Contract Name:
TokenVesting
Contract Source Code:
// SPDX-License-Identifier: GPL-3.0-or-later
// Compatible with OpenZeppelin Contracts ^5.0.0
pragma solidity 0.8.20;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/access/Ownable2Step.sol";
import "./utils/RecoverableFunds.sol";
import "./utils/SellableToken.sol";
import "./utils/TgeTimestamp.sol";
import "./utils/NonTransferableToken.sol";
import "./interface/ITokenVesting.sol";
/**
* @title TokenVesting
* @dev Abstract contract to manage token vesting schedules for multiple allocations and users.
* Inherits from Ownable2Step, SellableToken, TgeTimestamp, NonTransferableToken and RecoverableFunds.
*/
contract TokenVesting is
Ownable2Step,
SellableToken,
TgeTimestamp,
NonTransferableToken,
RecoverableFunds,
ITokenVesting
{
using SafeERC20 for IERC20;
using Strings for uint256;
/**
* @dev Constant denominator for calculating percentages.
* 10000 represents 100.00%. 1 represents 0.01%.
*/
uint256 private constant DENOMINATOR = 10_000;
/**
* @dev The status of automatic supply of tokens.
* When set to true, tokens will be automatically supplied based on certain conditions.
* This can occur when allocating tokens or when claiming tokens.
*/
bool private _autoSupply;
/**
* @dev The status of automatic supply of tokens upon claim.
* When set to true, tokens will be automatically supplied when a claim is made.
*/
bool private _autoSupplyOnClaim;
/**
* @dev The address from which tokens will be automatically supplied.
* This address is used as the source for token transfers during automatic supply.
*/
address private _autoSupplyFrom;
/**
* @dev Flag indicating whether tokens should be automatically claimed upon purchase.
* If set to true and the Token Generation Event (TGE) has passed, tokens will be
* immediately issued to the buyer if there is no vesting schedule.
*/
bool private _autoClaimAfterTge;
/// @dev List of allowed allocation IDs.
bytes32[] private _allocationIds;
/// @dev Mapping to check if an allocation ID exists in the allowed allocation IDs list.
mapping(bytes32 allocationId => bool) private _allocationIdExist;
/// @dev Total amount of tokens reserved across all allocations.
uint256 private _totalReserved;
/// @dev Total amount of tokens vested across all allocations.
uint256 private _totalVested;
/// @dev Total amount of tokens claimed by all users.
uint256 private _totalClaimed;
/**
* @dev Struct to store vesting data for each allocation.
* @param reserved The total amount of tokens reserved for this allocation.
* @param vested Total amount of tokens vested.
* @param claimed Total amount of tokens claimed.
* @param lockup The lock-up period before vesting starts.
* @param cliff The cliff period during which tokens cannot be claimed.
* @param vesting The total vesting period over which tokens are gradually unlocked.
* @param tgeUnlock The percentage of tokens unlocked immediately after the Token Generation Event (TGE). 1/10000 = 0.01%.
* @param unlockDelay The delay between successive unlocks after the cliff period.
*/
struct VestingData {
uint256 reserved; // Total amount of tokens reserved.
uint256 vested; // Total amount of tokens vested.
uint256 claimed; // Total amount of tokens claimed.
uint256 lockup; // Lock-up period for vesting.
uint256 cliff; // Cliff period for vesting.
uint256 vesting; // Vesting time.
uint256 tgeUnlock; // Initial unlock percentage after TGE. 1/10000 = 0.01%.
uint256 unlockDelay; // Delay between successive unlocks.
}
/**
* @dev Struct to store vesting schedule parameters for an allocation.
* @param allocationId The ID of the allocation.
* @param reserved The total amount of tokens reserved for this allocation.
* @param lockup The lock-up period before vesting starts.
* @param cliff The cliff period during which tokens cannot be claimed.
* @param vesting The total vesting period over which tokens are gradually unlocked.
* @param tgeUnlock The percentage of tokens unlocked immediately after the Token Generation Event (TGE).
* @param unlockDelay The delay between successive unlocks after the cliff period.
*/
struct VestingSchedule {
bytes32 allocationId;
uint256 reserved;
uint256 lockup;
uint256 cliff;
uint256 vesting;
uint256 tgeUnlock;
uint256 unlockDelay;
}
/// @dev Mapping to store vesting data for each allocation by its ID.
mapping(bytes32 allocationId => VestingData) private _vesting;
/**
* @dev Struct to store vesting data for each user.
* @param vested The amount of tokens vested in that allocation.
* @param claimed The amount of tokens claimed by the user in that allocation.
*/
struct UserVestingData {
uint256 vested; // User vested tokens at each allocation.
uint256 claimed; // User claimed tokens at each allocation.
}
/// @dev Mapping to store vesting data for each user by their address.
mapping(address user => mapping(bytes32 allocationId => UserVestingData))
private _userVesting;
/// @dev Address of the TokenSale contract.
address private _tokenSale;
/// @dev Flag indicating if the TokenSale address is frozen.
bool private _tokenSaleFrozen;
/**
* @dev Emitted when the auto supply settings are updated.
* @param autoSupply The new status of the auto supply.
* @param autoSupplyOnClaim The new status of the auto supply upon claim.
* @param autoSupplyFrom The new address from which the tokens will be supplied.
*/
event AutoSupplyUpdated(
bool autoSupply,
bool autoSupplyOnClaim,
address autoSupplyFrom
);
/**
* @dev Emitted when the auto-claim status is updated.
* @param status The new status of auto-claim.
*/
event AutoClaimAfterTgeUpdated(bool status);
/**
* @dev Emitted when a vesting allocation is updated.
* @param allocationId The ID of the allocation that was updated.
* @param reserved The updated total amount of tokens reserved for this allocation.
* @param lockup The updated lock-up period before vesting starts, in seconds.
* @param cliff The updated cliff period during which tokens cannot be claimed, in seconds.
* @param vesting The updated total vesting period over which tokens are gradually unlocked, in seconds.
* @param tgeUnlock The updated percentage of tokens unlocked immediately after the Token Generation Event (TGE), expressed in basis points (1/10000 = 0.01%).
* @param unlockDelay The updated delay between successive unlocks after the cliff period, in seconds.
*/
event AllocationUpdated(
bytes32 indexed allocationId,
uint256 reserved,
uint256 lockup,
uint256 cliff,
uint256 vesting,
uint256 tgeUnlock,
uint256 unlockDelay
);
/**
* @dev Emitted when a vesting allocation is deleted.
* @param allocationId The ID of the allocation that was deleted.
*/
event AllocationDeleted(bytes32 indexed allocationId);
/**
* @dev Emitted when tokens are supplied to the contract for vesting.
* @param amount The amount of tokens that were supplied.
*/
event TokensSupplied(uint256 amount);
/**
* @dev Emitted when tokens are vested for a user at a specific allocation.
* @param user The address of the user whose tokens are vested.
* @param allocationId The ID of the allocation in which tokens are vested.
* @param amount The amount of tokens vested.
*/
event VestingAccrued(
address indexed user,
bytes32 indexed allocationId,
uint256 amount
);
/**
* @dev Emitted when a user claims vested tokens.
* @param user The address of the user who claims the tokens.
* @param allocationId The ID of the allocation from which tokens are claimed.
* @param amount The amount of tokens claimed.
*/
event VestingClaimed(
address indexed user,
bytes32 indexed allocationId,
uint256 amount
);
/**
* @dev Emitted when the TokenSale address is changed.
* @param tokenSale The new TokenSale address.
*/
event TokenSaleUpdated(address tokenSale);
/// @dev Emitted when the TokenSale is frozen.
event TokenSaleFrozen();
/// @dev Error thrown when an allocation is not exist.
error AllocationNotFound(bytes32 allocationId);
/**
* @dev Error that is thrown when the new reserved amount is less than the already vested amount for a given allocation.
* @param allocationId The ID of the allocation that has this issue.
*/
error ReservedLessThanVested(bytes32 allocationId);
/**
* @dev Error that is thrown when the vested amount exceeds the reserved amount for a given allocation.
* @param allocationId The ID of the allocation that exceeded its reserved amount.
