ETH Price: $3,121.09 (+1.47%)

Contract Diff Checker

Contract Name:
PriceFeed

Contract Source Code:

File 1 of 1 : PriceFeed

/// price-feed.sol

// Copyright (C) 2017  DappHub, LLC

// Licensed under the Apache License, Version 2.0 (the "License").
// You may not use this file except in compliance with the License.

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND (express or implied).

pragma solidity ^0.4.17;

contract DSAuthority {
    function canCall(
        address src, address dst, bytes4 sig
    ) public view returns (bool);
}

contract DSAuthEvents {
    event LogSetAuthority (address indexed authority);
    event LogSetOwner     (address indexed owner);
}

contract DSAuth is DSAuthEvents {
    DSAuthority  public  authority;
    address      public  owner;

    function DSAuth() public {
        owner = msg.sender;
        LogSetOwner(msg.sender);
    }

    function setOwner(address owner_)
        public
        auth
    {
        owner = owner_;
        LogSetOwner(owner);
    }

    function setAuthority(DSAuthority authority_)
        public
        auth
    {
        authority = authority_;
        LogSetAuthority(authority);
    }

    modifier auth {
        require(isAuthorized(msg.sender, msg.sig));
        _;
    }

    function isAuthorized(address src, bytes4 sig) internal view returns (bool) {
        if (src == address(this)) {
            return true;
        } else if (src == owner) {
            return true;
        } else if (authority == DSAuthority(0)) {
            return false;
        } else {
            return authority.canCall(src, this, sig);
        }
    }
}

contract DSNote {
    event LogNote(
        bytes4   indexed  sig,
        address  indexed  guy,
        bytes32  indexed  foo,
        bytes32  indexed  bar,
        uint              wad,
        bytes             fax
    ) anonymous;

    modifier note {
        bytes32 foo;
        bytes32 bar;

        assembly {
            foo := calldataload(4)
            bar := calldataload(36)
        }

        LogNote(msg.sig, msg.sender, foo, bar, msg.value, msg.data);

        _;
    }
}

contract DSMath {
    function add(uint x, uint y) internal pure returns (uint z) {
        require((z = x + y) >= x);
    }
    function sub(uint x, uint y) internal pure returns (uint z) {
        require((z = x - y) <= x);
    }
    function mul(uint x, uint y) internal pure returns (uint z) {
        require(y == 0 || (z = x * y) / y == x);
    }

    function min(uint x, uint y) internal pure returns (uint z) {
        return x <= y ? x : y;
    }
    function max(uint x, uint y) internal pure returns (uint z) {
        return x >= y ? x : y;
    }
    function imin(int x, int y) internal pure returns (int z) {
        return x <= y ? x : y;
    }
    function imax(int x, int y) internal pure returns (int z) {
        return x >= y ? x : y;
    }

    uint constant WAD = 10 ** 18;
    uint constant RAY = 10 ** 27;

    function wmul(uint x, uint y) internal pure returns (uint z) {
        z = add(mul(x, y), WAD / 2) / WAD;
    }
    function rmul(uint x, uint y) internal pure returns (uint z) {
        z = add(mul(x, y), RAY / 2) / RAY;
    }
    function wdiv(uint x, uint y) internal pure returns (uint z) {
        z = add(mul(x, WAD), y / 2) / y;
    }
    function rdiv(uint x, uint y) internal pure returns (uint z) {
        z = add(mul(x, RAY), y / 2) / y;
    }

    // This famous algorithm is called "exponentiation by squaring"
    // and calculates x^n with x as fixed-point and n as regular unsigned.
    //
    // It's O(log n), instead of O(n) for naive repeated multiplication.
    //
    // These facts are why it works:
    //
    //  If n is even, then x^n = (x^2)^(n/2).
    //  If n is odd,  then x^n = x * x^(n-1),
    //   and applying the equation for even x gives
    //    x^n = x * (x^2)^((n-1) / 2).
    //
    //  Also, EVM division is flooring and
    //    floor[(n-1) / 2] = floor[n / 2].
    //
    function rpow(uint x, uint n) internal pure returns (uint z) {
        z = n % 2 != 0 ? x : RAY;

        for (n /= 2; n != 0; n /= 2) {
            x = rmul(x, x);

            if (n % 2 != 0) {
                z = rmul(z, x);
            }
        }
    }
}

contract DSThing is DSAuth, DSNote, DSMath {
}

contract PriceFeed is DSThing {

    uint128 val;
    uint32 public zzz;

    function peek() public view
        returns (bytes32,bool)
    {
        return (bytes32(val), now < zzz);
    }

    function read() public view
        returns (bytes32)
    {
        assert(now < zzz);
        return bytes32(val);
    }

    function post(uint128 val_, uint32 zzz_, address med_) public note auth
    {
        val = val_;
        zzz = zzz_;
        bool ret = med_.call(bytes4(keccak256("poke()")));
        ret;
    }

    function void() public note auth
    {
        zzz = 0;
    }

}

Contract Name:
PriceFeed

Contract Source Code:

File 1 of 1 : PriceFeed

/// price-feed.sol

// Copyright (C) 2017  DappHub, LLC

// Licensed under the Apache License, Version 2.0 (the "License").
// You may not use this file except in compliance with the License.

