ETH Price: $3,303.90 (+1.08%)

Token

fp0N1 (fp0N1)
 

Overview

Max Total Supply

203 fp0N1

Holders

26

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Balance
0.348668763100954573 fp0N1

Value
$0.00
0xffC0b49B625BC237a409879488846E8e9D58fE0d
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
# Exchange Pair Price  24H Volume % Volume

Minimal Proxy Contract for 0x00000000ecbb8edc9c6871c36df6ff577a248d4a

Contract Name:
BT404OG

Compiler Version
v0.8.26+commit.8a97fa7a

Optimization Enabled:
Yes with 1000 runs

Other Settings:
shanghai EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 10 : BT404OG.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.22;

import {BT404} from "../BT404.sol";
import {BT404NFTMinter} from "../BT404NFTMinter.sol";
import {OwnableRoles} from "solady/auth/OwnableRoles.sol";
import {UUPSUpgradeable} from "solady/utils/UUPSUpgradeable.sol";
import {LibString} from "solady/utils/LibString.sol";
import {SafeTransferLib} from "solady/utils/SafeTransferLib.sol";

contract BT404OG is BT404NFTMinter, OwnableRoles, UUPSUpgradeable {
    /// @dev The role that can upgrade the implementation.
    uint256 private constant _UPGRADE_MANAGER_ROLE = _ROLE_61;
    /// @dev The role that can update the metadata of the contract.
    uint256 private constant _METADATA_MANAGER_ROLE = _ROLE_91;
    /// @dev The role that can update the fee configurations of the contract.
    uint256 private constant _FEE_MANAGER_ROLE = _ROLE_101;
    /// @dev The role that can update the fee configurations of the contract.
    uint256 private constant _NFT_SKIPPING_MANAGER_ROLE = _ROLE_111;

    string private _name;
    string private _symbol;
    string private _baseURI;

    constructor() payable {
        _initializeOwner(address(1));
    }

    function _authorizeUpgrade(address) internal override onlyRoles(_UPGRADE_MANAGER_ROLE) {}

    function _guardInitializeOwner() internal pure virtual override returns (bool) {
        return true;
    }

    function initialize(string memory name_, string memory symbol_, address mirror)
        public
        payable
    {
        _initializeOwner(msg.sender);
        _initializeBT404(0, address(0), mirror);

        _name = name_;
        _symbol = symbol_;
    }

    function name() public view override returns (string memory) {
        return _name;
    }

    function symbol() public view override returns (string memory) {
        return _symbol;
    }

    function tokenURI(uint256 tokenId) public view override returns (string memory result) {
        result = string(abi.encodePacked(_baseURI, LibString.toString(tokenId)));
    }

    function setNameAndSymbol(string calldata name_, string calldata symbol_)
        public
        onlyRoles(_METADATA_MANAGER_ROLE)
    {
        _name = name_;
        _symbol = symbol_;
    }

    function setBaseURI(string calldata baseURI_) public onlyRoles(_METADATA_MANAGER_ROLE) {
        _baseURI = baseURI_;
    }

    function setSkipNFTFor(address account, bool state)
        public
        onlyRoles(_NFT_SKIPPING_MANAGER_ROLE)
    {
        _setSkipNFT(account, state);
    }

    function setExchangeNFTFeeRate(uint256 feeBips) public onlyRoles(_FEE_MANAGER_ROLE) {
        _setExchangeNFTFeeRate(feeBips);
    }

    function setListMarketNFTFeeRate(uint256 feeBips) public onlyRoles(_FEE_MANAGER_ROLE) {
        _setListMarketFeeRate(feeBips);
    }

    function withdraw(address token) public onlyRoles(_FEE_MANAGER_ROLE) {
        Uint256Ref storage feesRef = _getBT404Storage().accountedFees[token];
        uint256 amount = feesRef.value;
        feesRef.value = 0;
        if (token == address(0)) {
            SafeTransferLib.safeTransferETH(msg.sender, amount);
        } else {
            SafeTransferLib.safeTransfer(token, msg.sender, amount);
        }
    }
}

File 2 of 10 : BT404.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.22;

import {LibBitmap} from "solady/utils/LibBitmap.sol";
import {SafeTransferLib} from "solady/utils/SafeTransferLib.sol";

/// @title BT404
/// @notice BT404 is a hybrid ERC20 and ERC721 implementation that mints
/// and burns NFTs based on an account's ERC20 token balance.
///
/// @author FlooringLab
/// @author Modified from DN404(https://github.com/Vectorized/dn404/src/DN404.sol)
///
/// @dev Note:
/// - The ERC721 data is stored in this base BT404 contract, however a
///   BT404Mirror contract ***MUST*** be deployed and linked during
///   initialization.
abstract contract BT404 {
    using LibBitmap for LibBitmap.Bitmap;
    /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
    /*                           EVENTS                           */
    /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/

    /// @dev Emitted when `amount` tokens is transferred from `from` to `to`.
    event Transfer(address indexed from, address indexed to, uint256 amount);

    /// @dev Emitted when `amount` tokens is approved by `owner` to be used by `spender`.
    event Approval(address indexed owner, address indexed spender, uint256 amount);

    /// @dev Emitted when `target` sets their skipNFT flag to `status`.
    event SkipNFTSet(address indexed target, bool status);

    /// @dev Emitted when `exchangeNFTFeeBips` is set.
    event ExchangeMarketFeeSet(uint256 feeBips);

    /// @dev Emitted when `listMarketFeeBips`
    event ListMarketFeeSet(uint256 feeBips);

    /// @dev `keccak256(bytes("Transfer(address,address,uint256)"))`.
    uint256 internal constant _TRANSFER_EVENT_SIGNATURE =
        0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;

    /// @dev `keccak256(bytes("Approval(address,address,uint256)"))`.
    uint256 internal constant _APPROVAL_EVENT_SIGNATURE =
        0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925;

    /// @dev `keccak256(bytes("SkipNFTSet(address,bool)"))`.
    uint256 internal constant _SKIP_NFT_SET_EVENT_SIGNATURE =
        0xb5a1de456fff688115a4f75380060c23c8532d14ff85f687cc871456d6420393;

    /// @dev `keccak256(bytes("ExchangeMarketFeeSet(uint256)"))`.
    uint256 internal constant _EXCHANGE_MARKET_FEE_SET_EVENT_SIGNATURE =
        0xe10129be59d54095da8caee0e01e0b82530bb6275510fbb843816dda3a5921d6;

    /// @dev `keccak256(bytes("ListMarketFeeSet(uint256)"))`.
    uint256 internal constant _LIST_MARKET_FEE_SET_EVENT_SIGNATURE =
        0xdf10c155355452a496e5ffa2e30708bc26ccb58e654d0b145ec6056bce9af822;

    /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
    /*                        CUSTOM ERRORS                       */
    /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/

    /// @dev Thrown when attempting to double-initialize the contract.
    error DNAlreadyInitialized();

    /// @dev Thrown when attempting to transfer or burn more tokens than sender's balance.
    error InsufficientBalance();

    /// @dev Thrown when a spender attempts to transfer tokens with an insufficient allowance.
    error InsufficientAllowance();

    /// @dev Thrown when minting an amount of tokens that would overflow the max tokens.
    error TotalSupplyOverflow();

    /// @dev The unit cannot be zero.
    error InvalidUnit();

    /// @dev Thrown when the caller for a fallback NFT function is not the mirror contract.
    error SenderNotMirror();

    /// @dev Thrown when attempting to transfer tokens to the zero address.
    error TransferToZeroAddress();

    /// @dev Thrown when the mirror address provided for initialization is the zero address.
    error MirrorAddressIsZero();

    /// @dev Thrown when the link call to the mirror contract reverts.
    error LinkMirrorContractFailed();

    /// @dev Thrown when setting an NFT token approval
    /// and the caller is not the owner or an approved operator.
    error ApprovalCallerNotOwnerNorApproved();

    /// @dev Thrown when transferring an NFT
    /// and the caller is not the owner or an approved operator.
    error TransferCallerNotOwnerNorApproved();

    /// @dev Thrown when transferring an NFT and the from address is not the current owner.
    error TransferFromIncorrectOwner();

    /// @dev Thrown when checking the owner or approved address for a non-existent NFT.
    error TokenDoesNotExist();

    /// @dev Thrown when exchanging the NFTs that locked.
    error ExchangeTokenLocked();

    /// @dev Thrown when exchanging the same NFTs
    error ExchangeSameToken();

    /// @dev Thrown when attempting to lock the NFTs that locked,
    ///      or to unlock the NFTs that unlocked.
    error TokenLockStatusNoChange();

    /// @dev Thrown when transferring tokens but the balance is insufficient to to maintain locked NFTs.
    error InsufficientBalanceToMaintainLockedTokens();

    /// @dev Thrown when buy/sell with invalid price.
    error InvalidSalePrice();

    /// @dev Thrown when buy/sell with invalid token.
    error InvalidOrderToken();

    /// @dev Throw when NFT is not locked.
    error TokenNotLocked();

    /// @dev Throw when buy/sell but the address is not matched.
    error InvalidSellerOrBuyer();

    /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
    /*                         CONSTANTS                          */
    /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/

    /// @dev The flag to denote that the address data is initialized.
    uint8 internal constant _ADDRESS_DATA_INITIALIZED_FLAG = 1 << 0;

    /// @dev The flag to denote that the address should skip NFTs.
    uint8 internal constant _ADDRESS_DATA_SKIP_NFT_FLAG = 1 << 1;

    /// @dev The alias of the burned pool which will be used in `oo` map.
    ///      It is the largest alias.
    uint32 internal constant _ADDRESS_ALIAS_BURNED_POOL = type(uint32).max;

    /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
    /*                          STORAGE                           */
    /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/

    /// @dev Struct containing an address's token data and settings.
    struct AddressData {
        // Auxiliary data.
        uint56 aux;
        // Flags for `initialized` and `skipNFT`.
        uint8 flags;
        // The alias for the address. Zero means absence of an alias.
        uint32 addressAlias;
        // The number of NFT tokens locked.
        uint32 lockedLength;
        // The number of NFT tokens owned.
        uint32 ownedLength;
        // The token balance in wei.
        uint96 balance;
        // snapshot of `accFeePerNFT` when the account fee accrued
        uint96 feePerNFTSnap;
    }

    /// @dev Struct represents the offer to sell an NFT.
    struct NFTOffer {
        uint32 seller;
        uint32 sellTo;
        uint96 minTokens;
        address offerToken;
    }

    /// @dev Struct represents the bid to buy an NFT.
    struct NFTBid {
        uint96 tokens;
        address bidToken;
    }

    /// @dev A uint32 map in storage.
    struct Uint32Map {
        mapping(uint256 => uint256) map;
    }

    /// @dev A struct to wrap a uint256 in storage.
    struct Uint256Ref {
        uint256 value;
    }

    /// @dev Struct containing the base token contract storage.
    struct BT404Storage {
        // Current number of address aliases assigned.
        uint32 numAliases;
        // Next NFT ID to assign for a mint.
        uint32 nextTokenId;
        // Total number of NFT IDs in the burned pool.
        uint32 burnedPoolSize;
        // Total supply of minted NFTs.
        uint32 totalNFTSupply;
        // Total supply of tokens.
        uint96 totalSupply;
        // Address of the NFT mirror contract.
        address mirrorERC721;
        // Mapping of a user alias number to their address.
        mapping(uint32 => address) aliasToAddress;
        // Mapping of user operator approvals for NFTs.
        mapping(address => mapping(address => Uint256Ref)) operatorApprovals;
        // Mapping of NFT approvals to approved operators.
        mapping(uint256 => address) nftApprovals;
        // Bitmap of whether an non-zero NFT approval may exist.
        LibBitmap.Bitmap mayHaveNFTApproval;
        // Mapping of user allowances for ERC20 spenders.
        mapping(address => mapping(address => Uint256Ref)) allowance;
        // Mapping of NFT IDs owned by an address.
        mapping(address => Uint32Map) owned;
        // Mapping of NFT token IDs locked by an address.
        mapping(address => Uint32Map) locked;
        // The pool of burned NFT IDs.
        Uint32Map burnedPool;
        // Even indices: owner aliases. Odd indices: owned indices.
        // if NFT token was locked, owned indices are ref to `locked`, otherwise `owned`
        Uint32Map oo;
        // Mapping of user account AddressData.
        mapping(address => AddressData) addressData;
        // Mapping of NFT token to locked flag
        LibBitmap.Bitmap tokenLocks;
        // The number of NFT tokens locked globally.
        uint32 numLockedNFT;
        // The number of NFT tokens approved to `this` globally.
        uint32 numExchangableNFT;
        // Fee rate to charged per NFT when exchange unlocking NFTs
        uint16 exchangeNFTFeeBips;
        // accumulated fee per unlocked NFT should receive
        uint96 accFeePerNFT;
        // Slot gap.
        uint80 __gap;
        // Fee rate to charged per NFT when trading through market(bid/ask).
        uint16 listMarketFeeBips;
        // Mapping of NFT to sale offers.
        mapping(uint256 => NFTOffer) offers;
        // Mapping of NFT to buy bids.
        // NFTId => bidder => Bid
        mapping(uint256 => mapping(address => NFTBid)) bids;
        // Mapping of token address to accounted fees.
        mapping(address => Uint256Ref) accountedFees;
    }

    /// @dev Returns a storage pointer for BT404Storage.
    function _getBT404Storage() internal pure virtual returns (BT404Storage storage $) {
        /// @solidity memory-safe-assembly
        assembly {
            // `uint72(bytes9(keccak256("DN404_STORAGE")))`.
            $.slot := 0xa20d6e21d0e5255308 // Truncate to 9 bytes to reduce bytecode size.
        }
    }

    /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
    /*                         INITIALIZER                        */
    /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/

    /// @dev Initializes the BT404 contract with an
    /// `initialTokenSupply`, `initialTokenOwner` and `mirror` NFT contract address.
    function _initializeBT404(
        uint256 initialTokenSupply,
        address initialSupplyOwner,
        address mirror
    ) internal virtual {
        BT404Storage storage $ = _getBT404Storage();

        if ($.mirrorERC721 != address(0)) revert DNAlreadyInitialized();

        if (mirror == address(0)) revert MirrorAddressIsZero();

        /// @solidity memory-safe-assembly
        assembly {
            // Make the call to link the mirror contract.
            mstore(0x00, 0x0f4599e5) // `linkMirrorContract(address)`.
            mstore(0x20, caller())
            if iszero(and(eq(mload(0x00), 1), call(gas(), mirror, 0, 0x1c, 0x24, 0x00, 0x20))) {
                mstore(0x00, 0xd125259c) // `LinkMirrorContractFailed()`.
                revert(0x1c, 0x04)
            }
        }

        $.mirrorERC721 = mirror;

        if (_unit() < 10 ** decimals() || _unit() > 10 ** 24) revert InvalidUnit();

        if (initialTokenSupply != 0) {
            if (initialSupplyOwner == address(0)) {
                revert TransferToZeroAddress();
            }
            if (_totalSupplyOverflows(initialTokenSupply)) {
                revert TotalSupplyOverflow();
            }

            $.totalSupply = uint96(initialTokenSupply);
            AddressData storage initialOwnerAddressData = _addressData(initialSupplyOwner);
            initialOwnerAddressData.balance = uint96(initialTokenSupply);

            /// @solidity memory-safe-assembly
            assembly {
                // Emit the {Transfer} event.
                mstore(0x00, initialTokenSupply)
                log3(0x00, 0x20, _TRANSFER_EVENT_SIGNATURE, 0, shr(96, shl(96, initialSupplyOwner)))
            }

            _setSkipNFT(initialSupplyOwner, true);
        }
    }

    /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
    /*               BASE UNIT FUNCTION TO OVERRIDE               */
    /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/

    /// @dev Amount of token balance that is equal to one NFT.
    function _unit() internal view virtual returns (uint256) {
        return 10 ** 18;
    }

    /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
    /*               METADATA FUNCTIONS TO OVERRIDE               */
    /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/

    /// @dev Returns the name of the token.
    function name() public view virtual returns (string memory);

    /// @dev Returns the symbol of the token.
    function symbol() public view virtual returns (string memory);

    /// @dev Returns the Uniform Resource Identifier (URI) for token `id`.
    function tokenURI(uint256 id) public view virtual returns (string memory);

    /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
    /*                      ERC20 OPERATIONS                      */
    /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/

    /// @dev Returns the decimals places of the token. Always 18.
    function decimals() public pure returns (uint8) {
        return 18;
    }

    /// @dev Returns the amount of tokens in existence.
    function totalSupply() public view virtual returns (uint256) {
        return uint256(_getBT404Storage().totalSupply);
    }

    /// @dev Returns the amount of tokens owned by `owner`.
    function balanceOf(address owner) public view virtual returns (uint256) {
        return _getBT404Storage().addressData[owner].balance;
    }

    /// @dev Returns the amount of tokens that `spender` can spend on behalf of `owner`.
    function allowance(address owner, address spender) public view returns (uint256) {
        return _getBT404Storage().allowance[owner][spender].value;
    }

    /// @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
    ///
    /// Emits a {Approval} event.
    function approve(address spender, uint256 amount) public virtual returns (bool) {
        _approve(msg.sender, spender, amount);
        return true;
    }

    /// @dev Transfer `amount` tokens from the caller to `to`.
    ///
    /// Will burn sender NFTs if balance after transfer is less than
    /// the amount required to support the current NFT balance.
    ///
    /// Will mint NFTs to `to` if the recipient's new balance supports
    /// additional NFTs ***AND*** the `to` address's skipNFT flag is
    /// set to false.
    ///
    /// Requirements:
    /// - `from` must at least have `amount`.
    ///
    /// Emits a {Transfer} event.
    function transfer(address to, uint256 amount) public virtual returns (bool) {
        BT404Storage storage $ = _getBT404Storage();
        _pullFeeForTwo($, msg.sender, to);
        _transfer(msg.sender, to, amount);
        return true;
    }

    /// @dev Transfers `amount` tokens from `from` to `to`.
    ///
    /// Note: Does not update the allowance if it is the maximum uint256 value.
    ///
    /// Will burn sender NFTs if balance after transfer is less than
    /// the amount required to support the current NFT balance.
    ///
    /// Will mint NFTs to `to` if the recipient's new balance supports
    /// additional NFTs ***AND*** the `to` address's skipNFT flag is
    /// set to false.
    ///
    /// Requirements:
    /// - `from` must at least have `amount`.
    /// - The caller must have at least `amount` of allowance to transfer the tokens of `from`.
    ///
    /// Emits a {Transfer} event.
    function transferFrom(address from, address to, uint256 amount) public virtual returns (bool) {
        BT404Storage storage $ = _getBT404Storage();
        Uint256Ref storage a = $.allowance[from][msg.sender];

        uint256 allowed = a.value;
        if (allowed != type(uint256).max) {
            if (amount > allowed) revert InsufficientAllowance();
            unchecked {
                a.value = allowed - amount;
            }
        }
        _pullFeeForTwo($, from, to);
        _transfer(from, to, amount);
        return true;
    }

    /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
    /*                INTERNAL TRANSFER FUNCTIONS                 */
    /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/

    /// @dev Moves `amount` of tokens from `from` to `to`.
    ///
    /// Will burn sender NFTs if balance after transfer is less than
    /// the amount required to support the current NFT balance.
    ///
    /// Will mint NFTs to `to` if the recipient's new balance supports
    /// additional NFTs ***AND*** the `to` address's skipNFT flag is
    /// set to false.
    ///
    /// Emits a {Transfer} event.
    function _transfer(address from, address to, uint256 amount) internal virtual {
        if (to == address(0)) revert TransferToZeroAddress();

        BT404Storage storage $ = _getBT404Storage();

        AddressData storage fromAddressData = _addressData(from);
        AddressData storage toAddressData = _addressData(to);

        _TransferTemps memory t;
        t.fromOwnedLength = fromAddressData.ownedLength;
        t.toOwnedLength = toAddressData.ownedLength;
        t.totalSupply = $.totalSupply;

        if (amount > (t.fromBalance = fromAddressData.balance)) {
            revert InsufficientBalance();
        }

        unchecked {
            t.fromBalance -= amount;

            t.fromLockedLength = fromAddressData.lockedLength;
            // need enough token to maintain locked NFTs
            if (t.fromBalance < t.fromLockedLength * _unit()) {
                revert InsufficientBalanceToMaintainLockedTokens();
            }

            fromAddressData.balance = uint96(t.fromBalance);
            toAddressData.balance = uint96(t.toBalance = toAddressData.balance + amount);

            t.numNFTBurns =
                _zeroFloorSub(t.fromOwnedLength + t.fromLockedLength, t.fromBalance / _unit());

            if (toAddressData.flags & _ADDRESS_DATA_SKIP_NFT_FLAG == 0) {
                if (from == to) t.toOwnedLength = t.fromOwnedLength - t.numNFTBurns;
                t.numNFTMints = _zeroFloorSub(
                    t.toBalance / _unit(),
                    t.toOwnedLength + toAddressData.lockedLength // balance needed for locked and owned
                );
            }