*/
error AllocationExceeded(bytes32 allocationId);
/// @dev Error indicating that the allocation has already been used.
error AllocationAlreadyUsed();
/// @dev Error indicating that the TGE unlock percentage exceeds the maximum allowed value.
error TgeUnlockExceedsMaximum();
/// @dev Error thrown when the TokenSale address is zero.
error TokenSaleIsZero();
/// @dev Error thrown when the TokenSale is frozen and an update is attempted.
error TokenSaleIsFrozen();
/// @dev Error to be thrown when an unauthorized account tries to call a restricted function.
error UnauthorizedAccount();
/// @dev Error indicating that there is a mismatch between the provided parameters.
error ParametersMismatch();
/// @dev Error indicating an invalid token amount.
error InvalidTokenAmount();
/**
* @dev Constructor for the TokenVesting contract.
* @param sellableToken The address of the token that will be sold.
* @param sellableTokenDecimals The number of decimals of the sellable token.
* @param vestedTokenName The name of the vested token.
* @param vestedTokenSymbol The symbol of the vested token.
*/
constructor(
address sellableToken,
uint8 sellableTokenDecimals,
string memory vestedTokenName,
string memory vestedTokenSymbol
)
Ownable(_msgSender())
TgeTimestamp(0)
SellableToken(sellableToken, sellableTokenDecimals)
NonTransferableToken(vestedTokenName, vestedTokenSymbol)
{
_setAutoClaimAfterTge(false);
}
/**
* @dev Modifier to check if the allocation ID exists.
* Reverts if the allocation does not exist.
* @param allocationId The ID of the allocation to check.
*/
modifier allocationIdExists(bytes32 allocationId) {
_checkAllocationIdExistence(allocationId);
_;
}
/// @dev Modifier to restrict access to only the TokenSale contract.
modifier onlyTokenSale() {
if (_tokenSale == address(0)) {
revert TokenSaleIsZero();
}
if (_tokenSale != _msgSender()) {
revert UnauthorizedAccount();
}
_;
}
/**
* @notice Returns the total supply of tokens that users have not yet received from vesting.
* @dev This function overrides the ERC20 totalSupply function to reflect the total amount of vested tokens
* that are still locked and have not been claimed by users.
* @return The total amount of unclaimed vested tokens.
*/
function totalSupply() public view override returns (uint256) {
return _totalVested - _totalClaimed;
}
/**
* @notice Returns the balance of tokens that a user has not yet received from vesting.
* @dev This function overrides the ERC20 balanceOf function to reflect the amount of vested tokens
* that are still locked and have not been claimed by the user.
* @param user The address of the user.
* @return The amount of unclaimed vested tokens for the user.
*/
function balanceOf(address user) public view override returns (uint256) {
uint256 vested;
uint256 claimed;
bytes32[] memory allocationIds = _getAllocationIds();
uint256 totalAllocations = allocationIds.length;
for (uint256 i = 0; i < totalAllocations; i++) {
bytes32 allocationId = allocationIds[i];
UserVestingData memory vestingData = _getUserVesting(
user,
allocationId
);
vested += vestingData.vested;
claimed += vestingData.claimed;
}
return vested - claimed;
}
/**
* @notice Returns the number of decimals used to get the user representation of vested tokens.
* @dev This function overrides the ERC20 decimals function to return the number of decimals
* of the vested token, which is the same as the sellable token's decimals.
* @return The number of decimals of the vested token.
*/
function decimals() public view virtual override returns (uint8) {
return _getSellableTokenDecimals();
}
/**
* @notice Returns the recoverable funds for a specific token.
* @dev Overrides the getRecoverableFunds function from RecoverableFunds contract.
* If the token is a payment token, it calculates the balance excluding deposits and unclaimed raised funds.
* If the token is the sellable token, it calculates the balance excluding the total unclaimed amount.
* @param token The address of the token.
* @return The amount of recoverable funds.
*/
function getRecoverableFunds(
address token
) public view override returns (uint256) {
address sellableToken = _getSellableToken();
if (token == sellableToken) {
uint256 accountedFunds = _totalVested - _totalClaimed;
uint256 balance = IERC20(token).balanceOf(address(this));
if (accountedFunds > balance) {
return 0;
}
return balance - accountedFunds;
} else {
return super.getRecoverableFunds(token);
}
}
/**
* @notice Returns the current auto supply status and the address from which tokens are supplied.
* @dev This function can be called externally to get the current status and address for automatic token supply.
* @return autoSupply The current status of the auto supply (if autoSupplyOnClaim is false, then for allocating; if autoSupplyOnClaim is true, then for claiming).
* @return autoSupplyOnClaim The current status of the auto supply upon claim (true if enabled, false if disabled).
* @return autoSupplyFrom The address from which the tokens will be supplied.
*/
function getAutoSupply()
external
view
returns (
bool autoSupply,
bool autoSupplyOnClaim,
address autoSupplyFrom
)
{
autoSupply = _autoSupply;
autoSupplyOnClaim = _autoSupplyOnClaim;
autoSupplyFrom = _autoSupplyFrom;
}
/**
* @notice Returns the allocation ID for a given allocation name.
* @dev This function computes the keccak-256 hash of the given allocation name, subtracts 1, and returns it as bytes32.
* @param allocationName The name of the allocation.
* @return The ID of the allocation.
*/
function computeAllocationId(
string memory allocationName
) external pure returns (bytes32) {
return _computeAllocationId(allocationName);
}
/**
* @notice Verifies if a specified allocation ID exists in the allowed allocation IDs list.
* @param allocationId The ID of the allocation to verify.
* @return bool True if the allocation exists, false otherwise.
*/
function isAllocationIdExist(
bytes32 allocationId
) external view returns (bool) {
return _isAllocationIdExist(allocationId);
}
/**
* @notice Retrieves the list of all allowed allocation IDs.
* @return bytes32[] List of allowed allocation IDs.
*/
function getAllocationIds() external view returns (bytes32[] memory) {
return _getAllocationIds();
}
/**
* @notice Returns the vesting parameters for a specific allocation.
* @dev This function retrieves the vesting details such as lockup period, cliff period, total vesting duration,
* TGE unlock percentage, and unlock delay for the specified allocation.
* @param allocationId The ID of the vesting allocation to retrieve.
* @return reserved The total amount of tokens reserved for this allocation.
* @return vested Total amount of tokens vested.
* @return claimed Total amount of tokens claimed.
* @return lockup The lock-up period before vesting starts.
* @return cliff The cliff period during which tokens cannot be claimed.
* @return vesting The total vesting period over which tokens are gradually unlocked.
* @return tgeUnlock The percentage of tokens unlocked immediately after the Token Generation Event (TGE).
* @return unlockDelay The delay between successive unlocks after the cliff period.
*/
function getVesting(
bytes32 allocationId
)
external
view
returns (
uint256 reserved,
uint256 vested,
uint256 claimed,
uint256 lockup,
uint256 cliff,
uint256 vesting,
uint256 tgeUnlock,
uint256 unlockDelay
)
{
VestingData memory vestingData = _getVesting(allocationId);
reserved = vestingData.reserved;
vested = vestingData.vested;
claimed = vestingData.claimed;
lockup = vestingData.lockup;
cliff = vestingData.cliff;
vesting = vestingData.vesting;
tgeUnlock = vestingData.tgeUnlock;
unlockDelay = vestingData.unlockDelay;
}
/**
* @notice Returns the vesting data for all allocations.
* @return allocationIds An array of allocation IDs.
* @return vestings An array of vesting data for all allocations.
*/
function getVestings()
external
view
returns (bytes32[] memory allocationIds, VestingData[] memory vestings)
{
allocationIds = _getAllocationIds();
uint256 totalAllocations = allocationIds.length;
vestings = new VestingData[](totalAllocations);
for (uint256 i = 0; i < totalAllocations; i++) {
bytes32 allocationId = allocationIds[i];
vestings[i] = _getVesting(allocationId);
}
}
/**
* @notice Returns the overall state of vesting at a given time.
* @param atTime The timestamp at which to check the state.
* @return tge The TGE (Token Generation Event) timestamp.
* @return autoClaimAfterTge The status of the auto-claim feature.
* @return tokenSale The address of the TokenSale contract.
* @return tokenSaleFrozen The status indicating if the TokenSale address is frozen.
