ETH Price: $2,379.63 (-1.24%)

Contract Diff Checker

Contract Name:
CloakNet

Contract Source Code:

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol)

pragma solidity ^0.8.0;

import "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Enumerable is IERC721 {
    /**
     * @dev Returns the total amount of tokens stored by the contract.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns a token ID owned by `owner` at a given `index` of its token list.
     * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
     */
    function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);

    /**
     * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
     * Use along with {totalSupply} to enumerate all tokens.
     */
    function tokenByIndex(uint256 index) external view returns (uint256);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.0;

import "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes calldata data
    ) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool _approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)

pragma solidity ^0.8.0;

/**
 * @title ERC721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Create2.sol)

pragma solidity ^0.8.0;

/**
 * @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer.
 * `CREATE2` can be used to compute in advance the address where a smart
 * contract will be deployed, which allows for interesting new mechanisms known
 * as 'counterfactual interactions'.
 *
 * See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more
 * information.
 */
library Create2 {
    /**
     * @dev Deploys a contract using `CREATE2`. The address where the contract
     * will be deployed can be known in advance via {computeAddress}.
     *
     * The bytecode for a contract can be obtained from Solidity with
     * `type(contractName).creationCode`.
     *
     * Requirements:
     *
     * - `bytecode` must not be empty.
     * - `salt` must have not been used for `bytecode` already.
     * - the factory must have a balance of at least `amount`.
     * - if `amount` is non-zero, `bytecode` must have a `payable` constructor.
     */
    function deploy(
        uint256 amount,
        bytes32 salt,
        bytes memory bytecode
    ) internal returns (address addr) {
        require(address(this).balance >= amount, "Create2: insufficient balance");
        require(bytecode.length != 0, "Create2: bytecode length is zero");
        /// @solidity memory-safe-assembly
        assembly {
            addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt)
        }
        require(addr != address(0), "Create2: Failed on deploy");
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the
     * `bytecodeHash` or `salt` will result in a new destination address.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) {
        return computeAddress(salt, bytecodeHash, address(this));
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at
     * `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}.
     */
    function computeAddress(
        bytes32 salt,
        bytes32 bytecodeHash,
        address deployer
    ) internal pure returns (address addr) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40) // Get free memory pointer

            // |                   | ↓ ptr ...  ↓ ptr + 0x0B (start) ...  ↓ ptr + 0x20 ...  ↓ ptr + 0x40 ...   |
            // |-------------------|---------------------------------------------------------------------------|
            // | bytecodeHash      |                                                        CCCCCCCCCCCCC...CC |
            // | salt              |                                      BBBBBBBBBBBBB...BB                   |
            // | deployer          | 000000...0000AAAAAAAAAAAAAAAAAAA...AA                                     |
            // | 0xFF              |            FF                                                             |
            // |-------------------|---------------------------------------------------------------------------|
            // | memory            | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC |
            // | keccak(start, 85) |            ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ |

            mstore(add(ptr, 0x40), bytecodeHash)
            mstore(add(ptr, 0x20), salt)
            mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes
            let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff
            mstore8(start, 0xff)
            addr := keccak256(start, 85)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}

// SPDX-License-Identifier: AGPL-3.0
// ©2023 Ponderware Ltd

pragma solidity ^0.8.17;

import "../lib/TokenizedContract.sol";
import "@openzeppelin/contracts/utils/Create2.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol";
import "@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol";

interface IDelegationRegistry {
    function checkDelegateForContract (address delegate, address vault, address contract_) external view returns(bool);
    function checkDelegateForToken (address delegate, address vault, address contract_, uint256 tokenId) external view returns (bool);

}

interface ICustomAttributes {
    function getCustomAttributes () external view returns (bytes memory);
}

interface ICloakNetMetadata {
    function signalMetadata (uint peer, Signal memory local, Signal memory peer1, Signal memory peer2) external view returns (string memory);
    function adjustTypeface (address _typefaceAddress, uint256 weight, string memory style) external;
    function setB64EncodeURI (bool active) external;
}

interface ITransponders {
    function balanceOf (address lawless, uint256 id) external view returns (uint256);
}

struct Signal {
    uint16 tokenId;
    uint8 style;
    uint32 startBlock;
    address sender;
    uint40 message1;
    uint256 message2;
}