            {
                // cache `address(this)` approvals
                mapping(address => Uint256Ref) storage thisOperatorApprovals =
                    $.operatorApprovals[address(this)];
                // `from` burns NFTs
                if (thisOperatorApprovals[from].value != 0) {
                    $.numExchangableNFT -= uint32(t.numNFTBurns);
                }
                // `to`mints NFTs
                if (thisOperatorApprovals[to].value != 0) {
                    $.numExchangableNFT += uint32(t.numNFTMints);
                }
            }

            $.totalNFTSupply = uint32(uint256($.totalNFTSupply) + t.numNFTMints - t.numNFTBurns);
            Uint32Map storage oo = $.oo;
            {
                uint256 n = _min(t.numNFTBurns, t.numNFTMints);
                if (n != 0) {
                    t.numNFTBurns -= n;
                    t.numNFTMints -= n;

                    if (from == to) {
                        t.toOwnedLength += n;
                    } else {
                        _DNDirectLogs memory directLogs = _directLogsMalloc(n, from, to);
                        Uint32Map storage fromOwned = $.owned[from];
                        Uint32Map storage toOwned = $.owned[to];
                        uint32 toAlias = _registerAndResolveAlias(toAddressData, to);
                        // Direct transfer loop.
                        do {
                            uint256 id = _get(fromOwned, --t.fromOwnedLength);
                            _set(toOwned, t.toOwnedLength, uint32(id));
                            _setOwnerAliasAndOwnedIndex(oo, id, toAlias, uint32(t.toOwnedLength++));
                            _removeNFTApproval($, id);
                            _directLogsAppend(directLogs, id);
                        } while (--n != 0);

                        _directLogsSend(directLogs, $.mirrorERC721);
                        fromAddressData.ownedLength = uint32(t.fromOwnedLength);
                        toAddressData.ownedLength = uint32(t.toOwnedLength);
                    }
                }
            }

            _PackedLogs memory packedLogs = _packedLogsMalloc(t.numNFTBurns + t.numNFTMints);
            uint256 burnedPoolSize = $.burnedPoolSize;
            if (t.numNFTBurns != 0) {
                _packedLogsSet(packedLogs, from, 1);
                Uint32Map storage fromOwned = $.owned[from];
                uint256 fromIndex = t.fromOwnedLength;
                uint256 fromEnd = fromIndex - t.numNFTBurns;
                fromAddressData.ownedLength = uint32(fromEnd);
                // Burn loop.
                do {
                    uint256 id = _get(fromOwned, --fromIndex);
                    _setOwnerAliasAndOwnedIndex(
                        oo, id, _ADDRESS_ALIAS_BURNED_POOL, uint32(burnedPoolSize)
                    );
                    _set($.burnedPool, burnedPoolSize++, uint32(id));
                    _removeNFTApproval($, id);
                    _packedLogsAppend(packedLogs, id);
                } while (fromIndex != fromEnd);
            }

            if (t.numNFTMints != 0) {
                _packedLogsSet(packedLogs, to, 0);
                t.maxNFTId = t.totalSupply / _unit();
                uint256 nextTokenId = $.nextTokenId;
                Uint32Map storage toOwned = $.owned[to];
                uint256 toIndex = t.toOwnedLength;
                uint256 toEnd = toIndex + t.numNFTMints;
                t.toAlias = _registerAndResolveAlias(toAddressData, to);
                toAddressData.ownedLength = uint32(toEnd);
                // Mint loop.
                do {
                    uint256 id;
                    if (nextTokenId < t.maxNFTId) {
                        id = nextTokenId++;
                    } else {
                        id = _get($.burnedPool, --burnedPoolSize);
                    }
                    _set(toOwned, toIndex, uint32(id));
                    _setOwnerAliasAndOwnedIndex(oo, id, t.toAlias, uint32(toIndex++));
                    _packedLogsAppend(packedLogs, id);
                } while (toIndex != toEnd);

                $.nextTokenId = uint32(nextTokenId);
            }

            if (packedLogs.logs.length != 0) {
                $.burnedPoolSize = uint32(burnedPoolSize);
                _packedLogsSend(packedLogs, $.mirrorERC721);
            }
            /// @solidity memory-safe-assembly
            assembly {
                // Emit the {Transfer} event.
                mstore(0x00, amount)
                // forgefmt: disable-next-item
                log3(
                    0x00,
                    0x20,
                    _TRANSFER_EVENT_SIGNATURE,
                    shr(96, shl(96, from)),
                    shr(96, shl(96, to))
                )
            }
        }
    }

    /// @dev Transfers token `id` from `from` to `to`.
    ///
    /// Requirements:
    ///
    /// - Call must originate from the mirror contract.
    /// - Token `id` must exist.
    /// - `from` must be the owner of the token.
    /// - `to` cannot be the zero address.
    ///   `msgSender` must be the owner of the token, or be approved to manage the token.
    ///
    /// Emits a {Transfer} event.
    function _transferFromNFT(address from, address to, uint256 id, address msgSender)
        internal
        virtual
    {
        if (to == address(0)) revert TransferToZeroAddress();

        BT404Storage storage $ = _getBT404Storage();
        Uint32Map storage oo = $.oo;

        if (from != $.aliasToAddress[_get(oo, _ownershipIndex(id))]) {
            revert TransferFromIncorrectOwner();
        }

        if (msgSender != from) {
            if ($.operatorApprovals[msgSender][from].value == 0) {
                if (msgSender != $.nftApprovals[id]) {
                    revert TransferCallerNotOwnerNorApproved();
                }
            }
        }

        AddressData storage fromAddressData = _addressData(from);
        AddressData storage toAddressData = _addressData(to);

        uint256 unit = _unit();

        fromAddressData.balance -= uint96(unit);

        unchecked {
            toAddressData.balance += uint96(unit);

            _removeNFTApproval($, id);
            _clearNFTOffer($, id);

            uint32 toTransferIdx = _get(oo, _ownedIndex(id));
            if (LibBitmap.get($.tokenLocks, id)) {
                // operate `locked` map
                // delete transferred NFT
                _delNFTAt($.locked[from], oo, toTransferIdx, --fromAddressData.lockedLength);
            } else {
                if ($.operatorApprovals[address(this)][from].value != 0) {
                    // The unlocked NFTs amount of account `from` will decrease, collecting fees first
                    _pullFeeForTwo($, from, from);
                    // `from` lock 1 NFT
                    --$.numExchangableNFT;
                }

                // operate `owned` map
                // delete transferred NFT
                _delNFTAt($.owned[from], oo, toTransferIdx, --fromAddressData.ownedLength);

                // lock
                LibBitmap.setTo($.tokenLocks, id, true);
                ++$.numLockedNFT;
            }

            // transfer ownership
            // lock the NFT by default for ERC721 transfer
            uint256 n = toAddressData.lockedLength++;
            _set($.locked[to], n, uint32(id));
            _setOwnerAliasAndOwnedIndex(
                oo, id, _registerAndResolveAlias(toAddressData, to), uint32(n)
            );
        }
        /// @solidity memory-safe-assembly
        assembly {
            // Emit the {Transfer} event.
            mstore(0x00, unit)
            // forgefmt: disable-next-item
            log3(
                0x00,
                0x20,
                _TRANSFER_EVENT_SIGNATURE,
                shr(96, shl(96, from)),
                shr(96, shl(96, to))
            )
        }
    }

    function _exchangeNFT(uint256 idX, uint256 idY, address msgSender)
        internal
        virtual
        returns (address x, address y, uint256 exchangeFee)
    {
        if (idX == idY) revert ExchangeSameToken();

        BT404Storage storage $ = _getBT404Storage();

        if (
            _toUint(LibBitmap.get($.tokenLocks, idX)) | _toUint(LibBitmap.get($.tokenLocks, idY))
                != 0
        ) {
            revert ExchangeTokenLocked();
        }

        x = _ownerOf(idX);
        y = _ownerAt(idY);
        // Only owner or spender can operate the token `idX`
        if (msgSender != x) {
            if ($.operatorApprovals[msgSender][x].value == 0) {
                if (msgSender != $.nftApprovals[idX]) {
                    revert TransferCallerNotOwnerNorApproved();
                }
            }
        }

        Uint32Map storage oo = $.oo;

        bool exchangeBurned = _get(oo, _ownershipIndex(idY)) == _ADDRESS_ALIAS_BURNED_POOL;
        mapping(address => Uint256Ref) storage thisOperatorApprovals =
            $.operatorApprovals[address(this)];
        /// Only Burned or Approved NFT can be exchanged.
        if (!exchangeBurned && thisOperatorApprovals[y].value == 0) {
            revert ApprovalCallerNotOwnerNorApproved();
        }

        _removeNFTApproval($, idX);
        if (!exchangeBurned) _removeNFTApproval($, idY);

        // collecting fees for account `x` and `y` first
        _pullFeeForTwo($, x, exchangeBurned ? x : y);

        // Will be used to snapshot owned index of `idY`
        uint256 yIndex;

        // idY to account x, then lock
        // must transfer `idY` firstly, otherwise the ownedIndex of `idX` is wrong
        unchecked {
            uint256 xIndex = _get(oo, _ownedIndex(idX));
            AddressData storage xAddressData = _addressData(x);
            // remove NFT `idX` from account `x`
            _delNFTAt($.owned[x], oo, xIndex, --xAddressData.ownedLength);

            yIndex = _get(oo, _ownedIndex(idY));

            // append `idY` to `locked`
            uint256 n = xAddressData.lockedLength++;
            _set($.locked[x], n, uint32(idY));
            _setOwnerAliasAndOwnedIndex(oo, idY, xAddressData.addressAlias, uint32(n));

            // lock `idY`
            LibBitmap.setTo($.tokenLocks, idY, true);
            ++$.numLockedNFT;
        }

        // idX to account y
        {
            uint32 yAlias =
                exchangeBurned ? _ADDRESS_ALIAS_BURNED_POOL : _addressData(y).addressAlias;
            _setOwnerAliasAndOwnedIndex(oo, idX, yAlias, uint32(yIndex));
        }
        {
            Uint32Map storage ownedMap = exchangeBurned ? $.burnedPool : $.owned[y];
            _set(ownedMap, yIndex, uint32(idX));
        }

        // transfer nft first, then token, otherwise specified NFT transfer may not success
        // fee charges in percentage of the unit
        exchangeFee = $.exchangeNFTFeeBips;
        if (exchangeFee > 0) {
            // Only refresh when the balance of `msgSender` will be changed.
            if (msgSender != x) _pullFeeForTwo($, msgSender, msgSender);
            unchecked {
                exchangeFee *= _unit() / 10000;
                _transfer(msgSender, address(this), exchangeFee);
                uint256 num = $.numExchangableNFT;
                // In case no one is seeding, users can also exchange the burned NFTs.
                // These fees will not be tracked because:
                // - The fees will be distributed to the seeding users, unless no one is interested in the profit.
                if (num > 0) $.accFeePerNFT += uint96(exchangeFee / $.numExchangableNFT);
            }
        }

        // If `msgSender` exchanged on behalf of `x`, `msgSender` receive the NFT.
        if (msgSender != x) _transferFromNFT(x, msgSender, idY, x);
        // x lock 1 NFT
        if (!exchangeBurned && thisOperatorApprovals[x].value != 0) {
            unchecked {
                --$.numExchangableNFT;
            }
        }
    }

    function _pullFeeForTwo(BT404Storage storage $, address account1, address account2)
        internal
        virtual
    {
        // Cannot receive fee if `address(this)` has no operator approvals
        mapping(address => Uint256Ref) storage thisOperatorApprovals =
            $.operatorApprovals[address(this)];
        uint256 accFeePerNFT;
        uint256 accruedFee1;
        if (thisOperatorApprovals[account1].value > 0) {
            accFeePerNFT = $.accFeePerNFT;
            AddressData storage addressData = $.addressData[account1];
            // only unlocked NFTs receive fee
            accruedFee1 = accFeePerNFT - addressData.feePerNFTSnap;
            if (accruedFee1 > 0) addressData.feePerNFTSnap = uint96(accFeePerNFT);

            accruedFee1 *= addressData.ownedLength;
        }
        if (account2 != account1) {
            if (thisOperatorApprovals[account2].value > 0) {
                if (accFeePerNFT == 0) {
                    accFeePerNFT = $.accFeePerNFT;
                }
                AddressData storage addressData = $.addressData[account2];
                // only unlocked NFTs receive fee
                uint256 accrued = (accFeePerNFT - addressData.feePerNFTSnap);
                if (accrued > 0) addressData.feePerNFTSnap = uint96(accFeePerNFT);

                accrued *= (addressData.ownedLength);
                if (accrued > 0) {
                    _transfer(address(this), account2, accrued);
                }
            }
        }
        if (accruedFee1 > 0) {
            _transfer(address(this), account1, accruedFee1);
        }
    }

    /// @dev Internal function for minting new NFTs.
    function _mintNFT(address, uint256[] memory, bool) internal virtual {
        // implementation should be provided by inheriting contracts.
    }

    /// @dev Internal function for burning existing NFTs.
    function _burnNFT(address, uint256[] memory) internal virtual {
        // implementation should be provided by inheriting contracts.
    }

    /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
    /*                 INTERNAL APPROVE FUNCTIONS                 */
    /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/

    /// @dev Sets `amount` as the allowance of `spender` over the tokens of `owner`.
    ///
    /// Emits a {Approval} event.
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        Uint256Ref storage ref = _getBT404Storage().allowance[owner][spender];
        if (amount > 0 && ref.value > 0) revert();

        ref.value = amount;
        /// @solidity memory-safe-assembly
        assembly {
            // Emit the {Approval} event.
            mstore(0x00, amount)
            // forgefmt: disable-next-item
            log3(
                0x00,
                0x20,
                _APPROVAL_EVENT_SIGNATURE,
                shr(96, shl(96, owner)),
                shr(96, shl(96, spender))
            )
        }
    }

    /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
    /*                 DATA HITCHHIKING FUNCTIONS                 */
    /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/

    /// @dev Returns the auxiliary data for `owner`.
    /// Minting, transferring, burning the tokens of `owner` will not change the auxiliary data.
    /// Auxiliary data can be set for any address, even if it does not have any tokens.
    function _getAux(address owner) internal view virtual returns (uint56) {
        return _getBT404Storage().addressData[owner].aux;
    }

    /// @dev Set the auxiliary data for `owner` to `value`.
    /// Minting, transferring, burning the tokens of `owner` will not change the auxiliary data.
    /// Auxiliary data can be set for any address, even if it does not have any tokens.
    function _setAux(address owner, uint56 value) internal virtual {
        _getBT404Storage().addressData[owner].aux = value;
    }

    function _setExchangeNFTFeeRate(uint256 feeBips) internal virtual {
        if (feeBips > 10000) revert();
        _getBT404Storage().exchangeNFTFeeBips = uint16(feeBips);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, feeBips)
            log1(0x00, 0x20, _EXCHANGE_MARKET_FEE_SET_EVENT_SIGNATURE)
        }
    }

    function _setListMarketFeeRate(uint256 feeBips) internal virtual {
        if (feeBips > 10000) revert();
        _getBT404Storage().listMarketFeeBips = uint16(feeBips);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, feeBips)
            log1(0x00, 0x20, _LIST_MARKET_FEE_SET_EVENT_SIGNATURE)
        }
    }

    /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
    /*                     SKIP NFT FUNCTIONS                     */
    /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/

    /// @dev Returns true if minting and transferring ERC20s to `owner` will skip minting NFTs.
    /// Returns false otherwise.
    function getSkipNFT(address owner) public view virtual returns (bool) {
        AddressData storage d = _getBT404Storage().addressData[owner];
        if (d.flags & _ADDRESS_DATA_INITIALIZED_FLAG == 0) {
            return true;
        }
        return d.flags & _ADDRESS_DATA_SKIP_NFT_FLAG != 0;
    }

    /// @dev Sets the caller's skipNFT flag to `skipNFT`. Returns true.
    ///
    /// Emits a {SkipNFTSet} event.
    function setSkipNFT(bool skipNFT) public virtual returns (bool) {
        _setSkipNFT(msg.sender, skipNFT);
        return true;
    }

    /// @dev Internal function to set account `owner` skipNFT flag to `state`
    ///
    /// Initializes account `owner` AddressData if it is not currently initialized.
    ///
    /// Emits a {SkipNFTSet} event.
    function _setSkipNFT(address owner, bool state) internal virtual {
        AddressData storage d = _addressData(owner);
        if ((d.flags & _ADDRESS_DATA_SKIP_NFT_FLAG != 0) != state) {
            d.flags ^= _ADDRESS_DATA_SKIP_NFT_FLAG;
        }
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, iszero(iszero(state)))
            log2(0x00, 0x20, _SKIP_NFT_SET_EVENT_SIGNATURE, shr(96, shl(96, owner)))
        }
    }

    /// @dev Returns a storage data pointer for account `owner` AddressData
    ///
    /// Initializes account `owner` AddressData if it is not currently initialized.
    function _addressData(address owner) internal virtual returns (AddressData storage d) {
        d = _getBT404Storage().addressData[owner];
        unchecked {
            if (d.flags & _ADDRESS_DATA_INITIALIZED_FLAG == 0) {
                d.flags = uint8(_ADDRESS_DATA_SKIP_NFT_FLAG | _ADDRESS_DATA_INITIALIZED_FLAG);
            }
        }
    }

    /// @dev Returns the `addressAlias` of account `to`.
    ///
    /// Assigns and registers the next alias if `to` alias was not previously registered.
    function _registerAndResolveAlias(AddressData storage toAddressData, address to)
        internal
        virtual
        returns (uint32 addressAlias)
    {
        addressAlias = toAddressData.addressAlias;
        if (addressAlias == 0) {
            BT404Storage storage $ = _getBT404Storage();
            unchecked {
                addressAlias = ++$.numAliases;
            }
            toAddressData.addressAlias = addressAlias;
            $.aliasToAddress[addressAlias] = to;
            if (addressAlias == _ADDRESS_ALIAS_BURNED_POOL) revert(); // Overflow.
        }
    }

    /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
    /*                     MIRROR OPERATIONS                      */
    /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/

    /// @dev Returns the address of the mirror NFT contract.
    function mirrorERC721() public view virtual returns (address) {
        return _getBT404Storage().mirrorERC721;
    }

    /// @dev Returns the total NFT supply.
    function _totalNFTSupply() internal view virtual returns (uint256) {
        return _getBT404Storage().totalNFTSupply;
    }

    /// @dev Returns `owner` NFT balance.
    function _balanceOfNFT(address owner) internal view virtual returns (uint256) {
        AddressData storage addressData = _getBT404Storage().addressData[owner];
        unchecked {
            return addressData.ownedLength + addressData.lockedLength;
        }
    }

    /// @dev Returns the owner of token `id`.
    /// Returns the zero address instead of reverting if the token does not exist.
    function _ownerAt(uint256 id) internal view virtual returns (address) {
        BT404Storage storage $ = _getBT404Storage();
        return $.aliasToAddress[_get($.oo, _ownershipIndex(id))];
    }

    /// @dev Returns the owner of token `id`.
    ///
    /// Requirements:
    /// - Token `id` must exist.
    function _ownerOf(uint256 id) internal view virtual returns (address) {
        address owner = _ownerAt(id);
        if (owner == address(0)) revert TokenDoesNotExist();
        return owner;
    }

    /// @dev Returns if token `id` exists.
    function _exists(uint256 id) internal view virtual returns (bool) {
        return _ownerAt(id) != address(0);
    }

    /// @dev Returns the account approved to manage token `id`.
    ///
    /// Requirements:
    /// - Token `id` must exist.
    function _getApproved(uint256 id) internal view virtual returns (address) {
        if (!_exists(id)) revert TokenDoesNotExist();
        return _getBT404Storage().nftApprovals[id];
    }

    /// @dev Sets `spender` as the approved account to manage token `id`, using `msgSender`.
    ///
    /// Requirements:
    /// - `msgSender` must be the owner or an approved operator for the token owner.
    function _approveNFT(address spender, uint256 id, address msgSender)
        internal
        virtual
        returns (address owner)
    {
        BT404Storage storage $ = _getBT404Storage();

        owner = $.aliasToAddress[_get($.oo, _ownershipIndex(id))];

        if (msgSender != owner) {
            if ($.operatorApprovals[msgSender][owner].value == 0) {
                revert ApprovalCallerNotOwnerNorApproved();
            }
        }

        $.nftApprovals[id] = spender;
        LibBitmap.setTo($.mayHaveNFTApproval, id, spender != address(0));
    }

    function _removeNFTApproval(BT404Storage storage $, uint256 id) internal virtual {
        if (LibBitmap.get($.mayHaveNFTApproval, id)) {
            LibBitmap.setTo($.mayHaveNFTApproval, id, false);
            delete $.nftApprovals[id];
        }
    }