* @return totalReserved The total number of tokens reserved across all allocations.
* @return totalVested The total number of tokens vested.
* @return totalClaimed The total number of tokens claimed.
* @return totalUnlocked The total number of tokens unlocked.
* @return reserved An array of reserved tokens for each allocation.
* @return vested An array of vested tokens for each allocation.
* @return claimed An array of claimed tokens for each allocation.
* @return unlocked An array of unlocked tokens for each allocation.
* @return allocationIds An array of allocation IDs.
*/
function getState(
uint256 atTime
)
external
view
returns (
uint256 tge,
bool autoClaimAfterTge,
address tokenSale,
bool tokenSaleFrozen,
uint256 totalReserved,
uint256 totalVested,
uint256 totalClaimed,
uint256 totalUnlocked,
uint256[] memory reserved,
uint256[] memory vested,
uint256[] memory claimed,
uint256[] memory unlocked,
bytes32[] memory allocationIds
)
{
if (atTime == 0) {
atTime = block.timestamp;
}
tge = _getTgeTimestamp();
autoClaimAfterTge = _autoClaimAfterTge;
tokenSale = _tokenSale;
tokenSaleFrozen = _tokenSaleFrozen;
totalReserved = _totalReserved;
allocationIds = _getAllocationIds();
(
totalVested,
totalClaimed,
totalUnlocked,
reserved,
vested,
claimed,
unlocked
) = _calculateVestingStateAtTime(allocationIds, atTime);
}
/**
* @notice Returns the vesting data for a specific user.
* @dev This function retrieves the vesting details such as the total vested tokens, claimed tokens, unlocked tokens,
* and allocation details for the specified user at a given time.
* @param user The address of the user.
* @param atTime The timestamp at which to check the user's vesting state.
* @return totalVested The amount of vested tokens.
* @return totalClaimed The amount of claimed tokens.
* @return totalUnlocked The total number of tokens unlocked.
* @return vested An array of vested tokens for each allocation.
* @return claimed An array of claimed tokens for each allocation.
* @return unlocked An array of unlocked tokens for each allocation.
* @return allocationIds An array of allocation IDs.
*/
function getUserState(
address user,
uint256 atTime
)
external
view
returns (
uint256 totalVested,
uint256 totalClaimed,
uint256 totalUnlocked,
uint256[] memory vested,
uint256[] memory claimed,
uint256[] memory unlocked,
bytes32[] memory allocationIds
)
{
if (atTime == 0) {
atTime = block.timestamp;
}
allocationIds = _getAllocationIds();
(
totalVested,
totalClaimed,
totalUnlocked,
vested,
claimed,
unlocked
) = _calculateUserVestingStateAtTime(allocationIds, user, atTime);
}
/**
* @notice Shows the amount of tokens required to be supplied for vesting.
* @dev This function can be called externally to get the current required supply of tokens for vesting.
* It calculates the total supply of tokens required for vesting by subtracting the total claimed tokens from the total vested tokens,
* and adjusting it based on the current token balance of the contract.
* @return uint256 The amount of tokens required for vesting.
*/
function getRequiredTokensSupply() external view returns (uint256) {
return _calculateRequiredTokensSupply();
}
/**
* @notice Allows the caller to claim their vested tokens.
* @dev This function can only be called if the TGE (Token Generation Event) has passed.
*/
function claim() external whenTgePassed {
_claim(_msgSender());
}
/**
* @notice Allows the owner to force claim vested tokens for multiple users.
* @dev This function can only be called if the TGE (Token Generation Event) has passed.
* Can only be called by the contract owner.
* @param users An array of addresses for which to force claim vested tokens.
*/
function claimForced(
address[] memory users
) external whenTgePassed onlyOwner {
for (uint256 i = 0; i < users.length; i++) {
_claim(users[i]);
}
}
/**
* @notice Sets the vesting parameters for a specific allocation.
* @dev Can only be called by the contract owner.
* WARNING: This function is not synchronized with the sales stages.
* Ensures that the vesting parameters are set in accordance with the sales strategy.
* Ensures that the TGE unlock percentage does not exceed the maximum allowed value.
* @param allocationId The ID of the allocation to set the vesting parameters.
* @param reserved The total amount of tokens reserved for this allocation.
* @param lockup The lock-up period before vesting starts.
* @param cliff The cliff period during which tokens cannot be claimed.
* @param vesting The total vesting period over which tokens are gradually unlocked.
* @param tgeUnlock The percentage of tokens unlocked immediately after the Token Generation Event (TGE).
* @param unlockDelay The delay between successive unlocks after the cliff period.
*/
function setVestingSchedule(
bytes32 allocationId,
uint256 reserved,
uint256 lockup,
uint256 cliff,
uint256 vesting,
uint256 tgeUnlock,
uint256 unlockDelay
) external onlyOwner {
_setVestingSchedule(
allocationId,
reserved,
lockup,
cliff,
vesting,
tgeUnlock,
unlockDelay
);
}
/**
* @notice Sets the vesting parameters for multiple allocations at once.
* @dev Can only be called by the contract owner.
* WARNING: This function is not synchronized with the sales stages.
* Ensures that the vesting parameters are set in accordance with the sales strategy.
* Ensures that the TGE unlock percentage does not exceed the maximum allowed value.
* @param schedules An array of VestingSchedule structs containing the vesting parameters for each allocation.
*/
function setVestingScheduleBatch(
VestingSchedule[] calldata schedules
) external onlyOwner {
for (uint256 i = 0; i < schedules.length; i++) {
_setVestingSchedule(
schedules[i].allocationId,
schedules[i].reserved,
schedules[i].lockup,
schedules[i].cliff,
schedules[i].vesting,
schedules[i].tgeUnlock,
schedules[i].unlockDelay
);
}
}
/**
* @notice Removes the vesting parameters for a specific allocation.
* @dev Can only be called by the contract owner.
* WARNING: This function is not synchronized with the sales stages. Ensure that the removal is in line with the sales strategy.
* @param allocationId The ID of the allocation to remove.
*/
function removeAllocation(bytes32 allocationId) external onlyOwner {
_removeAllocation(allocationId);
}
/**
* @notice Allows the owner to set the auto-claim status.
* @dev Can only be called by the contract owner.
* @param status The new status of auto-claim.
*/
function setAutoClaimAfterTge(bool status) external onlyOwner {
_setAutoClaimAfterTge(status);
}
/**
* @notice Allows the owner to set the name and symbol of the vested token.
* @dev Can only be called by the contract owner.
* It sets the name and symbol of the vested token by calling a private function from the NonTransferableToken contract.
* @param name_ The new name of the vested token.
* @param symbol_ The new symbol of the vested token.
*/
function setVestedTokenNameSymbol(
string memory name_,
string memory symbol_
) external onlyOwner {
_setNonTransferableTokenNameSymbol(name_, symbol_);
}
/**
* @notice Sets a new TokenSale address.
* @dev Can only be called by the contract owner.
* Emits a TokenSaleUpdated event.
* @param tokenSale The address of the TokenSale.
*/
function setTokenSale(address tokenSale) external onlyOwner {
if (_tokenSaleFrozen) {
revert TokenSaleIsFrozen();
}
_tokenSale = tokenSale;
emit TokenSaleUpdated(tokenSale);
}
/**
* @notice Freezes the TokenSale, preventing further changes.
* @dev Can only be called by the contract owner.
* Emits a TokenSaleFrozen event.
*/
function freezeTokenSale() external onlyOwner {
if (_tokenSale == address(0)) {
revert TokenSaleIsZero();
}
if (_tokenSaleFrozen) {
revert TokenSaleIsFrozen();
}
_tokenSaleFrozen = true;
emit TokenSaleFrozen();
}
/**
* @notice Sets the auto supply status and the address from which the tokens will be supplied.
* @dev Can only be called by the contract owner.
* It updates the auto supply status, the auto supply status upon claim, and the address from which the tokens will be automatically supplied.
* @param autoSupply The new status of the auto supply (if autoSupplyOnClaim is false, then for allocating; if autoSupplyOnClaim is true, then for claiming).
* @param autoSupplyOnClaim The new status of the auto supply upon claim (true if enabled, false if disabled).
* @param autoSupplyFrom The address from which the tokens will be supplied.