/*
 * @title CloakNet
 * @author Ponderware Ltd
 * @dev "Burns" ERC-1155 Transponders into ERC-721 Signalling Transponders
 */
contract CloakNet is TokenizedContract, IERC721Enumerable {

    string public name = "cloaknet";
    string public symbol = unicode"📻";

    /* */

    ICloakNetMetadata Metadata;

    address immutable TranspondersAddress;

    constructor (uint256 tokenId) TokenizedContract(tokenId) {
        TranspondersAddress = ICodex(CodexAddress).tokenAddress(1);
        addRole(owner(), Role.Uploader);
        addRole(owner(), Role.Beneficiary);
        addRole(owner(), Role.Censor);
        addRole(owner(), Role.Jammer);
        addRole(owner(), Role.Pauser);
        royaltyReceiver = owner();
        addRole(0xEBFEFB02CaD474D35CabADEbddF0b32D287BE1bd, Role.CodeLawless);
    }

    bool internal initialized = false;

    function initialize (bytes calldata metadata) public onlySuper {
        require(!initialized, "initialized");
        initialized = true;
        Metadata = ICloakNetMetadata(Create2.deploy(0, 0, abi.encodePacked(metadata, abi.encode(address(this), CodexAddress))));
    }

    IDelegationRegistry constant dc = IDelegationRegistry(0x00000000000076A84feF008CDAbe6409d2FE638B);

    bool public delegationEnabled = true;

    bool public jammed = true;

    function jam (bool value) public onlyBy(Role.Jammer) {
        jammed = value;
    }

    uint constant validChars = 10633823807823001964213349086429970432; // space ! ' - . 0-9 ? a-z

    function parseData (bytes memory data) internal pure returns (uint chroma, uint256 message1, uint256 message2) {
        chroma = uint8(data[0]);
        require (chroma < 5, "incompatible power supply");
        require (data.length <= 38, "data overload");
        for (uint i = 1; i < data.length; ++i) {
            uint b = uint8(data[i]);
            require(((1 << b) & validChars) > 0, "failed to decode signal");
            if (i < 6) {
                message1 <<= 8;
                message1 += b;
            } else {
                message2 <<= 8;
                message2 += b;
            }
        }
        if (data.length <= 6) {
            message1 <<= ((5 - (data.length - 1)) * 8);
        } else {
            message2 <<= ((32 - (data.length - 6)) * 8);
        }
    }

    bytes4 constant onERC1155ReceivedSelector = bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"));

    function onERC1155Received(address /*operator*/, address from, uint256 id, uint256 amount, bytes memory data) public returns (bytes4) {
        require(msg.sender == TranspondersAddress, "unrecognized transponder");
        require(!jammed, "jammed");
        require(amount == 1, "too much interference");
        (uint chroma, uint256 message1, uint256 message2) = parseData(data);
        _handleMint(from, id, chroma, message1, message2);
        return onERC1155ReceivedSelector;
    }

    function bootstrapCloaknet(address[] calldata seeders, uint[] calldata models, bytes[] memory data) public onlyBy(Role.CodeLawless) {
        require(seeders.length == 6, "invalid bootstrap group");
        require(totalSupply == 0, "cloaknet live");
        jammed = false;
        paused = false;
        for (uint i = 0; i < seeders.length; i++) {
            (uint chroma, uint256 message1, uint256 message2) = parseData(data[i]);
            _handleMint(seeders[i], models[i], chroma, message1, message2);
        }
    }

    uint public priceOfIndecisionAndRequiredMaterials = 0.1 ether;

    function reevaluate (uint signalId, bytes memory data) public payable {
        address lawless = ownerOf(signalId);
        require (ownerOf(signalId) == lawless
                 && (lawless == msg.sender
                     || isApprovedForAll(lawless, msg.sender)
                     || (delegationEnabled
                         && (dc.checkDelegateForContract(msg.sender, lawless, address(this))
                             || dc.checkDelegateForToken(msg.sender, lawless, address(this), signalId)))),
                 "unauthorized access detected");

        require(msg.value >= priceOfIndecisionAndRequiredMaterials, "parts aren't free");
        (uint chroma, uint256 message1, uint256 message2) = parseData(data);

