Contract Name:
AdminUpgradeabilityProxy
Contract Source Code:
File 1 of 1 : AdminUpgradeabilityProxy
/**
* @title ImplementationProvider
* @dev Interface for providing implementation addresses for other contracts by name.
*/
interface ImplementationProvider {
/**
* @dev Abstract function to return the implementation address of a contract.
* @param contractName Name of the contract.
* @return Implementation address of the contract.
*/
function getImplementation(string contractName) public view returns (address);
}
// File: zos-lib/contracts/ownership/Ownable.sol
/**
* @title Ownable
* @dev The Ownable contract has an owner address, and provides basic authorization control
* functions, this simplifies the implementation of "user permissions".
*
* Source: https://raw.githubusercontent.com/OpenZeppelin/openzeppelin-solidity/v2.0.0/contracts/ownership/Ownable.sol
* This contract is copied here and renamed from the original to avoid clashes in the compiled artifacts
* when the user imports a zos-lib contract (that transitively causes this contract to be compiled and added to the
* build/artifacts folder) as well as the vanilla Ownable implementation from an openzeppelin version.
*/
contract ZOSLibOwnable {
address private _owner;
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
/**
* @dev The Ownable constructor sets the original `owner` of the contract to the sender
* account.
*/
constructor() internal {
_owner = msg.sender;
emit OwnershipTransferred(address(0), _owner);
}
/**
* @return the address of the owner.
*/
function owner() public view returns(address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(isOwner());
_;
}
/**
* @return true if `msg.sender` is the owner of the contract.
*/
function isOwner() public view returns(bool) {
return msg.sender == _owner;
}
/**
* @dev Allows the current owner to relinquish control of the contract.
* @notice Renouncing to ownership will leave the contract without an owner.
* It will not be possible to call the functions with the `onlyOwner`
* modifier anymore.
*/
function renounceOwnership() public onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Allows the current owner to transfer control of the contract to a newOwner.
* @param newOwner The address to transfer ownership to.
*/
function transferOwnership(address newOwner) public onlyOwner {
_transferOwnership(newOwner);
}
/**
* @dev Transfers control of the contract to a newOwner.
* @param newOwner The address to transfer ownership to.
*/
function _transferOwnership(address newOwner) internal {
require(newOwner != address(0));
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
// File: zos-lib/contracts/application/Package.sol
/**
* @title Package
* @dev A package is composed by a set of versions, identified via semantic versioning,
* where each version has a contract address that refers to a reusable implementation,
* plus an optional content URI with metadata. Note that the semver identifier is restricted
* to major, minor, and patch, as prerelease tags are not supported.
*/
contract Package is ZOSLibOwnable {
/**
* @dev Emitted when a version is added to the package.
* @param semanticVersion Name of the added version.
* @param contractAddress Contract associated with the version.
* @param contentURI Optional content URI with metadata of the version.
*/
event VersionAdded(uint64[3] semanticVersion, address contractAddress, bytes contentURI);
struct Version {
uint64[3] semanticVersion;
address contractAddress;
bytes contentURI;
}
mapping (bytes32 => Version) internal versions;
mapping (uint64 => bytes32) internal majorToLatestVersion;
uint64 internal latestMajor;
/**
* @dev Returns a version given its semver identifier.
* @param semanticVersion Semver identifier of the version.
* @return Contract address and content URI for the version, or zero if not exists.
*/
function getVersion(uint64[3] semanticVersion) public view returns (address contractAddress, bytes contentURI) {
Version storage version = versions[semanticVersionHash(semanticVersion)];
return (version.contractAddress, version.contentURI);
}
/**
* @dev Returns a contract for a version given its semver identifier.
* This method is equivalent to `getVersion`, but returns only the contract address.
* @param semanticVersion Semver identifier of the version.
* @return Contract address for the version, or zero if not exists.
*/
function getContract(uint64[3] semanticVersion) public view returns (address contractAddress) {
Version storage version = versions[semanticVersionHash(semanticVersion)];
return version.contractAddress;
}
/**
* @dev Adds a new version to the package. Only the Owner can add new versions.
