ETH Price: $3,665.39 (+0.79%)

Contract Diff Checker

Contract Name:
Pool

Contract Source Code:

File 1 of 1 : Pool

// File: @openzeppelin/contracts/GSN/Context.sol


pragma solidity ^0.6.0;

/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address payable) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes memory) {
        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
        return msg.data;
    }
}

// File: @openzeppelin/contracts/token/ERC20/IERC20.sol


pragma solidity ^0.6.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

// File: @openzeppelin/contracts/math/SafeMath.sol


pragma solidity ^0.6.0;

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, "SafeMath: subtraction overflow");
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        uint256 c = a - b;

        return c;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");

        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold

        return c;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, "SafeMath: modulo by zero");
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts with custom message when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b != 0, errorMessage);
        return a % b;
    }
}

// File: @openzeppelin/contracts/utils/Address.sol


pragma solidity ^0.6.2;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
        // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
        // for accounts without code, i.e. `keccak256('')`
        bytes32 codehash;
        bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
        // solhint-disable-next-line no-inline-assembly
        assembly { codehash := extcodehash(account) }
        return (codehash != accountHash && codehash != 0x0);
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
        (bool success, ) = recipient.call{ value: amount }("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain`call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
      return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        return _functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        return _functionCallWithValue(target, data, value, errorMessage);
    }

    function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
        require(isContract(target), "Address: call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly

                // solhint-disable-next-line no-inline-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

// File: @openzeppelin/contracts/token/ERC20/ERC20.sol


pragma solidity ^0.6.0;





/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin guidelines: functions revert instead
 * of returning `false` on failure. This behavior is nonetheless conventional
 * and does not conflict with the expectations of ERC20 applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20 {
    using SafeMath for uint256;
    using Address for address;

    mapping (address => uint256) private _balances;

    mapping (address => mapping (address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;
    uint8 private _decimals;

    /**
     * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
     * a default value of 18.
     *
     * To select a different value for {decimals}, use {_setupDecimals}.
     *
     * All three of these values are immutable: they can only be set once during
     * construction.
     */
    constructor (string memory name, string memory symbol) public {
        _name = name;
        _symbol = symbol;
        _decimals = 18;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5,05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
     * called.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view returns (uint8) {
        return _decimals;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20};
     *
     * Requirements:
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
        _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
        return true;
    }

    /**
     * @dev Moves tokens `amount` from `sender` to `recipient`.
     *
     * This is internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(address sender, address recipient, uint256 amount) internal virtual {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(sender, recipient, amount);

        _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
        _balances[recipient] = _balances[recipient].add(amount);
        emit Transfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements
     *
     * - `to` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply = _totalSupply.add(amount);
        _balances[account] = _balances[account].add(amount);
        emit Transfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
        _totalSupply = _totalSupply.sub(amount);
        emit Transfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
     *
     * This is internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Sets {decimals} to a value other than the default one of 18.
     *
     * WARNING: This function should only be called from the constructor. Most
     * applications that interact with token contracts will not expect
     * {decimals} to ever change, and may work incorrectly if it does.
     */
    function _setupDecimals(uint8 decimals_) internal {
        _decimals = decimals_;
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be to transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}

// File: contracts/pool/Math64x64.sol

/*
 *  Math 64.64 Smart Contract Library.  Copyright © 2019 by  Consulting.
 * Author: Mikhail Vladimirov <[email protected]>
 */
pragma solidity ^0.6.0;

/**
 * Smart contract library of mathematical functions operating with signed
 * 64.64-bit fixed point numbers.  Signed 64.64-bit fixed point number is
 * basically a simple fraction whose numerator is signed 128-bit integer and
 * denominator is 2^64.  As long as denominator is always the same, there is no
 * need to store it, thus in Solidity signed 64.64-bit fixed point numbers are
 * represented by int128 type holding only the numerator.
 */
library Math64x64 {
  /**
   * @dev Minimum value signed 64.64-bit fixed point number may have. 
   */
  int128 private constant MIN_64x64 = -0x80000000000000000000000000000000;

  /**
   * @dev Maximum value signed 64.64-bit fixed point number may have. 
   */
  int128 private constant MAX_64x64 = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

  /**
   * @dev Convert signed 256-bit integer number into signed 64.64-bit fixed point
   * number.  Revert on overflow.
   *
   * @param x signed 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function fromInt (int256 x) internal pure returns (int128) {
    require (x >= -0x8000000000000000 && x <= 0x7FFFFFFFFFFFFFFF);
    return int128 (x << 64);
  }

  /**
   * @dev Convert signed 64.64 fixed point number into signed 64-bit integer number
   * rounding down.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64-bit integer number
   */
  function toInt (int128 x) internal pure returns (int64) {
    return int64 (x >> 64);
  }

  /**
   * @dev Convert unsigned 256-bit integer number into signed 64.64-bit fixed point
   * number.  Revert on overflow.
   *
   * @param x unsigned 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function fromUInt (uint256 x) internal pure returns (int128) {
    require (x <= 0x7FFFFFFFFFFFFFFF);
    return int128 (x << 64);
  }

  /**
   * @dev Convert signed 64.64 fixed point number into unsigned 64-bit integer
   * number rounding down.  Revert on underflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return unsigned 64-bit integer number
   */
  function toUInt (int128 x) internal pure returns (uint64) {
    require (x >= 0);
    return uint64 (x >> 64);
  }

  /**
   * @dev Convert signed 128.128 fixed point number into signed 64.64-bit fixed point
   * number rounding down.  Revert on overflow.
   *
   * @param x signed 128.128-bin fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function from128x128 (int256 x) internal pure returns (int128) {
    int256 result = x >> 64;
    require (result >= MIN_64x64 && result <= MAX_64x64);
    return int128 (result);
  }

  /**
   * @dev Convert signed 64.64 fixed point number into signed 128.128 fixed point
   * number.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 128.128 fixed point number
   */
  function to128x128 (int128 x) internal pure returns (int256) {
    return int256 (x) << 64;
  }

  /**
   * @dev Calculate x + y.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function add (int128 x, int128 y) internal pure returns (int128) {
    int256 result = int256(x) + y;
    require (result >= MIN_64x64 && result <= MAX_64x64);
    return int128 (result);
  }

  /**
   * @dev Calculate x - y.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function sub (int128 x, int128 y) internal pure returns (int128) {
    int256 result = int256(x) - y;
    require (result >= MIN_64x64 && result <= MAX_64x64);
    return int128 (result);
  }

  /**
   * @dev Calculate x * y rounding down.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function mul (int128 x, int128 y) internal pure returns (int128) {
    int256 result = int256(x) * y >> 64;
    require (result >= MIN_64x64 && result <= MAX_64x64);
    return int128 (result);
  }

  /**
   * @dev Calculate x * y rounding towards zero, where x is signed 64.64 fixed point
   * number and y is signed 256-bit integer number.  Revert on overflow.
   *
   * @param x signed 64.64 fixed point number
   * @param y signed 256-bit integer number
   * @return signed 256-bit integer number
   */
  function muli (int128 x, int256 y) internal pure returns (int256) {
    if (x == MIN_64x64) {
      require (y >= -0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF &&
        y <= 0x1000000000000000000000000000000000000000000000000);
      return -y << 63;
    } else {
      bool negativeResult = false;
      if (x < 0) {
        x = -x;
        negativeResult = true;
      }
      if (y < 0) {
        y = -y; // We rely on overflow behavior here
        negativeResult = !negativeResult;
      }
      uint256 absoluteResult = mulu (x, uint256 (y));
      if (negativeResult) {
        require (absoluteResult <=
          0x8000000000000000000000000000000000000000000000000000000000000000);
        return -int256 (absoluteResult); // We rely on overflow behavior here
      } else {
        require (absoluteResult <=
          0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
        return int256 (absoluteResult);
      }
    }
  }

  /**
   * @dev Calculate x * y rounding down, where x is signed 64.64 fixed point number
   * and y is unsigned 256-bit integer number.  Revert on overflow.
   *
   * @param x signed 64.64 fixed point number
   * @param y unsigned 256-bit integer number
   * @return unsigned 256-bit integer number
   */
  function mulu (int128 x, uint256 y) internal pure returns (uint256) {
    if (y == 0) return 0;

    require (x >= 0);

    uint256 lo = (uint256 (x) * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) >> 64;
    uint256 hi = uint256 (x) * (y >> 128);

    require (hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
    hi <<= 64;

    require (hi <=
      0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - lo);
    return hi + lo;
  }

  /**
   * @dev Calculate x / y rounding towards zero.  Revert on overflow or when y is
   * zero.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function div (int128 x, int128 y) internal pure returns (int128) {
    require (y != 0);
    int256 result = (int256 (x) << 64) / y;
    require (result >= MIN_64x64 && result <= MAX_64x64);
    return int128 (result);
  }