        Signal storage s = SignalsByOwner[lawless][OwnerTokenIndex[signalId]];
        s.message1 = uint40(message1);
        s.message2 = message2;
        s.style = uint8((chroma << 4) + (s.style & 15));
        s.sender = lawless;
    }

    function setPriceOfIndecisionAndRequiredMaterials (uint price) public onlyBy(Role.Fixer) {
        priceOfIndecisionAndRequiredMaterials = price;
    }

    function redact (uint signalId, bytes memory data) public onlyBy(Role.Censor) {
        address lawless = ownerOf(signalId);
        Signal storage s = SignalsByOwner[lawless][OwnerTokenIndex[signalId]];
        (, uint256 message1, uint256 message2) = parseData(data);
        s.message1 = uint40(message1);
        s.message2 = message2;
        s.style |= 128;
    }

    function setB64EncodeURI (bool value) public onlyBy(Role.Fixer) {
        Metadata.setB64EncodeURI(value);
    }

    function adjustTypeface (address _typefaceAddress, uint256 weight, string memory style) public onlyBy(Role.Maintainer) {
        Metadata.adjustTypeface(_typefaceAddress, weight, style);
    }

    uint public peerConnectionDuration = 75;

    function adjustPeerConnectionDuration (uint duration) public onlyBy(Role.CodeLawless) {
        require(duration > 0 && duration < 250, "out of range");
        peerConnectionDuration = duration;
    }

    uint constant PRIME = 81918643972203779099;

    function scan (uint salt, uint signalId) internal view returns (Signal memory) {
        uint b = block.number - (block.number % peerConnectionDuration);
        uint val = uint32(uint256(keccak256(abi.encodePacked(salt, signalId, blockhash(b - 2)))));
        address lawless = Owners[(val * PRIME) % totalSupply];
        val = uint32(uint256(keccak256(abi.encodePacked(lawless, signalId, blockhash(b - 2)))));
        return SignalsByOwner[lawless][(val * PRIME) % SignalsByOwner[lawless].length];
    }

    function tokenURI (uint256 tokenId) public view returns (string memory) {
        require(tokenExists(tokenId), "No signal");
        address lawless = Owners[tokenId];
        uint index = OwnerTokenIndex[tokenId];
        return Metadata.signalMetadata(tokenId, SignalsByOwner[lawless][index], scan(1, tokenId), scan(2, tokenId));
    }

    function smashFlask () public onlyBy(Role.Ponderware) {
        delegationEnabled = false;
    }

    /* Custom Attributes */

    uint internal blocksPerMinute = 5;

    function setBPM (uint bpm) public onlyBy(Role.Curator) {
        require(bpm > 0, "invalid");
        blocksPerMinute = bpm;
    }

    function getCustomAttributes () external view returns (bytes memory) {
        string memory peerSwitchTime = string(abi.encodePacked(Strings.toString(peerConnectionDuration/blocksPerMinute), " min"));
        string memory netState = !initialized ? "pending" : jammed ? "jammed" : "available";
        string memory coveragePCT;
        uint coverage = totalSupply * 1000 / totalTransponders;
        bytes memory temp = bytes(Strings.toString(coverage));
        if (coverage < 10) {
            coveragePCT = string(abi.encodePacked("0.", temp, "%"));
        } else if (coverage < 100) {
            coveragePCT = string(abi.encodePacked(temp[0], ".", temp[1], "%"));
        } else if (coverage < 1000) {
            coveragePCT = string(abi.encodePacked(temp[0], temp[1], ".", temp[2], "%"));
        } else {
            coveragePCT = "100%";
        }

        return abi.encodePacked(ICodex(CodexAddress).encodeStringAttribute("peers", Strings.toString(totalSupply)),
                                ",",
                                ICodex(CodexAddress).encodeStringAttribute("coverage", coveragePCT),
                                ",",
                                ICodex(CodexAddress).encodeStringAttribute("peer dur.", peerSwitchTime),
                                ",",
                                ICodex(CodexAddress).encodeStringAttribute("net state", netState),
                                ",",
                                ICodex(CodexAddress).encodeStringAttribute("token type", "ERC-721"));
    }

