure returns (uint256 z) {
        assembly {
            switch x
            case 0 {
                switch n
                case 0 {
                    // 0 ** 0 = 1
                    z := scalar
                }
                default {
                    // 0 ** n = 0
                    z := 0
                }
            }
            default {
                switch mod(n, 2)
                case 0 {
                    // If n is even, store scalar in z for now.
                    z := scalar
                }
                default {
                    // If n is odd, store x in z for now.
                    z := x
                }

                // Shifting right by 1 is like dividing by 2.
                let half := shr(1, scalar)

                for {
                    // Shift n right by 1 before looping to halve it.
                    n := shr(1, n)
                } n {
                    // Shift n right by 1 each iteration to halve it.
                    n := shr(1, n)
                } {
                    // Revert immediately if x ** 2 would overflow.
                    // Equivalent to iszero(eq(div(xx, x), x)) here.
                    if shr(128, x) {
                        revert(0, 0)
                    }

                    // Store x squared.
                    let xx := mul(x, x)

                    // Round to the nearest number.
                    let xxRound := add(xx, half)

                    // Revert if xx + half overflowed.
                    if lt(xxRound, xx) {
                        revert(0, 0)
                    }

                    // Set x to scaled xxRound.
                    x := div(xxRound, scalar)

                    // If n is even:
                    if mod(n, 2) {
                        // Compute z * x.
                        let zx := mul(z, x)

                        // If z * x overflowed:
                        if iszero(eq(div(zx, x), z)) {
                            // Revert if x is non-zero.
                            if iszero(iszero(x)) {
                                revert(0, 0)
                            }
                        }

                        // Round to the nearest number.
                        let zxRound := add(zx, half)

                        // Revert if zx + half overflowed.
                        if lt(zxRound, zx) {
                            revert(0, 0)
                        }

                        // Return properly scaled zxRound.
                        z := div(zxRound, scalar)
                    }
                }
            }
        }
    }

    /*//////////////////////////////////////////////////////////////
                        GENERAL NUMBER UTILITIES
    //////////////////////////////////////////////////////////////*/

    function sqrt(uint256 x) internal pure returns (uint256 z) {
        assembly {
            let y := x // We start y at x, which will help us make our initial estimate.

            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // We check y >= 2^(k + 8) but shift right by k bits
            // each branch to ensure that if x >= 256, then y >= 256.
            if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                y := shr(128, y)
                z := shl(64, z)
            }
            if iszero(lt(y, 0x1000000000000000000)) {
                y := shr(64, y)
                z := shl(32, z)
            }
            if iszero(lt(y, 0x10000000000)) {
                y := shr(32, y)
                z := shl(16, z)
            }
            if iszero(lt(y, 0x1000000)) {
                y := shr(16, y)
                z := shl(8, z)
            }

            // Goal was to get z*z*y within a small factor of x. More iterations could
            // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
            // We ensured y >= 256 so that the relative difference between y and y+1 is small.
            // That's not possible if x < 256 but we can just verify those cases exhaustively.

            // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
            // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
            // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.

            // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
            // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.

            // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
            // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.

            // There is no overflow risk here since y < 2^136 after the first branch above.
            z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If x+1 is a perfect square, the Babylonian method cycles between
            // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
            // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
            z := sub(z, lt(div(x, z), z))
        }
    }

    function log2(uint256 x) internal pure returns (uint256 r) {
        require(x > 0, "UNDEFINED");

        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            r := or(r, shl(2, lt(0xf, shr(r, x))))
            r := or(r, shl(1, lt(0x3, shr(r, x))))
            r := or(r, lt(0x1, shr(r, x)))
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;

import {ERC20} from "../tokens/ERC20.sol";

/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @dev Caution! This library won't check that a token has code, responsibility is delegated to the caller.
library SafeTransferLib {
    /*//////////////////////////////////////////////////////////////
                             ETH OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function safeTransferETH(address to, uint256 amount) internal {
        bool success;

        assembly {
            // Transfer the ETH and store if it succeeded or not.
            success := call(gas(), to, amount, 0, 0, 0, 0)
        }

        require(success, "ETH_TRANSFER_FAILED");
    }

    /*//////////////////////////////////////////////////////////////
                            ERC20 OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function safeTransferFrom(
        ERC20 token,
        address from,
        address to,
        uint256 amount
    ) internal {
        bool success;

        assembly {
            // We'll write our calldata to this slot below, but restore it later.
            let memPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(0, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
            mstore(4, from) // Append the "from" argument.
            mstore(36, to) // Append the "to" argument.
            mstore(68, amount) // Append the "amount" argument.

            success := and(
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data.
                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                // We use 100 because that's the total length of our calldata (4 + 32 * 3)
                // Counterintuitively, this call() must be positioned after the or() in the
                // surrounding and() because and() evaluates its arguments from right to left.
                call(gas(), token, 0, 0, 100, 0, 32)
            )

            mstore(0x60, 0) // Restore the zero slot to zero.
            mstore(0x40, memPointer) // Restore the memPointer.
        }

        require(success, "TRANSFER_FROM_FAILED");
    }

    function safeTransfer(
        ERC20 token,
        address to,
        uint256 amount
    ) internal {
        bool success;

        assembly {
            // We'll write our calldata to this slot below, but restore it later.
            let memPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(0, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
            mstore(4, to) // Append the "to" argument.
            mstore(36, amount) // Append the "amount" argument.