    /// @dev Approve or remove the `operator` as an operator for `msgSender`,
    /// without authorization checks.
    function _setApprovalForAll(address operator, bool approved, address msgSender)
        internal
        virtual
    {
        BT404Storage storage $ = _getBT404Storage();
        Uint256Ref storage ref = $.operatorApprovals[operator][msgSender];
        if (operator == address(this)) {
            bool status = ref.value != 0;
            AddressData storage senderAddressData = $.addressData[msgSender];
            if (_toUint(approved) & _toUint(!status) != 0) {
                // initialize when approving
                senderAddressData.feePerNFTSnap = $.accFeePerNFT;
                unchecked {
                    $.numExchangableNFT += senderAddressData.ownedLength;
                }
            } else if (_toUint(!approved) & _toUint(status) != 0) {
                // refresh when removing approval
                _pullFeeForTwo($, msgSender, msgSender);
                unchecked {
                    $.numExchangableNFT -= senderAddressData.ownedLength;
                }
            }
        }
        ref.value = _toUint(approved); // `approved ? 1 : 0`
    }

    /// @dev Lock or unlock the `id`,
    /// `msgSener` should be authorized as the operator of the owner of the NFT
    function _setNFTLockState(uint256[] memory ids, bool lock, address msgSender)
        internal
        virtual
    {
        BT404Storage storage $ = _getBT404Storage();
        _pullFeeForTwo($, msgSender, msgSender);

        Uint32Map storage oo = $.oo;
        LibBitmap.Bitmap storage tokenLocks = $.tokenLocks;

        AddressData storage ownerAddressData = _addressData(msgSender);
        Uint32Map storage ownerLocked = $.locked[msgSender];
        Uint32Map storage ownerOwned = $.owned[msgSender];
        uint32 ownerAlias = _registerAndResolveAlias(ownerAddressData, msgSender);
        uint256 idLen = ids.length;

        unchecked {
            for (uint256 i; i < idLen; ++i) {
                uint256 id = ids[i];

                if (_get(oo, _ownershipIndex(id)) != ownerAlias) {
                    revert ApprovalCallerNotOwnerNorApproved();
                }

                uint32 ownedIndex = _get(oo, _ownedIndex(id));

                if (LibBitmap.get(tokenLocks, id) == lock) revert TokenLockStatusNoChange();

                if (!lock) {
                    // already locked, to unlock
                    LibBitmap.setTo(tokenLocks, id, false);

                    // swap with last NFT and pop the last
                    _delNFTAt(ownerLocked, oo, ownedIndex, --ownerAddressData.lockedLength);
                    _clearNFTOffer($, id);

                    uint256 n = ownerAddressData.ownedLength++;
                    _set(ownerOwned, n, uint32(id));
                    _set(oo, _ownedIndex(id), uint32(n));
                } else {
                    // not locked, to lock
                    LibBitmap.setTo(tokenLocks, id, true);

                    // swap with last NFT and pop the last
                    _delNFTAt(ownerOwned, oo, ownedIndex, --ownerAddressData.ownedLength);

                    uint256 n = ownerAddressData.lockedLength++;
                    _set(ownerLocked, n, uint32(id));
                    _set(oo, _ownedIndex(id), uint32(n));
                }
            }
        }

        unchecked {
            if (lock) $.numLockedNFT += uint32(idLen);
            else $.numLockedNFT -= uint32(idLen);

            if ($.operatorApprovals[address(this)][msgSender].value != 0) {
                if (lock) $.numExchangableNFT -= uint32(ids.length);
                else $.numExchangableNFT += uint32(ids.length);
            }
        }
    }

    /// @dev Returns the NFT IDs of `owner` in range `[begin, end)`.
    /// Optimized for smaller bytecode size, as this function is intended for off-chain calling.
    function _ownedIds(address owner, uint256 begin, uint256 end, bool locked)
        internal
        view
        virtual
        returns (uint256[] memory ids)
    {
        BT404Storage storage $ = _getBT404Storage();
        (Uint32Map storage owned, uint256 n) = locked
            ? ($.locked[owner], $.addressData[owner].lockedLength)
            : ($.owned[owner], $.addressData[owner].ownedLength);
        n = _min(n, end);
        /// @solidity memory-safe-assembly
        assembly {
            // Allocate one more word to store the offset when returning with assembly.
            ids := mload(0x40)
            mstore(0x20, owned.slot)
            let i := begin
            for {} lt(i, n) { i := add(i, 1) } {
                mstore(0x00, shr(3, i))
                let s := keccak256(0x00, 0x40) // Storage slot.
                let id := and(0xffffffff, shr(shl(5, and(i, 7)), sload(s)))
                mstore(add(add(ids, 0x20), shl(5, sub(i, begin))), id) // Append to.
            }
            mstore(ids, sub(i, begin)) // Store the length.
            mstore(0x40, add(add(ids, 0x20), shl(5, sub(i, begin)))) // Allocate memory.
        }
    }

    /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
    /*                NFT OFFER BID FUNCTIONS                 */
    /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
    struct NFTOrder {
        uint256 id;
        uint256 tokenUnits;
        address token;
        // 1. `saleTo` in `offerForSale`.
        // 2. `seller` in `acceptOffer`.
        // 3. None in `bidForBuy`.
        // 4. `bidder` in `acceptBid`.
        address trader;
    }

    function _offerForSale(address msgSender, NFTOrder[] memory orders) internal {
        BT404Storage storage $ = _getBT404Storage();
        mapping(uint256 => NFTOffer) storage offers = $.offers;

        uint32 senderAlias = _registerAndResolveAlias(_addressData(msgSender), msgSender);
        for (uint256 i; i < orders.length;) {
            uint256 id;
            uint256 minTokenUnits;
            address token;
            address saleTo;
            {
                NFTOrder memory order = orders[i];
                (id, minTokenUnits, token, saleTo) =
                    (order.id, order.tokenUnits, order.token, order.trader);
            }
            uint32 ownerAlias = _get($.oo, _ownershipIndex(id));
            // Only the owner can make an offer because
            // if the owner revokes approval after making an offer, the ownership will become incorrect.
            if (senderAlias != ownerAlias) revert ApprovalCallerNotOwnerNorApproved();
            // Only locked NFTs can be offered to sale.
            if (!LibBitmap.get($.tokenLocks, id)) revert TokenNotLocked();
            if (minTokenUnits == 0 || minTokenUnits > type(uint96).max) revert InvalidSalePrice();

            offers[id] = NFTOffer({
                seller: ownerAlias,
                sellTo: saleTo == address(0)
                    ? 0
                    : _registerAndResolveAlias($.addressData[saleTo], saleTo),
                minTokens: uint96(minTokenUnits),
                offerToken: token
            });

            unchecked {
                ++i;
            }
        }
    }

    function _acceptOffer(address msgSender, NFTOrder[] memory orders) internal {
        BT404Storage storage $ = _getBT404Storage();
        mapping(uint256 => NFTOffer) storage offers = $.offers;
        uint32 senderAlias = _registerAndResolveAlias(_addressData(msgSender), msgSender);
        uint256 nativeOfferTokens;

        uint256 feeBips = $.listMarketFeeBips;

        for (uint256 i; i < orders.length;) {
            uint256 id;
            uint256 tokenUnits;
            address token;
            address seller;
            // Cache the variables.
            {
                NFTOrder memory order = orders[i];
                (id, tokenUnits, token, seller) =
                    (order.id, order.tokenUnits, order.token, order.trader);
            }
            // Check parameters.
            {
                NFTOffer memory offer = offers[id];
                // check if nft owner and seller are matched.
                {
                    uint32 sellerAlias = offer.seller;
                    // 1. NFT isn't for sale.
                    // 2. Seller isn't the current NFT owner.
                    // 3. Seller isn't equal to the order trader.
                    if (
                        sellerAlias == 0 || sellerAlias != _get($.oo, _ownershipIndex(id))
                            || sellerAlias != $.addressData[seller].addressAlias
                    ) {
                        revert InvalidSellerOrBuyer();
                    }
                }

                uint32 sellToAlias = offer.sellTo;
                // exclusive address was set but is not matched.
                if (sellToAlias != 0 && sellToAlias != senderAlias) {
                    revert InvalidSellerOrBuyer();
                }
                if (offer.minTokens > tokenUnits) revert InvalidSalePrice();
                if (!LibBitmap.get($.tokenLocks, id)) revert TokenNotLocked();
                if (token != offer.offerToken) revert InvalidOrderToken();
            }

            {
                uint256 fee = tokenUnits * feeBips / 10000;
                // Sender receives the NFT.(The offer will be cleaned)
                _transferFromNFT(seller, msgSender, id, seller);
                // Seller receives the funds
                _transferToken(token, msgSender, seller, tokenUnits - fee);
                if (fee > 0) {
                    $.accountedFees[token].value += fee;
                    _transferToken(token, msgSender, address(this), fee);
                }
                if (token == address(0)) nativeOfferTokens += tokenUnits;
            }

            NFTBid memory bid = $.bids[id][msgSender];
            if (bid.tokens > 0) {
                delete $.bids[id][msgSender];
                _transferToken(bid.bidToken, address(this), msgSender, bid.tokens);
            }

            unchecked {
                ++i;
            }
        }
        if (nativeOfferTokens != msg.value) revert InvalidSalePrice();
    }

    function _cancelOffer(address msgSender, uint256[] memory ids) internal {
        BT404Storage storage $ = _getBT404Storage();
        mapping(uint256 => NFTOffer) storage offers = $.offers;

        uint32 senderAlias = _registerAndResolveAlias(_addressData(msgSender), msgSender);

        for (uint256 i; i < ids.length;) {
            uint256 id = ids[i];
            if (senderAlias != _get($.oo, _ownershipIndex(id))) {
                revert InvalidSellerOrBuyer();
            }
            delete offers[id];

            unchecked {
                ++i;
            }
        }
    }

    function _clearNFTOffer(BT404Storage storage $, uint256 id) internal {
        // Clear exist offer if needed.
        if ($.offers[id].seller != 0) delete $.offers[id];
    }

    function _bidForBuy(address msgSender, NFTOrder[] memory orders) internal {
        BT404Storage storage $ = _getBT404Storage();
        mapping(uint256 => mapping(address => NFTBid)) storage bids = $.bids;
        uint32 senderAlias = _registerAndResolveAlias($.addressData[msgSender], msgSender);
        uint256 nativeBidTokens;

        for (uint256 i; i < orders.length;) {
            uint256 id;
            uint256 tokenUnits;
            address token;
            {
                NFTOrder memory order = orders[i];
                (id, tokenUnits, token) = (order.id, order.tokenUnits, order.token);
            }

            {
                // Owner can't bid.
                if (senderAlias == _get($.oo, _ownershipIndex(id))) revert InvalidSellerOrBuyer();
                if (tokenUnits == 0 || tokenUnits > type(uint96).max) revert InvalidSalePrice();
            }

            {
                NFTBid memory bid = bids[id][msgSender];
                // Bidder can change his bid.
                if (tokenUnits == bid.tokens && bid.bidToken == token) revert InvalidSalePrice();

                // Update bid firstly.
                bids[id][msgSender] = NFTBid({tokens: uint96(tokenUnits), bidToken: token});

                // Refund exist bid.(Prevent Reentrancy externally)
                _transferToken(bid.bidToken, address(this), msgSender, bid.tokens);
                // Receive new bid funds.
                _transferToken(token, msgSender, address(this), tokenUnits);
                if (token == address(0)) nativeBidTokens += tokenUnits;
            }

            unchecked {
                ++i;
            }
        }

        if (nativeBidTokens != msg.value) revert InvalidSalePrice();
    }

    function _acceptBid(address msgSender, NFTOrder[] memory orders) internal {
        BT404Storage storage $ = _getBT404Storage();
        mapping(uint256 => mapping(address => NFTBid)) storage bids = $.bids;
        uint32 senderAlias = _registerAndResolveAlias(_addressData(msgSender), msgSender);

        uint256 feeBips = $.listMarketFeeBips;

        for (uint256 i; i < orders.length;) {
            uint256 id;
            uint256 tokenUnits;
            address token;
            address bidder;
            {
                NFTOrder memory order = orders[i];
                (id, tokenUnits, token, bidder) =
                    (order.id, order.tokenUnits, order.token, order.trader);
            }

            {
                // Only owner can sell.
                if (senderAlias != _get($.oo, _ownershipIndex(id))) revert InvalidSellerOrBuyer();

                NFTBid memory bid = bids[id][bidder];
                if (tokenUnits == 0 || bid.tokens < tokenUnits) revert InvalidSalePrice();
                if (token != bid.bidToken) revert InvalidOrderToken();
                delete bids[id][bidder];

                // Take full bid.
                tokenUnits = bid.tokens;
            }

            // The exist offer will be cleaned inner.
            _transferFromNFT(msgSender, bidder, id, msgSender);

            uint256 fee = tokenUnits * feeBips / 10000;
            _transferToken(token, address(this), msgSender, tokenUnits - fee);
            if (fee > 0) $.accountedFees[token].value += fee;

            unchecked {
                ++i;
            }
        }
    }

    function _cancelBid(address msgSender, uint256[] memory ids) internal {
        BT404Storage storage $ = _getBT404Storage();
        mapping(uint256 => mapping(address => NFTBid)) storage bids = $.bids;

        for (uint256 i; i < ids.length;) {
            uint256 id = ids[i];
            NFTBid memory bid = bids[id][msgSender];
            if (bid.tokens == 0) revert InvalidSellerOrBuyer();

            delete bids[id][msgSender];

            _transferToken(bid.bidToken, address(this), msgSender, bid.tokens);
            unchecked {
                ++i;
            }
        }
    }

    function _transferToken(address token, address from, address to, uint256 amount) private {
        if (token == address(0)) {
            if (to != address(this)) {
                SafeTransferLib.safeTransferETH(to, amount);
            }
        } else if (token == address(this)) {
            _pullFeeForTwo(
                _getBT404Storage(),
                from == address(this) ? to : from,
                to == address(this) ? from : to
            );
            _transfer(from, to, amount);
        } else {
            if (from == address(this)) {
                SafeTransferLib.safeTransfer(token, to, amount);
            } else {
                SafeTransferLib.safeTransferFrom(token, from, to, amount);
            }
        }
    }

    /// @dev Fallback modifier to dispatch calls from the mirror NFT contract
    /// to internal functions in this contract.
    modifier bt404Fallback() virtual {
        BT404Storage storage $ = _getBT404Storage();

        uint256 fnSelector = _calldataload(0x00) >> 224;

        // `transferFromNFT(address,address,uint256,address)`.
        if (fnSelector == 0xe5eb36c8) {
            if (msg.sender != $.mirrorERC721) revert SenderNotMirror();
            _transferFromNFT(
                address(uint160(_calldataload(0x04))), // `from`.
                address(uint160(_calldataload(0x24))), // `to`.
                _calldataload(0x44), // `id`.
                address(uint160(_calldataload(0x64))) // `msgSender`.
            );
            _return(1);
        }
        // `setApprovalForAll(address,bool,address)`.
        if (fnSelector == 0x813500fc) {
            if (msg.sender != $.mirrorERC721) revert SenderNotMirror();
            _setApprovalForAll(
                address(uint160(_calldataload(0x04))), // `spender`.
                _calldataload(0x24) != 0, // `status`.
                address(uint160(_calldataload(0x44))) // `msgSender`.
            );
            _return(1);
        }
        // `exchangeNFT(uint256,uint256,address)`.
        if (fnSelector == 0x2c5966af) {
            if (msg.sender != $.mirrorERC721) revert SenderNotMirror();
            (address x, address y, uint256 fee) = _exchangeNFT(
                _calldataload(0x04), // `idX`
                _calldataload(0x24), // `idY`
                address(uint160(_calldataload(0x44))) // `msgSender`
            );

            /// @solidity memory-safe-assembly
            assembly {
                mstore(0x00, x)
                mstore(0x20, y)
                mstore(0x40, fee)
                return(0x00, 0x60)
            }
        }
        // `setNFTLockState(uint256,uint256[])`.
        if (fnSelector == 0xb79cc1bd) {
            if (msg.sender != $.mirrorERC721) revert SenderNotMirror();

            uint256 senderAndLockFlag = _calldataload(0x04);

            _setNFTLockState(
                _calldatacopyArray(_calldataload(0x24) + 0x04), // `ids`
                uint8(senderAndLockFlag) != 0, // `lock`
                address(uint160(senderAndLockFlag >> 96)) // `msgSender`
            );
            _return(1);
        }
        // `mintNFT(uint256,uint256[])`
        if (fnSelector == 0x3e0446a1) {
            if (msg.sender != $.mirrorERC721) revert SenderNotMirror();
            uint256 senderAndLockFlag = _calldataload(0x04);
            _mintNFT(
                address(uint160(senderAndLockFlag >> 96)), // `to`
                _calldatacopyArray(_calldataload(0x24) + 0x04), // `ids`
                uint8(senderAndLockFlag) != 0 // `lock`
            );
            _return(1);
        }
        // `burnNFT(address,uint256[])`
        if (fnSelector == 0x86529a61) {
            if (msg.sender != $.mirrorERC721) revert SenderNotMirror();

            _burnNFT(
                address(uint160(_calldataload(0x04))), // `from`
                _calldatacopyArray(_calldataload(0x24) + 0x04) // `ids`
            );
            _return(1);
        }
        // `offerForSale(address,(uint256,uint256,address,address)[])`
        if (fnSelector == 0x73e63d89) {
            if (msg.sender != $.mirrorERC721) revert SenderNotMirror();
            _offerForSale(
                address(uint160(_calldataload(0x04))),
                _calldatacopyOrders(_calldataload(0x24) + 0x04)
            );
            _return(1);
        }
        // `acceptOffer(address,(uint256,uint256,address,address)[])`
        if (fnSelector == 0x53ffa071) {
            if (msg.sender != $.mirrorERC721) revert SenderNotMirror();
            _acceptOffer(
                address(uint160(_calldataload(0x04))),
                _calldatacopyOrders(_calldataload(0x24) + 0x04)
            );
            _return(1);
        }
        // `cancelOffer(address,uint256[])`
        if (fnSelector == 0x2da2a859) {
            if (msg.sender != $.mirrorERC721) revert SenderNotMirror();
            _cancelOffer(
                address(uint160(_calldataload(0x04))), // `from`
                _calldatacopyArray(_calldataload(0x24) + 0x04) // `ids`
            );
            _return(1);
        }
        // `bidForBuy(address,(uint256,uint256,address,address)[])`
        if (fnSelector == 0xb5a1305b) {
            if (msg.sender != $.mirrorERC721) revert SenderNotMirror();
            _bidForBuy(
                address(uint160(_calldataload(0x04))),
                _calldatacopyOrders(_calldataload(0x24) + 0x04)
            );
            _return(1);
        }
        // `acceptBid(address,(uint256,uint256,address,address)[])`
        if (fnSelector == 0xb6ebe103) {
            if (msg.sender != $.mirrorERC721) revert SenderNotMirror();
            _acceptBid(
                address(uint160(_calldataload(0x04))),
                _calldatacopyOrders(_calldataload(0x24) + 0x04)
            );
            _return(1);
        }
        // `cancelBid(address,uint256[])`
        if (fnSelector == 0xa38beee1) {
            if (msg.sender != $.mirrorERC721) revert SenderNotMirror();
            _cancelBid(
                address(uint160(_calldataload(0x04))), // `from`
                _calldatacopyArray(_calldataload(0x24) + 0x04) // `ids`
            );
            _return(1);
        }
        // `isApprovedForAll(address,address)`.
        if (fnSelector == 0xe985e9c5) {
            address owner = address(uint160(_calldataload(0x04)));
            address spender = address(uint160(_calldataload(0x24)));
            Uint256Ref storage ref = $.operatorApprovals[spender][owner];