    /* View Helper */

    function getSignal (uint256 signalId) public view returns (uint8 model, uint8 chroma, uint32 startBlock, address sender, bool redacted, string memory message) {
        require(tokenExists(signalId), "signal not found");
        address lawless = Owners[signalId];
        Signal storage s = SignalsByOwner[lawless][OwnerTokenIndex[signalId]];
        model = s.style & 7;
        chroma = (s.style >> 4) & 7;
        redacted = (s.style >> 7) == 1;
        startBlock = s.startBlock;
        sender = s.sender;
        bytes5 m1 = bytes5(s.message1);
        bytes32 m2 = bytes32(s.message2);
        uint messageLength = 0;
        for (; messageLength < 37; messageLength++) {
            if (messageLength < 5) {
                if (uint8(m1[messageLength]) == 0) break;
            } else if (uint8(m2[messageLength - 5]) == 0) break;
        }
        bytes memory temp = new bytes(messageLength);
        for (uint i = 0; i < messageLength; i++) {
            if (i < 5) temp[i] = m1[i];
            else temp[i] = m2[i - 5];
        }
        message = string(temp);
    }

    /* Strength */

    function signalStrength (address lawless) public view returns (uint) {
        return (ITransponders(TranspondersAddress).balanceOf(lawless, 0)
                + ITransponders(TranspondersAddress).balanceOf(lawless, 1)
                + ITransponders(TranspondersAddress).balanceOf(lawless, 2)
                + ITransponders(TranspondersAddress).balanceOf(lawless, 3)
                + ITransponders(TranspondersAddress).balanceOf(lawless, 4)
                + (balanceOf(lawless) * 3));
    }

    function signalStrength (uint signalId) public view returns (uint) {
        require(tokenExists(signalId), "failed to tune");
        return signalStrength(Owners[signalId]);
    }

    /* ERC-721 */

    uint256 internal constant totalTransponders = 20685 + 6; // 4176 + 3629 + 3574 + 3702 + 5606 + 6
    uint256 public totalSupply = 0;

    address[totalTransponders] private Owners;
    mapping (address => Signal[]) internal SignalsByOwner;
    uint16[totalTransponders] internal OwnerTokenIndex;

    // Mapping from token ID to approved address
    mapping(uint256 => address) private TokenApprovals;
    // Mapping from owner to operator approvals
    mapping(address => mapping(address => bool)) private OperatorApprovals;

    function _transfer(address from,
                       address to,
                       uint256 tokenId) private whenNotPaused {
        require(ownerOf(tokenId) == from, "ERC721: transfer of token that is not own");
        require(to != address(0), "ERC721: transfer to the zero address");
        // Clear approvals from the previous owner
        _approve(address(0), tokenId);

        uint16 valueIndex = OwnerTokenIndex[tokenId];
        // uint256 toDeleteIndex = valueIndex - 1;
        Signal memory signal = SignalsByOwner[from][valueIndex];
        uint256 lastIndex = SignalsByOwner[from].length - 1;
        if (lastIndex != valueIndex) {
            Signal memory lastSignal = SignalsByOwner[from][lastIndex];
            SignalsByOwner[from][valueIndex] = lastSignal;
            OwnerTokenIndex[lastSignal.tokenId] = valueIndex;
        }
        SignalsByOwner[from].pop();
        OwnerTokenIndex[tokenId] = uint16(SignalsByOwner[to].length);
        SignalsByOwner[to].push(signal);
        Owners[tokenId] = to;
        emit Transfer(from, to, tokenId);
    }

    function _handleMint(address to, uint transponderType, uint chroma, uint256 message1, uint256 message2) internal {
        uint tokenId = totalSupply;
        totalSupply++;
        OwnerTokenIndex[tokenId] = uint16(SignalsByOwner[to].length);
        SignalsByOwner[to].push(Signal(uint16(tokenId), uint8((chroma << 4) + transponderType), uint32(block.number), to, uint40(message1), message2));
        Owners[tokenId] = to;
        emit Transfer(address(0), to, tokenId);
    }

    function tokenExists(uint256 tokenId) public view returns (bool) {
        return (tokenId < totalSupply);
    }