  /**
   * @dev Calculate x / y rounding towards zero, where x and y are signed 256-bit
   * integer numbers.  Revert on overflow or when y is zero.
   *
   * @param x signed 256-bit integer number
   * @param y signed 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function divi (int256 x, int256 y) internal pure returns (int128) {
    require (y != 0);

    bool negativeResult = false;
    if (x < 0) {
      x = -x; // We rely on overflow behavior here
      negativeResult = true;
    }
    if (y < 0) {
      y = -y; // We rely on overflow behavior here
      negativeResult = !negativeResult;
    }
    uint128 absoluteResult = divuu (uint256 (x), uint256 (y));
    if (negativeResult) {
      require (absoluteResult <= 0x80000000000000000000000000000000);
      return -int128 (absoluteResult); // We rely on overflow behavior here
    } else {
      require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
      return int128 (absoluteResult); // We rely on overflow behavior here
    }
  }

  /**
   * @dev Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
   * integer numbers.  Revert on overflow or when y is zero.
   *
   * @param x unsigned 256-bit integer number
   * @param y unsigned 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function divu (uint256 x, uint256 y) internal pure returns (int128) {
    require (y != 0);
    uint128 result = divuu (x, y);
    require (result <= uint128 (MAX_64x64));
    return int128 (result);
  }

  /**
   * @dev Calculate -x.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function neg (int128 x) internal pure returns (int128) {
    require (x != MIN_64x64);
    return -x;
  }

  /**
   * @dev Calculate |x|.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function abs (int128 x) internal pure returns (int128) {
    require (x != MIN_64x64);
    return x < 0 ? -x : x;
  }

  /**
   * @dev Calculate 1 / x rounding towards zero.  Revert on overflow or when x is
   * zero.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function inv (int128 x) internal pure returns (int128) {
    require (x != 0);
    int256 result = int256 (0x100000000000000000000000000000000) / x;
    require (result >= MIN_64x64 && result <= MAX_64x64);
    return int128 (result);
  }

  /**
   * @dev Calculate arithmetics average of x and y, i.e. (x + y) / 2 rounding down.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function avg (int128 x, int128 y) internal pure returns (int128) {
    return int128 ((int256 (x) + int256 (y)) >> 1);
  }

  /**
   * @dev Calculate geometric average of x and y, i.e. sqrt (x * y) rounding down.
   * Revert on overflow or in case x * y is negative.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function gavg (int128 x, int128 y) internal pure returns (int128) {
    int256 m = int256 (x) * int256 (y);
    require (m >= 0);
    require (m <
        0x4000000000000000000000000000000000000000000000000000000000000000);
    return int128 (sqrtu (uint256 (m), uint256 (x) + uint256 (y) >> 1));
  }

  /**
   * @dev Calculate x^y assuming 0^0 is 1, where x is signed 64.64 fixed point number
   * and y is unsigned 256-bit integer number.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y uint256 value
   * @return signed 64.64-bit fixed point number
   */
  function pow (int128 x, uint256 y) internal pure returns (int128) {
    uint256 absoluteResult;
    bool negativeResult = false;
    if (x >= 0) {
      absoluteResult = powu (uint256 (x) << 63, y);
    } else {
      // We rely on overflow behavior here
      absoluteResult = powu (uint256 (uint128 (-x)) << 63, y);
      negativeResult = y & 1 > 0;
    }

    absoluteResult >>= 63;

    if (negativeResult) {
      require (absoluteResult <= 0x80000000000000000000000000000000);
      return -int128 (absoluteResult); // We rely on overflow behavior here
    } else {
      require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
      return int128 (absoluteResult); // We rely on overflow behavior here
    }
  }

  /**
   * @dev Calculate sqrt (x) rounding down.  Revert if x < 0.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function sqrt (int128 x) internal pure returns (int128) {
    require (x >= 0);
    return int128 (sqrtu (uint256 (x) << 64, 0x10000000000000000));
  }

  /**
   * @dev Calculate binary logarithm of x.  Revert if x <= 0.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function log_2 (int128 x) internal pure returns (int128) {
    require (x > 0);

    int256 msb = 0;
    int256 xc = x;
    if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; }
    if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
    if (xc >= 0x10000) { xc >>= 16; msb += 16; }
    if (xc >= 0x100) { xc >>= 8; msb += 8; }
    if (xc >= 0x10) { xc >>= 4; msb += 4; }
    if (xc >= 0x4) { xc >>= 2; msb += 2; }
    if (xc >= 0x2) msb += 1;  // No need to shift xc anymore

    int256 result = msb - 64 << 64;
    uint256 ux = uint256 (x) << 127 - msb;
    for (int256 bit = 0x8000000000000000; bit > 0; bit >>= 1) {
      ux *= ux;
      uint256 b = ux >> 255;
      ux >>= 127 + b;
      result += bit * int256 (b);
    }

    return int128 (result);
  }

  /**
   * @dev Calculate natural logarithm of x.  Revert if x <= 0.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function ln (int128 x) internal pure returns (int128) {
    require (x > 0);

    return int128 (
        uint256 (log_2 (x)) * 0xB17217F7D1CF79ABC9E3B39803F2F6AF >> 128);
  }

  /**
   * @dev Calculate binary exponent of x.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function exp_2 (int128 x) internal pure returns (int128) {
    require (x < 0x400000000000000000); // Overflow

    if (x < -0x400000000000000000) return 0; // Underflow

    uint256 result = 0x80000000000000000000000000000000;

    if (x & 0x8000000000000000 > 0)
      result = result * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128;
    if (x & 0x4000000000000000 > 0)
      result = result * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128;
    if (x & 0x2000000000000000 > 0)
      result = result * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128;
    if (x & 0x1000000000000000 > 0)
      result = result * 0x10B5586CF9890F6298B92B71842A98363 >> 128;
    if (x & 0x800000000000000 > 0)
      result = result * 0x1059B0D31585743AE7C548EB68CA417FD >> 128;
    if (x & 0x400000000000000 > 0)
      result = result * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128;
    if (x & 0x200000000000000 > 0)
      result = result * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128;
    if (x & 0x100000000000000 > 0)
      result = result * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128;
    if (x & 0x80000000000000 > 0)
      result = result * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128;
    if (x & 0x40000000000000 > 0)
      result = result * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128;
    if (x & 0x20000000000000 > 0)
      result = result * 0x100162F3904051FA128BCA9C55C31E5DF >> 128;
    if (x & 0x10000000000000 > 0)
      result = result * 0x1000B175EFFDC76BA38E31671CA939725 >> 128;
    if (x & 0x8000000000000 > 0)
      result = result * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128;
    if (x & 0x4000000000000 > 0)
      result = result * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128;
    if (x & 0x2000000000000 > 0)
      result = result * 0x1000162E525EE054754457D5995292026 >> 128;
    if (x & 0x1000000000000 > 0)
      result = result * 0x10000B17255775C040618BF4A4ADE83FC >> 128;
    if (x & 0x800000000000 > 0)
      result = result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128;
    if (x & 0x400000000000 > 0)
      result = result * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128;
    if (x & 0x200000000000 > 0)
      result = result * 0x10000162E43F4F831060E02D839A9D16D >> 128;
    if (x & 0x100000000000 > 0)
      result = result * 0x100000B1721BCFC99D9F890EA06911763 >> 128;
    if (x & 0x80000000000 > 0)
      result = result * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128;
    if (x & 0x40000000000 > 0)
      result = result * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128;
    if (x & 0x20000000000 > 0)
      result = result * 0x100000162E430E5A18F6119E3C02282A5 >> 128;
    if (x & 0x10000000000 > 0)
      result = result * 0x1000000B1721835514B86E6D96EFD1BFE >> 128;
    if (x & 0x8000000000 > 0)
      result = result * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128;
    if (x & 0x4000000000 > 0)
      result = result * 0x10000002C5C8601CC6B9E94213C72737A >> 128;
    if (x & 0x2000000000 > 0)
      result = result * 0x1000000162E42FFF037DF38AA2B219F06 >> 128;
    if (x & 0x1000000000 > 0)
      result = result * 0x10000000B17217FBA9C739AA5819F44F9 >> 128;
    if (x & 0x800000000 > 0)
      result = result * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128;
    if (x & 0x400000000 > 0)
      result = result * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128;
    if (x & 0x200000000 > 0)
      result = result * 0x10000000162E42FF0999CE3541B9FFFCF >> 128;
    if (x & 0x100000000 > 0)
      result = result * 0x100000000B17217F80F4EF5AADDA45554 >> 128;
    if (x & 0x80000000 > 0)
      result = result * 0x10000000058B90BFBF8479BD5A81B51AD >> 128;
    if (x & 0x40000000 > 0)
      result = result * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128;
    if (x & 0x20000000 > 0)
      result = result * 0x100000000162E42FEFB2FED257559BDAA >> 128;
    if (x & 0x10000000 > 0)
      result = result * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128;
    if (x & 0x8000000 > 0)
      result = result * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128;
    if (x & 0x4000000 > 0)
      result = result * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128;
    if (x & 0x2000000 > 0)
      result = result * 0x1000000000162E42FEFA494F1478FDE05 >> 128;
    if (x & 0x1000000 > 0)
      result = result * 0x10000000000B17217F7D20CF927C8E94C >> 128;
    if (x & 0x800000 > 0)
      result = result * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128;
    if (x & 0x400000 > 0)
      result = result * 0x100000000002C5C85FDF477B662B26945 >> 128;
    if (x & 0x200000 > 0)
      result = result * 0x10000000000162E42FEFA3AE53369388C >> 128;
    if (x & 0x100000 > 0)
      result = result * 0x100000000000B17217F7D1D351A389D40 >> 128;
    if (x & 0x80000 > 0)
      result = result * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128;
    if (x & 0x40000 > 0)
      result = result * 0x1000000000002C5C85FDF4741BEA6E77E >> 128;
    if (x & 0x20000 > 0)
      result = result * 0x100000000000162E42FEFA39FE95583C2 >> 128;
    if (x & 0x10000 > 0)
      result = result * 0x1000000000000B17217F7D1CFB72B45E1 >> 128;
    if (x & 0x8000 > 0)
      result = result * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128;
    if (x & 0x4000 > 0)
      result = result * 0x10000000000002C5C85FDF473E242EA38 >> 128;
    if (x & 0x2000 > 0)
      result = result * 0x1000000000000162E42FEFA39F02B772C >> 128;
    if (x & 0x1000 > 0)
      result = result * 0x10000000000000B17217F7D1CF7D83C1A >> 128;
    if (x & 0x800 > 0)
      result = result * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128;
    if (x & 0x400 > 0)
      result = result * 0x100000000000002C5C85FDF473DEA871F >> 128;
    if (x & 0x200 > 0)
      result = result * 0x10000000000000162E42FEFA39EF44D91 >> 128;
    if (x & 0x100 > 0)
      result = result * 0x100000000000000B17217F7D1CF79E949 >> 128;
    if (x & 0x80 > 0)
      result = result * 0x10000000000000058B90BFBE8E7BCE544 >> 128;
    if (x & 0x40 > 0)
      result = result * 0x1000000000000002C5C85FDF473DE6ECA >> 128;
    if (x & 0x20 > 0)
      result = result * 0x100000000000000162E42FEFA39EF366F >> 128;
    if (x & 0x10 > 0)
      result = result * 0x1000000000000000B17217F7D1CF79AFA >> 128;
    if (x & 0x8 > 0)
      result = result * 0x100000000000000058B90BFBE8E7BCD6D >> 128;
    if (x & 0x4 > 0)
      result = result * 0x10000000000000002C5C85FDF473DE6B2 >> 128;
    if (x & 0x2 > 0)
      result = result * 0x1000000000000000162E42FEFA39EF358 >> 128;
    if (x & 0x1 > 0)
      result = result * 0x10000000000000000B17217F7D1CF79AB >> 128;