            _return(ref.value);
        }
        // `ownerOf(uint256)`.
        if (fnSelector == 0x6352211e) {
            _return(uint160(_ownerOf(_calldataload(0x04))));
        }
        // `ownerAt(uint256)`.
        if (fnSelector == 0x24359879) {
            _return(uint160(_ownerAt(_calldataload(0x04))));
        }
        // `approveNFT(address,uint256,address)`.
        if (fnSelector == 0xd10b6e0c) {
            if (msg.sender != $.mirrorERC721) revert SenderNotMirror();
            address owner = _approveNFT(
                address(uint160(_calldataload(0x04))), // `spender`.
                _calldataload(0x24), // `id`.
                address(uint160(_calldataload(0x44))) // `msgSender`.
            );
            _return(uint160(owner));
        }
        // `ownedIds(uint256,uint256,uint256)`.
        if (fnSelector == 0xf9b4b328) {
            uint256 addrAndFlag = _calldataload(0x04);
            /// @solidity memory-safe-assembly
            assembly {
                // Allocate one word to store the offset of the array in returndata.
                mstore(0x40, add(mload(0x40), 0x20))
            }

            uint256[] memory ids = _ownedIds(
                address(uint160(addrAndFlag >> 96)),
                _calldataload(0x24),
                _calldataload(0x44),
                uint8(addrAndFlag) != 0
            );
            /// @solidity memory-safe-assembly
            assembly {
                // Memory safe, as we've advanced the free memory pointer by a word.
                let p := sub(ids, 0x20)
                mstore(p, 0x20) // Store the offset of the array in returndata.
                return(p, add(0x40, shl(5, mload(ids))))
            }
        }
        // `getApproved(uint256)`.
        if (fnSelector == 0x081812fc) {
            _return(uint160(_getApproved(_calldataload(0x04))));
        }
        // `balanceOfNFT(address)`.
        if (fnSelector == 0xf5b100ea) {
            _return(_balanceOfNFT(address(uint160(_calldataload(0x04)))));
        }
        // `totalNFTSupply()`.
        if (fnSelector == 0xe2c79281) {
            _return(_totalNFTSupply());
        }
        // `implementsBT404()`, `implementsDN404()`.
        if (fnSelector == 0xc89e2ab1 || fnSelector == 0xb7a94eb8) {
            _return(1);
        }
        _;
    }

    /// @dev Fallback function for calls from mirror NFT contract.
    fallback() external payable virtual bt404Fallback {}

    receive() external payable virtual {}

    /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
    /*                 INTERNAL / PRIVATE HELPERS                 */
    /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/

    /// @dev Returns `i << 1`.
    function _ownershipIndex(uint256 i) internal pure returns (uint256) {
        unchecked {
            return i << 1;
        }
    }

    /// @dev Returns `(i << 1) + 1`.
    function _ownedIndex(uint256 i) internal pure returns (uint256) {
        unchecked {
            return (i << 1) + 1;
        }
    }

    function _delNFTAt(
        Uint32Map storage owned,
        Uint32Map storage oo,
        uint256 toDelIndex,
        uint256 lastIndex
    ) internal {
        if (toDelIndex != lastIndex) {
            uint256 updatedId = _get(owned, lastIndex);
            _set(owned, toDelIndex, uint32(updatedId));
            _set(oo, _ownedIndex(updatedId), uint32(toDelIndex));
        }
    }

    /// @dev Returns whether `amount` is a valid `totalSupply`.
    function _totalSupplyOverflows(uint256 amount) internal view returns (bool result) {
        uint256 unit = _unit();
        /// @solidity memory-safe-assembly
        assembly {
            result := iszero(iszero(or(shr(96, amount), lt(0xfffffffe, div(amount, unit)))))
        }
    }

    /// @dev Struct containing direct transfer log data for {Transfer} events to be
    /// emitted by the mirror NFT contract.
    struct _DNDirectLogs {
        uint256 offset;
        address from;
        address to;
        uint256[] logs;
    }

    /// @dev Initiates memory allocation for direct logs with `n` log items.
    function _directLogsMalloc(uint256 n, address from, address to)
        private
        pure
        returns (_DNDirectLogs memory p)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Note that `p` implicitly allocates and advances the free memory pointer by
            // 4 words, which we can safely mutate in `_packedLogsSend`.
            let logs := mload(0x40)
            mstore(logs, n) // Store the length.
            let offset := add(0x20, logs) // Skip the word for `p.logs.length`.
            mstore(0x40, add(offset, shl(5, n))) // Allocate memory.
            mstore(add(0x60, p), logs) // Set `p.logs`.
            mstore(add(0x40, p), shr(96, shl(96, to))) // Set `p.to`.
            mstore(add(0x20, p), shr(96, shl(96, from))) // Set `p.from`.
            mstore(p, offset) // Set `p.offset`.
        }
    }

    /// @dev Adds a direct log item to `p` with token `id`.
    function _directLogsAppend(_DNDirectLogs memory p, uint256 id) private pure {
        /// @solidity memory-safe-assembly
        assembly {
            let offset := mload(p)
            mstore(offset, id)
            mstore(p, add(offset, 0x20))
        }
    }

    /// @dev Calls the `mirror` NFT contract to emit {Transfer} events for packed logs `p`.
    function _directLogsSend(_DNDirectLogs memory p, address mirror) private {
        /// @solidity memory-safe-assembly
        assembly {
            let logs := mload(add(p, 0x60))
            let n := add(0x84, shl(5, mload(logs))) // Length of calldata to send.
            let o := sub(logs, 0x80) // Start of calldata to send.
            mstore(o, 0x144027d3) // `logDirectTransfer(address,address,uint256[])`.
            mstore(add(o, 0x20), mload(add(0x20, p)))
            mstore(add(o, 0x40), mload(add(0x40, p)))
            mstore(add(o, 0x60), 0x60) // Offset of `logs` in the calldata to send.
            if iszero(and(eq(mload(o), 1), call(gas(), mirror, 0, add(o, 0x1c), n, o, 0x20))) {
                revert(o, 0x00)
            }
        }
    }

    /// emitted by the mirror NFT contract.
    struct _PackedLogs {
        uint256 offset;
        uint256 addressAndBit;
        uint256[] logs;
    }

    /// @dev Initiates memory allocation for packed logs with `n` log items.
    function _packedLogsMalloc(uint256 n) internal pure returns (_PackedLogs memory p) {
        /// @solidity memory-safe-assembly
        assembly {
            // Note that `p` implicitly allocates and advances the free memory pointer by
            // 2 words, which we can safely mutate in `_packedLogsSend`.
            let logs := mload(0x40)
            mstore(logs, n) // Store the length.
            let offset := add(0x20, logs)
            mstore(0x40, add(offset, shl(5, n))) // Allocate memory.
            mstore(add(0x40, p), logs) // Set `p.logs`.
            mstore(p, offset) // Set `p.offset`.
        }
    }

    /// @dev Set the current address and the burn bit.
    function _packedLogsSet(_PackedLogs memory p, address a, uint256 burnBit) internal pure {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(add(p, 0x20), or(shl(96, a), burnBit))
        }
    }

    /// @dev Adds a packed log item to `p` with token `id`.
    function _packedLogsAppend(_PackedLogs memory p, uint256 id) internal pure {
        /// @solidity memory-safe-assembly
        assembly {
            let offset := mload(p)
            mstore(offset, or(mload(add(p, 0x20)), shl(8, id)))
            mstore(p, add(offset, 0x20))
        }
    }

    function _packedLogsSend(_PackedLogs memory p, address mirror) internal {
        /// @solidity memory-safe-assembly
        assembly {
            let logs := mload(add(p, 0x40))
            let o := sub(logs, 0x40) // Start of calldata to send.
            mstore(o, 0x263c69d6) // `logTransfer(uint256[])`.
            mstore(add(o, 0x20), 0x20) // Offset of `logs` in the calldata to send.
            let n := add(0x44, shl(5, mload(logs))) // Length of calldata to send.
            if iszero(and(eq(mload(o), 1), call(gas(), mirror, 0, add(o, 0x1c), n, o, 0x20))) {
                revert(o, 0x00)
            }
        }
    }

    /// @dev Struct of temporary variables for transfers.
    struct _TransferTemps {
        uint256 numNFTBurns;
        uint256 numNFTMints;
        uint256 fromBalance;
        uint256 toBalance;
        uint256 fromOwnedLength;
        uint256 toOwnedLength;
        uint256 totalSupply;
        uint256 fromLockedLength;
        uint256 toLockedLength;
        uint256 maxNFTId;
        uint32 toAlias;
    }

    /// @dev Returns the calldata value at `offset`.
    function _calldataload(uint256 offset) private pure returns (uint256 value) {
        /// @solidity memory-safe-assembly
        assembly {
            value := calldataload(offset)
        }
    }

    function _calldatacopyArray(uint256 offset) private pure returns (uint256[] memory value) {
        /// @solidity memory-safe-assembly
        assembly {
            let length := calldataload(offset)
            value := mload(0x40)
            mstore(0x40, add(add(value, 0x20), shl(5, length))) // Allocate memory.

            mstore(value, length) // Store array length
            calldatacopy(add(value, 0x20), add(offset, 0x20), shl(5, length)) // Copy array elements
        }
    }

    function _calldatacopyOrders(uint256 offset) private pure returns (NFTOrder[] memory orders) {
        // For array of `NFTOrder`, the layoutes between `calldata` and `memory` are different.
        // In memory, it contains the elements offset.
        uint256 length;
        /// @solidity memory-safe-assembly
        assembly {
            length := calldataload(offset)
            offset := add(offset, 0x20) // Skip length.
        }
        orders = new NFTOrder[](length);
        for (uint256 i; i < length;) {
            NFTOrder memory tmp;
            // @solidity memory-safe-assembly
            assembly {
                calldatacopy(tmp, offset, 0x80) // Copy array element
                offset := add(offset, 0x80)

                mstore(add(tmp, 0x40), shr(96, shl(96, mload(add(tmp, 0x40)))))
                mstore(add(tmp, 0x60), shr(96, shl(96, mload(add(tmp, 0x60)))))
            }
            orders[i] = tmp;
            unchecked {
                ++i;
            }
        }
    }

    /// @dev Executes a return opcode to return `x` and end the current call frame.
    function _return(uint256 x) private pure {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, x)
            return(0x00, 0x20)
        }
    }

    /// @dev Returns `max(0, x - y)`.
    function _zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns `x < y ? x : y`.
    function _min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /// @dev Returns `b ? 1 : 0`.
    function _toUint(bool b) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := iszero(iszero(b))
        }
    }

    /// @dev Returns the uint32 value at `index` in `map`.
    function _get(Uint32Map storage map, uint256 index) internal view returns (uint32 result) {
        result = uint32(map.map[index >> 3] >> ((index & 7) << 5));
    }

    /// @dev Updates the uint32 value at `index` in `map`.
    function _set(Uint32Map storage map, uint256 index, uint32 value) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x20, map.slot)
            mstore(0x00, shr(3, index))
            let s := keccak256(0x00, 0x40) // Storage slot.
            let o := shl(5, and(index, 7)) // Storage slot offset (bits).
            let v := sload(s) // Storage slot value.
            let m := 0xffffffff // Value mask.
            sstore(s, xor(v, shl(o, and(m, xor(shr(o, v), value)))))
        }
    }

    /// @dev Sets the owner alias and the owned index together.
    function _setOwnerAliasAndOwnedIndex(
        Uint32Map storage map,
        uint256 id,
        uint32 ownership,
        uint32 ownedIndex
    ) internal {
        /// @solidity memory-safe-assembly
        assembly {
            let value := or(shl(32, ownedIndex), and(0xffffffff, ownership))
            mstore(0x20, map.slot)
            mstore(0x00, shr(2, id))
            let s := keccak256(0x00, 0x40) // Storage slot.
            let o := shl(6, and(id, 3)) // Storage slot offset (bits).
            let v := sload(s) // Storage slot value.
            let m := 0xffffffffffffffff // Value mask.
            sstore(s, xor(v, shl(o, and(m, xor(shr(o, v), value)))))
        }
    }
}

File 3 of 10 : BT404NFTMinter.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.22;

import {LibBitmap} from "solady/utils/LibBitmap.sol";
import "./BT404.sol";

/// @title BT404NFTMinter
/// @notice BT404NFTMinter provides interfaces to `mint` and `burn` the specified NFTs.
abstract contract BT404NFTMinter is BT404 {
    function _initializeBT404(uint256, address, address mirror) internal virtual override {
        // Initial supply should be zero in Wrapper Context.
        BT404._initializeBT404(0, address(0), mirror);

        BT404Storage storage $ = _getBT404Storage();
        // Prevent minting during transfer.
        $.nextTokenId = type(uint32).max;
    }

    function _mintNFT(address to, uint256[] memory ids, bool lock) internal virtual override {
        if (to == address(0)) {
            revert TransferToZeroAddress();
        }

        BT404Storage storage $ = _getBT404Storage();
        // refresh fee for `to`
        _pullFeeForTwo($, to, to);

        Uint32Map storage oo = $.oo;
        LibBitmap.Bitmap storage tokenLocks = $.tokenLocks;

        AddressData storage toAddressData = _addressData(to);
        uint32 toAlias = _registerAndResolveAlias(toAddressData, to);
        (uint32 n, Uint32Map storage ownedMap) = lock
            ? (toAddressData.lockedLength, $.locked[to])
            : (toAddressData.ownedLength, $.owned[to]);

        uint256 numToMints = ids.length;
        for (uint256 i; i < numToMints;) {
            uint256 id = ids[i];

            if (id > type(uint32).max) revert TotalSupplyOverflow();

            address from = $.aliasToAddress[_get(oo, _ownershipIndex(id))];
            if (from != address(0)) {
                revert TransferFromIncorrectOwner();
            }

            _set(ownedMap, n, uint32(id));
            _setOwnerAliasAndOwnedIndex(oo, id, toAlias, n++);

            if (lock != LibBitmap.get(tokenLocks, id)) LibBitmap.setTo(tokenLocks, id, lock);

            unchecked {
                ++i;
            }
        }

        $.totalNFTSupply += uint32(numToMints);
        if (lock) {
            toAddressData.lockedLength = n;
            $.numLockedNFT += uint32(numToMints);
        } else {
            toAddressData.ownedLength = n;
        }

        // update market shares
        if ($.operatorApprovals[address(this)][to].value > 0 && !lock) {
            $.numExchangableNFT += uint32(numToMints);
        }

        uint256 units = _unit() * numToMints;
        {
            uint256 totalSupply_ = units + $.totalSupply;
            uint256 overflows = _toUint(_totalSupplyOverflows(totalSupply_));
            if (
                overflows | _toUint(totalSupply_ < units)
                    | _toUint(totalSupply_ > _unit() * type(uint32).max) != 0
            ) {
                revert TotalSupplyOverflow();
            }

            $.totalSupply = uint96(totalSupply_);
            toAddressData.balance += uint96(units);
        }

        /// @solidity memory-safe-assembly
        assembly {
            // Emit the {Transfer} event.
            mstore(0x00, units)
            log3(0x00, 0x20, _TRANSFER_EVENT_SIGNATURE, 0, shr(96, shl(96, to)))
        }
    }

    function _burnNFT(address from, uint256[] memory ids) internal virtual override {
        if (from == address(0)) {
            revert TransferFromIncorrectOwner();
        }

        BT404Storage storage $ = _getBT404Storage();
        // refresh fee for `from`
        _pullFeeForTwo($, from, from);

        AddressData storage fromAddressData = _addressData(from);
        (uint32 lockedLength, uint32 ownedLength) =
            (fromAddressData.lockedLength, fromAddressData.ownedLength);
        uint256 ownedBurned = 0;
        uint256 numToBurns = ids.length;
        {
            Uint32Map storage oo = $.oo;
            LibBitmap.Bitmap storage tokenLocks = $.tokenLocks;
            (Uint32Map storage locked, Uint32Map storage owned) = ($.locked[from], $.owned[from]);

            for (uint256 i; i < numToBurns;) {
                uint256 id = ids[i];

                address owner = $.aliasToAddress[_get(oo, _ownershipIndex(id))];
                if (from != owner) {
                    revert TransferCallerNotOwnerNorApproved();
                }

                uint32 toBurnIdx = _get(oo, _ownedIndex(id));
                if (LibBitmap.get(tokenLocks, id)) {
                    LibBitmap.setTo(tokenLocks, id, false);
                    _delNFTAt(locked, oo, toBurnIdx, --lockedLength);
                    _clearNFTOffer($, id);
                } else {
                    _delNFTAt(owned, oo, toBurnIdx, --ownedLength);
                    ++ownedBurned;
                }
                _removeNFTApproval($, id);

                _setOwnerAliasAndOwnedIndex(oo, id, 0, 0);

                unchecked {
                    ++i;
                }
            }
        }

        unchecked {
            uint256 lockedBurned = numToBurns - ownedBurned;
            if (lockedBurned > 0) {
                fromAddressData.lockedLength = lockedLength;
                $.numLockedNFT -= uint32(lockedBurned);
            }
            if (ownedBurned > 0) {
                fromAddressData.ownedLength = ownedLength;
            }

            // update market shares
            if ($.operatorApprovals[address(this)][from].value > 0 && ownedBurned > 0) {
                $.numExchangableNFT -= uint32(ownedBurned);
            }
        }

        uint256 units = _unit() * numToBurns;
        unchecked {
            $.totalNFTSupply -= uint32(numToBurns);
            $.totalSupply -= uint96(units);
            fromAddressData.balance -= uint96(units);
        }

        /// @solidity memory-safe-assembly
        assembly {
            // Emit the {Transfer} event.
            mstore(0x00, units)
            log3(0x00, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, shl(96, from)), 0)
        }
    }
}

File 4 of 10 : OwnableRoles.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

import {Ownable} from "./Ownable.sol";

/// @notice Simple single owner and multiroles authorization mixin.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/Ownable.sol)
/// @dev While the ownable portion follows [EIP-173](https://eips.ethereum.org/EIPS/eip-173)
/// for compatibility, the nomenclature for the 2-step ownership handover and roles
/// may be unique to this codebase.
abstract contract OwnableRoles is Ownable {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           EVENTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The `user`'s roles is updated to `roles`.
    /// Each bit of `roles` represents whether the role is set.
    event RolesUpdated(address indexed user, uint256 indexed roles);

    /// @dev `keccak256(bytes("RolesUpdated(address,uint256)"))`.
    uint256 private constant _ROLES_UPDATED_EVENT_SIGNATURE =
        0x715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe26;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STORAGE                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The role slot of `user` is given by:
    /// ```
    ///     mstore(0x00, or(shl(96, user), _ROLE_SLOT_SEED))
    ///     let roleSlot := keccak256(0x00, 0x20)
    /// ```
    /// This automatically ignores the upper bits of the `user` in case
    /// they are not clean, as well as keep the `keccak256` under 32-bytes.
    ///
    /// Note: This is equivalent to `uint32(bytes4(keccak256("_OWNER_SLOT_NOT")))`.
    uint256 private constant _ROLE_SLOT_SEED = 0x8b78c6d8;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     INTERNAL FUNCTIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Overwrite the roles directly without authorization guard.
    function _setRoles(address user, uint256 roles) internal virtual {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x0c, _ROLE_SLOT_SEED)
            mstore(0x00, user)
            // Store the new value.
            sstore(keccak256(0x0c, 0x20), roles)
            // Emit the {RolesUpdated} event.
            log3(0, 0, _ROLES_UPDATED_EVENT_SIGNATURE, shr(96, mload(0x0c)), roles)
        }
    }

    /// @dev Updates the roles directly without authorization guard.
    /// If `on` is true, each set bit of `roles` will be turned on,
    /// otherwise, each set bit of `roles` will be turned off.
    function _updateRoles(address user, uint256 roles, bool on) internal virtual {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x0c, _ROLE_SLOT_SEED)
            mstore(0x00, user)
            let roleSlot := keccak256(0x0c, 0x20)
            // Load the current value.
            let current := sload(roleSlot)
            // Compute the updated roles if `on` is true.
            let updated := or(current, roles)
            // Compute the updated roles if `on` is false.
            // Use `and` to compute the intersection of `current` and `roles`,
            // `xor` it with `current` to flip the bits in the intersection.
            if iszero(on) { updated := xor(current, and(current, roles)) }
            // Then, store the new value.
            sstore(roleSlot, updated)
            // Emit the {RolesUpdated} event.
            log3(0, 0, _ROLES_UPDATED_EVENT_SIGNATURE, shr(96, mload(0x0c)), updated)
        }
    }

    /// @dev Grants the roles directly without authorization guard.
    /// Each bit of `roles` represents the role to turn on.
    function _grantRoles(address user, uint256 roles) internal virtual {
        _updateRoles(user, roles, true);
    }

    /// @dev Removes the roles directly without authorization guard.
    /// Each bit of `roles` represents the role to turn off.
    function _removeRoles(address user, uint256 roles) internal virtual {
        _updateRoles(user, roles, false);
    }