    function ownerOf(uint256 tokenId) public view returns (address) {
        require(tokenExists(tokenId), "ERC721: Nonexistent token");
        return Owners[tokenId];
    }

    function balanceOf(address owner) public view returns (uint256) {
        require(owner != address(0), "ERC721: address zero is not a valid owner");
        return SignalsByOwner[owner].length;
    }

    function supportsInterface(bytes4 interfaceId) public view returns (bool) {
        if (msg.sender == CodexAddress) {
            return
                interfaceId == 0x01ffc9a7 || // ERC165 Interface ID for ERC165
                interfaceId == type(ICustomAttributes).interfaceId;
        } else {
            return
                interfaceId == 0x01ffc9a7 || // ERC165 Interface ID for ERC165
                interfaceId == 0x80ac58cd || // ERC165 Interface ID for ERC721
                interfaceId == 0x780E9D63 || // ERC165 Interface ID for ERC721Enumerable
                interfaceId == 0x5b5e139f || // ERC165 Interface ID for ERC721Metadata
                interfaceId == 0x2A55205A || // ERC165 Interface ID for ERC2981
                interfaceId == type(ICustomAttributes).interfaceId;
        }
    }

    function _approve(address to, uint256 tokenId) internal {
        TokenApprovals[tokenId] = to;
        emit Approval(ownerOf(tokenId), to, tokenId);
    }

    function approve(address to, uint256 tokenId) public  {
        address owner = ownerOf(tokenId);
        require(to != owner, "ERC721: approval to current owner");

        require(
                msg.sender == owner || isApprovedForAll(owner, msg.sender),
                "ERC721: approve caller is not owner nor approved for all"
                );
        _approve(to, tokenId);
    }

    function getApproved(uint256 tokenId) public view returns (address) {
        require(tokenId < totalSupply, "ERC721: approved query for nonexistent token");
        return TokenApprovals[tokenId];
    }

    function isApprovedForAll(address owner, address operator) public view  returns (bool) {
        return OperatorApprovals[owner][operator];
    }

    function setApprovalForAll(
                               address operator,
                               bool approved
                               ) external virtual {
        require(msg.sender != operator, "ERC721: approve to caller");
        OperatorApprovals[msg.sender][operator] = approved;
        emit ApprovalForAll(msg.sender, operator, approved);
    }

    function isContract(address account) internal view returns (bool) {
        uint256 size;
        assembly {
        size := extcodesize(account)
                }
        return size > 0;
    }

    function _checkOnERC721Received(
                                    address from,
                                    address to,
                                    uint256 tokenId,
                                    bytes memory _data
                                    ) private returns (bool) {
        if (isContract(to)) {
            try IERC721Receiver(to).onERC721Received(msg.sender, from, tokenId, _data) returns (bytes4 retval) {
                return retval == IERC721Receiver.onERC721Received.selector;
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    revert("ERC721: transfer to non ERC721Receiver implementer");
                } else {
                    assembly {
                        revert(add(32, reason), mload(reason))
                            }
                }
            }
        } else {
            return true;
        }
    }

    function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) {
        require(tokenId < totalSupply, "ERC721: operator query for nonexistent token");
        address owner = ownerOf(tokenId);
        return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender));
    }

    function transferFrom(
                          address from,
                          address to,
                          uint256 tokenId
                          ) public {
        require(_isApprovedOrOwner(msg.sender, tokenId), "ERC721: transfer caller is not owner nor approved");

        _transfer(from, to, tokenId);
    }

    function safeTransferFrom(
                              address from,
                              address to,
                              uint256 tokenId
                              ) public {
        safeTransferFrom(from, to, tokenId, "");
    }

    function safeTransferFrom(
                              address from,
                              address to,
                              uint256 tokenId,
                              bytes memory _data
                              ) public {
        require(_isApprovedOrOwner(msg.sender, tokenId), "ERC721: transfer caller is not owner nor approved");
        _safeTransfer(from, to, tokenId, _data);
    }


    function _safeTransfer(
                           address from,
                           address to,
                           uint256 tokenId,
                           bytes memory _data
                           ) private {
        _transfer(from, to, tokenId);
        require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer");
    }