    result >>= 63 - (x >> 64);
    require (result <= uint256 (MAX_64x64));

    return int128 (result);
  }

  /**
   * @dev Calculate natural exponent of x.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function exp (int128 x) internal pure returns (int128) {
    require (x < 0x400000000000000000); // Overflow

    if (x < -0x400000000000000000) return 0; // Underflow

    return exp_2 (
        int128 (int256 (x) * 0x171547652B82FE1777D0FFDA0D23A7D12 >> 128));
  }

  /**
   * @dev Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
   * integer numbers.  Revert on overflow or when y is zero.
   *
   * @param x unsigned 256-bit integer number
   * @param y unsigned 256-bit integer number
   * @return unsigned 64.64-bit fixed point number
   */
  function divuu (uint256 x, uint256 y) private pure returns (uint128) {
    require (y != 0);

    uint256 result;

    if (x <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
      result = (x << 64) / y;
    else {
      uint256 msb = 192;
      uint256 xc = x >> 192;
      if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
      if (xc >= 0x10000) { xc >>= 16; msb += 16; }
      if (xc >= 0x100) { xc >>= 8; msb += 8; }
      if (xc >= 0x10) { xc >>= 4; msb += 4; }
      if (xc >= 0x4) { xc >>= 2; msb += 2; }
      if (xc >= 0x2) msb += 1;  // No need to shift xc anymore

      result = (x << 255 - msb) / ((y - 1 >> msb - 191) + 1);
      require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);

      uint256 hi = result * (y >> 128);
      uint256 lo = result * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);

      uint256 xh = x >> 192;
      uint256 xl = x << 64;

      if (xl < lo) xh -= 1;
      xl -= lo; // We rely on overflow behavior here
      lo = hi << 128;
      if (xl < lo) xh -= 1;
      xl -= lo; // We rely on overflow behavior here

      assert (xh == hi >> 128);

      result += xl / y;
    }

    require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
    return uint128 (result);
  }

  /**
   * @dev Calculate x^y assuming 0^0 is 1, where x is unsigned 129.127 fixed point
   * number and y is unsigned 256-bit integer number.  Revert on overflow.
   *
   * @param x unsigned 129.127-bit fixed point number
   * @param y uint256 value
   * @return unsigned 129.127-bit fixed point number
   */
  function powu (uint256 x, uint256 y) private pure returns (uint256) {
    if (y == 0) return 0x80000000000000000000000000000000;
    else if (x == 0) return 0;
    else {
      int256 msb = 0;
      uint256 xc = x;
      if (xc >= 0x100000000000000000000000000000000) { xc >>= 128; msb += 128; }
      if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; }
      if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
      if (xc >= 0x10000) { xc >>= 16; msb += 16; }
      if (xc >= 0x100) { xc >>= 8; msb += 8; }
      if (xc >= 0x10) { xc >>= 4; msb += 4; }
      if (xc >= 0x4) { xc >>= 2; msb += 2; }
      if (xc >= 0x2) msb += 1;  // No need to shift xc anymore

      int256 xe = msb - 127;
      if (xe > 0) x >>= xe;
      else x <<= -xe;

      uint256 result = 0x80000000000000000000000000000000;
      int256 re = 0;

      while (y > 0) {
        if (y & 1 > 0) {
          result = result * x;
          y -= 1;
          re += xe;
          if (result >=
            0x8000000000000000000000000000000000000000000000000000000000000000) {
            result >>= 128;
            re += 1;
          } else result >>= 127;
          if (re < -127) return 0; // Underflow
          require (re < 128); // Overflow
        } else {
          x = x * x;
          y >>= 1;
          xe <<= 1;
          if (x >=
            0x8000000000000000000000000000000000000000000000000000000000000000) {
            x >>= 128;
            xe += 1;
          } else x >>= 127;
          if (xe < -127) return 0; // Underflow
          require (xe < 128); // Overflow
        }
      }

      if (re > 0) result <<= re;
      else if (re < 0) result >>= -re;

      return result;
    }
  }

  /**
   * @dev Calculate sqrt (x) rounding down, where x is unsigned 256-bit integer
   * number.
   *
   * @param x unsigned 256-bit integer number
   * @return unsigned 128-bit integer number
   */
  function sqrtu (uint256 x, uint256 r) private pure returns (uint128) {
    if (x == 0) return 0;
    else {
      require (r > 0);
      while (true) {
        uint256 rr = x / r;
        if (r == rr || r + 1 == rr) return uint128 (r);
        else if (r == rr + 1) return uint128 (rr);
        r = r + rr + 1 >> 1;
      }
    }
  }
}

// File: contracts/pool/YieldMath.sol

pragma solidity ^0.6.0;


/**
 * Ethereum smart contract library implementing Yield Math model.
 */
library YieldMath {
  /**
   * Calculate the amount of fyDai a user would get for given amount of Dai.
   *
   * @param daiReserves Dai reserves amount
   * @param fyDaiReserves fyDai reserves amount
   * @param daiAmount Dai amount to be traded
   * @param timeTillMaturity time till maturity in seconds
   * @param k time till maturity coefficient, multiplied by 2^64
   * @param g fee coefficient, multiplied by 2^64
   * @return the amount of fyDai a user would get for given amount of Dai
   */
  function fyDaiOutForDaiIn (
    uint128 daiReserves, uint128 fyDaiReserves, uint128 daiAmount,
    uint128 timeTillMaturity, int128 k, int128 g)
  internal pure returns (uint128) {
    // t = k * timeTillMaturity
    int128 t = Math64x64.mul (k, Math64x64.fromUInt (timeTillMaturity));

    // a = (1 - gt)
    int128 a = Math64x64.sub (0x10000000000000000, Math64x64.mul (g, t));
    require (a > 0, "YieldMath: Too far from maturity");

    // xdx = daiReserves + daiAmount
    uint256 xdx = uint256 (daiReserves) + uint256 (daiAmount);
    require (xdx < 0x100000000000000000000000000000000, "YieldMath: Too much Dai in");

    uint256 sum =
      pow (daiReserves, uint128 (a), 0x10000000000000000) +
      pow (fyDaiReserves, uint128 (a), 0x10000000000000000) -
      pow (uint128(xdx), uint128 (a), 0x10000000000000000);
    require (sum < 0x100000000000000000000000000000000, "YieldMath: Insufficient fyDai reserves");

    uint256 result = fyDaiReserves - pow (uint128 (sum), 0x10000000000000000, uint128 (a));
    require (result < 0x100000000000000000000000000000000, "YieldMath: Rounding induced error");
    result = result > 1e12 ? result - 1e12 : 0; // Substract error guard, flooring the result at zero

    return uint128 (result);
  }

  /**
   * Calculate the amount of Dai a user would get for certain amount of fyDai.
   *
   * @param daiReserves Dai reserves amount
   * @param fyDaiReserves fyDai reserves amount
   * @param fyDaiAmount fyDai amount to be traded
   * @param timeTillMaturity time till maturity in seconds
   * @param k time till maturity coefficient, multiplied by 2^64
   * @param g fee coefficient, multiplied by 2^64
   * @return the amount of Dai a user would get for given amount of fyDai
   */
  function daiOutForFYDaiIn (
    uint128 daiReserves, uint128 fyDaiReserves, uint128 fyDaiAmount,
    uint128 timeTillMaturity, int128 k, int128 g)
  internal pure returns (uint128) {
    // t = k * timeTillMaturity
    int128 t = Math64x64.mul (k, Math64x64.fromUInt (timeTillMaturity));