    /// @dev Throws if the sender does not have any of the `roles`.
    function _checkRoles(uint256 roles) internal view virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the role slot.
            mstore(0x0c, _ROLE_SLOT_SEED)
            mstore(0x00, caller())
            // Load the stored value, and if the `and` intersection
            // of the value and `roles` is zero, revert.
            if iszero(and(sload(keccak256(0x0c, 0x20)), roles)) {
                mstore(0x00, 0x82b42900) // `Unauthorized()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Throws if the sender is not the owner,
    /// and does not have any of the `roles`.
    /// Checks for ownership first, then lazily checks for roles.
    function _checkOwnerOrRoles(uint256 roles) internal view virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // If the caller is not the stored owner.
            // Note: `_ROLE_SLOT_SEED` is equal to `_OWNER_SLOT_NOT`.
            if iszero(eq(caller(), sload(not(_ROLE_SLOT_SEED)))) {
                // Compute the role slot.
                mstore(0x0c, _ROLE_SLOT_SEED)
                mstore(0x00, caller())
                // Load the stored value, and if the `and` intersection
                // of the value and `roles` is zero, revert.
                if iszero(and(sload(keccak256(0x0c, 0x20)), roles)) {
                    mstore(0x00, 0x82b42900) // `Unauthorized()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Throws if the sender does not have any of the `roles`,
    /// and is not the owner.
    /// Checks for roles first, then lazily checks for ownership.
    function _checkRolesOrOwner(uint256 roles) internal view virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the role slot.
            mstore(0x0c, _ROLE_SLOT_SEED)
            mstore(0x00, caller())
            // Load the stored value, and if the `and` intersection
            // of the value and `roles` is zero, revert.
            if iszero(and(sload(keccak256(0x0c, 0x20)), roles)) {
                // If the caller is not the stored owner.
                // Note: `_ROLE_SLOT_SEED` is equal to `_OWNER_SLOT_NOT`.
                if iszero(eq(caller(), sload(not(_ROLE_SLOT_SEED)))) {
                    mstore(0x00, 0x82b42900) // `Unauthorized()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Convenience function to return a `roles` bitmap from an array of `ordinals`.
    /// This is meant for frontends like Etherscan, and is therefore not fully optimized.
    /// Not recommended to be called on-chain.
    /// Made internal to conserve bytecode. Wrap it in a public function if needed.
    function _rolesFromOrdinals(uint8[] memory ordinals) internal pure returns (uint256 roles) {
        /// @solidity memory-safe-assembly
        assembly {
            for { let i := shl(5, mload(ordinals)) } i { i := sub(i, 0x20) } {
                // We don't need to mask the values of `ordinals`, as Solidity
                // cleans dirty upper bits when storing variables into memory.
                roles := or(shl(mload(add(ordinals, i)), 1), roles)
            }
        }
    }

    /// @dev Convenience function to return an array of `ordinals` from the `roles` bitmap.
    /// This is meant for frontends like Etherscan, and is therefore not fully optimized.
    /// Not recommended to be called on-chain.
    /// Made internal to conserve bytecode. Wrap it in a public function if needed.
    function _ordinalsFromRoles(uint256 roles) internal pure returns (uint8[] memory ordinals) {
        /// @solidity memory-safe-assembly
        assembly {
            // Grab the pointer to the free memory.
            ordinals := mload(0x40)
            let ptr := add(ordinals, 0x20)
            let o := 0
            // The absence of lookup tables, De Bruijn, etc., here is intentional for
            // smaller bytecode, as this function is not meant to be called on-chain.
            for { let t := roles } 1 {} {
                mstore(ptr, o)
                // `shr` 5 is equivalent to multiplying by 0x20.
                // Push back into the ordinals array if the bit is set.
                ptr := add(ptr, shl(5, and(t, 1)))
                o := add(o, 1)
                t := shr(o, roles)
                if iszero(t) { break }
            }
            // Store the length of `ordinals`.
            mstore(ordinals, shr(5, sub(ptr, add(ordinals, 0x20))))
            // Allocate the memory.
            mstore(0x40, ptr)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  PUBLIC UPDATE FUNCTIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Allows the owner to grant `user` `roles`.
    /// If the `user` already has a role, then it will be an no-op for the role.
    function grantRoles(address user, uint256 roles) public payable virtual onlyOwner {
        _grantRoles(user, roles);
    }

    /// @dev Allows the owner to remove `user` `roles`.
    /// If the `user` does not have a role, then it will be an no-op for the role.
    function revokeRoles(address user, uint256 roles) public payable virtual onlyOwner {
        _removeRoles(user, roles);
    }

    /// @dev Allow the caller to remove their own roles.
    /// If the caller does not have a role, then it will be an no-op for the role.
    function renounceRoles(uint256 roles) public payable virtual {
        _removeRoles(msg.sender, roles);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   PUBLIC READ FUNCTIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the roles of `user`.
    function rolesOf(address user) public view virtual returns (uint256 roles) {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the role slot.
            mstore(0x0c, _ROLE_SLOT_SEED)
            mstore(0x00, user)
            // Load the stored value.
            roles := sload(keccak256(0x0c, 0x20))
        }
    }

    /// @dev Returns whether `user` has any of `roles`.
    function hasAnyRole(address user, uint256 roles) public view virtual returns (bool) {
        return rolesOf(user) & roles != 0;
    }

    /// @dev Returns whether `user` has all of `roles`.
    function hasAllRoles(address user, uint256 roles) public view virtual returns (bool) {
        return rolesOf(user) & roles == roles;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         MODIFIERS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Marks a function as only callable by an account with `roles`.
    modifier onlyRoles(uint256 roles) virtual {
        _checkRoles(roles);
        _;
    }

    /// @dev Marks a function as only callable by the owner or by an account
    /// with `roles`. Checks for ownership first, then lazily checks for roles.
    modifier onlyOwnerOrRoles(uint256 roles) virtual {
        _checkOwnerOrRoles(roles);
        _;
    }

    /// @dev Marks a function as only callable by an account with `roles`
    /// or the owner. Checks for roles first, then lazily checks for ownership.
    modifier onlyRolesOrOwner(uint256 roles) virtual {
        _checkRolesOrOwner(roles);
        _;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       ROLE CONSTANTS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // IYKYK

    uint256 internal constant _ROLE_0 = 1 << 0;
    uint256 internal constant _ROLE_1 = 1 << 1;
    uint256 internal constant _ROLE_2 = 1 << 2;
    uint256 internal constant _ROLE_3 = 1 << 3;
    uint256 internal constant _ROLE_4 = 1 << 4;
    uint256 internal constant _ROLE_5 = 1 << 5;
    uint256 internal constant _ROLE_6 = 1 << 6;
    uint256 internal constant _ROLE_7 = 1 << 7;
    uint256 internal constant _ROLE_8 = 1 << 8;
    uint256 internal constant _ROLE_9 = 1 << 9;
    uint256 internal constant _ROLE_10 = 1 << 10;
    uint256 internal constant _ROLE_11 = 1 << 11;
    uint256 internal constant _ROLE_12 = 1 << 12;
    uint256 internal constant _ROLE_13 = 1 << 13;
    uint256 internal constant _ROLE_14 = 1 << 14;
    uint256 internal constant _ROLE_15 = 1 << 15;
    uint256 internal constant _ROLE_16 = 1 << 16;
    uint256 internal constant _ROLE_17 = 1 << 17;
    uint256 internal constant _ROLE_18 = 1 << 18;
    uint256 internal constant _ROLE_19 = 1 << 19;
    uint256 internal constant _ROLE_20 = 1 << 20;
    uint256 internal constant _ROLE_21 = 1 << 21;
    uint256 internal constant _ROLE_22 = 1 << 22;
    uint256 internal constant _ROLE_23 = 1 << 23;
    uint256 internal constant _ROLE_24 = 1 << 24;
    uint256 internal constant _ROLE_25 = 1 << 25;
    uint256 internal constant _ROLE_26 = 1 << 26;
    uint256 internal constant _ROLE_27 = 1 << 27;
    uint256 internal constant _ROLE_28 = 1 << 28;
    uint256 internal constant _ROLE_29 = 1 << 29;
    uint256 internal constant _ROLE_30 = 1 << 30;
    uint256 internal constant _ROLE_31 = 1 << 31;
    uint256 internal constant _ROLE_32 = 1 << 32;
    uint256 internal constant _ROLE_33 = 1 << 33;
    uint256 internal constant _ROLE_34 = 1 << 34;
    uint256 internal constant _ROLE_35 = 1 << 35;
    uint256 internal constant _ROLE_36 = 1 << 36;
    uint256 internal constant _ROLE_37 = 1 << 37;
    uint256 internal constant _ROLE_38 = 1 << 38;
    uint256 internal constant _ROLE_39 = 1 << 39;
    uint256 internal constant _ROLE_40 = 1 << 40;
    uint256 internal constant _ROLE_41 = 1 << 41;
    uint256 internal constant _ROLE_42 = 1 << 42;
    uint256 internal constant _ROLE_43 = 1 << 43;
    uint256 internal constant _ROLE_44 = 1 << 44;
    uint256 internal constant _ROLE_45 = 1 << 45;
    uint256 internal constant _ROLE_46 = 1 << 46;
    uint256 internal constant _ROLE_47 = 1 << 47;
    uint256 internal constant _ROLE_48 = 1 << 48;
    uint256 internal constant _ROLE_49 = 1 << 49;
    uint256 internal constant _ROLE_50 = 1 << 50;
    uint256 internal constant _ROLE_51 = 1 << 51;
    uint256 internal constant _ROLE_52 = 1 << 52;
    uint256 internal constant _ROLE_53 = 1 << 53;
    uint256 internal constant _ROLE_54 = 1 << 54;
    uint256 internal constant _ROLE_55 = 1 << 55;
    uint256 internal constant _ROLE_56 = 1 << 56;
    uint256 internal constant _ROLE_57 = 1 << 57;
    uint256 internal constant _ROLE_58 = 1 << 58;
    uint256 internal constant _ROLE_59 = 1 << 59;
    uint256 internal constant _ROLE_60 = 1 << 60;
    uint256 internal constant _ROLE_61 = 1 << 61;
    uint256 internal constant _ROLE_62 = 1 << 62;
    uint256 internal constant _ROLE_63 = 1 << 63;
    uint256 internal constant _ROLE_64 = 1 << 64;
    uint256 internal constant _ROLE_65 = 1 << 65;
    uint256 internal constant _ROLE_66 = 1 << 66;
    uint256 internal constant _ROLE_67 = 1 << 67;
    uint256 internal constant _ROLE_68 = 1 << 68;
    uint256 internal constant _ROLE_69 = 1 << 69;
    uint256 internal constant _ROLE_70 = 1 << 70;
    uint256 internal constant _ROLE_71 = 1 << 71;
    uint256 internal constant _ROLE_72 = 1 << 72;
    uint256 internal constant _ROLE_73 = 1 << 73;
    uint256 internal constant _ROLE_74 = 1 << 74;
    uint256 internal constant _ROLE_75 = 1 << 75;
    uint256 internal constant _ROLE_76 = 1 << 76;
    uint256 internal constant _ROLE_77 = 1 << 77;
    uint256 internal constant _ROLE_78 = 1 << 78;
    uint256 internal constant _ROLE_79 = 1 << 79;
    uint256 internal constant _ROLE_80 = 1 << 80;
    uint256 internal constant _ROLE_81 = 1 << 81;
    uint256 internal constant _ROLE_82 = 1 << 82;
    uint256 internal constant _ROLE_83 = 1 << 83;
    uint256 internal constant _ROLE_84 = 1 << 84;
    uint256 internal constant _ROLE_85 = 1 << 85;
    uint256 internal constant _ROLE_86 = 1 << 86;
    uint256 internal constant _ROLE_87 = 1 << 87;
    uint256 internal constant _ROLE_88 = 1 << 88;
    uint256 internal constant _ROLE_89 = 1 << 89;
    uint256 internal constant _ROLE_90 = 1 << 90;
    uint256 internal constant _ROLE_91 = 1 << 91;
    uint256 internal constant _ROLE_92 = 1 << 92;
    uint256 internal constant _ROLE_93 = 1 << 93;
    uint256 internal constant _ROLE_94 = 1 << 94;
    uint256 internal constant _ROLE_95 = 1 << 95;
    uint256 internal constant _ROLE_96 = 1 << 96;
    uint256 internal constant _ROLE_97 = 1 << 97;
    uint256 internal constant _ROLE_98 = 1 << 98;
    uint256 internal constant _ROLE_99 = 1 << 99;
    uint256 internal constant _ROLE_100 = 1 << 100;
    uint256 internal constant _ROLE_101 = 1 << 101;
    uint256 internal constant _ROLE_102 = 1 << 102;
    uint256 internal constant _ROLE_103 = 1 << 103;
    uint256 internal constant _ROLE_104 = 1 << 104;
    uint256 internal constant _ROLE_105 = 1 << 105;
    uint256 internal constant _ROLE_106 = 1 << 106;
    uint256 internal constant _ROLE_107 = 1 << 107;
    uint256 internal constant _ROLE_108 = 1 << 108;
    uint256 internal constant _ROLE_109 = 1 << 109;
    uint256 internal constant _ROLE_110 = 1 << 110;
    uint256 internal constant _ROLE_111 = 1 << 111;
    uint256 internal constant _ROLE_112 = 1 << 112;
    uint256 internal constant _ROLE_113 = 1 << 113;
    uint256 internal constant _ROLE_114 = 1 << 114;
    uint256 internal constant _ROLE_115 = 1 << 115;
    uint256 internal constant _ROLE_116 = 1 << 116;
    uint256 internal constant _ROLE_117 = 1 << 117;
    uint256 internal constant _ROLE_118 = 1 << 118;
    uint256 internal constant _ROLE_119 = 1 << 119;
    uint256 internal constant _ROLE_120 = 1 << 120;
    uint256 internal constant _ROLE_121 = 1 << 121;
    uint256 internal constant _ROLE_122 = 1 << 122;
    uint256 internal constant _ROLE_123 = 1 << 123;
    uint256 internal constant _ROLE_124 = 1 << 124;
    uint256 internal constant _ROLE_125 = 1 << 125;
    uint256 internal constant _ROLE_126 = 1 << 126;
    uint256 internal constant _ROLE_127 = 1 << 127;
    uint256 internal constant _ROLE_128 = 1 << 128;
    uint256 internal constant _ROLE_129 = 1 << 129;
    uint256 internal constant _ROLE_130 = 1 << 130;
    uint256 internal constant _ROLE_131 = 1 << 131;
    uint256 internal constant _ROLE_132 = 1 << 132;
    uint256 internal constant _ROLE_133 = 1 << 133;
    uint256 internal constant _ROLE_134 = 1 << 134;
    uint256 internal constant _ROLE_135 = 1 << 135;
    uint256 internal constant _ROLE_136 = 1 << 136;
    uint256 internal constant _ROLE_137 = 1 << 137;
    uint256 internal constant _ROLE_138 = 1 << 138;
    uint256 internal constant _ROLE_139 = 1 << 139;
    uint256 internal constant _ROLE_140 = 1 << 140;
    uint256 internal constant _ROLE_141 = 1 << 141;
    uint256 internal constant _ROLE_142 = 1 << 142;
    uint256 internal constant _ROLE_143 = 1 << 143;
    uint256 internal constant _ROLE_144 = 1 << 144;
    uint256 internal constant _ROLE_145 = 1 << 145;
    uint256 internal constant _ROLE_146 = 1 << 146;
    uint256 internal constant _ROLE_147 = 1 << 147;
    uint256 internal constant _ROLE_148 = 1 << 148;
    uint256 internal constant _ROLE_149 = 1 << 149;
    uint256 internal constant _ROLE_150 = 1 << 150;
    uint256 internal constant _ROLE_151 = 1 << 151;
    uint256 internal constant _ROLE_152 = 1 << 152;
    uint256 internal constant _ROLE_153 = 1 << 153;
    uint256 internal constant _ROLE_154 = 1 << 154;
    uint256 internal constant _ROLE_155 = 1 << 155;
    uint256 internal constant _ROLE_156 = 1 << 156;
    uint256 internal constant _ROLE_157 = 1 << 157;
    uint256 internal constant _ROLE_158 = 1 << 158;
    uint256 internal constant _ROLE_159 = 1 << 159;
    uint256 internal constant _ROLE_160 = 1 << 160;
    uint256 internal constant _ROLE_161 = 1 << 161;
    uint256 internal constant _ROLE_162 = 1 << 162;
    uint256 internal constant _ROLE_163 = 1 << 163;
    uint256 internal constant _ROLE_164 = 1 << 164;
    uint256 internal constant _ROLE_165 = 1 << 165;
    uint256 internal constant _ROLE_166 = 1 << 166;
    uint256 internal constant _ROLE_167 = 1 << 167;
    uint256 internal constant _ROLE_168 = 1 << 168;
    uint256 internal constant _ROLE_169 = 1 << 169;
    uint256 internal constant _ROLE_170 = 1 << 170;
    uint256 internal constant _ROLE_171 = 1 << 171;
    uint256 internal constant _ROLE_172 = 1 << 172;
    uint256 internal constant _ROLE_173 = 1 << 173;
    uint256 internal constant _ROLE_174 = 1 << 174;
    uint256 internal constant _ROLE_175 = 1 << 175;
    uint256 internal constant _ROLE_176 = 1 << 176;
    uint256 internal constant _ROLE_177 = 1 << 177;
    uint256 internal constant _ROLE_178 = 1 << 178;
    uint256 internal constant _ROLE_179 = 1 << 179;
    uint256 internal constant _ROLE_180 = 1 << 180;
    uint256 internal constant _ROLE_181 = 1 << 181;
    uint256 internal constant _ROLE_182 = 1 << 182;
    uint256 internal constant _ROLE_183 = 1 << 183;
    uint256 internal constant _ROLE_184 = 1 << 184;
    uint256 internal constant _ROLE_185 = 1 << 185;
    uint256 internal constant _ROLE_186 = 1 << 186;
    uint256 internal constant _ROLE_187 = 1 << 187;
    uint256 internal constant _ROLE_188 = 1 << 188;
    uint256 internal constant _ROLE_189 = 1 << 189;
    uint256 internal constant _ROLE_190 = 1 << 190;
    uint256 internal constant _ROLE_191 = 1 << 191;
    uint256 internal constant _ROLE_192 = 1 << 192;
    uint256 internal constant _ROLE_193 = 1 << 193;
    uint256 internal constant _ROLE_194 = 1 << 194;
    uint256 internal constant _ROLE_195 = 1 << 195;
    uint256 internal constant _ROLE_196 = 1 << 196;
    uint256 internal constant _ROLE_197 = 1 << 197;
    uint256 internal constant _ROLE_198 = 1 << 198;
    uint256 internal constant _ROLE_199 = 1 << 199;
    uint256 internal constant _ROLE_200 = 1 << 200;
    uint256 internal constant _ROLE_201 = 1 << 201;
    uint256 internal constant _ROLE_202 = 1 << 202;
    uint256 internal constant _ROLE_203 = 1 << 203;
    uint256 internal constant _ROLE_204 = 1 << 204;
    uint256 internal constant _ROLE_205 = 1 << 205;
    uint256 internal constant _ROLE_206 = 1 << 206;
    uint256 internal constant _ROLE_207 = 1 << 207;
    uint256 internal constant _ROLE_208 = 1 << 208;
    uint256 internal constant _ROLE_209 = 1 << 209;
    uint256 internal constant _ROLE_210 = 1 << 210;
    uint256 internal constant _ROLE_211 = 1 << 211;
    uint256 internal constant _ROLE_212 = 1 << 212;
    uint256 internal constant _ROLE_213 = 1 << 213;
    uint256 internal constant _ROLE_214 = 1 << 214;
    uint256 internal constant _ROLE_215 = 1 << 215;
    uint256 internal constant _ROLE_216 = 1 << 216;
    uint256 internal constant _ROLE_217 = 1 << 217;
    uint256 internal constant _ROLE_218 = 1 << 218;
    uint256 internal constant _ROLE_219 = 1 << 219;
    uint256 internal constant _ROLE_220 = 1 << 220;
    uint256 internal constant _ROLE_221 = 1 << 221;
    uint256 internal constant _ROLE_222 = 1 << 222;
    uint256 internal constant _ROLE_223 = 1 << 223;
    uint256 internal constant _ROLE_224 = 1 << 224;
    uint256 internal constant _ROLE_225 = 1 << 225;
    uint256 internal constant _ROLE_226 = 1 << 226;
    uint256 internal constant _ROLE_227 = 1 << 227;
    uint256 internal constant _ROLE_228 = 1 << 228;
    uint256 internal constant _ROLE_229 = 1 << 229;
    uint256 internal constant _ROLE_230 = 1 << 230;
    uint256 internal constant _ROLE_231 = 1 << 231;
    uint256 internal constant _ROLE_232 = 1 << 232;
    uint256 internal constant _ROLE_233 = 1 << 233;
    uint256 internal constant _ROLE_234 = 1 << 234;
    uint256 internal constant _ROLE_235 = 1 << 235;
    uint256 internal constant _ROLE_236 = 1 << 236;
    uint256 internal constant _ROLE_237 = 1 << 237;
    uint256 internal constant _ROLE_238 = 1 << 238;
    uint256 internal constant _ROLE_239 = 1 << 239;
    uint256 internal constant _ROLE_240 = 1 << 240;
    uint256 internal constant _ROLE_241 = 1 << 241;
    uint256 internal constant _ROLE_242 = 1 << 242;
    uint256 internal constant _ROLE_243 = 1 << 243;
    uint256 internal constant _ROLE_244 = 1 << 244;
    uint256 internal constant _ROLE_245 = 1 << 245;
    uint256 internal constant _ROLE_246 = 1 << 246;
    uint256 internal constant _ROLE_247 = 1 << 247;
    uint256 internal constant _ROLE_248 = 1 << 248;
    uint256 internal constant _ROLE_249 = 1 << 249;
    uint256 internal constant _ROLE_250 = 1 << 250;
    uint256 internal constant _ROLE_251 = 1 << 251;
    uint256 internal constant _ROLE_252 = 1 << 252;
    uint256 internal constant _ROLE_253 = 1 << 253;
    uint256 internal constant _ROLE_254 = 1 << 254;
    uint256 internal constant _ROLE_255 = 1 << 255;
}

