ETH Price: $3,474.74 (+2.17%)

Contract Diff Checker

Contract Name:
UniversalERC20Token

Contract Source Code:

File 1 of 1 : UniversalERC20Token

// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity 0.7.5;

library EnumerableSet {

  // To implement this library for multiple types with as little code
  // repetition as possible, we write it in terms of a generic Set type with
  // bytes32 values.
  // The Set implementation uses private functions, and user-facing
  // implementations (such as AddressSet) are just wrappers around the
  // underlying Set.
  // This means that we can only create new EnumerableSets for types that fit
  // in bytes32.
  struct Set {
    // Storage of set values
    bytes32[] _values;

    // Position of the value in the `values` array, plus 1 because index 0
    // means a value is not in the set.
    mapping (bytes32 => uint256) _indexes;
  }

  /**
   * @dev Add a value to a set. O(1).
   *
   * Returns true if the value was added to the set, that is if it was not
   * already present.
   */
  function _add(Set storage set, bytes32 value) private returns (bool) {
    if (!_contains(set, value)) {
      set._values.push(value);
      // The value is stored at length-1, but we add 1 to all indexes
      // and use 0 as a sentinel value
      set._indexes[value] = set._values.length;
      return true;
    } else {
      return false;
    }
  }

  /**
   * @dev Removes a value from a set. O(1).
   *
   * Returns true if the value was removed from the set, that is if it was
   * present.
   */
  function _remove(Set storage set, bytes32 value) private returns (bool) {
    // We read and store the value's index to prevent multiple reads from the same storage slot
    uint256 valueIndex = set._indexes[value];

    if (valueIndex != 0) { // Equivalent to contains(set, value)
      // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
      // the array, and then remove the last element (sometimes called as 'swap and pop').
      // This modifies the order of the array, as noted in {at}.

      uint256 toDeleteIndex = valueIndex - 1;
      uint256 lastIndex = set._values.length - 1;

      // When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs
      // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement.

      bytes32 lastvalue = set._values[lastIndex];

      // Move the last value to the index where the value to delete is
      set._values[toDeleteIndex] = lastvalue;
      // Update the index for the moved value
      set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based

      // Delete the slot where the moved value was stored
      set._values.pop();

      // Delete the index for the deleted slot
      delete set._indexes[value];

      return true;
    } else {
      return false;
    }
  }

  /**
   * @dev Returns true if the value is in the set. O(1).
   */
  function _contains(Set storage set, bytes32 value) private view returns (bool) {
    return set._indexes[value] != 0;
  }

  /**
   * @dev Returns the number of values on the set. O(1).
   */
  function _length(Set storage set) private view returns (uint256) {
    return set._values.length;
  }

   /**
    * @dev Returns the value stored at position `index` in the set. O(1).
    *
    * Note that there are no guarantees on the ordering of values inside the
    * array, and it may change when more values are added or removed.
    *
    * Requirements:
    *
    * - `index` must be strictly less than {length}.
    */
  function _at(Set storage set, uint256 index) private view returns (bytes32) {
    require(set._values.length > index, "EnumerableSet: index out of bounds");
    return set._values[index];
  }

  function _getValues( Set storage set_ ) private view returns ( bytes32[] storage ) {
    return set_._values;
  }

  // TODO needs insert function that maintains order.
  // TODO needs NatSpec documentation comment.
  /**
   * Inserts new value by moving existing value at provided index to end of array and setting provided value at provided index
   */
  function _insert(Set storage set_, uint256 index_, bytes32 valueToInsert_ ) private returns ( bool ) {
    require(  set_._values.length > index_ );
    require( !_contains( set_, valueToInsert_ ), "Remove value you wish to insert if you wish to reorder array." );
    bytes32 existingValue_ = _at( set_, index_ );
    set_._values[index_] = valueToInsert_;
    return _add( set_, existingValue_);
  } 

  struct Bytes4Set {
    Set _inner;
  }

  /**
   * @dev Add a value to a set. O(1).
   *
   * Returns true if the value was added to the set, that is if it was not
   * already present.
   */
  function add(Bytes4Set storage set, bytes4 value) internal returns (bool) {
    return _add(set._inner, value);
  }

  /**
   * @dev Removes a value from a set. O(1).
   *
   * Returns true if the value was removed from the set, that is if it was
   * present.
   */
  function remove(Bytes4Set storage set, bytes4 value) internal returns (bool) {
    return _remove(set._inner, value);
  }

  /**
   * @dev Returns true if the value is in the set. O(1).
   */
  function contains(Bytes4Set storage set, bytes4 value) internal view returns (bool) {
    return _contains(set._inner, value);
  }

  /**
   * @dev Returns the number of values on the set. O(1).
   */
  function length(Bytes4Set storage set) internal view returns (uint256) {
    return _length(set._inner);
  }