*/
function setAutoSupply(
bool autoSupply,
bool autoSupplyOnClaim,
address autoSupplyFrom
) external onlyOwner {
_autoSupply = autoSupply;
_autoSupplyOnClaim = autoSupplyOnClaim;
_autoSupplyFrom = autoSupplyFrom;
emit AutoSupplyUpdated(autoSupply, autoSupplyOnClaim, autoSupplyFrom);
}
/**
* @notice Supplies tokens based on the total vested and claimed tokens.
* @dev Can only be called by the contract owner.
* It calculates the total supply of tokens required for vesting by subtracting the total claimed tokens from the total vested tokens
* and adjusts it based on the current token balance of the contract.
* The tokens are supplied from the address specified in `_autoSupplyFrom`.
* @param supplyAmount The amount of tokens to supply. If zero or greater than the required amount, the required amount will be supplied.
*/
function supplyTokens(uint256 supplyAmount) external onlyOwner {
_supplyTokensFrom(_autoSupplyFrom, supplyAmount, false);
}
/**
* @notice Supplies reserved tokens based on the total reserved and claimed tokens.
* @dev Can only be called by the contract owner.
* It calculates the total supply of reserved tokens required for vesting by subtracting the total claimed tokens from the total reserved tokens
* and adjusts it based on the current token balance of the contract.
* The tokens are supplied from the address specified in `_autoSupplyFrom`.
* @param supplyAmount The amount of tokens to supply. If zero or greater than the required amount, the required amount will be supplied.
*/
function supplyReservedTokens(uint256 supplyAmount) external onlyOwner {
_supplyTokensFrom(_autoSupplyFrom, supplyAmount, true);
}
/**
* @notice Handles the purchase of tokens for a specific user during a token sale stage.
* @dev This function is called by the TokenSale contract when tokens are purchased.
* It verifies the allocation exists and increases the vested amount for the user.
* @param user The address of the user purchasing tokens.
* @param stageId The ID of the sale stage.
* @param tokensToBuy The amount of tokens being purchased.
* @return bool Returns true if this is successfully processed.
*/
function onTokensPurchase(
address user,
uint256 stageId,
uint256 tokensToBuy
) external override onlyTokenSale returns (bool) {
if (_isAutoSupplyOnAllocatingApplicable()) {
_supplyTokensFrom(_autoSupplyFrom, tokensToBuy, false);
}
_increaseUserAllocationVested(
user,
_computeAllocationId(stageId.toString()),
tokensToBuy
);
return true;
}
/**
* @notice Allocates tokens to a user's vesting allocation.
* @dev Can only be called by the contract owner.
* This function adds a specified amount of tokens to the vesting schedule for a given user.
* @param user The address of the user.
* @param allocationId The ID of the allocation.
* @param amount The amount of tokens to add to the vesting allocation.
* @return bool Returns true if this is successfully processed.
*/
function allocateTokens(
address user,
bytes32 allocationId,
uint256 amount
) external onlyOwner returns (bool) {
_increaseUserAllocationVested(user, allocationId, amount);
if (_isAutoSupplyOnAllocatingApplicable()) {
_supplyTokensFrom(_autoSupplyFrom, amount, false);
}
return true;
}
/**
* @notice Allocates tokens to multiple users' vesting allocations.
* @dev Can only be called by the contract owner.
* This function adds a specified amount of tokens to the vesting schedule for each user and allocation pair in the list.
* @param allocationIds An array of allocation IDs.
* @param users The addresses of the users.
* @param amounts The amounts of tokens to add to the vesting allocation for each user.
* @return bool Returns true if this is successfully processed.
*/
function allocateTokensBatch(
bytes32[] calldata allocationIds,
address[] calldata users,
uint256[] calldata amounts
) external onlyOwner returns (bool) {
uint256 total = allocationIds.length;
if (users.length != total || amounts.length != total) {
revert ParametersMismatch();
}
uint256 supplyAmount;
for (uint256 i = 0; i < total; i++) {
_increaseUserAllocationVested(
users[i],
allocationIds[i],
amounts[i]
);
supplyAmount += amounts[i];
}
if (_isAutoSupplyOnAllocatingApplicable()) {
_supplyTokensFrom(_autoSupplyFrom, supplyAmount, false);
}
return true;
}
/**
* @dev Private function to calculate the total supply of tokens required for vesting.
* This function calculates the difference between the total vested tokens and the total claimed tokens,
* and adjusts it based on the current token balance of the contract.
* @return uint256 The amount of tokens required for vesting.
*/
function _calculateRequiredTokensSupply()
private
view
whenSellableTokenIsNotZero
returns (uint256)
{
uint256 requiredSupply = _totalVested - _totalClaimed;
uint256 balance = IERC20(_getSellableToken()).balanceOf(address(this));
if (balance >= requiredSupply) {
return 0;
} else {
return requiredSupply - balance;
}
}
/**
* @dev Private function to calculate the total supply of tokens required for vesting.
* This function calculates the difference between the total reserved tokens and the total claimed tokens,
* and adjusts it based on the current token balance of the contract.
* @return uint256 The amount of tokens required for vesting.
*/
function _calculateReservedTokensSupply()
private
view
whenSellableTokenIsNotZero
returns (uint256)
{
uint256 requiredSupply = _totalReserved - _totalClaimed;
uint256 balance = IERC20(_getSellableToken()).balanceOf(address(this));
if (balance >= requiredSupply) {
return 0;
} else {
return requiredSupply - balance;
}
}
/**
* @dev Checks if auto supply is applicable for allocating by verifying that auto supply is enabled, auto supply on claim is disabled, and the auto supply address is set.
* This function ensures that the auto supply is enabled, auto supply on claim is disabled, and the address from which tokens should be supplied is not the zero address.
* @return bool Returns true if auto supply is applicable for allocating and the address is set, otherwise returns false.
*/
function _isAutoSupplyOnAllocatingApplicable() private view returns (bool) {
if (
_autoSupply && !_autoSupplyOnClaim && _autoSupplyFrom != address(0)
) {
return true;
}
return false;
}
/**
* @dev Checks if auto supply is applicable for claiming by verifying that auto supply is enabled, auto supply on claim is enabled, and the auto supply address is set.
* This function ensures that the auto supply is enabled, auto supply on claim is enabled, and the address from which tokens should be supplied is not the zero address.
* @return bool Returns true if auto supply is applicable for claiming and the address is set, otherwise returns false.
*/
function _isAutoSupplyOnClaimingApplicable() private view returns (bool) {
if (
_autoSupply && _autoSupplyOnClaim && _autoSupplyFrom != address(0)
) {
return true;
}
return false;
}
/**
* @dev Private function to supply tokens from a specified address.
* This function handles the actual transfer of tokens from the specified address to the contract.
* It calculates the required supply and performs the transfer.
* @param from The address from which the tokens will be transferred.
* @param supplyAmount The amount of tokens to supply.
* @param isSupplyReserved Indicates whether the supply is for reserved tokens.
*/
function _supplyTokensFrom(
address from,
uint256 supplyAmount,
bool isSupplyReserved
) private {
uint256 requiredSupply;
if (isSupplyReserved) {
requiredSupply = _calculateReservedTokensSupply();
} else {
requiredSupply = _calculateRequiredTokensSupply();
}
if (requiredSupply == 0) {
return;
}
if (supplyAmount == 0 || supplyAmount > requiredSupply) {
supplyAmount = requiredSupply;
}
IERC20 _token = IERC20(_getSellableToken());
uint256 before = _token.balanceOf(address(this));
// If the SellableToken is mintable, then mint here in the transferFrom function.
_token.safeTransferFrom(from, address(this), supplyAmount);
uint256 delta = _token.balanceOf(address(this)) - before;
// Check and prohibition of tax tokens.
if (delta != supplyAmount) {
revert InvalidTokenAmount();
}
emit TokensSupplied(supplyAmount);
}
/**
* @dev Private function to get the vesting data for a specific allocation.
* @param allocationId The ID of the allocation.
* @return The vesting data for the specified allocation.
*/
function _getVesting(
bytes32 allocationId
) private view returns (VestingData memory) {
return _vesting[allocationId];
}
/**
* @dev Private function to get the amount of vested tokens for a user at a specific allocation.