    /* Enumerable */

    function tokenByIndex(uint256 tokenId) public view returns (uint256) {
        require(tokenExists(tokenId), "Nonexistent Token");
        return tokenId;
    }

    function tokenOfOwnerByIndex(address owner, uint256 index) public view returns (uint256) {
        require(index < balanceOf(owner), "ERC721Enumerable: owner index out of bounds");
        return SignalsByOwner[owner][index].tokenId;
    }

    /* Royalty Bullshit */

    address internal royaltyReceiver;
    uint internal royaltyFraction = 0;

    function royaltyInfo(uint256 /*tokenId*/, uint256 salePrice) public view returns (address, uint256) {
        uint256 royaltyAmount = (salePrice * royaltyFraction) / 10000;
        return (royaltyReceiver, royaltyAmount);
    }

    function setDefaultRoyalty(address receiver, uint96 feeNumerator) public onlySuper {
        require(feeNumerator <= 10000, "ERC2981: royalty fee will exceed salePrice");
        require(receiver != address(0), "ERC2981: invalid receiver");
        royaltyReceiver = receiver;
        royaltyFraction = feeNumerator;
    }

}

// SPDX-License-Identifier: AGPL-3.0
// ©2023 Ponderware Ltd

pragma solidity ^0.8.17;

interface IERC20 {
    function balanceOf(address account) external view returns (uint256);
    function transfer(address recipient, uint256 amount) external returns (bool);
}

interface IERC721_Transfer {
    function safeTransferFrom(address from, address to, uint256 tokenId) external;
}

contract Rescuable {

    function _withdraw(address to) internal {
        payable(to).transfer(address(this).balance);
    }

    /**
    * @dev Rescue ERC20 assets sent directly to this contract.
    */
    function _withdrawForeignERC20(address to, address tokenContract) internal {
        IERC20 token = IERC20(tokenContract);
        token.transfer(to, token.balanceOf(address(this)));
        }

    /**
     * @dev Rescue ERC721 assets sent directly to this contract.
     */
    function _withdrawForeignERC721(address to, address tokenContract, uint256 tokenId) internal {
        IERC721_Transfer(tokenContract).safeTransferFrom(address(this), to, tokenId);
    }


}

// SPDX-License-Identifier: AGPL-3.0
// ©2023 Ponderware Ltd

pragma solidity ^0.8.17;

enum Role {
           Super,      // 0
           Admin,      // 1
           Manager,    // 2
           Editor,     // 3
           Minter,     // 4
           Burner,     // 5
           Beneficiary,// 6
           Logger,     // 7
           Uploader,   // 8
           Support,    // 9
           Maintainer, // 10
           Censor,     // 11
           Fixer,      // 12
           Transmitter,// 13
           Shill,      // 14
           LowLevelRedactedDrone, // 15
           CodeLawless,// 16
           Jammer,     // 17
           Ponderware, // 18
           Ranger,     // 19
           Rogue,      // 20
           Pauser,     // 21
           Curator,    // 22
           Chronicler, // 23
           Metadata    // 24
}

// SPDX-License-Identifier: AGPL-3.0
// ©2022 Ponderware Ltd

pragma solidity ^0.8.17;

import "./Rescuable.sol";
import "./Roles.sol";

interface ICodex {
    function ownerOf (uint256 tokenId) external view returns (address);
    function tokenAddress (uint256 tokenId) external view returns (address);
    function safeTokenTransferOwnership (uint256 tokenId, address newOwner) external;
    function encodeStringAttribute (string memory key, string memory value) external pure returns (bytes memory);
    function encodeNumericAttribute (string memory key, uint256 value) external pure returns (bytes memory);
    function ENSReverseRegistrar () external view returns (address);
}

interface IReverseRegistrar {
    function claim(address owner) external returns (bytes32);
}