* Reverts if the specified semver identifier already exists.
* Emits a `VersionAdded` event if successful.
* @param semanticVersion Semver identifier of the version.
* @param contractAddress Contract address for the version, must be non-zero.
* @param contentURI Optional content URI for the version.
*/
function addVersion(uint64[3] semanticVersion, address contractAddress, bytes contentURI) public onlyOwner {
require(contractAddress != address(0), "Contract address is required");
require(!hasVersion(semanticVersion), "Given version is already registered in package");
require(!semanticVersionIsZero(semanticVersion), "Version must be non zero");
// Register version
bytes32 versionId = semanticVersionHash(semanticVersion);
versions[versionId] = Version(semanticVersion, contractAddress, contentURI);
// Update latest major
uint64 major = semanticVersion[0];
if (major > latestMajor) {
latestMajor = semanticVersion[0];
}
// Update latest version for this major
uint64 minor = semanticVersion[1];
uint64 patch = semanticVersion[2];
uint64[3] latestVersionForMajor = versions[majorToLatestVersion[major]].semanticVersion;
if (semanticVersionIsZero(latestVersionForMajor) // No latest was set for this major
|| (minor > latestVersionForMajor[1]) // Or current minor is greater
|| (minor == latestVersionForMajor[1] && patch > latestVersionForMajor[2]) // Or current patch is greater
) {
majorToLatestVersion[major] = versionId;
}
emit VersionAdded(semanticVersion, contractAddress, contentURI);
}
/**
* @dev Checks whether a version is present in the package.
* @param semanticVersion Semver identifier of the version.
* @return true if the version is registered in this package, false otherwise.
*/
function hasVersion(uint64[3] semanticVersion) public view returns (bool) {
Version storage version = versions[semanticVersionHash(semanticVersion)];
return address(version.contractAddress) != address(0);
}
/**
* @dev Returns the version with the highest semver identifier registered in the package.
* For instance, if `1.2.0`, `1.3.0`, and `2.0.0` are present, will always return `2.0.0`, regardless
* of the order in which they were registered. Returns zero if no versions are registered.
* @return Semver identifier, contract address, and content URI for the version, or zero if not exists.
*/
function getLatest() public view returns (uint64[3] semanticVersion, address contractAddress, bytes contentURI) {
return getLatestByMajor(latestMajor);
}
/**
* @dev Returns the version with the highest semver identifier for the given major.
* For instance, if `1.2.0`, `1.3.0`, and `2.0.0` are present, will return `1.3.0` for major `1`,
* regardless of the order in which they were registered. Returns zero if no versions are registered
* for the specified major.
* @param major Major identifier to query
* @return Semver identifier, contract address, and content URI for the version, or zero if not exists.
*/
function getLatestByMajor(uint64 major) public view returns (uint64[3] semanticVersion, address contractAddress, bytes contentURI) {
Version storage version = versions[majorToLatestVersion[major]];
return (version.semanticVersion, version.contractAddress, version.contentURI);
}
function semanticVersionHash(uint64[3] version) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(version[0], version[1], version[2]));
}
function semanticVersionIsZero(uint64[3] version) internal pure returns (bool) {
return version[0] == 0 && version[1] == 0 && version[2] == 0;
}
}
// File: zos-lib/contracts/upgradeability/Proxy.sol
/**
* @title Proxy
* @dev Implements delegation of calls to other contracts, with proper
* forwarding of return values and bubbling of failures.
* It defines a fallback function that delegates all calls to the address
* returned by the abstract _implementation() internal function.
*/
contract Proxy {
/**
* @dev Fallback function.
* Implemented entirely in `_fallback`.
*/
function () payable external {
_fallback();
}
/**
* @return The Address of the implementation.
*/
function _implementation() internal view returns (address);
/**
* @dev Delegates execution to an implementation contract.
* This is a low level function that doesn't return to its internal call site.
* It will return to the external caller whatever the implementation returns.
* @param implementation Address to delegate.