* @param user The address of the user.
* @param allocationId The ID of the vesting allocation.
* @return The vesting data for the specified user and allocation.
*/
function _getUserVesting(
address user,
bytes32 allocationId
) private view returns (UserVestingData memory) {
return _userVesting[user][allocationId];
}
/**
* @dev Private function to increase the vested tokens for a user at a specific allocation.
* Mints non-transferable tokens to the user.
* Emits a VestingAccrued event.
* Reverts with an AllocationExceeded error if the vested amount exceeds the reserved amount.
* @param user The address of the user.
* @param allocationId The ID of the allocation.
* @param amount The amount of tokens to vest.
*/
function _increaseUserAllocationVested(
address user,
bytes32 allocationId,
uint256 amount
) private allocationIdExists(allocationId) {
_totalVested += amount;
// Check if vested tokens exceed reserved tokens.
_vesting[allocationId].vested += amount;
if (_vesting[allocationId].vested > _vesting[allocationId].reserved) {
revert AllocationExceeded(allocationId);
}
_userVesting[user][allocationId].vested += amount;
_mintNonTransferableToken(user, amount);
emit VestingAccrued(user, allocationId, amount);
if (_autoClaimAfterTge && _isTgePassed()) {
_claim(user);
}
}
/**
* @dev Private function to increase the total claimed tokens and update the user's claimed tokens.
* Burns the corresponding amount of non-transferable tokens from the user's balance.
* Emits a VestingClaimed event.
* @param user The address of the user whose claimed tokens are being increased.
* @param allocationId The ID of the allocation.
* @param _token The sellable token used for transfer.
* @param amount The amount of tokens to be marked as claimed.
*/
function _claimAllocation(
address user,
bytes32 allocationId,
IERC20 _token,
uint256 amount
) private {
_totalClaimed += amount;
_vesting[allocationId].claimed += amount;
_userVesting[user][allocationId].claimed += amount;
_burnNonTransferableToken(user, amount);
_token.safeTransfer(user, amount);
emit VestingClaimed(user, allocationId, amount);
}
/**
* @dev Private function to claim vested tokens for a user.
* Transfers the claimable tokens to the user and updates the claimed tokens.
* @param user The address of the user claiming the tokens.
*/
function _claim(address user) private whenSellableTokenIsNotZero {
bytes32[] memory allocationIds = _getAllocationIds();
(
,
uint256 totalClaimed,
uint256 totalUnlocked,
,
uint256[] memory claimed,
uint256[] memory unlocked
) = _calculateUserVestingStateAtTime(
allocationIds,
user,
block.timestamp
);
uint256 totalClaimable;
if (totalUnlocked > totalClaimed) {
totalClaimable = totalUnlocked - totalClaimed;
}
if (totalClaimable > 0) {
if (_isAutoSupplyOnClaimingApplicable()) {
_supplyTokensFrom(_autoSupplyFrom, totalClaimable, false);
}
IERC20 _token = IERC20(_getSellableToken());
uint256 totalAllocations = allocationIds.length;
for (uint256 i = 0; i < totalAllocations; i++) {
uint256 claimable;
if (unlocked[i] > claimed[i]) {
claimable = unlocked[i] - claimed[i];
}
if (claimable > 0) {
_claimAllocation(user, allocationIds[i], _token, claimable);
}
}
}
}
/**
* @dev Private function to calculate the unlocked vested tokens for a user at a specific time.
* @param allocationIds An array of allocation IDs.
* @param user The address of the user.
* @param atTime The specific time to check for unlocked tokens.
* @return totalVested The total amount of vested tokens.
* @return totalClaimed The total amount of claimed tokens.
* @return totalUnlocked The amount of unlocked vested tokens.
* @return vested Array of vested tokens for each allocation.
* @return claimed Array of claimed tokens for each allocation.
* @return unlocked Array of unlocked vested tokens for each allocation.
*/
function _calculateUserVestingStateAtTime(
bytes32[] memory allocationIds,
address user,
uint256 atTime
)
private
view
returns (
uint256 totalVested,
uint256 totalClaimed,
uint256 totalUnlocked,
uint256[] memory vested,
uint256[] memory claimed,
uint256[] memory unlocked
)
{
uint256 totalAllocations = allocationIds.length;
vested = new uint256[](totalAllocations);
claimed = new uint256[](totalAllocations);
unlocked = new uint256[](totalAllocations);
for (uint256 i = 0; i < totalAllocations; i++) {
bytes32 allocationId = allocationIds[i];
VestingData memory vd = _getVesting(allocationId);
UserVestingData memory uvd = _getUserVesting(user, allocationId);
if (uvd.vested == 0) {
// The user does not have any tokens to vest in this allocation.
continue;
}
totalVested += uvd.vested;
totalClaimed += uvd.claimed;
vested[i] = uvd.vested;
claimed[i] = uvd.claimed;
uint256 unlockedAtTime = _calculateUserUnlockedAtTime(
vd,
uvd,
atTime
);
totalUnlocked += unlockedAtTime;
unlocked[i] = unlockedAtTime;
}
}
/**
* @dev Private function to calculate the total amount of unlocked tokens for a user at a specific time based on vesting data.
* @param vd The vesting data associated with the allocation.
* @param uvd The user's vesting data for the allocation.
* @param atTime The specific time to check for unlocked tokens.
* @return totalUnlocked The total amount of unlocked tokens at the specified time.
*/
function _calculateUserUnlockedAtTime(
VestingData memory vd,
UserVestingData memory uvd,
uint256 atTime
) private view returns (uint256 totalUnlocked) {
uint256 tge = _getTgeTimestamp();
if (tge == 0 || atTime < tge) {
// The TGE event has not yet occurred. Then unlocked is 0.
return totalUnlocked;
}
uint256 tgeUnlocked = (uvd.vested * vd.tgeUnlock) / DENOMINATOR;
uint256 restVested = uvd.vested - tgeUnlocked;
totalUnlocked += tgeUnlocked;
uint256 vestingStartTime = tge + vd.lockup;
if (atTime < vestingStartTime) {
// Unlocking tokens from vesting has not yet begun.
return totalUnlocked;
}
uint256 cliffEndTime = vestingStartTime + vd.cliff;
if (atTime < cliffEndTime) {
// Unlocking of tokens has already begun, but the claim is impossible until the end of the cliff period.
return totalUnlocked;
}
uint256 vestingEndTime = vestingStartTime + vd.vesting;
if (atTime >= vestingEndTime) {
// Vesting is done. The entire amount is available for claim.
return uvd.vested;
}
if (atTime >= cliffEndTime) {
uint256 passedTime = atTime - vestingStartTime;
if (vd.unlockDelay > 0) {
// Fix if the interval between claims is specified.
uint256 unlocks = passedTime / vd.unlockDelay;
passedTime = unlocks * vd.unlockDelay;
}
uint256 unlockedAtTime = (restVested * passedTime) / vd.vesting;
totalUnlocked += unlockedAtTime;
}
}
/**
* @dev Private function to calculate the unlocked vested tokens for all allocations at a specific time.
* @param allocationIds An array of allocation IDs.
* @param atTime The specific time to check for unlocked tokens.
* @return totalVested The total amount of vested tokens across all allocations.
* @return totalClaimed The total amount of claimed tokens across all allocations.
* @return totalUnlocked The amount of unlocked vested tokens at the specified time.
* @return reserved Array of reserved tokens for each allocation.
* @return vested Array of vested tokens for each allocation.
* @return claimed Array of claimed tokens for each allocation.
* @return unlocked Array of unlocked vested tokens for each allocation.
*/
function _calculateVestingStateAtTime(
bytes32[] memory allocationIds,
uint256 atTime
)
private
view
returns (
uint256 totalVested,
uint256 totalClaimed,
uint256 totalUnlocked,
uint256[] memory reserved,
uint256[] memory vested,
uint256[] memory claimed,
uint256[] memory unlocked
)
{
uint256 totalAllocations = allocationIds.length;
reserved = new uint256[](totalAllocations);
vested = new uint256[](totalAllocations);
claimed = new uint256[](totalAllocations);
unlocked = new uint256[](totalAllocations);
for (uint256 i = 0; i < totalAllocations; i++) {
bytes32 allocationId = allocationIds[i];
VestingData memory vd = _getVesting(allocationId);
reserved[i] = vd.reserved;
if (vd.vested == 0) {
// Does not have any tokens to vest in this allocation.
continue;
}
totalVested += vd.vested;
totalClaimed += vd.claimed;
vested[i] = vd.vested;
claimed[i] = vd.claimed;
uint256 unlockedAtTime = _calculateUnlockedAtTime(vd, atTime);
totalUnlocked += unlockedAtTime;
unlocked[i] = unlockedAtTime;
}
}
/**
* @dev Private function to calculate the total amount of unlocked tokens for a specific allocation at a specific time.