    // a = (1 - gt)
    int128 a = Math64x64.sub (0x10000000000000000, Math64x64.mul (g, t));
    require (a > 0, "YieldMath: Too far from maturity");

    // ydy = fyDaiReserves + fyDaiAmount;
    uint256 ydy = uint256 (fyDaiReserves) + uint256 (fyDaiAmount);
    require (ydy < 0x100000000000000000000000000000000, "YieldMath: Too much fyDai in");

    uint256 sum =
      pow (uint128 (daiReserves), uint128 (a), 0x10000000000000000) -
      pow (uint128 (ydy), uint128 (a), 0x10000000000000000) +
      pow (fyDaiReserves, uint128 (a), 0x10000000000000000);
    require (sum < 0x100000000000000000000000000000000, "YieldMath: Insufficient Dai reserves");

    uint256 result =
      daiReserves -
      pow (uint128 (sum), 0x10000000000000000, uint128 (a));
    require (result < 0x100000000000000000000000000000000, "YieldMath: Rounding induced error");
    result = result > 1e12 ? result - 1e12 : 0; // Substract error guard, flooring the result at zero

    return uint128 (result);
  }

  /**
   * Calculate the amount of fyDai a user could sell for given amount of Dai.
   *
   * @param daiReserves Dai reserves amount
   * @param fyDaiReserves fyDai reserves amount
   * @param daiAmount Dai amount to be traded
   * @param timeTillMaturity time till maturity in seconds
   * @param k time till maturity coefficient, multiplied by 2^64
   * @param g fee coefficient, multiplied by 2^64
   * @return the amount of fyDai a user could sell for given amount of Dai
   */
  function fyDaiInForDaiOut (
    uint128 daiReserves, uint128 fyDaiReserves, uint128 daiAmount,
    uint128 timeTillMaturity, int128 k, int128 g)
  internal pure returns (uint128) {
    // t = k * timeTillMaturity
    int128 t = Math64x64.mul (k, Math64x64.fromUInt (timeTillMaturity));

    // a = (1 - gt)
    int128 a = Math64x64.sub (0x10000000000000000, Math64x64.mul (g, t));
    require (a > 0, "YieldMath: Too far from maturity");

    // xdx = daiReserves - daiAmount
    uint256 xdx = uint256 (daiReserves) - uint256 (daiAmount);
    require (xdx < 0x100000000000000000000000000000000, "YieldMath: Too much Dai out");

    uint256 sum =
      pow (uint128 (daiReserves), uint128 (a), 0x10000000000000000) +
      pow (fyDaiReserves, uint128 (a), 0x10000000000000000) -
      pow (uint128 (xdx), uint128 (a), 0x10000000000000000);
    require (sum < 0x100000000000000000000000000000000, "YieldMath: Resulting fyDai reserves too high");

    uint256 result = pow (uint128 (sum), 0x10000000000000000, uint128 (a)) - fyDaiReserves;
    require (result < 0x100000000000000000000000000000000, "YieldMath: Rounding induced error");
    result = result < type(uint128).max - 1e12 ? result + 1e12 : type(uint128).max; // Add error guard, ceiling the result at max

    return uint128 (result);
  }

  /**
   * Calculate the amount of Dai a user would have to pay for certain amount of
   * fyDai.
   *
   * @param daiReserves Dai reserves amount
   * @param fyDaiReserves fyDai reserves amount
   * @param fyDaiAmount fyDai amount to be traded
   * @param timeTillMaturity time till maturity in seconds
   * @param k time till maturity coefficient, multiplied by 2^64
   * @param g fee coefficient, multiplied by 2^64
   * @return the amount of Dai a user would have to pay for given amount of
   *         fyDai
   */
  function daiInForFYDaiOut (
    uint128 daiReserves, uint128 fyDaiReserves, uint128 fyDaiAmount,
    uint128 timeTillMaturity, int128 k, int128 g)
  internal pure returns (uint128) {
    // a = (1 - g * k * timeTillMaturity)
    int128 a = Math64x64.sub (0x10000000000000000, Math64x64.mul (g, Math64x64.mul (k, Math64x64.fromUInt (timeTillMaturity))));
    require (a > 0, "YieldMath: Too far from maturity");

    // ydy = fyDaiReserves - fyDaiAmount;
    uint256 ydy = uint256 (fyDaiReserves) - uint256 (fyDaiAmount);
    require (ydy < 0x100000000000000000000000000000000, "YieldMath: Too much fyDai out");

    uint256 sum =
      pow (daiReserves, uint128 (a), 0x10000000000000000) +
      pow (fyDaiReserves, uint128 (a), 0x10000000000000000) -
      pow (uint128 (ydy), uint128 (a), 0x10000000000000000);
    require (sum < 0x100000000000000000000000000000000, "YieldMath: Resulting Dai reserves too high");

    uint256 result =
      pow (uint128 (sum), 0x10000000000000000, uint128 (a)) -
      daiReserves;
    require (result < 0x100000000000000000000000000000000, "YieldMath: Rounding induced error");
    result = result < type(uint128).max - 1e12 ? result + 1e12 : type(uint128).max; // Add error guard, ceiling the result at max
    
    return uint128 (result);
  }

  /**
   * Raise given number x into power specified as a simple fraction y/z and then
   * multiply the result by the normalization factor 2^(128 * (1 - y/z)).
   * Revert if z is zero, or if both x and y are zeros.
   *
   * @param x number to raise into given power y/z
   * @param y numerator of the power to raise x into
   * @param z denominator of the power to raise x into
   * @return x raised into power y/z and then multiplied by 2^(128 * (1 - y/z))
   */
  function pow (uint128 x, uint128 y, uint128 z)
  internal pure returns (uint256) {
    require (z != 0);

    if (x == 0) {
      require (y != 0);
      return 0;
    } else {
      uint256 l =
        uint256 (0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - log_2 (x)) * y / z;
      if (l > 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) return 0;
      else return uint256 (pow_2 (uint128 (0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - l)));
    }
  }

  /**
   * Calculate base 2 logarithm of an unsigned 128-bit integer number.  Revert
   * in case x is zero.
   *
   * @param x number to calculate base 2 logarithm of
   * @return base 2 logarithm of x, multiplied by 2^121
   */
  function log_2 (uint128 x)
  internal pure returns (uint128) {
    require (x != 0);

    uint b = x;

    uint l = 0xFE000000000000000000000000000000;

    if (b < 0x10000000000000000) {l -= 0x80000000000000000000000000000000; b <<= 64;}
    if (b < 0x1000000000000000000000000) {l -= 0x40000000000000000000000000000000; b <<= 32;}
    if (b < 0x10000000000000000000000000000) {l -= 0x20000000000000000000000000000000; b <<= 16;}
    if (b < 0x1000000000000000000000000000000) {l -= 0x10000000000000000000000000000000; b <<= 8;}
    if (b < 0x10000000000000000000000000000000) {l -= 0x8000000000000000000000000000000; b <<= 4;}
    if (b < 0x40000000000000000000000000000000) {l -= 0x4000000000000000000000000000000; b <<= 2;}
    if (b < 0x80000000000000000000000000000000) {l -= 0x2000000000000000000000000000000; b <<= 1;}

    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x1000000000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x800000000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x400000000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x200000000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x100000000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x80000000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x40000000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x20000000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x10000000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x8000000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x4000000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x2000000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x1000000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x800000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x400000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x200000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x100000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x80000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x40000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x20000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x10000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x8000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x4000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x2000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x1000000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x800000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x400000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x200000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x100000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x80000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x40000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x20000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x10000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x8000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x4000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x2000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x1000000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x800000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x400000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x200000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x100000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x80000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x40000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x20000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x10000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x8000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x4000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x2000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x1000000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x800000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x400000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x200000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x100000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x80000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x40000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x20000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x10000000000000000;}
    /* Precision reduced to 64 bits
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x8000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x4000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x2000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x1000000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x800000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x400000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x200000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x100000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x80000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x40000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x20000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x10000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x8000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x4000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x2000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x1000000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x800000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x400000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x200000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x100000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x80000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x40000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x20000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x10000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x8000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x4000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x2000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x1000000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x800000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x400000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x200000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x100000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x80000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x40000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x20000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x10000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x8000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x4000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x2000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x1000000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x800000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x400000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x200000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x100000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x80000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x40000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x20000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x10000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x8000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x4000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x2000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x1000;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x800;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x400;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x200;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x100;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x80;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x40;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x20;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x10;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x8;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x4;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) {b >>= 1; l |= 0x2;}
    b = b * b >> 127; if (b >= 0x100000000000000000000000000000000) l |= 0x1;
    */