File 5 of 10 : UUPSUpgradeable.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice UUPS proxy mixin.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/UUPSUpgradeable.sol)
/// @author Modified from OpenZeppelin
/// (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/UUPSUpgradeable.sol)
///
/// Note:
/// - This implementation is intended to be used with ERC1967 proxies.
/// See: `LibClone.deployERC1967` and related functions.
/// - This implementation is NOT compatible with legacy OpenZeppelin proxies
/// which do not store the implementation at `_ERC1967_IMPLEMENTATION_SLOT`.
abstract contract UUPSUpgradeable {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The upgrade failed.
    error UpgradeFailed();

    /// @dev The call is from an unauthorized call context.
    error UnauthorizedCallContext();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         IMMUTABLES                         */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev For checking if the context is a delegate call.
    uint256 private immutable __self = uint256(uint160(address(this)));

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           EVENTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Emitted when the proxy's implementation is upgraded.
    event Upgraded(address indexed implementation);

    /// @dev `keccak256(bytes("Upgraded(address)"))`.
    uint256 private constant _UPGRADED_EVENT_SIGNATURE =
        0xbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STORAGE                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The ERC-1967 storage slot for the implementation in the proxy.
    /// `uint256(keccak256("eip1967.proxy.implementation")) - 1`.
    bytes32 internal constant _ERC1967_IMPLEMENTATION_SLOT =
        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      UUPS OPERATIONS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Please override this function to check if `msg.sender` is authorized
    /// to upgrade the proxy to `newImplementation`, reverting if not.
    /// ```
    ///     function _authorizeUpgrade(address) internal override onlyOwner {}
    /// ```
    function _authorizeUpgrade(address newImplementation) internal virtual;

    /// @dev Returns the storage slot used by the implementation,
    /// as specified in [ERC1822](https://eips.ethereum.org/EIPS/eip-1822).
    ///
    /// Note: The `notDelegated` modifier prevents accidental upgrades to
    /// an implementation that is a proxy contract.
    function proxiableUUID() public view virtual notDelegated returns (bytes32) {
        // This function must always return `_ERC1967_IMPLEMENTATION_SLOT` to comply with ERC1967.
        return _ERC1967_IMPLEMENTATION_SLOT;
    }

    /// @dev Upgrades the proxy's implementation to `newImplementation`.
    /// Emits a {Upgraded} event.
    ///
    /// Note: Passing in empty `data` skips the delegatecall to `newImplementation`.
    function upgradeToAndCall(address newImplementation, bytes calldata data)
        public
        payable
        virtual
        onlyProxy
    {
        _authorizeUpgrade(newImplementation);
        /// @solidity memory-safe-assembly
        assembly {
            newImplementation := shr(96, shl(96, newImplementation)) // Clears upper 96 bits.
            mstore(0x01, 0x52d1902d) // `proxiableUUID()`.
            let s := _ERC1967_IMPLEMENTATION_SLOT
            // Check if `newImplementation` implements `proxiableUUID` correctly.
            if iszero(eq(mload(staticcall(gas(), newImplementation, 0x1d, 0x04, 0x01, 0x20)), s)) {
                mstore(0x01, 0x55299b49) // `UpgradeFailed()`.
                revert(0x1d, 0x04)
            }
            // Emit the {Upgraded} event.
            log2(codesize(), 0x00, _UPGRADED_EVENT_SIGNATURE, newImplementation)
            sstore(s, newImplementation) // Updates the implementation.

            // Perform a delegatecall to `newImplementation` if `data` is non-empty.
            if data.length {
                // Forwards the `data` to `newImplementation` via delegatecall.
                let m := mload(0x40)
                calldatacopy(m, data.offset, data.length)
                if iszero(delegatecall(gas(), newImplementation, m, data.length, codesize(), 0x00))
                {
                    // Bubble up the revert if the call reverts.
                    returndatacopy(m, 0x00, returndatasize())
                    revert(m, returndatasize())
                }
            }
        }
    }

    /// @dev Requires that the execution is performed through a proxy.
    modifier onlyProxy() {
        uint256 s = __self;
        /// @solidity memory-safe-assembly
        assembly {
            // To enable use cases with an immutable default implementation in the bytecode,
            // (see: ERC6551Proxy), we don't require that the proxy address must match the
            // value stored in the implementation slot, which may not be initialized.
            if eq(s, address()) {
                mstore(0x00, 0x9f03a026) // `UnauthorizedCallContext()`.
                revert(0x1c, 0x04)
            }
        }
        _;
    }

    /// @dev Requires that the execution is NOT performed via delegatecall.
    /// This is the opposite of `onlyProxy`.
    modifier notDelegated() {
        uint256 s = __self;
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(eq(s, address())) {
                mstore(0x00, 0x9f03a026) // `UnauthorizedCallContext()`.
                revert(0x1c, 0x04)
            }
        }
        _;
    }
}

File 6 of 10 : LibString.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Library for converting numbers into strings and other string operations.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)
///
/// @dev Note:
/// For performance and bytecode compactness, most of the string operations are restricted to
/// byte strings (7-bit ASCII), except where otherwise specified.
/// Usage of byte string operations on charsets with runes spanning two or more bytes
/// can lead to undefined behavior.
library LibString {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                        CUSTOM ERRORS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The length of the output is too small to contain all the hex digits.
    error HexLengthInsufficient();

    /// @dev The length of the string is more than 32 bytes.
    error TooBigForSmallString();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The constant returned when the `search` is not found in the string.
    uint256 internal constant NOT_FOUND = type(uint256).max;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     DECIMAL OPERATIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the base 10 decimal representation of `value`.
    function toString(uint256 value) internal pure returns (string memory str) {
        /// @solidity memory-safe-assembly
        assembly {
            // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
            // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
            // We will need 1 word for the trailing zeros padding, 1 word for the length,
            // and 3 words for a maximum of 78 digits.
            str := add(mload(0x40), 0x80)
            // Update the free memory pointer to allocate.
            mstore(0x40, add(str, 0x20))
            // Zeroize the slot after the string.
            mstore(str, 0)

            // Cache the end of the memory to calculate the length later.
            let end := str

            let w := not(0) // Tsk.
            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for { let temp := value } 1 {} {
                str := add(str, w) // `sub(str, 1)`.
                // Write the character to the pointer.
                // The ASCII index of the '0' character is 48.
                mstore8(str, add(48, mod(temp, 10)))
                // Keep dividing `temp` until zero.
                temp := div(temp, 10)
                if iszero(temp) { break }
            }

            let length := sub(end, str)
            // Move the pointer 32 bytes leftwards to make room for the length.
            str := sub(str, 0x20)
            // Store the length.
            mstore(str, length)
        }
    }

    /// @dev Returns the base 10 decimal representation of `value`.
    function toString(int256 value) internal pure returns (string memory str) {
        if (value >= 0) {
            return toString(uint256(value));
        }
        unchecked {
            str = toString(~uint256(value) + 1);
        }
        /// @solidity memory-safe-assembly
        assembly {
            // We still have some spare memory space on the left,
            // as we have allocated 3 words (96 bytes) for up to 78 digits.
            let length := mload(str) // Load the string length.
            mstore(str, 0x2d) // Store the '-' character.
            str := sub(str, 1) // Move back the string pointer by a byte.
            mstore(str, add(length, 1)) // Update the string length.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   HEXADECIMAL OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the hexadecimal representation of `value`,
    /// left-padded to an input length of `length` bytes.
    /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
    /// giving a total length of `length * 2 + 2` bytes.
    /// Reverts if `length` is too small for the output to contain all the digits.
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value, length);
        /// @solidity memory-safe-assembly
        assembly {
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(str, 0x3078) // Write the "0x" prefix.
            str := sub(str, 2) // Move the pointer.
            mstore(str, strLength) // Write the length.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`,
    /// left-padded to an input length of `length` bytes.
    /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
    /// giving a total length of `length * 2` bytes.
    /// Reverts if `length` is too small for the output to contain all the digits.
    function toHexStringNoPrefix(uint256 value, uint256 length)
        internal
        pure
        returns (string memory str)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes
            // for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length.
            // We add 0x20 to the total and round down to a multiple of 0x20.
            // (0x20 + 0x20 + 0x02 + 0x20) = 0x62.
            str := add(mload(0x40), and(add(shl(1, length), 0x42), not(0x1f)))
            // Allocate the memory.
            mstore(0x40, add(str, 0x20))
            // Zeroize the slot after the string.
            mstore(str, 0)

            // Cache the end to calculate the length later.
            let end := str
            // Store "0123456789abcdef" in scratch space.
            mstore(0x0f, 0x30313233343536373839616263646566)

            let start := sub(str, add(length, length))
            let w := not(1) // Tsk.
            let temp := value
            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for {} 1 {} {
                str := add(str, w) // `sub(str, 2)`.
                mstore8(add(str, 1), mload(and(temp, 15)))
                mstore8(str, mload(and(shr(4, temp), 15)))
                temp := shr(8, temp)
                if iszero(xor(str, start)) { break }
            }

            if temp {
                mstore(0x00, 0x2194895a) // `HexLengthInsufficient()`.
                revert(0x1c, 0x04)
            }

            // Compute the string's length.
            let strLength := sub(end, str)
            // Move the pointer and write the length.
            str := sub(str, 0x20)
            mstore(str, strLength)
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
    /// As address are 20 bytes long, the output will left-padded to have
    /// a length of `20 * 2 + 2` bytes.
    function toHexString(uint256 value) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(str, 0x3078) // Write the "0x" prefix.
            str := sub(str, 2) // Move the pointer.
            mstore(str, strLength) // Write the length.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x".
    /// The output excludes leading "0" from the `toHexString` output.
    /// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`.
    function toMinimalHexString(uint256 value) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(add(str, o), 0x3078) // Write the "0x" prefix, accounting for leading zero.
            str := sub(add(str, o), 2) // Move the pointer, accounting for leading zero.
            mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output excludes leading "0" from the `toHexStringNoPrefix` output.
    /// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`.
    function toMinimalHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
            let strLength := mload(str) // Get the length.
            str := add(str, o) // Move the pointer, accounting for leading zero.
            mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is encoded using 2 hexadecimal digits per byte.
    /// As address are 20 bytes long, the output will left-padded to have
    /// a length of `20 * 2` bytes.
    function toHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
        /// @solidity memory-safe-assembly
        assembly {
            // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
            // 0x02 bytes for the prefix, and 0x40 bytes for the digits.
            // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0.
            str := add(mload(0x40), 0x80)
            // Allocate the memory.
            mstore(0x40, add(str, 0x20))
            // Zeroize the slot after the string.
            mstore(str, 0)

            // Cache the end to calculate the length later.
            let end := str
            // Store "0123456789abcdef" in scratch space.
            mstore(0x0f, 0x30313233343536373839616263646566)

            let w := not(1) // Tsk.
            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for { let temp := value } 1 {} {
                str := add(str, w) // `sub(str, 2)`.
                mstore8(add(str, 1), mload(and(temp, 15)))
                mstore8(str, mload(and(shr(4, temp), 15)))
                temp := shr(8, temp)
                if iszero(temp) { break }
            }

            // Compute the string's length.
            let strLength := sub(end, str)
            // Move the pointer and write the length.
            str := sub(str, 0x20)
            mstore(str, strLength)
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte,
    /// and the alphabets are capitalized conditionally according to
    /// https://eips.ethereum.org/EIPS/eip-55
    function toHexStringChecksummed(address value) internal pure returns (string memory str) {
        str = toHexString(value);
        /// @solidity memory-safe-assembly
        assembly {
            let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...`
            let o := add(str, 0x22)
            let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... `
            let t := shl(240, 136) // `0b10001000 << 240`
            for { let i := 0 } 1 {} {
                mstore(add(i, i), mul(t, byte(i, hashed)))
                i := add(i, 1)
                if eq(i, 20) { break }
            }
            mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask)))))
            o := add(o, 0x20)
            mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask)))))
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
    function toHexString(address value) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(str, 0x3078) // Write the "0x" prefix.
            str := sub(str, 2) // Move the pointer.
            mstore(str, strLength) // Write the length.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is encoded using 2 hexadecimal digits per byte.
    function toHexStringNoPrefix(address value) internal pure returns (string memory str) {
        /// @solidity memory-safe-assembly
        assembly {
            str := mload(0x40)

            // Allocate the memory.
            // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
            // 0x02 bytes for the prefix, and 0x28 bytes for the digits.
            // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80.
            mstore(0x40, add(str, 0x80))

            // Store "0123456789abcdef" in scratch space.
            mstore(0x0f, 0x30313233343536373839616263646566)

            str := add(str, 2)
            mstore(str, 40)

            let o := add(str, 0x20)
            mstore(add(o, 40), 0)

            value := shl(96, value)

            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for { let i := 0 } 1 {} {
                let p := add(o, add(i, i))
                let temp := byte(i, value)
                mstore8(add(p, 1), mload(and(temp, 15)))
                mstore8(p, mload(shr(4, temp)))
                i := add(i, 1)
                if eq(i, 20) { break }
            }
        }
    }

    /// @dev Returns the hex encoded string from the raw bytes.
    /// The output is encoded using 2 hexadecimal digits per byte.
    function toHexString(bytes memory raw) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(raw);
        /// @solidity memory-safe-assembly
        assembly {
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(str, 0x3078) // Write the "0x" prefix.
            str := sub(str, 2) // Move the pointer.
            mstore(str, strLength) // Write the length.
        }
    }

    /// @dev Returns the hex encoded string from the raw bytes.
    /// The output is encoded using 2 hexadecimal digits per byte.
    function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory str) {
        /// @solidity memory-safe-assembly
        assembly {
            let length := mload(raw)
            str := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix.
            mstore(str, add(length, length)) // Store the length of the output.

            // Store "0123456789abcdef" in scratch space.
            mstore(0x0f, 0x30313233343536373839616263646566)

            let o := add(str, 0x20)
            let end := add(raw, length)

            for {} iszero(eq(raw, end)) {} {
                raw := add(raw, 1)
                mstore8(add(o, 1), mload(and(mload(raw), 15)))
                mstore8(o, mload(and(shr(4, mload(raw)), 15)))
                o := add(o, 2)
            }
            mstore(o, 0) // Zeroize the slot after the string.
            mstore(0x40, add(o, 0x20)) // Allocate the memory.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   RUNE STRING OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the number of UTF characters in the string.
    function runeCount(string memory s) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            if mload(s) {
                mstore(0x00, div(not(0), 255))
                mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506)
                let o := add(s, 0x20)
                let end := add(o, mload(s))
                for { result := 1 } 1 { result := add(result, 1) } {
                    o := add(o, byte(0, mload(shr(250, mload(o)))))
                    if iszero(lt(o, end)) { break }
                }
            }
        }
    }

    /// @dev Returns if this string is a 7-bit ASCII string.
    /// (i.e. all characters codes are in [0..127])
    function is7BitASCII(string memory s) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            let mask := shl(7, div(not(0), 255))
            result := 1
            let n := mload(s)
            if n {
                let o := add(s, 0x20)
                let end := add(o, n)
                let last := mload(end)
                mstore(end, 0)
                for {} 1 {} {
                    if and(mask, mload(o)) {
                        result := 0
                        break
                    }
                    o := add(o, 0x20)
                    if iszero(lt(o, end)) { break }
                }
                mstore(end, last)
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   BYTE STRING OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // For performance and bytecode compactness, byte string operations are restricted
    // to 7-bit ASCII strings. All offsets are byte offsets, not UTF character offsets.
    // Usage of byte string operations on charsets with runes spanning two or more bytes
    // can lead to undefined behavior.

    /// @dev Returns `subject` all occurrences of `search` replaced with `replacement`.
    function replace(string memory subject, string memory search, string memory replacement)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            let searchLength := mload(search)
            let replacementLength := mload(replacement)

            subject := add(subject, 0x20)
            search := add(search, 0x20)
            replacement := add(replacement, 0x20)
            result := add(mload(0x40), 0x20)

            let subjectEnd := add(subject, subjectLength)
            if iszero(gt(searchLength, subjectLength)) {
                let subjectSearchEnd := add(sub(subjectEnd, searchLength), 1)
                let h := 0
                if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
                let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                let s := mload(search)
                for {} 1 {} {
                    let t := mload(subject)
                    // Whether the first `searchLength % 32` bytes of
                    // `subject` and `search` matches.
                    if iszero(shr(m, xor(t, s))) {
                        if h {
                            if iszero(eq(keccak256(subject, searchLength), h)) {
                                mstore(result, t)
                                result := add(result, 1)
                                subject := add(subject, 1)
                                if iszero(lt(subject, subjectSearchEnd)) { break }
                                continue
                            }
                        }
                        // Copy the `replacement` one word at a time.
                        for { let o := 0 } 1 {} {
                            mstore(add(result, o), mload(add(replacement, o)))
                            o := add(o, 0x20)
                            if iszero(lt(o, replacementLength)) { break }
                        }
                        result := add(result, replacementLength)
                        subject := add(subject, searchLength)
                        if searchLength {
                            if iszero(lt(subject, subjectSearchEnd)) { break }
                            continue
                        }
                    }
                    mstore(result, t)
                    result := add(result, 1)
                    subject := add(subject, 1)
                    if iszero(lt(subject, subjectSearchEnd)) { break }
                }
            }

            let resultRemainder := result
            result := add(mload(0x40), 0x20)
            let k := add(sub(resultRemainder, result), sub(subjectEnd, subject))
            // Copy the rest of the string one word at a time.
            for {} lt(subject, subjectEnd) {} {
                mstore(resultRemainder, mload(subject))
                resultRemainder := add(resultRemainder, 0x20)
                subject := add(subject, 0x20)
            }
            result := sub(result, 0x20)
            let last := add(add(result, 0x20), k) // Zeroize the slot after the string.
            mstore(last, 0)
            mstore(0x40, add(last, 0x20)) // Allocate the memory.
            mstore(result, k) // Store the length.
        }
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from left to right, starting from `from`.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function indexOf(string memory subject, string memory search, uint256 from)
        internal
        pure
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            for { let subjectLength := mload(subject) } 1 {} {
                if iszero(mload(search)) {
                    if iszero(gt(from, subjectLength)) {
                        result := from
                        break
                    }
                    result := subjectLength
                    break
                }
                let searchLength := mload(search)
                let subjectStart := add(subject, 0x20)

                result := not(0) // Initialize to `NOT_FOUND`.

                subject := add(subjectStart, from)
                let end := add(sub(add(subjectStart, subjectLength), searchLength), 1)

                let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                let s := mload(add(search, 0x20))

                if iszero(and(lt(subject, end), lt(from, subjectLength))) { break }

                if iszero(lt(searchLength, 0x20)) {
                    for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                        if iszero(shr(m, xor(mload(subject), s))) {
                            if eq(keccak256(subject, searchLength), h) {
                                result := sub(subject, subjectStart)
                                break
                            }
                        }
                        subject := add(subject, 1)
                        if iszero(lt(subject, end)) { break }
                    }
                    break
                }
                for {} 1 {} {
                    if iszero(shr(m, xor(mload(subject), s))) {
                        result := sub(subject, subjectStart)
                        break
                    }
                    subject := add(subject, 1)
                    if iszero(lt(subject, end)) { break }
                }
                break
            }
        }
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from left to right.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function indexOf(string memory subject, string memory search)
        internal
        pure
        returns (uint256 result)
    {
        result = indexOf(subject, search, 0);
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from right to left, starting from `from`.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function lastIndexOf(string memory subject, string memory search, uint256 from)
        internal
        pure
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            for {} 1 {} {
                result := not(0) // Initialize to `NOT_FOUND`.
                let searchLength := mload(search)
                if gt(searchLength, mload(subject)) { break }
                let w := result

                let fromMax := sub(mload(subject), searchLength)
                if iszero(gt(fromMax, from)) { from := fromMax }

                let end := add(add(subject, 0x20), w)
                subject := add(add(subject, 0x20), from)
                if iszero(gt(subject, end)) { break }
                // As this function is not too often used,
                // we shall simply use keccak256 for smaller bytecode size.
                for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                    if eq(keccak256(subject, searchLength), h) {
                        result := sub(subject, add(end, 1))
                        break
                    }
                    subject := add(subject, w) // `sub(subject, 1)`.
                    if iszero(gt(subject, end)) { break }
                }
                break
            }
        }
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from right to left.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function lastIndexOf(string memory subject, string memory search)
        internal
        pure
        returns (uint256 result)
    {
        result = lastIndexOf(subject, search, uint256(int256(-1)));
    }