*/
function _delegate(address implementation) internal {
assembly {
// Copy msg.data. We take full control of memory in this inline assembly
// block because it will not return to Solidity code. We overwrite the
// Solidity scratch pad at memory position 0.
calldatacopy(0, 0, calldatasize)
// Call the implementation.
// out and outsize are 0 because we don't know the size yet.
let result := delegatecall(gas, implementation, 0, calldatasize, 0, 0)
// Copy the returned data.
returndatacopy(0, 0, returndatasize)
switch result
// delegatecall returns 0 on error.
case 0 { revert(0, returndatasize) }
default { return(0, returndatasize) }
}
}
/**
* @dev Function that is run as the first thing in the fallback function.
* Can be redefined in derived contracts to add functionality.
* Redefinitions must call super._willFallback().
*/
function _willFallback() internal {
}
/**
* @dev fallback implementation.
* Extracted to enable manual triggering.
*/
function _fallback() internal {
_willFallback();
_delegate(_implementation());
}
}
// File: zos-lib/contracts/utils/Address.sol
/**
* Utility library of inline functions on addresses
*
* Source https://raw.githubusercontent.com/OpenZeppelin/openzeppelin-solidity/v2.0.0/contracts/utils/Address.sol
* This contract is copied here and renamed from the original to avoid clashes in the compiled artifacts
* when the user imports a zos-lib contract (that transitively causes this contract to be compiled and added to the
* build/artifacts folder) as well as the vanilla Address implementation from an openzeppelin version.
*/
library ZOSLibAddress {
/**
* Returns whether the target address is a contract
* @dev This function will return false if invoked during the constructor of a contract,
* as the code is not actually created until after the constructor finishes.
* @param account address of the account to check
* @return whether the target address is a contract
*/
function isContract(address account) internal view returns (bool) {
uint256 size;
// XXX Currently there is no better way to check if there is a contract in an address
// than to check the size of the code at that address.
// See https://ethereum.stackexchange.com/a/14016/36603
// for more details about how this works.
// TODO Check this again before the Serenity release, because all addresses will be
// contracts then.
// solium-disable-next-line security/no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
}
// File: zos-lib/contracts/upgradeability/UpgradeabilityProxy.sol
/**
* @title UpgradeabilityProxy
* @dev This contract implements a proxy that allows to change the
* implementation address to which it will delegate.
* Such a change is called an implementation upgrade.
*/
contract UpgradeabilityProxy is Proxy {
/**
* @dev Emitted when the implementation is upgraded.
* @param implementation Address of the new implementation.
*/
event Upgraded(address indexed implementation);
/**
* @dev Storage slot with the address of the current implementation.
* This is the keccak-256 hash of "org.zeppelinos.proxy.implementation", and is
* validated in the constructor.
*/
bytes32 private constant IMPLEMENTATION_SLOT = 0x7050c9e0f4ca769c69bd3a8ef740bc37934f8e2c036e5a723fd8ee048ed3f8c3;
/**
* @dev Contract constructor.
* @param _implementation Address of the initial implementation.
* @param _data Data to send as msg.data to the implementation to initialize the proxied contract.
* It should include the signature and the parameters of the function to be called, as described in
* https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
* This parameter is optional, if no data is given the initialization call to proxied contract will be skipped.
*/
constructor(address _implementation, bytes _data) public payable {
assert(IMPLEMENTATION_SLOT == keccak256("org.zeppelinos.proxy.implementation"));
_setImplementation(_implementation);
if(_data.length > 0) {
require(_implementation.delegatecall(_data));
}
}
/**
* @dev Returns the current implementation.
* @return Address of the current implementation
*/
function _implementation() internal view returns (address impl) {
bytes32 slot = IMPLEMENTATION_SLOT;
assembly {
impl := sload(slot)
}
}
/**
* @dev Upgrades the proxy to a new implementation.
* @param newImplementation Address of the new implementation.
*/
function _upgradeTo(address newImplementation) internal {
_setImplementation(newImplementation);
emit Upgraded(newImplementation);
}
/**
* @dev Sets the implementation address of the proxy.