* @param vd The vesting data associated with the allocation.
* @param atTime The specific time to check for unlocked tokens.
* @return totalUnlocked The total amount of unlocked tokens at the specified time.
*/
function _calculateUnlockedAtTime(
VestingData memory vd,
uint256 atTime
) private view returns (uint256 totalUnlocked) {
uint256 tge = _getTgeTimestamp();
if (tge == 0 || atTime < tge) {
// The TGE event has not yet occurred. Then unlocked is 0.
return totalUnlocked;
}
uint256 tgeUnlocked = (vd.vested * vd.tgeUnlock) / DENOMINATOR;
uint256 restVested = vd.vested - tgeUnlocked;
totalUnlocked += tgeUnlocked;
uint256 vestingStartTime = tge + vd.lockup;
if (atTime < vestingStartTime) {
// Unlocking tokens from vesting has not yet begun.
return totalUnlocked;
}
uint256 cliffEndTime = vestingStartTime + vd.cliff;
if (atTime < cliffEndTime) {
// Unlocking of tokens has already begun, but the claim is impossible until the end of the cliff period.
return totalUnlocked;
}
uint256 vestingEndTime = vestingStartTime + vd.vesting;
if (atTime >= vestingEndTime) {
// Vesting is done. The entire amount is available for claim.
return vd.vested;
}
if (atTime >= cliffEndTime) {
uint256 passedTime = atTime - vestingStartTime;
if (vd.unlockDelay > 0) {
// Fix if the interval between claims is specified.
uint256 unlocks = passedTime / vd.unlockDelay;
passedTime = unlocks * vd.unlockDelay;
}
uint256 unlockedAtTime = (restVested * passedTime) / vd.vesting;
totalUnlocked += unlockedAtTime;
}
}
/**
* @dev Private function to set the vesting parameters for a specific allocation.
* WARNING: This function is not synchronized with the sales stages.
* Ensures that the vesting parameters are set in accordance with the sales strategy.
* Ensures that the TGE unlock percentage does not exceed the maximum allowed value.
* Emits an AllocationUpdated event.
* @param allocationId The ID of the allocation to set the vesting parameters.
* @param reserved The total amount of tokens reserved for this allocation.
* @param lockup The lock-up period before vesting starts.
* @param cliff The cliff period during which tokens cannot be claimed.
* @param vesting The total vesting period over which tokens are gradually unlocked.
* @param tgeUnlock The percentage of tokens unlocked immediately after the Token Generation Event (TGE).
* @param unlockDelay The delay between successive unlocks after the cliff period.
*/
function _setVestingSchedule(
bytes32 allocationId,
uint256 reserved,
uint256 lockup,
uint256 cliff,
uint256 vesting,
uint256 tgeUnlock,
uint256 unlockDelay
) private {
if (tgeUnlock > DENOMINATOR) {
revert TgeUnlockExceedsMaximum();
}
if (!_isAllocationIdExist(allocationId)) {
_allocationIds.push(allocationId);
_allocationIdExist[allocationId] = true;
}
VestingData storage vestingData = _vesting[allocationId];
if (vestingData.vested > reserved) {
revert ReservedLessThanVested(allocationId);
}
_totalReserved = _totalReserved - vestingData.reserved + reserved;
vestingData.reserved = reserved;
vestingData.lockup = lockup;
vestingData.cliff = cliff;
vestingData.vesting = vesting;
vestingData.tgeUnlock = tgeUnlock;
vestingData.unlockDelay = unlockDelay;
emit AllocationUpdated(
allocationId,
reserved,
lockup,
cliff,
vesting,
tgeUnlock,
unlockDelay
);
}
/**
* @dev Private function to remove the vesting parameters for a specific allocation.
* WARNING: This function is not synchronized with the sales stages. Ensure that the vesting parameters are removed in accordance with the sales strategy.
* Emits an AllocationDeleted event.
* @param allocationId The ID of the allocation to remove the vesting parameters for.
*/
function _removeAllocation(bytes32 allocationId) private {
VestingData memory vestingData = _getVesting(allocationId);
if (vestingData.vested > 0) {
revert AllocationAlreadyUsed();
}
bytes32[] memory allocationIds = _getAllocationIds();
uint256 index = _findAllocationIndex(allocationId, allocationIds);
uint256 lastIndex = allocationIds.length - 1;
bytes32 lastAllocationId = _allocationIds[lastIndex];
_allocationIds[index] = lastAllocationId; // Move the last allocation ID to the index being removed.
_allocationIds.pop(); // Remove the last element.
delete _vesting[allocationId];
delete _allocationIdExist[allocationId];
emit AllocationDeleted(allocationId);
}
/**
* @dev Private function to compute the allocation ID for a given allocation name.
* This function computes the keccak-256 hash of the given allocation name, subtracts 1, and returns it as bytes32.
* @param allocationName The name of the allocation.
* @return allocationId The computed ID of the allocation.
*/
function _computeAllocationId(
string memory allocationName
) private pure returns (bytes32 allocationId) {
return
bytes32(
abi.encode(uint256(keccak256(abi.encode(allocationName))) - 1)
);
}
/**
* @dev Checks if a given allocation ID exists in the allowed allocation IDs list.
* This function is used internally to verify if a specific allocation ID is present in the contract's allocation list.
* @param allocationId The ID of the allocation to check.
* @return bool Returns true if the allocation exists, false otherwise.
*/
function _isAllocationIdExist(
bytes32 allocationId
) private view returns (bool) {
return _allocationIdExist[allocationId];
}
/**
* @dev Checks if a given allocation ID exists in the allowed allocation IDs list and reverts if it does not exist.
* This function is used internally to ensure that an allocation ID is valid before proceeding with further logic.
* If the allocation does not exist, it reverts with a custom error `AllocationNotFound`.
* @param allocationId The ID of the allocation to check.
*/
function _checkAllocationIdExistence(bytes32 allocationId) private view {
if (!_isAllocationIdExist(allocationId)) {
revert AllocationNotFound(allocationId);
}
}
/**
* @dev Internal function to retrieve the list of all allowed allocation IDs.
* @return bytes32[] List of allowed allocation IDs.
*/
function _getAllocationIds() private view returns (bytes32[] memory) {
return _allocationIds;
}
/**
* @dev Internal function to get the total number of vesting allocations.
* @return The total number of vesting allocations.
*/
function _getTotalAllocations() private view returns (uint256) {
return _allocationIds.length;
}
/**
* @dev Finds the index of a given allocation in an array of allocation IDs.
* This function searches for a specific allocation ID within an array of allocation IDs and returns its index.
* If the allocation does not exist, it reverts with a custom error `AllocationNotFound`.
* @param allocationId The allocation ID to find.
* @param allocationIds An array of allocation IDs.
* @return uint256 The index of the found allocation.
*/
function _findAllocationIndex(
bytes32 allocationId,
bytes32[] memory allocationIds
) private pure returns (uint256) {
for (uint256 i = 0; i < allocationIds.length; i++) {
if (allocationIds[i] == allocationId) {
return i;
}
}
revert AllocationNotFound(allocationId);
}
/**
* @dev Private function to set the auto-claim status.
* Emits an AutoClaimAfterTgeUpdated event.
* @param status The new status of auto-claim.
*/
function _setAutoClaimAfterTge(bool status) private {
_autoClaimAfterTge = status;
emit AutoClaimAfterTgeUpdated(status);
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
// Compatible with OpenZeppelin Contracts ^5.0.0
pragma solidity 0.8.20;
import "@openzeppelin/contracts/access/Ownable2Step.sol";
/**
* @title TgeTimestamp
* @dev Abstract contract to manage the Token Generation Event (TGE) timestamp.