  /**
   * @dev Returns the value stored at position `index` in the set. O(1).
   *
   * Note that there are no guarantees on the ordering of values inside the
   * array, and it may change when more values are added or removed.
   *
   * Requirements:
   *
   * - `index` must be strictly less than {length}.
   */
  function at(Bytes4Set storage set, uint256 index) internal view returns ( bytes4 ) {
    return bytes4( _at( set._inner, index ) );
  }

  function getValues( Bytes4Set storage set_ ) internal view returns ( bytes4[] memory ) {
    bytes4[] memory bytes4Array_;
    for( uint256 iteration_ = 0; _length( set_._inner ) > iteration_; iteration_++ ) {
      bytes4Array_[iteration_] = bytes4( _at( set_._inner, iteration_ ) );
    }
    return bytes4Array_;
  }

  function insert( Bytes4Set storage set_, uint256 index_, bytes4 valueToInsert_ ) internal returns ( bool ) {
    return _insert( set_._inner, index_, valueToInsert_ );
  }

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns ( bytes32 ) {
        return _at(set._inner, index);
    }

  function getValues( Bytes32Set storage set_ ) internal view returns ( bytes4[] memory ) {
    bytes4[] memory bytes4Array_;

      for( uint256 iteration_ = 0; _length( set_._inner ) >= iteration_; iteration_++ ){
        bytes4Array_[iteration_] = bytes4( at( set_, iteration_ ) );
      }

      return bytes4Array_;
  }

  function insert( Bytes32Set storage set_, uint256 index_, bytes32 valueToInsert_ ) internal returns ( bool ) {
    return _insert( set_._inner, index_, valueToInsert_ );
  }

  // AddressSet
  struct AddressSet {
    Set _inner;
  }

  /**
   * @dev Add a value to a set. O(1).
   *
   * Returns true if the value was added to the set, that is if it was not
   * already present.
   */
  function add(AddressSet storage set, address value) internal returns (bool) {
    return _add(set._inner, bytes32(uint256(value)));
  }

  /**
   * @dev Removes a value from a set. O(1).
   *
   * Returns true if the value was removed from the set, that is if it was
   * present.
   */
  function remove(AddressSet storage set, address value) internal returns (bool) {
    return _remove(set._inner, bytes32(uint256(value)));
  }

  /**
   * @dev Returns true if the value is in the set. O(1).
   */
  function contains(AddressSet storage set, address value) internal view returns (bool) {
    return _contains(set._inner, bytes32(uint256(value)));
  }

  /**
   * @dev Returns the number of values in the set. O(1).
   */
  function length(AddressSet storage set) internal view returns (uint256) {
    return _length(set._inner);
  }

  /**
   * @dev Returns the value stored at position `index` in the set. O(1).
   *
   * Note that there are no guarantees on the ordering of values inside the
   * array, and it may change when more values are added or removed.
   *
   * Requirements:
   *
   * - `index` must be strictly less than {length}.
   */
  function at(AddressSet storage set, uint256 index) internal view returns (address) {
    return address(uint256(_at(set._inner, index)));
  }

  /**
   * TODO Might require explicit conversion of bytes32[] to address[].
   *  Might require iteration.
   */
  function getValues( AddressSet storage set_ ) internal view returns ( address[] memory ) {

    address[] memory addressArray;

    for( uint256 iteration_ = 0; _length(set_._inner) >= iteration_; iteration_++ ){
      addressArray[iteration_] = at( set_, iteration_ );
    }

    return addressArray;
  }

  function insert(AddressSet storage set_, uint256 index_, address valueToInsert_ ) internal returns ( bool ) {
    return _insert( set_._inner, index_, bytes32(uint256(valueToInsert_)) );
  }


    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

   /**
    * @dev Returns the value stored at position `index` in the set. O(1).
    *
    * Note that there are no guarantees on the ordering of values inside the
    * array, and it may change when more values are added or removed.
    *
    * Requirements:
    *
    * - `index` must be strictly less than {length}.
    */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    struct UInt256Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UInt256Set storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UInt256Set storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UInt256Set storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function length(UInt256Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UInt256Set storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }
}

interface IERC20 {
  /**
   * @dev Returns the amount of tokens in existence.
   */
  function totalSupply() external view returns (uint256);

  /**
   * @dev Returns the amount of tokens owned by `account`.
   */
  function balanceOf(address account) external view returns (uint256);

  /**
   * @dev Moves `amount` tokens from the caller's account to `recipient`.
   *
   * Returns a boolean value indicating whether the operation succeeded.
   *
   * Emits a {Transfer} event.
   */
  function transfer(address recipient, uint256 amount) external returns (bool);