    return uint128 (l);
  }

  /**
   * Calculate 2 raised into given power.
   *
   * @param x power to raise 2 into, multiplied by 2^121
   * @return 2 raised into given power
   */
  function pow_2 (uint128 x)
  internal pure returns (uint128) {
    uint r = 0x80000000000000000000000000000000;
    if (x & 0x1000000000000000000000000000000 > 0) r = r * 0xb504f333f9de6484597d89b3754abe9f >> 127;
    if (x & 0x800000000000000000000000000000 > 0) r = r * 0x9837f0518db8a96f46ad23182e42f6f6 >> 127;
    if (x & 0x400000000000000000000000000000 > 0) r = r * 0x8b95c1e3ea8bd6e6fbe4628758a53c90 >> 127;
    if (x & 0x200000000000000000000000000000 > 0) r = r * 0x85aac367cc487b14c5c95b8c2154c1b2 >> 127;
    if (x & 0x100000000000000000000000000000 > 0) r = r * 0x82cd8698ac2ba1d73e2a475b46520bff >> 127;
    if (x & 0x80000000000000000000000000000 > 0) r = r * 0x8164d1f3bc0307737be56527bd14def4 >> 127;
    if (x & 0x40000000000000000000000000000 > 0) r = r * 0x80b1ed4fd999ab6c25335719b6e6fd20 >> 127;
    if (x & 0x20000000000000000000000000000 > 0) r = r * 0x8058d7d2d5e5f6b094d589f608ee4aa2 >> 127;
    if (x & 0x10000000000000000000000000000 > 0) r = r * 0x802c6436d0e04f50ff8ce94a6797b3ce >> 127;
    if (x & 0x8000000000000000000000000000 > 0) r = r * 0x8016302f174676283690dfe44d11d008 >> 127;
    if (x & 0x4000000000000000000000000000 > 0) r = r * 0x800b179c82028fd0945e54e2ae18f2f0 >> 127;
    if (x & 0x2000000000000000000000000000 > 0) r = r * 0x80058baf7fee3b5d1c718b38e549cb93 >> 127;
    if (x & 0x1000000000000000000000000000 > 0) r = r * 0x8002c5d00fdcfcb6b6566a58c048be1f >> 127;
    if (x & 0x800000000000000000000000000 > 0) r = r * 0x800162e61bed4a48e84c2e1a463473d9 >> 127;
    if (x & 0x400000000000000000000000000 > 0) r = r * 0x8000b17292f702a3aa22beacca949013 >> 127;
    if (x & 0x200000000000000000000000000 > 0) r = r * 0x800058b92abbae02030c5fa5256f41fe >> 127;
    if (x & 0x100000000000000000000000000 > 0) r = r * 0x80002c5c8dade4d71776c0f4dbea67d6 >> 127;
    if (x & 0x80000000000000000000000000 > 0) r = r * 0x8000162e44eaf636526be456600bdbe4 >> 127;
    if (x & 0x40000000000000000000000000 > 0) r = r * 0x80000b1721fa7c188307016c1cd4e8b6 >> 127;
    if (x & 0x20000000000000000000000000 > 0) r = r * 0x8000058b90de7e4cecfc487503488bb1 >> 127;
    if (x & 0x10000000000000000000000000 > 0) r = r * 0x800002c5c8678f36cbfce50a6de60b14 >> 127;
    if (x & 0x8000000000000000000000000 > 0) r = r * 0x80000162e431db9f80b2347b5d62e516 >> 127;
    if (x & 0x4000000000000000000000000 > 0) r = r * 0x800000b1721872d0c7b08cf1e0114152 >> 127;
    if (x & 0x2000000000000000000000000 > 0) r = r * 0x80000058b90c1aa8a5c3736cb77e8dff >> 127;
    if (x & 0x1000000000000000000000000 > 0) r = r * 0x8000002c5c8605a4635f2efc2362d978 >> 127;
    if (x & 0x800000000000000000000000 > 0) r = r * 0x800000162e4300e635cf4a109e3939bd >> 127;
    if (x & 0x400000000000000000000000 > 0) r = r * 0x8000000b17217ff81bef9c551590cf83 >> 127;
    if (x & 0x200000000000000000000000 > 0) r = r * 0x800000058b90bfdd4e39cd52c0cfa27c >> 127;
    if (x & 0x100000000000000000000000 > 0) r = r * 0x80000002c5c85fe6f72d669e0e76e411 >> 127;
    if (x & 0x80000000000000000000000 > 0) r = r * 0x8000000162e42ff18f9ad35186d0df28 >> 127;
    if (x & 0x40000000000000000000000 > 0) r = r * 0x80000000b17217f84cce71aa0dcfffe7 >> 127;
    if (x & 0x20000000000000000000000 > 0) r = r * 0x8000000058b90bfc07a77ad56ed22aaa >> 127;
    if (x & 0x10000000000000000000000 > 0) r = r * 0x800000002c5c85fdfc23cdead40da8d6 >> 127;
    if (x & 0x8000000000000000000000 > 0) r = r * 0x80000000162e42fefc25eb1571853a66 >> 127;
    if (x & 0x4000000000000000000000 > 0) r = r * 0x800000000b17217f7d97f692baacded5 >> 127;
    if (x & 0x2000000000000000000000 > 0) r = r * 0x80000000058b90bfbead3b8b5dd254d7 >> 127;
    if (x & 0x1000000000000000000000 > 0) r = r * 0x8000000002c5c85fdf4eedd62f084e67 >> 127;
    if (x & 0x800000000000000000000 > 0) r = r * 0x800000000162e42fefa58aef378bf586 >> 127;
    if (x & 0x400000000000000000000 > 0) r = r * 0x8000000000b17217f7d24a78a3c7ef02 >> 127;
    if (x & 0x200000000000000000000 > 0) r = r * 0x800000000058b90bfbe9067c93e474a6 >> 127;
    if (x & 0x100000000000000000000 > 0) r = r * 0x80000000002c5c85fdf47b8e5a72599f >> 127;
    if (x & 0x80000000000000000000 > 0) r = r * 0x8000000000162e42fefa3bdb315934a2 >> 127;
    if (x & 0x40000000000000000000 > 0) r = r * 0x80000000000b17217f7d1d7299b49c46 >> 127;
    if (x & 0x20000000000000000000 > 0) r = r * 0x8000000000058b90bfbe8e9a8d1c4ea0 >> 127;
    if (x & 0x10000000000000000000 > 0) r = r * 0x800000000002c5c85fdf4745969ea76f >> 127;
    if (x & 0x8000000000000000000 > 0) r = r * 0x80000000000162e42fefa3a0df5373bf >> 127;
    if (x & 0x4000000000000000000 > 0) r = r * 0x800000000000b17217f7d1cff4aac1e1 >> 127;
    if (x & 0x2000000000000000000 > 0) r = r * 0x80000000000058b90bfbe8e7db95a2f1 >> 127;
    if (x & 0x1000000000000000000 > 0) r = r * 0x8000000000002c5c85fdf473e61ae1f8 >> 127;
    if (x & 0x800000000000000000 > 0) r = r * 0x800000000000162e42fefa39f121751c >> 127;
    if (x & 0x400000000000000000 > 0) r = r * 0x8000000000000b17217f7d1cf815bb96 >> 127;
    if (x & 0x200000000000000000 > 0) r = r * 0x800000000000058b90bfbe8e7bec1e0d >> 127;
    if (x & 0x100000000000000000 > 0) r = r * 0x80000000000002c5c85fdf473dee5f17 >> 127;
    if (x & 0x80000000000000000 > 0) r = r * 0x8000000000000162e42fefa39ef5438f >> 127;
    if (x & 0x40000000000000000 > 0) r = r * 0x80000000000000b17217f7d1cf7a26c8 >> 127;
    if (x & 0x20000000000000000 > 0) r = r * 0x8000000000000058b90bfbe8e7bcf4a4 >> 127;
    if (x & 0x10000000000000000 > 0) r = r * 0x800000000000002c5c85fdf473de72a2 >> 127;
    /* Precision reduced to 64 bits
    if (x & 0x8000000000000000 > 0) r = r * 0x80000000000000162e42fefa39ef3765 >> 127;
    if (x & 0x4000000000000000 > 0) r = r * 0x800000000000000b17217f7d1cf79b37 >> 127;
    if (x & 0x2000000000000000 > 0) r = r * 0x80000000000000058b90bfbe8e7bcd7d >> 127;
    if (x & 0x1000000000000000 > 0) r = r * 0x8000000000000002c5c85fdf473de6b6 >> 127;
    if (x & 0x800000000000000 > 0) r = r * 0x800000000000000162e42fefa39ef359 >> 127;
    if (x & 0x400000000000000 > 0) r = r * 0x8000000000000000b17217f7d1cf79ac >> 127;
    if (x & 0x200000000000000 > 0) r = r * 0x800000000000000058b90bfbe8e7bcd6 >> 127;
    if (x & 0x100000000000000 > 0) r = r * 0x80000000000000002c5c85fdf473de6a >> 127;
    if (x & 0x80000000000000 > 0) r = r * 0x8000000000000000162e42fefa39ef35 >> 127;
    if (x & 0x40000000000000 > 0) r = r * 0x80000000000000000b17217f7d1cf79a >> 127;
    if (x & 0x20000000000000 > 0) r = r * 0x8000000000000000058b90bfbe8e7bcd >> 127;
    if (x & 0x10000000000000 > 0) r = r * 0x800000000000000002c5c85fdf473de6 >> 127;
    if (x & 0x8000000000000 > 0) r = r * 0x80000000000000000162e42fefa39ef3 >> 127;
    if (x & 0x4000000000000 > 0) r = r * 0x800000000000000000b17217f7d1cf79 >> 127;
    if (x & 0x2000000000000 > 0) r = r * 0x80000000000000000058b90bfbe8e7bc >> 127;
    if (x & 0x1000000000000 > 0) r = r * 0x8000000000000000002c5c85fdf473de >> 127;
    if (x & 0x800000000000 > 0) r = r * 0x800000000000000000162e42fefa39ef >> 127;
    if (x & 0x400000000000 > 0) r = r * 0x8000000000000000000b17217f7d1cf7 >> 127;
    if (x & 0x200000000000 > 0) r = r * 0x800000000000000000058b90bfbe8e7b >> 127;
    if (x & 0x100000000000 > 0) r = r * 0x80000000000000000002c5c85fdf473d >> 127;
    if (x & 0x80000000000 > 0) r = r * 0x8000000000000000000162e42fefa39e >> 127;
    if (x & 0x40000000000 > 0) r = r * 0x80000000000000000000b17217f7d1cf >> 127;
    if (x & 0x20000000000 > 0) r = r * 0x8000000000000000000058b90bfbe8e7 >> 127;
    if (x & 0x10000000000 > 0) r = r * 0x800000000000000000002c5c85fdf473 >> 127;
    if (x & 0x8000000000 > 0) r = r * 0x80000000000000000000162e42fefa39 >> 127;
    if (x & 0x4000000000 > 0) r = r * 0x800000000000000000000b17217f7d1c >> 127;
    if (x & 0x2000000000 > 0) r = r * 0x80000000000000000000058b90bfbe8e >> 127;
    if (x & 0x1000000000 > 0) r = r * 0x8000000000000000000002c5c85fdf47 >> 127;
    if (x & 0x800000000 > 0) r = r * 0x800000000000000000000162e42fefa3 >> 127;
    if (x & 0x400000000 > 0) r = r * 0x8000000000000000000000b17217f7d1 >> 127;
    if (x & 0x200000000 > 0) r = r * 0x800000000000000000000058b90bfbe8 >> 127;
    if (x & 0x100000000 > 0) r = r * 0x80000000000000000000002c5c85fdf4 >> 127;
    if (x & 0x80000000 > 0) r = r * 0x8000000000000000000000162e42fefa >> 127;
    if (x & 0x40000000 > 0) r = r * 0x80000000000000000000000b17217f7d >> 127;
    if (x & 0x20000000 > 0) r = r * 0x8000000000000000000000058b90bfbe >> 127;
    if (x & 0x10000000 > 0) r = r * 0x800000000000000000000002c5c85fdf >> 127;
    if (x & 0x8000000 > 0) r = r * 0x80000000000000000000000162e42fef >> 127;
    if (x & 0x4000000 > 0) r = r * 0x800000000000000000000000b17217f7 >> 127;
    if (x & 0x2000000 > 0) r = r * 0x80000000000000000000000058b90bfb >> 127;
    if (x & 0x1000000 > 0) r = r * 0x8000000000000000000000002c5c85fd >> 127;
    if (x & 0x800000 > 0) r = r * 0x800000000000000000000000162e42fe >> 127;
    if (x & 0x400000 > 0) r = r * 0x8000000000000000000000000b17217f >> 127;
    if (x & 0x200000 > 0) r = r * 0x800000000000000000000000058b90bf >> 127;
    if (x & 0x100000 > 0) r = r * 0x80000000000000000000000002c5c85f >> 127;
    if (x & 0x80000 > 0) r = r * 0x8000000000000000000000000162e42f >> 127;
    if (x & 0x40000 > 0) r = r * 0x80000000000000000000000000b17217 >> 127;
    if (x & 0x20000 > 0) r = r * 0x8000000000000000000000000058b90b >> 127;
    if (x & 0x10000 > 0) r = r * 0x800000000000000000000000002c5c85 >> 127;
    if (x & 0x8000 > 0) r = r * 0x80000000000000000000000000162e42 >> 127;
    if (x & 0x4000 > 0) r = r * 0x800000000000000000000000000b1721 >> 127;
    if (x & 0x2000 > 0) r = r * 0x80000000000000000000000000058b90 >> 127;
    if (x & 0x1000 > 0) r = r * 0x8000000000000000000000000002c5c8 >> 127;
    if (x & 0x800 > 0) r = r * 0x800000000000000000000000000162e4 >> 127;
    if (x & 0x400 > 0) r = r * 0x8000000000000000000000000000b172 >> 127;
    if (x & 0x200 > 0) r = r * 0x800000000000000000000000000058b9 >> 127;
    if (x & 0x100 > 0) r = r * 0x80000000000000000000000000002c5c >> 127;
    if (x & 0x80 > 0) r = r * 0x8000000000000000000000000000162e >> 127;
    if (x & 0x40 > 0) r = r * 0x80000000000000000000000000000b17 >> 127;
    if (x & 0x20 > 0) r = r * 0x8000000000000000000000000000058b >> 127;
    if (x & 0x10 > 0) r = r * 0x800000000000000000000000000002c5 >> 127;
    if (x & 0x8 > 0) r = r * 0x80000000000000000000000000000162 >> 127;
    if (x & 0x4 > 0) r = r * 0x800000000000000000000000000000b1 >> 127;
    if (x & 0x2 > 0) r = r * 0x80000000000000000000000000000058 >> 127;
    if (x & 0x1 > 0) r = r * 0x8000000000000000000000000000002c >> 127;
    */