* Allows setting, freezing, and checking the TGE timestamp.
* Inherits from Ownable2Step.
*/
abstract contract TgeTimestamp is Ownable2Step {
/// @dev Timestamp of the Token Generation Event (TGE).
uint256 private _tgeTimestamp;
/// @dev Flag to indicate if the TGE timestamp is frozen.
bool private _tgeTimestampFrozen;
/// @dev Event emitted when the TGE timestamp is changed.
event TgeTimestampUpdated(uint256 tgeTimestamp);
/// @dev Event emitted when the TGE timestamp is frozen.
event TgeTimestampFrozen();
/// @dev Error indicating that the TGE has not yet passed.
error TgeTimestampNotPassed();
/// @dev Error indicating that the TGE has already passed.
error TgeTimestampPassed();
/// @dev Error indicating that the TGE timestamp is zero.
error TgeTimestampIsZero();
/// @dev Error indicating that the TGE timestamp is frozen and cannot be changed.
error TgeTimestampIsFrozen();
/// @dev Error indicating that the provided timestamp has already passed.
error TimeAlreadyPassed();
/**
* @dev Sets the initial value for the TGE timestamp.
* @param tgeTimestamp The initial TGE timestamp.
*/
constructor(uint256 tgeTimestamp) {
_setTgeTimestamp(tgeTimestamp);
}
/// @dev Modifier to make a function callable only when the TGE has passed.
modifier whenTgePassed() {
if (!_isTgePassed()) {
revert TgeTimestampNotPassed();
}
_;
}
/**
* @notice Returns the TGE timestamp details.
* @return isFrozen Boolean indicating if the TGE timestamp is frozen.
* @return tge The TGE timestamp.
*/
function getTge() external view returns (bool isFrozen, uint256 tge) {
isFrozen = _isTgeTimestampFrozen();
tge = _getTgeTimestamp();
}
/**
* @notice Sets the TGE timestamp.
* @dev Can only be called by the contract owner and if the TGE timestamp is not frozen and has not passed.
* @param newTgeTimestamp The new TGE timestamp.
*/
function setTgeTimestamp(uint256 newTgeTimestamp) external onlyOwner {
uint256 currentTge = _getTgeTimestamp();
if (currentTge > 0 && block.timestamp >= currentTge) {
revert TgeTimestampPassed();
}
if (block.timestamp > newTgeTimestamp) {
revert TimeAlreadyPassed();
}
if (_isTgeTimestampFrozen()) {
revert TgeTimestampIsFrozen();
}
_setTgeTimestamp(newTgeTimestamp);
}
/**
* @notice Freezes the TGE timestamp, preventing any future changes.
* @dev Can only be called by the contract owner and if the TGE timestamp is not frozen and is not zero.
*/
function freezeTgeTimestamp() external onlyOwner {
if (_getTgeTimestamp() == 0) {
revert TgeTimestampIsZero();
}
if (_tgeTimestampFrozen) {
revert TgeTimestampIsFrozen();
}
_tgeTimestampFrozen = true;
emit TgeTimestampFrozen();
}
/**
* @dev Internal function to get the TGE timestamp.
* @return uint256 The TGE timestamp.
*/
function _getTgeTimestamp() internal view returns (uint256) {
return _tgeTimestamp;
}
/**
* @dev Internal function to check if the Token Generation Event (TGE) has passed.
* @return Returns true if the TGE has passed, false otherwise.
*/
function _isTgePassed() internal view returns (bool) {
uint256 tge = _getTgeTimestamp();
if (tge == 0 || block.timestamp < tge) {
return false;
}
return true;
}
/**
* @dev Private function to check if the TGE timestamp is frozen.
* @return bool True if the TGE timestamp is frozen, false otherwise.
*/
function _isTgeTimestampFrozen() private view returns (bool) {
return _tgeTimestampFrozen;
}
/**
* @dev Private function to set the TGE (Token Generation Event) timestamp
* Emits a TgeTimestampUpdated event.
* @param tgeTimestamp The new TGE timestamp.
*/
function _setTgeTimestamp(uint256 tgeTimestamp) private {
_tgeTimestamp = tgeTimestamp;
emit TgeTimestampUpdated(tgeTimestamp);
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
// Compatible with OpenZeppelin Contracts ^5.0.0
pragma solidity 0.8.20;
import "@openzeppelin/contracts/access/Ownable2Step.sol";
/**
* @title SellableToken
* @dev Abstract contract to manage a sellable token address and its decimals. Allows setting and freezing the sellable token.
* Inherits from Ownable2Step.
*/
abstract contract SellableToken is Ownable2Step {
/// @dev Indicates whether the sellable token is frozen.
bool private _sellableTokenFrozen;
/// @dev Address of the sellable token.
address private _sellableToken;
/// @dev Number of decimals of the sellable token.
uint8 private _sellableTokenDecimals;
/// @dev Event emitted when the sellable token is updated.
event SellableTokenUpdated(address token, uint8 decimals);
/// @dev Event emitted when the sellable token is frozen.
event SellableTokenFrozen();
/// @dev Error thrown when the sellable token address is zero.
error SellableTokenIsZero();
/// @dev Error thrown when the sellable token decimals is zero.
error SellableTokenDecimalsIsZero();
/// @dev Error thrown when the sellable token is frozen.
error SellableTokenIsFrozen();
/**
* @dev Sets the initial values for the sellable token and its decimals.
* @param token The address of the sellable token.
* @param decimals The number of decimals of the sellable token. Must be greater than 0.
*/
constructor(address token, uint8 decimals) {
_setSellableToken(token, decimals);
}
/// @dev Modifier to check if the sellable token address is not zero.
modifier whenSellableTokenIsNotZero() {
if (_getSellableToken() == address(0)) {
revert SellableTokenIsZero();
}
_;
}
/**
* @notice Gets the sellable token details.
* @return isFrozen Boolean indicating if the sellable token is frozen.
* @return token The address of the sellable token.
* @return decimals The number of decimals of the sellable token.
*/
function getSellableToken()
external
view
returns (bool isFrozen, address token, uint8 decimals)
{
isFrozen = _isSellableTokenFrozen();
token = _getSellableToken();
decimals = _getSellableTokenDecimals();
}
/**
* @notice Sets the sellable token and its decimals.
* @dev Can only be called by the contract owner and if the sellable token is not frozen.
* @param token The address of the sellable token.
* @param decimals The number of decimals of the sellable token. Must be greater than 0.
*/
function setSellableToken(
address token,
uint8 decimals
) external onlyOwner {
if (_isSellableTokenFrozen()) {
revert SellableTokenIsFrozen();
}
_setSellableToken(token, decimals);
}
/**
* @notice Freezes the sellable token, preventing further changes to its address or decimals.
* @dev Can only be called by the contract owner and only if the sellable token is not already frozen.
* This action is irreversible. Once the sellable token is frozen, it cannot be unfrozen.
* Emits a SellableTokenFrozen event upon successful freezing of the sellable token.
*/
function freezeSellableToken()
external
whenSellableTokenIsNotZero
onlyOwner
{
if (_sellableTokenFrozen) {
revert SellableTokenIsFrozen();
}
_sellableTokenFrozen = true;
emit SellableTokenFrozen();
}
/**
* @dev Internal function to get the address of the sellable token.
* @return The address of the sellable token.
*/
function _getSellableToken() internal view returns (address) {
return _sellableToken;
}
/**
* @dev Internal function to get the number of decimals of the sellable token.
* @return The number of decimals of the sellable token.
*/
function _getSellableTokenDecimals() internal view returns (uint8) {
return _sellableTokenDecimals;
}
/**
* @dev Private function to check if the sellable token is frozen.
* @return Boolean indicating if the sellable token is frozen.
*/
function _isSellableTokenFrozen() private view returns (bool) {
return _sellableTokenFrozen;
}
/**
* @dev Private function to set the sellable token and its decimals.
* Emits a SellableTokenUpdated event.
* @param token The address of the sellable token.
* @param decimals The number of decimals of the sellable token. Must be greater than 0.