* @param newImplementation Address of the new implementation.
*/
function _setImplementation(address newImplementation) private {
require(ZOSLibAddress.isContract(newImplementation), "Cannot set a proxy implementation to a non-contract address");
bytes32 slot = IMPLEMENTATION_SLOT;
assembly {
sstore(slot, newImplementation)
}
}
}
// File: zos-lib/contracts/upgradeability/AdminUpgradeabilityProxy.sol
/**
* @title AdminUpgradeabilityProxy
* @dev This contract combines an upgradeability proxy with an authorization
* mechanism for administrative tasks.
* All external functions in this contract must be guarded by the
* `ifAdmin` modifier. See ethereum/solidity#3864 for a Solidity
* feature proposal that would enable this to be done automatically.
*/
contract AdminUpgradeabilityProxy is UpgradeabilityProxy {
/**
* @dev Emitted when the administration has been transferred.
* @param previousAdmin Address of the previous admin.
* @param newAdmin Address of the new admin.
*/
event AdminChanged(address previousAdmin, address newAdmin);
/**
* @dev Storage slot with the admin of the contract.
* This is the keccak-256 hash of "org.zeppelinos.proxy.admin", and is
* validated in the constructor.
*/
bytes32 private constant ADMIN_SLOT = 0x10d6a54a4754c8869d6886b5f5d7fbfa5b4522237ea5c60d11bc4e7a1ff9390b;
/**
* @dev Modifier to check whether the `msg.sender` is the admin.
* If it is, it will run the function. Otherwise, it will delegate the call
* to the implementation.
*/
modifier ifAdmin() {
if (msg.sender == _admin()) {
_;
} else {
_fallback();
}
}
/**
* Contract constructor.
* @param _implementation address of the initial implementation.
* @param _admin Address of the proxy administrator.
* @param _data Data to send as msg.data to the implementation to initialize the proxied contract.
* It should include the signature and the parameters of the function to be called, as described in
* https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
* This parameter is optional, if no data is given the initialization call to proxied contract will be skipped.
*/
constructor(address _implementation, address _admin, bytes _data) UpgradeabilityProxy(_implementation, _data) public payable {
assert(ADMIN_SLOT == keccak256("org.zeppelinos.proxy.admin"));
_setAdmin(_admin);
}
/**
* @return The address of the proxy admin.
*/
function admin() external view ifAdmin returns (address) {
return _admin();
}
/**
* @return The address of the implementation.
*/
function implementation() external view ifAdmin returns (address) {
return _implementation();
}
/**
* @dev Changes the admin of the proxy.
* Only the current admin can call this function.
* @param newAdmin Address to transfer proxy administration to.
*/
function changeAdmin(address newAdmin) external ifAdmin {
require(newAdmin != address(0), "Cannot change the admin of a proxy to the zero address");
emit AdminChanged(_admin(), newAdmin);
_setAdmin(newAdmin);
}
/**
* @dev Upgrade the backing implementation of the proxy.
* Only the admin can call this function.
* @param newImplementation Address of the new implementation.
*/
function upgradeTo(address newImplementation) external ifAdmin {
_upgradeTo(newImplementation);
}
/**
* @dev Upgrade the backing implementation of the proxy and call a function
* on the new implementation.
* This is useful to initialize the proxied contract.
* @param newImplementation Address of the new implementation.
* @param data Data to send as msg.data in the low level call.
* It should include the signature and the parameters of the function to be called, as described in
* https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
*/
function upgradeToAndCall(address newImplementation, bytes data) payable external ifAdmin {
_upgradeTo(newImplementation);
require(newImplementation.delegatecall(data));
}
/**
* @return The admin slot.
*/
function _admin() internal view returns (address adm) {
bytes32 slot = ADMIN_SLOT;
assembly {
adm := sload(slot)
}
}
/**
* @dev Sets the address of the proxy admin.
* @param newAdmin Address of the new proxy admin.
*/
function _setAdmin(address newAdmin) internal {
bytes32 slot = ADMIN_SLOT;
assembly {
sstore(slot, newAdmin)
}
}
/**
* @dev Only fall back when the sender is not the admin.