    r >>= 127 - (x >> 121);

    return uint128 (r);
  }
}

// File: contracts/interfaces/IDelegable.sol

pragma solidity ^0.6.10;


interface IDelegable {
    function addDelegate(address) external;
    function addDelegateBySignature(address, address, uint, uint8, bytes32, bytes32) external;
}

// File: contracts/helpers/Delegable.sol

pragma solidity ^0.6.10;



/// @dev Delegable enables users to delegate their account management to other users.
/// Delegable implements addDelegateBySignature, to add delegates using a signature instead of a separate transaction.
contract Delegable is IDelegable {
    event Delegate(address indexed user, address indexed delegate, bool enabled);

    // keccak256("Signature(address user,address delegate,uint256 nonce,uint256 deadline)");
    bytes32 public immutable SIGNATURE_TYPEHASH = 0x0d077601844dd17f704bafff948229d27f33b57445915754dfe3d095fda2beb7;
    bytes32 public immutable DELEGABLE_DOMAIN;
    mapping(address => uint) public signatureCount;

    mapping(address => mapping(address => bool)) public delegated;

    constructor () public {
        uint256 chainId;
        assembly {
            chainId := chainid()
        }

        DELEGABLE_DOMAIN = keccak256(
            abi.encode(
                keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'),
                keccak256(bytes('Yield')),
                keccak256(bytes('1')),
                chainId,
                address(this)
            )
        );
    }

    /// @dev Require that msg.sender is the account holder or a delegate
    modifier onlyHolderOrDelegate(address holder, string memory errorMessage) {
        require(
            msg.sender == holder || delegated[holder][msg.sender],
            errorMessage
        );
        _;
    }

    /// @dev Enable a delegate to act on the behalf of caller
    function addDelegate(address delegate) public override {
        _addDelegate(msg.sender, delegate);
    }

    /// @dev Stop a delegate from acting on the behalf of caller
    function revokeDelegate(address delegate) public {
        _revokeDelegate(msg.sender, delegate);
    }

    /// @dev Add a delegate through an encoded signature
    function addDelegateBySignature(address user, address delegate, uint deadline, uint8 v, bytes32 r, bytes32 s) public override {
        require(deadline >= block.timestamp, 'Delegable: Signature expired');

        bytes32 hashStruct = keccak256(
            abi.encode(
                SIGNATURE_TYPEHASH,
                user,
                delegate,
                signatureCount[user]++,
                deadline
            )
        );

        bytes32 digest = keccak256(
            abi.encodePacked(
                '\x19\x01',
                DELEGABLE_DOMAIN,
                hashStruct
            )
        );
        address signer = ecrecover(digest, v, r, s);
        require(
            signer != address(0) && signer == user,
            'Delegable: Invalid signature'
        );

        _addDelegate(user, delegate);
    }

    /// @dev Enable a delegate to act on the behalf of an user
    function _addDelegate(address user, address delegate) internal {
        require(!delegated[user][delegate], "Delegable: Already delegated");
        delegated[user][delegate] = true;
        emit Delegate(user, delegate, true);
    }

    /// @dev Stop a delegate from acting on the behalf of an user
    function _revokeDelegate(address user, address delegate) internal {
        require(delegated[user][delegate], "Delegable: Already undelegated");
        delegated[user][delegate] = false;
        emit Delegate(user, delegate, false);
    }
}