            success := and(
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data.
                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                // We use 68 because that's the total length of our calldata (4 + 32 * 2)
                // Counterintuitively, this call() must be positioned after the or() in the
                // surrounding and() because and() evaluates its arguments from right to left.
                call(gas(), token, 0, 0, 68, 0, 32)
            )

            mstore(0x60, 0) // Restore the zero slot to zero.
            mstore(0x40, memPointer) // Restore the memPointer.
        }

        require(success, "TRANSFER_FAILED");
    }

    function safeApprove(
        ERC20 token,
        address to,
        uint256 amount
    ) internal {
        bool success;

        assembly {
            // We'll write our calldata to this slot below, but restore it later.
            let memPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(0, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
            mstore(4, to) // Append the "to" argument.
            mstore(36, amount) // Append the "amount" argument.

            success := and(
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data.
                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                // We use 68 because that's the total length of our calldata (4 + 32 * 2)
                // Counterintuitively, this call() must be positioned after the or() in the
                // surrounding and() because and() evaluates its arguments from right to left.
                call(gas(), token, 0, 0, 68, 0, 32)
            )

            mstore(0x60, 0) // Restore the zero slot to zero.
            mstore(0x40, memPointer) // Restore the memPointer.
        }

        require(success, "APPROVE_FAILED");
    }
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;

/// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
/// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
abstract contract ERC20 {
    /*//////////////////////////////////////////////////////////////
                                 EVENTS
    //////////////////////////////////////////////////////////////*/

    event Transfer(address indexed from, address indexed to, uint256 amount);

    event Approval(address indexed owner, address indexed spender, uint256 amount);

    /*//////////////////////////////////////////////////////////////
                            METADATA STORAGE
    //////////////////////////////////////////////////////////////*/

    string public name;

    string public symbol;

    uint8 public immutable decimals;

    /*//////////////////////////////////////////////////////////////
                              ERC20 STORAGE
    //////////////////////////////////////////////////////////////*/

    uint256 public totalSupply;

    mapping(address => uint256) public balanceOf;

    mapping(address => mapping(address => uint256)) public allowance;

    /*//////////////////////////////////////////////////////////////
                            EIP-2612 STORAGE
    //////////////////////////////////////////////////////////////*/

    uint256 internal immutable INITIAL_CHAIN_ID;

    bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;

    mapping(address => uint256) public nonces;

    /*//////////////////////////////////////////////////////////////
                               CONSTRUCTOR
    //////////////////////////////////////////////////////////////*/

    constructor(
        string memory _name,
        string memory _symbol,
        uint8 _decimals
    ) {
        name = _name;
        symbol = _symbol;
        decimals = _decimals;

        INITIAL_CHAIN_ID = block.chainid;
        INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
    }

    /*//////////////////////////////////////////////////////////////
                               ERC20 LOGIC
    //////////////////////////////////////////////////////////////*/

    function approve(address spender, uint256 amount) public virtual returns (bool) {
        allowance[msg.sender][spender] = amount;

        emit Approval(msg.sender, spender, amount);

        return true;
    }

    function transfer(address to, uint256 amount) public virtual returns (bool) {
        balanceOf[msg.sender] -= amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(msg.sender, to, amount);

        return true;
    }

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual returns (bool) {
        uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.

        if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;

        balanceOf[from] -= amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(from, to, amount);

        return true;
    }

    /*//////////////////////////////////////////////////////////////
                             EIP-2612 LOGIC
    //////////////////////////////////////////////////////////////*/

    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");

        // Unchecked because the only math done is incrementing
        // the owner's nonce which cannot realistically overflow.
        unchecked {
            address recoveredAddress = ecrecover(
                keccak256(
                    abi.encodePacked(
                        "\x19\x01",
                        DOMAIN_SEPARATOR(),
                        keccak256(
                            abi.encode(
                                keccak256(
                                    "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                                ),
                                owner,
                                spender,
                                value,
                                nonces[owner]++,
                                deadline
                            )
                        )
                    )
                ),
                v,
                r,
                s
            );

            require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");

            allowance[recoveredAddress][spender] = value;
        }

        emit Approval(owner, spender, value);
    }

    function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
        return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
    }

    function computeDomainSeparator() internal view virtual returns (bytes32) {
        return
            keccak256(
                abi.encode(
                    keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                    keccak256(bytes(name)),
                    keccak256("1"),
                    block.chainid,
                    address(this)
                )
            );
    }

    /*//////////////////////////////////////////////////////////////
                        INTERNAL MINT/BURN LOGIC
    //////////////////////////////////////////////////////////////*/

    function _mint(address to, uint256 amount) internal virtual {
        totalSupply += amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(address(0), to, amount);
    }

    function _burn(address from, uint256 amount) internal virtual {
        balanceOf[from] -= amount;

        // Cannot underflow because a user's balance
        // will never be larger than the total supply.
        unchecked {
            totalSupply -= amount;
        }

        emit Transfer(from, address(0), amount);
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):