    /// @dev Returns true if `search` is found in `subject`, false otherwise.
    function contains(string memory subject, string memory search) internal pure returns (bool) {
        return indexOf(subject, search) != NOT_FOUND;
    }

    /// @dev Returns whether `subject` starts with `search`.
    function startsWith(string memory subject, string memory search)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let searchLength := mload(search)
            // Just using keccak256 directly is actually cheaper.
            // forgefmt: disable-next-item
            result := and(
                iszero(gt(searchLength, mload(subject))),
                eq(
                    keccak256(add(subject, 0x20), searchLength),
                    keccak256(add(search, 0x20), searchLength)
                )
            )
        }
    }

    /// @dev Returns whether `subject` ends with `search`.
    function endsWith(string memory subject, string memory search)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let searchLength := mload(search)
            let subjectLength := mload(subject)
            // Whether `search` is not longer than `subject`.
            let withinRange := iszero(gt(searchLength, subjectLength))
            // Just using keccak256 directly is actually cheaper.
            // forgefmt: disable-next-item
            result := and(
                withinRange,
                eq(
                    keccak256(
                        // `subject + 0x20 + max(subjectLength - searchLength, 0)`.
                        add(add(subject, 0x20), mul(withinRange, sub(subjectLength, searchLength))),
                        searchLength
                    ),
                    keccak256(add(search, 0x20), searchLength)
                )
            )
        }
    }

    /// @dev Returns `subject` repeated `times`.
    function repeat(string memory subject, uint256 times)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            if iszero(or(iszero(times), iszero(subjectLength))) {
                subject := add(subject, 0x20)
                result := mload(0x40)
                let output := add(result, 0x20)
                for {} 1 {} {
                    // Copy the `subject` one word at a time.
                    for { let o := 0 } 1 {} {
                        mstore(add(output, o), mload(add(subject, o)))
                        o := add(o, 0x20)
                        if iszero(lt(o, subjectLength)) { break }
                    }
                    output := add(output, subjectLength)
                    times := sub(times, 1)
                    if iszero(times) { break }
                }
                mstore(output, 0) // Zeroize the slot after the string.
                let resultLength := sub(output, add(result, 0x20))
                mstore(result, resultLength) // Store the length.
                // Allocate the memory.
                mstore(0x40, add(result, add(resultLength, 0x20)))
            }
        }
    }

    /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
    /// `start` and `end` are byte offsets.
    function slice(string memory subject, uint256 start, uint256 end)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            if iszero(gt(subjectLength, end)) { end := subjectLength }
            if iszero(gt(subjectLength, start)) { start := subjectLength }
            if lt(start, end) {
                result := mload(0x40)
                let resultLength := sub(end, start)
                mstore(result, resultLength)
                subject := add(subject, start)
                let w := not(0x1f)
                // Copy the `subject` one word at a time, backwards.
                for { let o := and(add(resultLength, 0x1f), w) } 1 {} {
                    mstore(add(result, o), mload(add(subject, o)))
                    o := add(o, w) // `sub(o, 0x20)`.
                    if iszero(o) { break }
                }
                // Zeroize the slot after the string.
                mstore(add(add(result, 0x20), resultLength), 0)
                // Allocate memory for the length and the bytes,
                // rounded up to a multiple of 32.
                mstore(0x40, add(result, and(add(resultLength, 0x3f), w)))
            }
        }
    }

    /// @dev Returns a copy of `subject` sliced from `start` to the end of the string.
    /// `start` is a byte offset.
    function slice(string memory subject, uint256 start)
        internal
        pure
        returns (string memory result)
    {
        result = slice(subject, start, uint256(int256(-1)));
    }

    /// @dev Returns all the indices of `search` in `subject`.
    /// The indices are byte offsets.
    function indicesOf(string memory subject, string memory search)
        internal
        pure
        returns (uint256[] memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            let searchLength := mload(search)

            if iszero(gt(searchLength, subjectLength)) {
                subject := add(subject, 0x20)
                search := add(search, 0x20)
                result := add(mload(0x40), 0x20)

                let subjectStart := subject
                let subjectSearchEnd := add(sub(add(subject, subjectLength), searchLength), 1)
                let h := 0
                if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
                let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                let s := mload(search)
                for {} 1 {} {
                    let t := mload(subject)
                    // Whether the first `searchLength % 32` bytes of
                    // `subject` and `search` matches.
                    if iszero(shr(m, xor(t, s))) {
                        if h {
                            if iszero(eq(keccak256(subject, searchLength), h)) {
                                subject := add(subject, 1)
                                if iszero(lt(subject, subjectSearchEnd)) { break }
                                continue
                            }
                        }
                        // Append to `result`.
                        mstore(result, sub(subject, subjectStart))
                        result := add(result, 0x20)
                        // Advance `subject` by `searchLength`.
                        subject := add(subject, searchLength)
                        if searchLength {
                            if iszero(lt(subject, subjectSearchEnd)) { break }
                            continue
                        }
                    }
                    subject := add(subject, 1)
                    if iszero(lt(subject, subjectSearchEnd)) { break }
                }
                let resultEnd := result
                // Assign `result` to the free memory pointer.
                result := mload(0x40)
                // Store the length of `result`.
                mstore(result, shr(5, sub(resultEnd, add(result, 0x20))))
                // Allocate memory for result.
                // We allocate one more word, so this array can be recycled for {split}.
                mstore(0x40, add(resultEnd, 0x20))
            }
        }
    }

    /// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string.
    function split(string memory subject, string memory delimiter)
        internal
        pure
        returns (string[] memory result)
    {
        uint256[] memory indices = indicesOf(subject, delimiter);
        /// @solidity memory-safe-assembly
        assembly {
            let w := not(0x1f)
            let indexPtr := add(indices, 0x20)
            let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1)))
            mstore(add(indicesEnd, w), mload(subject))
            mstore(indices, add(mload(indices), 1))
            let prevIndex := 0
            for {} 1 {} {
                let index := mload(indexPtr)
                mstore(indexPtr, 0x60)
                if iszero(eq(index, prevIndex)) {
                    let element := mload(0x40)
                    let elementLength := sub(index, prevIndex)
                    mstore(element, elementLength)
                    // Copy the `subject` one word at a time, backwards.
                    for { let o := and(add(elementLength, 0x1f), w) } 1 {} {
                        mstore(add(element, o), mload(add(add(subject, prevIndex), o)))
                        o := add(o, w) // `sub(o, 0x20)`.
                        if iszero(o) { break }
                    }
                    // Zeroize the slot after the string.
                    mstore(add(add(element, 0x20), elementLength), 0)
                    // Allocate memory for the length and the bytes,
                    // rounded up to a multiple of 32.
                    mstore(0x40, add(element, and(add(elementLength, 0x3f), w)))
                    // Store the `element` into the array.
                    mstore(indexPtr, element)
                }
                prevIndex := add(index, mload(delimiter))
                indexPtr := add(indexPtr, 0x20)
                if iszero(lt(indexPtr, indicesEnd)) { break }
            }
            result := indices
            if iszero(mload(delimiter)) {
                result := add(indices, 0x20)
                mstore(result, sub(mload(indices), 2))
            }
        }
    }

    /// @dev Returns a concatenated string of `a` and `b`.
    /// Cheaper than `string.concat()` and does not de-align the free memory pointer.
    function concat(string memory a, string memory b)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let w := not(0x1f)
            result := mload(0x40)
            let aLength := mload(a)
            // Copy `a` one word at a time, backwards.
            for { let o := and(add(aLength, 0x20), w) } 1 {} {
                mstore(add(result, o), mload(add(a, o)))
                o := add(o, w) // `sub(o, 0x20)`.
                if iszero(o) { break }
            }
            let bLength := mload(b)
            let output := add(result, aLength)
            // Copy `b` one word at a time, backwards.
            for { let o := and(add(bLength, 0x20), w) } 1 {} {
                mstore(add(output, o), mload(add(b, o)))
                o := add(o, w) // `sub(o, 0x20)`.
                if iszero(o) { break }
            }
            let totalLength := add(aLength, bLength)
            let last := add(add(result, 0x20), totalLength)
            // Zeroize the slot after the string.
            mstore(last, 0)
            // Stores the length.
            mstore(result, totalLength)
            // Allocate memory for the length and the bytes,
            // rounded up to a multiple of 32.
            mstore(0x40, and(add(last, 0x1f), w))
        }
    }

    /// @dev Returns a copy of the string in either lowercase or UPPERCASE.
    /// WARNING! This function is only compatible with 7-bit ASCII strings.
    function toCase(string memory subject, bool toUpper)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let length := mload(subject)
            if length {
                result := add(mload(0x40), 0x20)
                subject := add(subject, 1)
                let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff)
                let w := not(0)
                for { let o := length } 1 {} {
                    o := add(o, w)
                    let b := and(0xff, mload(add(subject, o)))
                    mstore8(add(result, o), xor(b, and(shr(b, flags), 0x20)))
                    if iszero(o) { break }
                }
                result := mload(0x40)
                mstore(result, length) // Store the length.
                let last := add(add(result, 0x20), length)
                mstore(last, 0) // Zeroize the slot after the string.
                mstore(0x40, add(last, 0x20)) // Allocate the memory.
            }
        }
    }

    /// @dev Returns a string from a small bytes32 string.
    /// `s` must be null-terminated, or behavior will be undefined.
    function fromSmallString(bytes32 s) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := mload(0x40)
            let n := 0
            for {} byte(n, s) { n := add(n, 1) } {} // Scan for '\0'.
            mstore(result, n)
            let o := add(result, 0x20)
            mstore(o, s)
            mstore(add(o, n), 0)
            mstore(0x40, add(result, 0x40))
        }
    }

    /// @dev Returns the small string, with all bytes after the first null byte zeroized.
    function normalizeSmallString(bytes32 s) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            for {} byte(result, s) { result := add(result, 1) } {} // Scan for '\0'.
            mstore(0x00, s)
            mstore(result, 0x00)
            result := mload(0x00)
        }
    }

    /// @dev Returns the string as a normalized null-terminated small string.
    function toSmallString(string memory s) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := mload(s)
            if iszero(lt(result, 33)) {
                mstore(0x00, 0xec92f9a3) // `TooBigForSmallString()`.
                revert(0x1c, 0x04)
            }
            result := shl(shl(3, sub(32, result)), mload(add(s, result)))
        }
    }

    /// @dev Returns a lowercased copy of the string.
    /// WARNING! This function is only compatible with 7-bit ASCII strings.
    function lower(string memory subject) internal pure returns (string memory result) {
        result = toCase(subject, false);
    }

    /// @dev Returns an UPPERCASED copy of the string.
    /// WARNING! This function is only compatible with 7-bit ASCII strings.
    function upper(string memory subject) internal pure returns (string memory result) {
        result = toCase(subject, true);
    }

    /// @dev Escapes the string to be used within HTML tags.
    function escapeHTML(string memory s) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            let end := add(s, mload(s))
            result := add(mload(0x40), 0x20)
            // Store the bytes of the packed offsets and strides into the scratch space.
            // `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6.
            mstore(0x1f, 0x900094)
            mstore(0x08, 0xc0000000a6ab)
            // Store "&quot;&amp;&#39;&lt;&gt;" into the scratch space.
            mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b))
            for {} iszero(eq(s, end)) {} {
                s := add(s, 1)
                let c := and(mload(s), 0xff)
                // Not in `["\"","'","&","<",">"]`.
                if iszero(and(shl(c, 1), 0x500000c400000000)) {
                    mstore8(result, c)
                    result := add(result, 1)
                    continue
                }
                let t := shr(248, mload(c))
                mstore(result, mload(and(t, 0x1f)))
                result := add(result, shr(5, t))
            }
            let last := result
            mstore(last, 0) // Zeroize the slot after the string.
            result := mload(0x40)
            mstore(result, sub(last, add(result, 0x20))) // Store the length.
            mstore(0x40, add(last, 0x20)) // Allocate the memory.
        }
    }

    /// @dev Escapes the string to be used within double-quotes in a JSON.
    /// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes.
    function escapeJSON(string memory s, bool addDoubleQuotes)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let end := add(s, mload(s))
            result := add(mload(0x40), 0x20)
            if addDoubleQuotes {
                mstore8(result, 34)
                result := add(1, result)
            }
            // Store "\\u0000" in scratch space.
            // Store "0123456789abcdef" in scratch space.
            // Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`.
            // into the scratch space.
            mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672)
            // Bitmask for detecting `["\"","\\"]`.
            let e := or(shl(0x22, 1), shl(0x5c, 1))
            for {} iszero(eq(s, end)) {} {
                s := add(s, 1)
                let c := and(mload(s), 0xff)
                if iszero(lt(c, 0x20)) {
                    if iszero(and(shl(c, 1), e)) {
                        // Not in `["\"","\\"]`.
                        mstore8(result, c)
                        result := add(result, 1)
                        continue
                    }
                    mstore8(result, 0x5c) // "\\".
                    mstore8(add(result, 1), c)
                    result := add(result, 2)
                    continue
                }
                if iszero(and(shl(c, 1), 0x3700)) {
                    // Not in `["\b","\t","\n","\f","\d"]`.
                    mstore8(0x1d, mload(shr(4, c))) // Hex value.
                    mstore8(0x1e, mload(and(c, 15))) // Hex value.
                    mstore(result, mload(0x19)) // "\\u00XX".
                    result := add(result, 6)
                    continue
                }
                mstore8(result, 0x5c) // "\\".
                mstore8(add(result, 1), mload(add(c, 8)))
                result := add(result, 2)
            }
            if addDoubleQuotes {
                mstore8(result, 34)
                result := add(1, result)
            }
            let last := result
            mstore(last, 0) // Zeroize the slot after the string.
            result := mload(0x40)
            mstore(result, sub(last, add(result, 0x20))) // Store the length.
            mstore(0x40, add(last, 0x20)) // Allocate the memory.
        }
    }

    /// @dev Escapes the string to be used within double-quotes in a JSON.
    function escapeJSON(string memory s) internal pure returns (string memory result) {
        result = escapeJSON(s, false);
    }

    /// @dev Returns whether `a` equals `b`.
    function eq(string memory a, string memory b) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b)))
        }
    }

    /// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small string.
    function eqs(string memory a, bytes32 b) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            // These should be evaluated on compile time, as far as possible.
            let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`.
            let x := not(or(m, or(b, add(m, and(b, m)))))
            let r := shl(7, iszero(iszero(shr(128, x))))
            r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x))))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))),
                xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20)))))
        }
    }

    /// @dev Packs a single string with its length into a single word.
    /// Returns `bytes32(0)` if the length is zero or greater than 31.
    function packOne(string memory a) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            // We don't need to zero right pad the string,
            // since this is our own custom non-standard packing scheme.
            result :=
                mul(
                    // Load the length and the bytes.
                    mload(add(a, 0x1f)),
                    // `length != 0 && length < 32`. Abuses underflow.
                    // Assumes that the length is valid and within the block gas limit.
                    lt(sub(mload(a), 1), 0x1f)
                )
        }
    }

    /// @dev Unpacks a string packed using {packOne}.
    /// Returns the empty string if `packed` is `bytes32(0)`.
    /// If `packed` is not an output of {packOne}, the output behavior is undefined.
    function unpackOne(bytes32 packed) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            // Grab the free memory pointer.
            result := mload(0x40)
            // Allocate 2 words (1 for the length, 1 for the bytes).
            mstore(0x40, add(result, 0x40))
            // Zeroize the length slot.
            mstore(result, 0)
            // Store the length and bytes.
            mstore(add(result, 0x1f), packed)
            // Right pad with zeroes.
            mstore(add(add(result, 0x20), mload(result)), 0)
        }
    }

    /// @dev Packs two strings with their lengths into a single word.
    /// Returns `bytes32(0)` if combined length is zero or greater than 30.
    function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let aLength := mload(a)
            // We don't need to zero right pad the strings,
            // since this is our own custom non-standard packing scheme.
            result :=
                mul(
                    // Load the length and the bytes of `a` and `b`.
                    or(
                        shl(shl(3, sub(0x1f, aLength)), mload(add(a, aLength))),
                        mload(sub(add(b, 0x1e), aLength))
                    ),
                    // `totalLength != 0 && totalLength < 31`. Abuses underflow.
                    // Assumes that the lengths are valid and within the block gas limit.
                    lt(sub(add(aLength, mload(b)), 1), 0x1e)
                )
        }
    }

    /// @dev Unpacks strings packed using {packTwo}.
    /// Returns the empty strings if `packed` is `bytes32(0)`.
    /// If `packed` is not an output of {packTwo}, the output behavior is undefined.
    function unpackTwo(bytes32 packed)
        internal
        pure
        returns (string memory resultA, string memory resultB)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Grab the free memory pointer.
            resultA := mload(0x40)
            resultB := add(resultA, 0x40)
            // Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words.
            mstore(0x40, add(resultB, 0x40))
            // Zeroize the length slots.
            mstore(resultA, 0)
            mstore(resultB, 0)
            // Store the lengths and bytes.
            mstore(add(resultA, 0x1f), packed)
            mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA))))
            // Right pad with zeroes.
            mstore(add(add(resultA, 0x20), mload(resultA)), 0)
            mstore(add(add(resultB, 0x20), mload(resultB)), 0)
        }
    }

    /// @dev Directly returns `a` without copying.
    function directReturn(string memory a) internal pure {
        assembly {
            // Assumes that the string does not start from the scratch space.
            let retStart := sub(a, 0x20)
            let retSize := add(mload(a), 0x40)
            // Right pad with zeroes. Just in case the string is produced
            // by a method that doesn't zero right pad.
            mstore(add(retStart, retSize), 0)
            // Store the return offset.
            mstore(retStart, 0x20)
            // End the transaction, returning the string.
            return(retStart, retSize)
        }
    }
}

File 7 of 10 : SafeTransferLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeTransferLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
///
/// @dev Note:
/// - For ETH transfers, please use `forceSafeTransferETH` for DoS protection.
/// - For ERC20s, this implementation won't check that a token has code,
///   responsibility is delegated to the caller.
library SafeTransferLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The ETH transfer has failed.
    error ETHTransferFailed();

    /// @dev The ERC20 `transferFrom` has failed.
    error TransferFromFailed();

    /// @dev The ERC20 `transfer` has failed.
    error TransferFailed();

    /// @dev The ERC20 `approve` has failed.
    error ApproveFailed();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Suggested gas stipend for contract receiving ETH that disallows any storage writes.
    uint256 internal constant GAS_STIPEND_NO_STORAGE_WRITES = 2300;

    /// @dev Suggested gas stipend for contract receiving ETH to perform a few
    /// storage reads and writes, but low enough to prevent griefing.
    uint256 internal constant GAS_STIPEND_NO_GRIEF = 100000;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       ETH OPERATIONS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // If the ETH transfer MUST succeed with a reasonable gas budget, use the force variants.
    //
    // The regular variants:
    // - Forwards all remaining gas to the target.
    // - Reverts if the target reverts.
    // - Reverts if the current contract has insufficient balance.
    //
    // The force variants:
    // - Forwards with an optional gas stipend
    //   (defaults to `GAS_STIPEND_NO_GRIEF`, which is sufficient for most cases).
    // - If the target reverts, or if the gas stipend is exhausted,
    //   creates a temporary contract to force send the ETH via `SELFDESTRUCT`.
    //   Future compatible with `SENDALL`: https://eips.ethereum.org/EIPS/eip-4758.
    // - Reverts if the current contract has insufficient balance.
    //
    // The try variants:
    // - Forwards with a mandatory gas stipend.
    // - Instead of reverting, returns whether the transfer succeeded.