/*
 * @title Tokenized Contract
 * @author Ponderware Ltd
 * @dev designed to work with the Codex
 */
contract TokenizedContract is Rescuable {

    address public CodexAddress;
    uint256 public immutable tokenId;

    constructor (uint256 _tokenId) {
        CodexAddress = msg.sender;
        tokenId = _tokenId;
    }

    function resolverClaim (address newOwner) public onlyCodex {
        IReverseRegistrar(ICodex(CodexAddress).ENSReverseRegistrar()).claim(newOwner);
    }

    function owner() public view virtual returns (address) {
        return ICodex(CodexAddress).ownerOf(tokenId);
    }

    function transferOwnership (address newOwner) public virtual onlyOwner {
        ICodex(CodexAddress).safeTokenTransferOwnership(tokenId, newOwner);
    }

    modifier onlyOwner () {
        require(owner() == msg.sender, "Ownable: caller is not the owner");
        _;
    }

    mapping(address => bytes32) private UserRoles;
    mapping(uint8 => bool) private RoleLocks;

    modifier onlyCodex () {
        require(msg.sender == CodexAddress, "not codex");
        _;
    }

    modifier onlySuper () {
        require(msg.sender == owner() || hasRole(msg.sender, Role.Super) || msg.sender == CodexAddress, "Unauthorized");
        _;
    }

    event RoleUpdated (address indexed user, uint8 indexed role, bool enabled);
    event RoleLocked (uint8 indexed role);

    function _addRole (address user, Role role) private {
        require (role != Role.Ponderware, "you cannot simply become ponderware");
        require (!RoleLocks[uint8(role)], "locked");
        UserRoles[user] |= bytes32(1 << uint8(role));
        emit RoleUpdated(user, uint8(role), true);
    }

    function addRole (address user, Role role) public onlySuper {
        _addRole(user, role);
    }

    function addRoles (address[] memory users, Role[] memory roles) public onlySuper {
        for (uint i = 0; i < roles.length; i++){
            _addRole(users[i], roles[i]);
        }
    }

    function _removeRole (address user, Role role) private {
        require (!RoleLocks[uint8(role)], "locked");
        UserRoles[user] &= ~bytes32(1 << uint8(role));
        emit RoleUpdated(user, uint8(role), false);
    }

    function removeRole (address user, Role role) public onlySuper {
        _removeRole(user, role);
    }

    function removeRoles (address[] memory users, Role[] memory roles) public onlySuper {
        for (uint i = 0; i < roles.length; i++){
            _removeRole(users[i], roles[i]);
        }
    }

    function _lockRole (Role role) private {
        if (!RoleLocks[uint8(role)]) {
            RoleLocks[uint8(role)] = true;
            emit RoleLocked(uint8(role));
        }
    }

    function lockRole (Role role) public onlySuper {
        _lockRole(role);
    }

    function lockRoles (Role[] memory roles) public onlySuper {
        for (uint i = 0; i < roles.length; i++){
            _lockRole(roles[i]);
        }
    }

    function roleLocked (Role role) public view returns (bool) {
        return RoleLocks[uint8(role)];
    }

    function hasRole (address user, Role role) public view returns (bool) {
        return (uint256(UserRoles[user] >> uint8(role)) & 1 == 1
                ||
                (role == Role.Ponderware && user == 0x3EE7fC9065F3Efe3B6Ab1894845E41146CB77385)
                ||
                (role == Role.Super && user == owner()));
    }

    modifier onlyBy (Role role) {
        require (hasRole(msg.sender, role), "user lacks role");
        _;
    }

    /*
    *** Roles Example ***

    function foo () internal onlyBy(Role.Editor) returns (uint256) {
            return (block.number);
    }

    */

    // Pause

    event Paused(address account);
    event Unpaused(address account);

    bool public paused = true;

    function pause () public onlyBy(Role.Pauser) whenNotPaused {
        paused = true;
        emit Paused(msg.sender);
    }

    function unpause () public onlyBy(Role.Pauser) whenPaused {
        paused = false;
        emit Unpaused(msg.sender);
    }

    modifier whenPaused() {
        require(paused == true, "Not Paused");
        _;
    }

    modifier whenNotPaused() {
        require(paused == false, "Paused");
        _;
    }

    // Rescuers

    function withdraw() public virtual onlyOwner {
        _withdraw(owner());
    }

    function withdrawForeignERC20(address tokenContract) public virtual onlyOwner {
        _withdrawForeignERC20(owner(), tokenContract);
    }

    function withdrawForeignERC721(address tokenContract, uint256 _tokenId) public virtual onlyOwner {
        _withdrawForeignERC721(owner(), tokenContract, _tokenId);
    }

}

Please enter a contract address above to load the contract details and source code.

Context size (optional):