  /**
   * @dev Returns the remaining number of tokens that `spender` will be
   * allowed to spend on behalf of `owner` through {transferFrom}. This is
   * zero by default.
   *
   * This value changes when {approve} or {transferFrom} are called.
   */
  function allowance(address owner, address spender) external view returns (uint256);

  /**
   * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
   *
   * Returns a boolean value indicating whether the operation succeeded.
   *
   * IMPORTANT: Beware that changing an allowance with this method brings the risk
   * that someone may use both the old and the new allowance by unfortunate
   * transaction ordering. One possible solution to mitigate this race
   * condition is to first reduce the spender's allowance to 0 and set the
   * desired value afterwards:
   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
   *
   * Emits an {Approval} event.
   */
  function approve(address spender, uint256 amount) external returns (bool);

  /**
   * @dev Moves `amount` tokens from `sender` to `recipient` using the
   * allowance mechanism. `amount` is then deducted from the caller's
   * allowance.
   *
   * Returns a boolean value indicating whether the operation succeeded.
   *
   * Emits a {Transfer} event.
   */
  function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

  /**
   * @dev Emitted when `value` tokens are moved from one account (`from`) to
   * another (`to`).
   *
   * Note that `value` may be zero.
   */
  event Transfer(address indexed from, address indexed to, uint256 value);

  /**
   * @dev Emitted when the allowance of a `spender` for an `owner` is set by
   * a call to {approve}. `value` is the new allowance.
   */
  event Approval(address indexed owner, address indexed spender, uint256 value);
}

library SafeMath {

    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");

        return c;
    }

    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, "SafeMath: subtraction overflow");
    }

    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        uint256 c = a - b;

        return c;
    }

    function mul(uint256 a, uint256 b) internal pure returns (uint256) {

        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");

        return c;
    }

    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");
    }

    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold

        return c;
    }

    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, "SafeMath: modulo by zero");
    }

    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b != 0, errorMessage);
        return a % b;
    }

    function sqrrt(uint256 a) internal pure returns (uint c) {
        if (a > 3) {
            c = a;
            uint b = add( div( a, 2), 1 );
            while (b < c) {
                c = b;
                b = div( add( div( a, b ), b), 2 );
            }
        } else if (a != 0) {
            c = 1;
        }
    }

    function percentageAmount( uint256 total_, uint8 percentage_ ) internal pure returns ( uint256 percentAmount_ ) {
        return div( mul( total_, percentage_ ), 1000 );
    }

    function substractPercentage( uint256 total_, uint8 percentageToSub_ ) internal pure returns ( uint256 result_ ) {
        return sub( total_, div( mul( total_, percentageToSub_ ), 1000 ) );
    }

    function percentageOfTotal( uint256 part_, uint256 total_ ) internal pure returns ( uint256 percent_ ) {
        return div( mul(part_, 100) , total_ );
    }

    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow, so we distribute
        return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);
    }

    function quadraticPricing( uint256 payment_, uint256 multiplier_ ) internal pure returns (uint256) {
        return sqrrt( mul( multiplier_, payment_ ) );
    }

  function barterPriceCurve( uint256 supply_, uint256 multiplier_ ) internal pure returns (uint256) {
      return mul( multiplier_, supply_ );
  }
}

abstract contract ERC20 is IERC20 {

  using SafeMath for uint256;

  // TODO comment actual hash value.
  bytes32 constant private ERC20TOKEN_ERC1820_INTERFACE_ID = keccak256( "ERC20Token" );
    
  // Present in ERC777
  mapping (address => uint256) internal _balances;

  // Present in ERC777
  mapping (address => mapping (address => uint256)) internal _allowances;

  // Present in ERC777
  uint256 internal _totalSupply;

  // Present in ERC777
  string internal _name;
    
  // Present in ERC777
  string internal _symbol;
    
  // Present in ERC777
  uint8 internal _decimals;

  constructor (string memory name_, string memory symbol_, uint8 decimals_) {
    _name = name_;
    _symbol = symbol_;
    _decimals = decimals_;
  }

  function name() public view returns (string memory) {
    return _name;
  }

  function symbol() public view returns (string memory) {
    return _symbol;
  }

  function decimals() public view returns (uint8) {
    return _decimals;
  }

  function totalSupply() public view override returns (uint256) {
    return _totalSupply;
  }

  function balanceOf(address account) public view virtual override returns (uint256) {
    return _balances[account];
  }

  function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
    _transfer(msg.sender, recipient, amount);
    return true;
  }

    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(msg.sender, spender, amount);
        return true;
    }

    function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
        _approve(sender, msg.sender, _allowances[sender][msg.sender].sub(amount, "ERC20: transfer amount exceeds allowance"));
        return true;
    }

    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue));
        return true;
    }

    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        _approve(msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
        return true;
    }

    function _transfer(address sender, address recipient, uint256 amount) internal virtual {
      require(sender != address(0), "ERC20: transfer from the zero address");
      require(recipient != address(0), "ERC20: transfer to the zero address");