*/
function _willFallback() internal {
require(msg.sender != _admin(), "Cannot call fallback function from the proxy admin");
super._willFallback();
}
}
// File: zos-lib/contracts/application/App.sol
/**
* @title App
* @dev Contract for upgradeable applications.
* It handles the creation of proxies.
*/
contract App is ZOSLibOwnable {
/**
* @dev Emitted when a new proxy is created.
* @param proxy Address of the created proxy.
*/
event ProxyCreated(address proxy);
/**
* @dev Emitted when a package dependency is changed in the application.
* @param providerName Name of the package that changed.
* @param package Address of the package associated to the name.
* @param version Version of the package in use.
*/
event PackageChanged(string providerName, address package, uint64[3] version);
/**
* @dev Tracks a package in a particular version, used for retrieving implementations
*/
struct ProviderInfo {
Package package;
uint64[3] version;
}
/**
* @dev Maps from dependency name to a tuple of package and version
*/
mapping(string => ProviderInfo) internal providers;
/**
* @dev Constructor function.
*/
constructor() public { }
/**
* @dev Returns the provider for a given package name, or zero if not set.
* @param packageName Name of the package to be retrieved.
* @return The provider.
*/
function getProvider(string packageName) public view returns (ImplementationProvider provider) {
ProviderInfo storage info = providers[packageName];
if (address(info.package) == address(0)) return ImplementationProvider(0);
return ImplementationProvider(info.package.getContract(info.version));
}
/**
* @dev Returns information on a package given its name.
* @param packageName Name of the package to be queried.
* @return A tuple with the package address and pinned version given a package name, or zero if not set
*/
function getPackage(string packageName) public view returns (Package, uint64[3]) {
ProviderInfo storage info = providers[packageName];
return (info.package, info.version);
}
/**
* @dev Sets a package in a specific version as a dependency for this application.
* Requires the version to be present in the package.
* @param packageName Name of the package to set or overwrite.
* @param package Address of the package to register.
* @param version Version of the package to use in this application.
*/
function setPackage(string packageName, Package package, uint64[3] version) public onlyOwner {
require(package.hasVersion(version), "The requested version must be registered in the given package");
providers[packageName] = ProviderInfo(package, version);
emit PackageChanged(packageName, package, version);
}
/**
* @dev Unsets a package given its name.
* Reverts if the package is not set in the application.
* @param packageName Name of the package to remove.
*/
function unsetPackage(string packageName) public onlyOwner {
require(address(providers[packageName].package) != address(0), "Package to unset not found");
delete providers[packageName];
emit PackageChanged(packageName, address(0), [uint64(0), uint64(0), uint64(0)]);
}
/**
* @dev Returns the implementation address for a given contract name, provided by the `ImplementationProvider`.
* @param packageName Name of the package where the contract is contained.
* @param contractName Name of the contract.
* @return Address where the contract is implemented.
*/
function getImplementation(string packageName, string contractName) public view returns (address) {
ImplementationProvider provider = getProvider(packageName);
if (address(provider) == address(0)) return address(0);
return provider.getImplementation(contractName);
}
/**
* @dev Creates a new proxy for the given contract and forwards a function call to it.
* This is useful to initialize the proxied contract.
* @param packageName Name of the package where the contract is contained.
* @param contractName Name of the contract.
* @param admin Address of the proxy administrator.
* @param data Data to send as msg.data to the corresponding implementation to initialize the proxied contract.
* It should include the signature and the parameters of the function to be called, as described in
* https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
* This parameter is optional, if no data is given the initialization call to proxied contract will be skipped.
* @return Address of the new proxy.
*/
function create(string packageName, string contractName, address admin, bytes data) payable public returns (AdminUpgradeabilityProxy) {
address implementation = getImplementation(packageName, contractName);
AdminUpgradeabilityProxy proxy = (new AdminUpgradeabilityProxy).value(msg.value)(implementation, admin, data);
emit ProxyCreated(proxy);
return proxy;
}
}