*/
function _setSellableToken(address token, uint8 decimals) private {
if (decimals == 0) {
revert SellableTokenDecimalsIsZero();
}
_sellableToken = token;
_sellableTokenDecimals = decimals;
emit SellableTokenUpdated(token, decimals);
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
// Compatible with OpenZeppelin Contracts ^5.0.0
pragma solidity 0.8.20;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/Address.sol";
import "@openzeppelin/contracts/access/Ownable2Step.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
/**
* @title RecoverableFunds
* @dev Abstract contract that allows the owner to recover accidentally sent ERC20 tokens
* and native coins (ETH) that are not part of the project's tracked funds.
* Ensures the amount to be recovered does not exceed the recoverable balance.
* Inherits from Ownable2Step and ReentrancyGuard.
*/
abstract contract RecoverableFunds is Ownable2Step, ReentrancyGuard {
using SafeERC20 for IERC20;
using Address for address payable;
/**
* @dev Emitted when funds are recovered.
* @param user The address that received the recovered funds.
* @param token The address of the recovered ERC20 token or address(0) for ETH.
* @param amount The amount of ERC20 tokens or ETH recovered.
*/
event FundsRecovered(
address indexed user,
address indexed token,
uint256 amount
);
/// @dev Error to indicate that the amount to be recovered exceeds the recoverable balance.
error AmountExceedsRecoverableFunds();
/// @dev Error to indicate that the recipient address is zero.
error RecipientIsZeroAddress();
/**
* @notice Returns the recoverable amount of a specific token or ETH.
* @dev If the `token` is the zero address, it returns the balance of the contract in ETH.
* Otherwise, it returns the balance of the specified ERC20 token held by the contract.
* This function is designed to be overridden in derived contracts if needed.
* @param token The address of the ERC20 token or the zero address for ETH.
* @return The recoverable amount of the specified token or ETH.
*/
function getRecoverableFunds(
address token
) public view virtual returns (uint256) {
if (token == address(0)) return address(this).balance;
else return IERC20(token).balanceOf(address(this));
}
/**
* @notice Allows the owner to recover ERC20 tokens and native coins (ETH) accidentally sent to the contract.
* @dev Can only be called by the contract owner.
* Ensures the amount to be recovered does not exceed the recoverable balance.
* Emits a FundsRecovered event.
* @param user The address to receive recovered funds from the contract.
* @param token The address of the ERC20 token to recover or address(0) to recover ETH.
* @param amount The amount of ERC20 tokens or ETH to recover.
* @return Returns true if the recovery was successful.
*/
function recoverFunds(
address user,
address token,
uint256 amount
) external onlyOwner nonReentrant returns (bool) {
if (user == address(0)) {
revert RecipientIsZeroAddress();
}
uint256 recoverableAmount = getRecoverableFunds(token);
if (amount > recoverableAmount) {
revert AmountExceedsRecoverableFunds();
}
_transferRecoverableFundsTo(user, token, amount);
emit FundsRecovered(user, token, amount);
return true;
}
/**
* @dev Private function to handle the transfer of recovered funds.
* @param user The address to receive the recovered funds.
* @param token The address of the ERC20 token to recover or address(0) to recover ETH.
* @param amount The amount of ERC20 tokens or ETH to recover.
*/
function _transferRecoverableFundsTo(
address user,
address token,
uint256 amount
) private {
if (token == address(0)) {
payable(user).sendValue(amount);
} else {
IERC20(token).safeTransfer(user, amount);
}
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
// Compatible with OpenZeppelin Contracts ^5.0.0
pragma solidity 0.8.20;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
/**
* @title NonTransferableToken
* @dev @dev Abstract contract. Implementation of the {IERC20} and {IERC20Metadata} interfaces to display non-transferable tokens.
*/
abstract contract NonTransferableToken is IERC20, IERC20Metadata {
string private _name;
string private _symbol;
/// @dev Event emitted when the token metadata is updated.
event NonTransferableTokenMetadataUpdated(string name, string symbol);
/// @dev Indicates that a function can't be used.
error NonTransferableTokenUnusedFunction();
/**
* @dev Sets the values for {name} and {symbol}.
* @param name_ The name of the token.
* @param symbol_ The symbol of the token.
*/
constructor(string memory name_, string memory symbol_) {
_setNonTransferableTokenNameSymbol(name_, symbol_);
}
/**
* @dev Imitation of ERC20 function. See {IERC20Metadata-name}.
* @return The name of the token.
*/
function name() external view returns (string memory) {
return _name;
}
/**
* @dev Imitation of ERC20 function. See {IERC20Metadata-symbol}.
* @return The symbol of the token.
*/
function symbol() external view returns (string memory) {
return _symbol;
}
/**
* @dev Imitation of ERC20 function. See {IERC20Metadata-decimals}.
* @return The number of decimals used to get its user representation.
*/
function decimals() public view virtual returns (uint8) {
return 18; // Placeholder, should be overridden in derived contracts.
}
/**
* @dev Imitation of ERC20 function. See {IERC20-totalSupply}.
* @return The total supply of the token.
*/
function totalSupply() public view virtual returns (uint256) {
return 0; // Placeholder, should be overridden in derived contracts.
}
/**
* @dev Imitation of ERC20 function. See {IERC20-balanceOf}.
* @return The balance of the specified user.
*/
function balanceOf(address) public view virtual returns (uint256) {
return 0; // Placeholder, should be overridden in derived contracts.
}
/**
* @dev Imitation of ERC20 function. See {IERC20-transfer}.
* @return Always reverts with NonTransferableTokenUnusedFunction.
*/
function transfer(address, uint256) external pure returns (bool) {
revert NonTransferableTokenUnusedFunction();
}
/**
* @dev Imitation of ERC20 function. See {IERC20-allowance}.
* @return Always return 0.
*/
function allowance(address, address) external pure returns (uint256) {
return 0;
}
/**
* @dev Imitation of ERC20 function. See {IERC20-approve}.
* @return Always reverts with NonTransferableTokenUnusedFunction.
*/
function approve(address, uint256) external pure returns (bool) {
revert NonTransferableTokenUnusedFunction();
}
/**
* @dev Imitation of ERC20 function. See {IERC20-transferFrom}.
* @return Always reverts with NonTransferableTokenUnusedFunction.
*/
function transferFrom(
address,
address,
uint256
) external pure returns (bool) {
revert NonTransferableTokenUnusedFunction();
}
/**
* @dev Private function to emit Transfer event.
* @param from The address of the sender.
* @param to The address of the recipient.
* @param amount The amount of tokens being transferred.
*/
function _updateNonTransferableToken(
address from,
address to,
uint256 amount
) private {
emit Transfer(from, to, amount);
}
/**
* @dev Internal function to simulate the minting of new tokens. Emits a Transfer event.
* @param user The address to receive the minted tokens.
* @param amount The amount of tokens to mint.
*/
function _mintNonTransferableToken(address user, uint256 amount) internal {
_updateNonTransferableToken(address(0), user, amount);
}
/**
* @dev Internal function to simulate the burning of tokens. Emits a Transfer event.
* @param user The address whose tokens are being burned.
* @param amount The amount of tokens to burn.
*/
function _burnNonTransferableToken(address user, uint256 amount) internal {
_updateNonTransferableToken(user, address(0), amount);
}
/**
* @dev Allows to change the token metadata.
* Emits a NonTransferableTokenMetadataUpdated event.
* @param name_ The new name of the token.
* @param symbol_ The new symbol of the token.
*/
function _setNonTransferableTokenNameSymbol(
string memory name_,
string memory symbol_
) internal {
_name = name_;
_symbol = symbol_;
emit NonTransferableTokenMetadataUpdated(name_, symbol_);
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
// Compatible with OpenZeppelin Contracts ^5.0.0
pragma solidity 0.8.20;
interface ITokenVesting {
/**
* @notice Handles the purchase of tokens for a specific user during a token sale stage.
* @dev This function is called by the TokenSale contract when tokens are purchased.
* It verifies the allocation exists and increases the vested amount for the user.
* @param user The address of the user purchasing tokens.
* @param stageId The ID of the sale stage.
* @param tokensToBuy The amount of tokens being purchased.
* @return bool Returns true if the purchase is successfully processed.
*/
function onTokensPurchase(
address user,
uint256 stageId,
uint256 tokensToBuy
) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.20;
import {Ownable} from "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}