      _beforeTokenTransfer(sender, recipient, amount);

      _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
      _balances[recipient] = _balances[recipient].add(amount);
      emit Transfer(sender, recipient, amount);
    }

    function _mint(address account_, uint256 amount_) internal virtual {
        require(account_ != address(0), "ERC20: mint to the zero address");
        _beforeTokenTransfer(address( this ), account_, amount_);
        _totalSupply = _totalSupply.add(amount_);
        _balances[account_] = _balances[account_].add(amount_);
        emit Transfer(address( this ), account_, amount_);
    }

    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
        _totalSupply = _totalSupply.sub(amount);
        emit Transfer(account, address(0), amount);
    }

    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

  function _beforeTokenTransfer( address from_, address to_, uint256 amount_ ) internal virtual { }
}

library Counters {
    using SafeMath for uint256;

    struct Counter {
        uint256 _value; // default: 0
    }

    function current(Counter storage counter) internal view returns (uint256) {
        return counter._value;
    }

    function increment(Counter storage counter) internal {
        counter._value += 1;
    }

    function decrement(Counter storage counter) internal {
        counter._value = counter._value.sub(1);
    }
}

interface IERC2612Permit {

    function permit(
        address owner,
        address spender,
        uint256 amount,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    function nonces(address owner) external view returns (uint256);
}

abstract contract ERC20Permit is ERC20, IERC2612Permit {
    using Counters for Counters.Counter;

    mapping(address => Counters.Counter) private _nonces;

    // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
    bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;

    bytes32 public DOMAIN_SEPARATOR;

    constructor() {
        uint256 chainID;
        assembly {
            chainID := chainid()
        }

        DOMAIN_SEPARATOR = keccak256(
            abi.encode(
                keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                keccak256(bytes(name())),
                keccak256(bytes("1")), // Version
                chainID,
                address(this)
            )
        );
    }

    function permit(
        address owner,
        address spender,
        uint256 amount,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual override {
        require(block.timestamp <= deadline, "Permit: expired deadline");

        bytes32 hashStruct =
            keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, amount, _nonces[owner].current(), deadline));

        bytes32 _hash = keccak256(abi.encodePacked(uint16(0x1901), DOMAIN_SEPARATOR, hashStruct));

        address signer = ecrecover(_hash, v, r, s);
        require(signer != address(0) && signer == owner, "ZeroSwapPermit: Invalid signature");

        _nonces[owner].increment();
        _approve(owner, spender, amount);
    }

    function nonces(address owner) public view override returns (uint256) {
        return _nonces[owner].current();
    }
}

interface IOwnable {
  function owner() external view returns (address);

  function renounceOwnership() external;
  
  function transferOwnership( address newOwner_ ) external;
}

contract Ownable is IOwnable {
    
  address internal _owner;

  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

  constructor () {
    _owner = msg.sender;
    emit OwnershipTransferred( address(0), _owner );
  }

  function owner() public view override returns (address) {
    return _owner;
  }

  modifier onlyOwner() {
    require( _owner == msg.sender, "Ownable: caller is not the owner" );
    _;
  }

  function renounceOwnership() public virtual override onlyOwner() {
    emit OwnershipTransferred( _owner, address(0) );
    _owner = address(0);
  }

  function transferOwnership( address newOwner_ ) public virtual override onlyOwner() {
    require( newOwner_ != address(0), "Ownable: new owner is the zero address");
    emit OwnershipTransferred( _owner, newOwner_ );
    _owner = newOwner_;
  }
}

contract VaultOwned is Ownable {
    
  address internal _vault;

  function setVault( address vault_ ) external onlyOwner() returns ( bool ) {
    _vault = vault_;

    return true;
  }

  function vault() public view returns (address) {
    return _vault;
  }

  modifier onlyVault() {
    require( _vault == msg.sender, "VaultOwned: caller is not the Vault" );
    _;
  }

}

contract UniversalERC20Token is ERC20Permit, VaultOwned {

    using SafeMath for uint256;

    constructor() ERC20("Universal Store of Value", "USV", 9) {
    }

    function mint(address account_, uint256 amount_) external onlyVault() {
        _mint(account_, amount_);
    }

    function burn(uint256 amount) public virtual {
        _burn(msg.sender, amount);
    }
     
    function burnFrom(address account_, uint256 amount_) public virtual {
        _burnFrom(account_, amount_);
    }

    function _burnFrom(address account_, uint256 amount_) public virtual {
        uint256 decreasedAllowance_ =
            allowance(account_, msg.sender).sub(
                amount_,
                "ERC20: burn amount exceeds allowance"
            );

        _approve(account_, msg.sender, decreasedAllowance_);
        _burn(account_, amount_);
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):