// File: contracts/interfaces/IERC2612.sol

// Code adapted from https://github.com/OpenZeppelin/openzeppelin-contracts/pull/2237/
pragma solidity ^0.6.0;

/**
 * @dev Interface of the ERC2612 standard as defined in the EIP.
 *
 * Adds the {permit} method, which can be used to change one's
 * {IERC20-allowance} without having to send a transaction, by signing a
 * message. This allows users to spend tokens without having to hold Ether.
 *
 * See https://eips.ethereum.org/EIPS/eip-2612.
 */
interface IERC2612 {
    /**
     * @dev Sets `amount` as the allowance of `spender` over `owner`'s tokens,
     * given `owner`'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(address owner, address spender, uint256 amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s) external;

    /**
     * @dev Returns the current ERC2612 nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);
}

// File: contracts/helpers/ERC20Permit.sol

// Adapted from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/53516bc555a454862470e7860a9b5254db4d00f5/contracts/token/ERC20/ERC20Permit.sol
pragma solidity ^0.6.0;



/**
 * @dev Extension of {ERC20} that allows token holders to use their tokens
 * without sending any transactions by setting {IERC20-allowance} with a
 * signature using the {permit} method, and then spend them via
 * {IERC20-transferFrom}.
 *
 * The {permit} signature mechanism conforms to the {IERC2612} interface.
 */
abstract contract ERC20Permit is ERC20, IERC2612 {
    mapping (address => uint256) public override nonces;

    bytes32 public immutable PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
    bytes32 public immutable DOMAIN_SEPARATOR;

    constructor(string memory name_, string memory symbol_) internal ERC20(name_, symbol_) {
        uint256 chainId;
        assembly {
            chainId := chainid()
        }

        DOMAIN_SEPARATOR = keccak256(
            abi.encode(
                keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                keccak256(bytes(name_)),
                keccak256(bytes("1")),
                chainId,
                address(this)
            )
        );
    }

    /**
     * @dev See {IERC2612-permit}.
     *
     * In cases where the free option is not a concern, deadline can simply be
     * set to uint(-1), so it should be seen as an optional parameter
     */
    function permit(address owner, address spender, uint256 amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public virtual override {
        require(deadline >= block.timestamp, "ERC20Permit: expired deadline");

        bytes32 hashStruct = keccak256(
            abi.encode(
                PERMIT_TYPEHASH,
                owner,
                spender,
                amount,
                nonces[owner]++,
                deadline
            )
        );

        bytes32 hash = keccak256(
            abi.encodePacked(
                '\x19\x01',
                DOMAIN_SEPARATOR,
                hashStruct
            )
        );

        address signer = ecrecover(hash, v, r, s);
        require(
            signer != address(0) && signer == owner,
            "ERC20Permit: invalid signature"
        );

        _approve(owner, spender, amount);
    }
}

// File: contracts/interfaces/IPot.sol

pragma solidity ^0.6.10;


/// @dev interface for the pot contract from MakerDao
/// Taken from https://github.com/makerdao/developerguides/blob/master/dai/dsr-integration-guide/dsr.sol
interface IPot {
    function chi() external view returns (uint256);
    function pie(address) external view returns (uint256); // Not a function, but a public variable.
    function rho() external returns (uint256);
    function drip() external returns (uint256);
    function join(uint256) external;
    function exit(uint256) external;
}

// File: contracts/interfaces/IFYDai.sol

pragma solidity ^0.6.10;



interface IFYDai is IERC20, IERC2612 {
    function isMature() external view returns(bool);
    function maturity() external view returns(uint);
    function chi0() external view returns(uint);
    function rate0() external view returns(uint);
    function chiGrowth() external view returns(uint);
    function rateGrowth() external view returns(uint);
    function mature() external;
    function unlocked() external view returns (uint);
    function mint(address, uint) external;
    function burn(address, uint) external;
    function flashMint(uint, bytes calldata) external;
    function redeem(address, address, uint256) external returns (uint256);
    // function transfer(address, uint) external returns (bool);
    // function transferFrom(address, address, uint) external returns (bool);
    // function approve(address, uint) external returns (bool);
}

// File: contracts/interfaces/IPool.sol

pragma solidity ^0.6.10;





interface IPool is IDelegable, IERC20, IERC2612 {
    function dai() external view returns(IERC20);
    function fyDai() external view returns(IFYDai);
    function getDaiReserves() external view returns(uint128);
    function getFYDaiReserves() external view returns(uint128);
    function sellDai(address from, address to, uint128 daiIn) external returns(uint128);
    function buyDai(address from, address to, uint128 daiOut) external returns(uint128);
    function sellFYDai(address from, address to, uint128 fyDaiIn) external returns(uint128);
    function buyFYDai(address from, address to, uint128 fyDaiOut) external returns(uint128);
    function sellDaiPreview(uint128 daiIn) external view returns(uint128);
    function buyDaiPreview(uint128 daiOut) external view returns(uint128);
    function sellFYDaiPreview(uint128 fyDaiIn) external view returns(uint128);
    function buyFYDaiPreview(uint128 fyDaiOut) external view returns(uint128);
    function mint(address from, address to, uint256 daiOffered) external returns (uint256);
    function burn(address from, address to, uint256 tokensBurned) external returns (uint256, uint256);
}

// File: contracts/pool/Pool.sol

pragma solidity ^0.6.10;










/// @dev The Pool contract exchanges Dai for fyDai at a price defined by a specific formula.
contract Pool is IPool, Delegable(), ERC20Permit {

    event Trade(uint256 maturity, address indexed from, address indexed to, int256 daiTokens, int256 fyDaiTokens);
    event Liquidity(uint256 maturity, address indexed from, address indexed to, int256 daiTokens, int256 fyDaiTokens, int256 poolTokens);

    int128 constant public k = int128(uint256((1 << 64)) / 126144000); // 1 / Seconds in 4 years, in 64.64
    int128 constant public g1 = int128(uint256((950 << 64)) / 1000); // To be used when selling Dai to the pool. All constants are `ufixed`, to divide them they must be converted to uint256
    int128 constant public g2 = int128(uint256((1000 << 64)) / 950); // To be used when selling fyDai to the pool. All constants are `ufixed`, to divide them they must be converted to uint256
    uint128 immutable public maturity;

    IERC20 public override dai;
    IFYDai public override fyDai;

    constructor(address dai_, address fyDai_, string memory name_, string memory symbol_)
        public
        ERC20Permit(name_, symbol_)
    {
        dai = IERC20(dai_);
        fyDai = IFYDai(fyDai_);

        maturity = toUint128(fyDai.maturity());
    }

    /// @dev Trading can only be done before maturity
    modifier beforeMaturity() {
        require(
            now < maturity,
            "Pool: Too late"
        );
        _;
    }

    /// @dev Overflow-protected addition, from OpenZeppelin
    function add(uint128 a, uint128 b)
        internal pure returns (uint128)
    {
        uint128 c = a + b;
        require(c >= a, "Pool: Dai reserves too high");

        return c;
    }

    /// @dev Overflow-protected substraction, from OpenZeppelin
    function sub(uint128 a, uint128 b) internal pure returns (uint128) {
        require(b <= a, "Pool: fyDai reserves too low");
        uint128 c = a - b;

        return c;
    }

    /// @dev Safe casting from uint256 to uint128
    function toUint128(uint256 x) internal pure returns(uint128) {
        require(
            x <= type(uint128).max,
            "Pool: Cast overflow"
        );
        return uint128(x);
    }

    /// @dev Safe casting from uint256 to int256
    function toInt256(uint256 x) internal pure returns(int256) {
        require(
            x <= uint256(type(int256).max),
            "Pool: Cast overflow"
        );
        return int256(x);
    }

    /// @dev Mint initial liquidity tokens.
    /// The liquidity provider needs to have called `dai.approve`
    /// @param daiIn The initial Dai liquidity to provide.
    function init(uint256 daiIn)
        internal
        beforeMaturity
        returns (uint256)
    {
        require(
            totalSupply() == 0,
            "Pool: Already initialized"
        );
        // no fyDai transferred, because initial fyDai deposit is entirely virtual
        dai.transferFrom(msg.sender, address(this), daiIn);
        _mint(msg.sender, daiIn);
        emit Liquidity(maturity, msg.sender, msg.sender, -toInt256(daiIn), 0, toInt256(daiIn));

        return daiIn;
    }

    /// @dev Mint liquidity tokens in exchange for adding dai and fyDai
    /// The liquidity provider needs to have called `dai.approve` and `fyDai.approve`.
    /// @param from Wallet providing the dai and fyDai. Must have approved the operator with `pool.addDelegate(operator)`.
    /// @param to Wallet receiving the minted liquidity tokens.
    /// @param daiOffered Amount of `dai` being invested, an appropriate amount of `fyDai` to be invested alongside will be calculated and taken by this function from the caller.
    /// @return The amount of liquidity tokens minted.
    function mint(address from, address to, uint256 daiOffered)
        external override
        onlyHolderOrDelegate(from, "Pool: Only Holder Or Delegate")
        returns (uint256)
    {
        uint256 supply = totalSupply();
        if (supply == 0) return init(daiOffered);