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND (express or implied).

pragma solidity ^0.4.17;

contract DSAuthority {
    function canCall(
        address src, address dst, bytes4 sig
    ) public view returns (bool);
}

contract DSAuthEvents {
    event LogSetAuthority (address indexed authority);
    event LogSetOwner     (address indexed owner);
}

contract DSAuth is DSAuthEvents {
    DSAuthority  public  authority;
    address      public  owner;

    function DSAuth() public {
        owner = msg.sender;
        LogSetOwner(msg.sender);
    }

    function setOwner(address owner_)
        public
        auth
    {
        owner = owner_;
        LogSetOwner(owner);
    }

    function setAuthority(DSAuthority authority_)
        public
        auth
    {
        authority = authority_;
        LogSetAuthority(authority);
    }

    modifier auth {
        require(isAuthorized(msg.sender, msg.sig));
        _;
    }

    function isAuthorized(address src, bytes4 sig) internal view returns (bool) {
        if (src == address(this)) {
            return true;
        } else if (src == owner) {
            return true;
        } else if (authority == DSAuthority(0)) {
            return false;
        } else {
            return authority.canCall(src, this, sig);
        }
    }
}

contract DSNote {
    event LogNote(
        bytes4   indexed  sig,
        address  indexed  guy,
        bytes32  indexed  foo,
        bytes32  indexed  bar,
        uint              wad,
        bytes             fax
    ) anonymous;

    modifier note {
        bytes32 foo;
        bytes32 bar;

        assembly {
            foo := calldataload(4)
            bar := calldataload(36)
        }

        LogNote(msg.sig, msg.sender, foo, bar, msg.value, msg.data);

        _;
    }
}

contract DSMath {
    function add(uint x, uint y) internal pure returns (uint z) {
        require((z = x + y) >= x);
    }
    function sub(uint x, uint y) internal pure returns (uint z) {
        require((z = x - y) <= x);
    }
    function mul(uint x, uint y) internal pure returns (uint z) {
        require(y == 0 || (z = x * y) / y == x);
    }

    function min(uint x, uint y) internal pure returns (uint z) {
        return x <= y ? x : y;
    }
    function max(uint x, uint y) internal pure returns (uint z) {
        return x >= y ? x : y;
    }
    function imin(int x, int y) internal pure returns (int z) {
        return x <= y ? x : y;
    }
    function imax(int x, int y) internal pure returns (int z) {
        return x >= y ? x : y;
    }

    uint constant WAD = 10 ** 18;
    uint constant RAY = 10 ** 27;

    function wmul(uint x, uint y) internal pure returns (uint z) {
        z = add(mul(x, y), WAD / 2) / WAD;
    }
    function rmul(uint x, uint y) internal pure returns (uint z) {
        z = add(mul(x, y), RAY / 2) / RAY;
    }
    function wdiv(uint x, uint y) internal pure returns (uint z) {
        z = add(mul(x, WAD), y / 2) / y;
    }
    function rdiv(uint x, uint y) internal pure returns (uint z) {
        z = add(mul(x, RAY), y / 2) / y;
    }

    // This famous algorithm is called "exponentiation by squaring"
    // and calculates x^n with x as fixed-point and n as regular unsigned.
    //
    // It's O(log n), instead of O(n) for naive repeated multiplication.
    //
    // These facts are why it works:
    //
    //  If n is even, then x^n = (x^2)^(n/2).
    //  If n is odd,  then x^n = x * x^(n-1),
    //   and applying the equation for even x gives
    //    x^n = x * (x^2)^((n-1) / 2).
    //
    //  Also, EVM division is flooring and
    //    floor[(n-1) / 2] = floor[n / 2].
    //
    function rpow(uint x, uint n) internal pure returns (uint z) {
        z = n % 2 != 0 ? x : RAY;

        for (n /= 2; n != 0; n /= 2) {
            x = rmul(x, x);

            if (n % 2 != 0) {
                z = rmul(z, x);
            }
        }
    }
}

contract DSThing is DSAuth, DSNote, DSMath {
}

contract PriceFeed is DSThing {

    uint128 val;
    uint32 public zzz;

    function peek() public view
        returns (bytes32,bool)
    {
        return (bytes32(val), now < zzz);
    }

    function read() public view
        returns (bytes32)
    {
        assert(now < zzz);
        return bytes32(val);
    }

    function post(uint128 val_, uint32 zzz_, address med_) public note auth
    {
        val = val_;
        zzz = zzz_;
        bool ret = med_.call(bytes4(keccak256("poke()")));
        ret;
    }

    function void() public note auth
    {
        zzz = 0;
    }

}

Context size (optional):