        uint256 daiReserves = dai.balanceOf(address(this));
        // use the actual reserves rather than the virtual reserves
        uint256 fyDaiReserves = fyDai.balanceOf(address(this));
        uint256 tokensMinted = supply.mul(daiOffered).div(daiReserves);
        uint256 fyDaiRequired = fyDaiReserves.mul(tokensMinted).div(supply);

        require(daiReserves.add(daiOffered) <= type(uint128).max); // fyDaiReserves can't go over type(uint128).max
        require(supply.add(fyDaiReserves.add(fyDaiRequired)) <= type(uint128).max); // fyDaiReserves can't go over type(uint128).max

        require(dai.transferFrom(from, address(this), daiOffered));
        require(fyDai.transferFrom(from, address(this), fyDaiRequired));
        _mint(to, tokensMinted);
        emit Liquidity(maturity, from, to, -toInt256(daiOffered), -toInt256(fyDaiRequired), toInt256(tokensMinted));

        return tokensMinted;
    }

    /// @dev Burn liquidity tokens in exchange for dai and fyDai.
    /// The liquidity provider needs to have called `pool.approve`.
    /// @param from Wallet providing the liquidity tokens. Must have approved the operator with `pool.addDelegate(operator)`.
    /// @param to Wallet receiving the dai and fyDai.
    /// @param tokensBurned Amount of liquidity tokens being burned.
    /// @return The amount of reserve tokens returned (daiTokens, fyDaiTokens).
    function burn(address from, address to, uint256 tokensBurned)
        external override
        onlyHolderOrDelegate(from, "Pool: Only Holder Or Delegate")
        returns (uint256, uint256)
    {
        uint256 supply = totalSupply();
        uint256 daiReserves = dai.balanceOf(address(this));
        // use the actual reserves rather than the virtual reserves
        uint256 daiReturned;
        uint256 fyDaiReturned;
        { // avoiding stack too deep
            uint256 fyDaiReserves = fyDai.balanceOf(address(this));
            daiReturned = tokensBurned.mul(daiReserves).div(supply);
            fyDaiReturned = tokensBurned.mul(fyDaiReserves).div(supply);
        }

        _burn(from, tokensBurned);
        dai.transfer(to, daiReturned);
        fyDai.transfer(to, fyDaiReturned);
        emit Liquidity(maturity, from, to, toInt256(daiReturned), toInt256(fyDaiReturned), -toInt256(tokensBurned));

        return (daiReturned, fyDaiReturned);
    }

    /// @dev Sell Dai for fyDai
    /// The trader needs to have called `dai.approve`
    /// @param from Wallet providing the dai being sold. Must have approved the operator with `pool.addDelegate(operator)`.
    /// @param to Wallet receiving the fyDai being bought
    /// @param daiIn Amount of dai being sold that will be taken from the user's wallet
    /// @return Amount of fyDai that will be deposited on `to` wallet
    function sellDai(address from, address to, uint128 daiIn)
        external override
        onlyHolderOrDelegate(from, "Pool: Only Holder Or Delegate")
        returns(uint128)
    {
        uint128 fyDaiOut = sellDaiPreview(daiIn);

        dai.transferFrom(from, address(this), daiIn);
        fyDai.transfer(to, fyDaiOut);
        emit Trade(maturity, from, to, -toInt256(daiIn), toInt256(fyDaiOut));

        return fyDaiOut;
    }

    /// @dev Returns how much fyDai would be obtained by selling `daiIn` dai
    /// @param daiIn Amount of dai hypothetically sold.
    /// @return Amount of fyDai hypothetically bought.
    function sellDaiPreview(uint128 daiIn)
        public view override
        beforeMaturity
        returns(uint128)
    {
        uint128 daiReserves = getDaiReserves();
        uint128 fyDaiReserves = getFYDaiReserves();

        uint128 fyDaiOut = YieldMath.fyDaiOutForDaiIn(
            daiReserves,
            fyDaiReserves,
            daiIn,
            toUint128(maturity - now), // This can't be called after maturity
            k,
            g1
        );

        require(
            sub(fyDaiReserves, fyDaiOut) >= add(daiReserves, daiIn),
            "Pool: fyDai reserves too low"
        );

        return fyDaiOut;
    }

    /// @dev Buy Dai for fyDai
    /// The trader needs to have called `fyDai.approve`
    /// @param from Wallet providing the fyDai being sold. Must have approved the operator with `pool.addDelegate(operator)`.
    /// @param to Wallet receiving the dai being bought
    /// @param daiOut Amount of dai being bought that will be deposited in `to` wallet
    /// @return Amount of fyDai that will be taken from `from` wallet
    function buyDai(address from, address to, uint128 daiOut)
        external override
        onlyHolderOrDelegate(from, "Pool: Only Holder Or Delegate")
        returns(uint128)
    {
        uint128 fyDaiIn = buyDaiPreview(daiOut);

        fyDai.transferFrom(from, address(this), fyDaiIn);
        dai.transfer(to, daiOut);
        emit Trade(maturity, from, to, toInt256(daiOut), -toInt256(fyDaiIn));

        return fyDaiIn;
    }

    /// @dev Returns how much fyDai would be required to buy `daiOut` dai.
    /// @param daiOut Amount of dai hypothetically desired.
    /// @return Amount of fyDai hypothetically required.
    function buyDaiPreview(uint128 daiOut)
        public view override
        beforeMaturity
        returns(uint128)
    {
        return YieldMath.fyDaiInForDaiOut(
            getDaiReserves(),
            getFYDaiReserves(),
            daiOut,
            toUint128(maturity - now), // This can't be called after maturity
            k,
            g2
        );
    }

    /// @dev Sell fyDai for Dai
    /// The trader needs to have called `fyDai.approve`
    /// @param from Wallet providing the fyDai being sold. Must have approved the operator with `pool.addDelegate(operator)`.
    /// @param to Wallet receiving the dai being bought
    /// @param fyDaiIn Amount of fyDai being sold that will be taken from the user's wallet
    /// @return Amount of dai that will be deposited on `to` wallet
    function sellFYDai(address from, address to, uint128 fyDaiIn)
        external override
        onlyHolderOrDelegate(from, "Pool: Only Holder Or Delegate")
        returns(uint128)
    {
        uint128 daiOut = sellFYDaiPreview(fyDaiIn);

        fyDai.transferFrom(from, address(this), fyDaiIn);
        dai.transfer(to, daiOut);
        emit Trade(maturity, from, to, toInt256(daiOut), -toInt256(fyDaiIn));

        return daiOut;
    }

    /// @dev Returns how much dai would be obtained by selling `fyDaiIn` fyDai.
    /// @param fyDaiIn Amount of fyDai hypothetically sold.
    /// @return Amount of Dai hypothetically bought.
    function sellFYDaiPreview(uint128 fyDaiIn)
        public view override
        beforeMaturity
        returns(uint128)
    {
        return YieldMath.daiOutForFYDaiIn(
            getDaiReserves(),
            getFYDaiReserves(),
            fyDaiIn,
            toUint128(maturity - now), // This can't be called after maturity
            k,
            g2
        );
    }

    /// @dev Buy fyDai for dai
    /// The trader needs to have called `dai.approve`
    /// @param from Wallet providing the dai being sold. Must have approved the operator with `pool.addDelegate(operator)`.
    /// @param to Wallet receiving the fyDai being bought
    /// @param fyDaiOut Amount of fyDai being bought that will be deposited in `to` wallet
    /// @return Amount of dai that will be taken from `from` wallet
    function buyFYDai(address from, address to, uint128 fyDaiOut)
        external override
        onlyHolderOrDelegate(from, "Pool: Only Holder Or Delegate")
        returns(uint128)
    {
        uint128 daiIn = buyFYDaiPreview(fyDaiOut);

        dai.transferFrom(from, address(this), daiIn);
        fyDai.transfer(to, fyDaiOut);
        emit Trade(maturity, from, to, -toInt256(daiIn), toInt256(fyDaiOut));

        return daiIn;
    }


    /// @dev Returns how much dai would be required to buy `fyDaiOut` fyDai.
    /// @param fyDaiOut Amount of fyDai hypothetically desired.
    /// @return Amount of Dai hypothetically required.
    function buyFYDaiPreview(uint128 fyDaiOut)
        public view override
        beforeMaturity
        returns(uint128)
    {
        uint128 daiReserves = getDaiReserves();
        uint128 fyDaiReserves = getFYDaiReserves();

        uint128 daiIn = YieldMath.daiInForFYDaiOut(
            daiReserves,
            fyDaiReserves,
            fyDaiOut,
            toUint128(maturity - now), // This can't be called after maturity
            k,
            g1
        );

        require(
            sub(fyDaiReserves, fyDaiOut) >= add(daiReserves, daiIn),
            "Pool: fyDai reserves too low"
        );

        return daiIn;
    }

    /// @dev Returns the "virtual" fyDai reserves
    function getFYDaiReserves()
        public view override
        returns(uint128)
    {
        return toUint128(fyDai.balanceOf(address(this)).add(totalSupply()));
    }

    /// @dev Returns the Dai reserves
    function getDaiReserves()
        public view override
        returns(uint128)
    {
        return toUint128(dai.balanceOf(address(this)));
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):