    /// @dev Sends `amount` (in wei) ETH to `to`.
    function safeTransferETH(address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(call(gas(), to, amount, codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Sends all the ETH in the current contract to `to`.
    function safeTransferAllETH(address to) internal {
        /// @solidity memory-safe-assembly
        assembly {
            // Transfer all the ETH and check if it succeeded or not.
            if iszero(call(gas(), to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Force sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
    function forceSafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if lt(selfbalance(), amount) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
            if iszero(call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Force sends all the ETH in the current contract to `to`, with a `gasStipend`.
    function forceSafeTransferAllETH(address to, uint256 gasStipend) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Force sends `amount` (in wei) ETH to `to`, with `GAS_STIPEND_NO_GRIEF`.
    function forceSafeTransferETH(address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if lt(selfbalance(), amount) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
            if iszero(call(GAS_STIPEND_NO_GRIEF, to, amount, codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Force sends all the ETH in the current contract to `to`, with `GAS_STIPEND_NO_GRIEF`.
    function forceSafeTransferAllETH(address to) internal {
        /// @solidity memory-safe-assembly
        assembly {
            // forgefmt: disable-next-item
            if iszero(call(GAS_STIPEND_NO_GRIEF, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
    function trySafeTransferETH(address to, uint256 amount, uint256 gasStipend)
        internal
        returns (bool success)
    {
        /// @solidity memory-safe-assembly
        assembly {
            success := call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)
        }
    }

    /// @dev Sends all the ETH in the current contract to `to`, with a `gasStipend`.
    function trySafeTransferAllETH(address to, uint256 gasStipend)
        internal
        returns (bool success)
    {
        /// @solidity memory-safe-assembly
        assembly {
            success := call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      ERC20 OPERATIONS                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
    /// Reverts upon failure.
    ///
    /// The `from` account must have at least `amount` approved for
    /// the current contract to manage.
    function safeTransferFrom(address token, address from, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, amount) // Store the `amount` argument.
            mstore(0x40, to) // Store the `to` argument.
            mstore(0x2c, shl(96, from)) // Store the `from` argument.
            mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`.
            // Perform the transfer, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
                )
            ) {
                mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x60, 0) // Restore the zero slot to zero.
            mstore(0x40, m) // Restore the free memory pointer.
        }
    }

    /// @dev Sends all of ERC20 `token` from `from` to `to`.
    /// Reverts upon failure.
    ///
    /// The `from` account must have their entire balance approved for
    /// the current contract to manage.
    function safeTransferAllFrom(address token, address from, address to)
        internal
        returns (uint256 amount)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x40, to) // Store the `to` argument.
            mstore(0x2c, shl(96, from)) // Store the `from` argument.
            mstore(0x0c, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
            // Read the balance, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                    staticcall(gas(), token, 0x1c, 0x24, 0x60, 0x20)
                )
            ) {
                mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x00, 0x23b872dd) // `transferFrom(address,address,uint256)`.
            amount := mload(0x60) // The `amount` is already at 0x60. We'll need to return it.
            // Perform the transfer, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
                )
            ) {
                mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x60, 0) // Restore the zero slot to zero.
            mstore(0x40, m) // Restore the free memory pointer.
        }
    }

    /// @dev Sends `amount` of ERC20 `token` from the current contract to `to`.
    /// Reverts upon failure.
    function safeTransfer(address token, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, to) // Store the `to` argument.
            mstore(0x34, amount) // Store the `amount` argument.
            mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
            // Perform the transfer, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                )
            ) {
                mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Sends all of ERC20 `token` from the current contract to `to`.
    /// Reverts upon failure.
    function safeTransferAll(address token, address to) internal returns (uint256 amount) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, 0x70a08231) // Store the function selector of `balanceOf(address)`.
            mstore(0x20, address()) // Store the address of the current contract.
            // Read the balance, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                    staticcall(gas(), token, 0x1c, 0x24, 0x34, 0x20)
                )
            ) {
                mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x14, to) // Store the `to` argument.
            amount := mload(0x34) // The `amount` is already at 0x34. We'll need to return it.
            mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
            // Perform the transfer, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                )
            ) {
                mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
    /// Reverts upon failure.
    function safeApprove(address token, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, to) // Store the `to` argument.
            mstore(0x34, amount) // Store the `amount` argument.
            mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
            // Perform the approval, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                )
            ) {
                mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
    /// If the initial attempt to approve fails, attempts to reset the approved amount to zero,
    /// then retries the approval again (some tokens, e.g. USDT, requires this).
    /// Reverts upon failure.
    function safeApproveWithRetry(address token, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, to) // Store the `to` argument.
            mstore(0x34, amount) // Store the `amount` argument.
            mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
            // Perform the approval, retrying upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                )
            ) {
                mstore(0x34, 0) // Store 0 for the `amount`.
                mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
                pop(call(gas(), token, 0, 0x10, 0x44, codesize(), 0x00)) // Reset the approval.
                mstore(0x34, amount) // Store back the original `amount`.
                // Retry the approval, reverting upon failure.
                if iszero(
                    and(
                        or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                        call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                    )
                ) {
                    mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Returns the amount of ERC20 `token` owned by `account`.
    /// Returns zero if the `token` does not exist.
    function balanceOf(address token, address account) internal view returns (uint256 amount) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, account) // Store the `account` argument.
            mstore(0x00, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
            amount :=
                mul(
                    mload(0x20),
                    and( // The arguments of `and` are evaluated from right to left.
                        gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                        staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20)
                    )
                )
        }
    }
}

File 8 of 10 : LibBitmap.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

import {LibBit} from "./LibBit.sol";

/// @notice Library for storage of packed unsigned booleans.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibBitmap.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibBitmap.sol)
/// @author Modified from Solidity-Bits (https://github.com/estarriolvetch/solidity-bits/blob/main/contracts/BitMaps.sol)
library LibBitmap {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The constant returned when a bitmap scan does not find a result.
    uint256 internal constant NOT_FOUND = type(uint256).max;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STRUCTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev A bitmap in storage.
    struct Bitmap {
        mapping(uint256 => uint256) map;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         OPERATIONS                         */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the boolean value of the bit at `index` in `bitmap`.
    function get(Bitmap storage bitmap, uint256 index) internal view returns (bool isSet) {
        // It is better to set `isSet` to either 0 or 1, than zero vs non-zero.
        // Both cost the same amount of gas, but the former allows the returned value
        // to be reused without cleaning the upper bits.
        uint256 b = (bitmap.map[index >> 8] >> (index & 0xff)) & 1;
        /// @solidity memory-safe-assembly
        assembly {
            isSet := b
        }
    }

    /// @dev Updates the bit at `index` in `bitmap` to true.
    function set(Bitmap storage bitmap, uint256 index) internal {
        bitmap.map[index >> 8] |= (1 << (index & 0xff));
    }

    /// @dev Updates the bit at `index` in `bitmap` to false.
    function unset(Bitmap storage bitmap, uint256 index) internal {
        bitmap.map[index >> 8] &= ~(1 << (index & 0xff));
    }

    /// @dev Flips the bit at `index` in `bitmap`.
    /// Returns the boolean result of the flipped bit.
    function toggle(Bitmap storage bitmap, uint256 index) internal returns (bool newIsSet) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x20, bitmap.slot)
            mstore(0x00, shr(8, index))
            let storageSlot := keccak256(0x00, 0x40)
            let shift := and(index, 0xff)
            let storageValue := xor(sload(storageSlot), shl(shift, 1))
            // It makes sense to return the `newIsSet`,
            // as it allow us to skip an additional warm `sload`,
            // and it costs minimal gas (about 15),
            // which may be optimized away if the returned value is unused.
            newIsSet := and(1, shr(shift, storageValue))
            sstore(storageSlot, storageValue)
        }
    }

    /// @dev Updates the bit at `index` in `bitmap` to `shouldSet`.
    function setTo(Bitmap storage bitmap, uint256 index, bool shouldSet) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x20, bitmap.slot)
            mstore(0x00, shr(8, index))
            let storageSlot := keccak256(0x00, 0x40)
            let storageValue := sload(storageSlot)
            let shift := and(index, 0xff)
            sstore(
                storageSlot,
                // Unsets the bit at `shift` via `and`, then sets its new value via `or`.
                or(and(storageValue, not(shl(shift, 1))), shl(shift, iszero(iszero(shouldSet))))
            )
        }
    }

    /// @dev Consecutively sets `amount` of bits starting from the bit at `start`.
    function setBatch(Bitmap storage bitmap, uint256 start, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            let max := not(0)
            let shift := and(start, 0xff)
            mstore(0x20, bitmap.slot)
            mstore(0x00, shr(8, start))
            if iszero(lt(add(shift, amount), 257)) {
                let storageSlot := keccak256(0x00, 0x40)
                sstore(storageSlot, or(sload(storageSlot), shl(shift, max)))
                let bucket := add(mload(0x00), 1)
                let bucketEnd := add(mload(0x00), shr(8, add(amount, shift)))
                amount := and(add(amount, shift), 0xff)
                shift := 0
                for {} iszero(eq(bucket, bucketEnd)) { bucket := add(bucket, 1) } {
                    mstore(0x00, bucket)
                    sstore(keccak256(0x00, 0x40), max)
                }
                mstore(0x00, bucket)
            }
            let storageSlot := keccak256(0x00, 0x40)
            sstore(storageSlot, or(sload(storageSlot), shl(shift, shr(sub(256, amount), max))))
        }
    }

    /// @dev Consecutively unsets `amount` of bits starting from the bit at `start`.
    function unsetBatch(Bitmap storage bitmap, uint256 start, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            let shift := and(start, 0xff)
            mstore(0x20, bitmap.slot)
            mstore(0x00, shr(8, start))
            if iszero(lt(add(shift, amount), 257)) {
                let storageSlot := keccak256(0x00, 0x40)
                sstore(storageSlot, and(sload(storageSlot), not(shl(shift, not(0)))))
                let bucket := add(mload(0x00), 1)
                let bucketEnd := add(mload(0x00), shr(8, add(amount, shift)))
                amount := and(add(amount, shift), 0xff)
                shift := 0
                for {} iszero(eq(bucket, bucketEnd)) { bucket := add(bucket, 1) } {
                    mstore(0x00, bucket)
                    sstore(keccak256(0x00, 0x40), 0)
                }
                mstore(0x00, bucket)
            }
            let storageSlot := keccak256(0x00, 0x40)
            sstore(
                storageSlot, and(sload(storageSlot), not(shl(shift, shr(sub(256, amount), not(0)))))
            )
        }
    }

    /// @dev Returns number of set bits within a range by
    /// scanning `amount` of bits starting from the bit at `start`.
    function popCount(Bitmap storage bitmap, uint256 start, uint256 amount)
        internal
        view
        returns (uint256 count)
    {
        unchecked {
            uint256 bucket = start >> 8;
            uint256 shift = start & 0xff;
            if (!(amount + shift < 257)) {
                count = LibBit.popCount(bitmap.map[bucket] >> shift);
                uint256 bucketEnd = bucket + ((amount + shift) >> 8);
                amount = (amount + shift) & 0xff;
                shift = 0;
                for (++bucket; bucket != bucketEnd; ++bucket) {
                    count += LibBit.popCount(bitmap.map[bucket]);
                }
            }
            count += LibBit.popCount((bitmap.map[bucket] >> shift) << (256 - amount));
        }
    }

    /// @dev Returns the index of the most significant set bit before the bit at `before`.
    /// If no set bit is found, returns `NOT_FOUND`.
    function findLastSet(Bitmap storage bitmap, uint256 before)
        internal
        view
        returns (uint256 setBitIndex)
    {
        uint256 bucket;
        uint256 bucketBits;
        /// @solidity memory-safe-assembly
        assembly {
            setBitIndex := not(0)
            bucket := shr(8, before)
            mstore(0x00, bucket)
            mstore(0x20, bitmap.slot)
            let offset := and(0xff, not(before)) // `256 - (255 & before) - 1`.
            bucketBits := shr(offset, shl(offset, sload(keccak256(0x00, 0x40))))
            if iszero(or(bucketBits, iszero(bucket))) {
                for {} 1 {} {
                    bucket := add(bucket, setBitIndex) // `sub(bucket, 1)`.
                    mstore(0x00, bucket)
                    bucketBits := sload(keccak256(0x00, 0x40))
                    if or(bucketBits, iszero(bucket)) { break }
                }
            }
        }
        if (bucketBits != 0) {
            setBitIndex = (bucket << 8) | LibBit.fls(bucketBits);
            /// @solidity memory-safe-assembly
            assembly {
                setBitIndex := or(setBitIndex, sub(0, gt(setBitIndex, before)))
            }
        }
    }
}

File 9 of 10 : Ownable.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Simple single owner authorization mixin.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/Ownable.sol)
///
/// @dev Note:
/// This implementation does NOT auto-initialize the owner to `msg.sender`.
/// You MUST call the `_initializeOwner` in the constructor / initializer.
///
/// While the ownable portion follows
/// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility,
/// the nomenclature for the 2-step ownership handover may be unique to this codebase.
abstract contract Ownable {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The caller is not authorized to call the function.
    error Unauthorized();

    /// @dev The `newOwner` cannot be the zero address.
    error NewOwnerIsZeroAddress();

    /// @dev The `pendingOwner` does not have a valid handover request.
    error NoHandoverRequest();

    /// @dev Cannot double-initialize.
    error AlreadyInitialized();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           EVENTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The ownership is transferred from `oldOwner` to `newOwner`.
    /// This event is intentionally kept the same as OpenZeppelin's Ownable to be
    /// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173),
    /// despite it not being as lightweight as a single argument event.
    event OwnershipTransferred(address indexed oldOwner, address indexed newOwner);

    /// @dev An ownership handover to `pendingOwner` has been requested.
    event OwnershipHandoverRequested(address indexed pendingOwner);

    /// @dev The ownership handover to `pendingOwner` has been canceled.
    event OwnershipHandoverCanceled(address indexed pendingOwner);

    /// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`.
    uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE =
        0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0;

    /// @dev `keccak256(bytes("OwnershipHandoverRequested(address)"))`.
    uint256 private constant _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE =
        0xdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d;

    /// @dev `keccak256(bytes("OwnershipHandoverCanceled(address)"))`.
    uint256 private constant _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE =
        0xfa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c92;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STORAGE                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The owner slot is given by:
    /// `bytes32(~uint256(uint32(bytes4(keccak256("_OWNER_SLOT_NOT")))))`.
    /// It is intentionally chosen to be a high value
    /// to avoid collision with lower slots.
    /// The choice of manual storage layout is to enable compatibility
    /// with both regular and upgradeable contracts.
    bytes32 internal constant _OWNER_SLOT =
        0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff74873927;

    /// The ownership handover slot of `newOwner` is given by:
    /// ```
    ///     mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED))
    ///     let handoverSlot := keccak256(0x00, 0x20)
    /// ```
    /// It stores the expiry timestamp of the two-step ownership handover.
    uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     INTERNAL FUNCTIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Override to return true to make `_initializeOwner` prevent double-initialization.
    function _guardInitializeOwner() internal pure virtual returns (bool guard) {}

    /// @dev Initializes the owner directly without authorization guard.
    /// This function must be called upon initialization,
    /// regardless of whether the contract is upgradeable or not.
    /// This is to enable generalization to both regular and upgradeable contracts,
    /// and to save gas in case the initial owner is not the caller.
    /// For performance reasons, this function will not check if there
    /// is an existing owner.
    function _initializeOwner(address newOwner) internal virtual {
        if (_guardInitializeOwner()) {
            /// @solidity memory-safe-assembly
            assembly {
                let ownerSlot := _OWNER_SLOT
                if sload(ownerSlot) {
                    mstore(0x00, 0x0dc149f0) // `AlreadyInitialized()`.
                    revert(0x1c, 0x04)
                }
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Store the new value.
                sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
            }
        } else {
            /// @solidity memory-safe-assembly
            assembly {
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Store the new value.
                sstore(_OWNER_SLOT, newOwner)
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
            }
        }
    }

    /// @dev Sets the owner directly without authorization guard.
    function _setOwner(address newOwner) internal virtual {
        if (_guardInitializeOwner()) {
            /// @solidity memory-safe-assembly
            assembly {
                let ownerSlot := _OWNER_SLOT
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
                // Store the new value.
                sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
            }
        } else {
            /// @solidity memory-safe-assembly
            assembly {
                let ownerSlot := _OWNER_SLOT
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
                // Store the new value.
                sstore(ownerSlot, newOwner)
            }
        }
    }

    /// @dev Throws if the sender is not the owner.
    function _checkOwner() internal view virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // If the caller is not the stored owner, revert.
            if iszero(eq(caller(), sload(_OWNER_SLOT))) {
                mstore(0x00, 0x82b42900) // `Unauthorized()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Returns how long a two-step ownership handover is valid for in seconds.
    /// Override to return a different value if needed.
    /// Made internal to conserve bytecode. Wrap it in a public function if needed.
    function _ownershipHandoverValidFor() internal view virtual returns (uint64) {
        return 48 * 3600;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  PUBLIC UPDATE FUNCTIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Allows the owner to transfer the ownership to `newOwner`.
    function transferOwnership(address newOwner) public payable virtual onlyOwner {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(shl(96, newOwner)) {
                mstore(0x00, 0x7448fbae) // `NewOwnerIsZeroAddress()`.
                revert(0x1c, 0x04)
            }
        }
        _setOwner(newOwner);
    }

    /// @dev Allows the owner to renounce their ownership.
    function renounceOwnership() public payable virtual onlyOwner {
        _setOwner(address(0));
    }

    /// @dev Request a two-step ownership handover to the caller.
    /// The request will automatically expire in 48 hours (172800 seconds) by default.
    function requestOwnershipHandover() public payable virtual {
        unchecked {
            uint256 expires = block.timestamp + _ownershipHandoverValidFor();
            /// @solidity memory-safe-assembly
            assembly {
                // Compute and set the handover slot to `expires`.
                mstore(0x0c, _HANDOVER_SLOT_SEED)
                mstore(0x00, caller())
                sstore(keccak256(0x0c, 0x20), expires)
                // Emit the {OwnershipHandoverRequested} event.
                log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller())
            }
        }
    }

    /// @dev Cancels the two-step ownership handover to the caller, if any.
    function cancelOwnershipHandover() public payable virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute and set the handover slot to 0.
            mstore(0x0c, _HANDOVER_SLOT_SEED)
            mstore(0x00, caller())
            sstore(keccak256(0x0c, 0x20), 0)
            // Emit the {OwnershipHandoverCanceled} event.
            log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller())
        }
    }

    /// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`.
    /// Reverts if there is no existing ownership handover requested by `pendingOwner`.
    function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute and set the handover slot to 0.
            mstore(0x0c, _HANDOVER_SLOT_SEED)
            mstore(0x00, pendingOwner)
            let handoverSlot := keccak256(0x0c, 0x20)
            // If the handover does not exist, or has expired.
            if gt(timestamp(), sload(handoverSlot)) {
                mstore(0x00, 0x6f5e8818) // `NoHandoverRequest()`.
                revert(0x1c, 0x04)
            }
            // Set the handover slot to 0.
            sstore(handoverSlot, 0)
        }
        _setOwner(pendingOwner);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   PUBLIC READ FUNCTIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the owner of the contract.
    function owner() public view virtual returns (address result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := sload(_OWNER_SLOT)
        }
    }

    /// @dev Returns the expiry timestamp for the two-step ownership handover to `pendingOwner`.
    function ownershipHandoverExpiresAt(address pendingOwner)
        public
        view
        virtual
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the handover slot.
            mstore(0x0c, _HANDOVER_SLOT_SEED)
            mstore(0x00, pendingOwner)
            // Load the handover slot.
            result := sload(keccak256(0x0c, 0x20))
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         MODIFIERS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Marks a function as only callable by the owner.
    modifier onlyOwner() virtual {
        _checkOwner();
        _;
    }
}

File 10 of 10 : LibBit.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Library for bit twiddling and boolean operations.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibBit.sol)
/// @author Inspired by (https://graphics.stanford.edu/~seander/bithacks.html)
library LibBit {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  BIT TWIDDLING OPERATIONS                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Find last set.
    /// Returns the index of the most significant bit of `x`,
    /// counting from the least significant bit position.
    /// If `x` is zero, returns 256.
    function fls(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := or(shl(8, iszero(x)), shl(7, lt(0xffffffffffffffffffffffffffffffff, x)))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0x0706060506020504060203020504030106050205030304010505030400000000))
        }
    }

    /// @dev Count leading zeros.
    /// Returns the number of zeros preceding the most significant one bit.
    /// If `x` is zero, returns 256.
    function clz(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            r := add(xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff)), iszero(x))
        }
    }

    /// @dev Find first set.
    /// Returns the index of the least significant bit of `x`,
    /// counting from the least significant bit position.
    /// If `x` is zero, returns 256.
    /// Equivalent to `ctz` (count trailing zeros), which gives
    /// the number of zeros following the least significant one bit.
    function ffs(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // Isolate the least significant bit.
            let b := and(x, add(not(x), 1))

            r := or(shl(8, iszero(x)), shl(7, lt(0xffffffffffffffffffffffffffffffff, b)))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, b))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, b))))

            // For the remaining 32 bits, use a De Bruijn lookup.
            // forgefmt: disable-next-item
            r := or(r, byte(and(div(0xd76453e0, shr(r, b)), 0x1f),
                0x001f0d1e100c1d070f090b19131c1706010e11080a1a141802121b1503160405))
        }
    }

    /// @dev Returns the number of set bits in `x`.
    function popCount(uint256 x) internal pure returns (uint256 c) {
        /// @solidity memory-safe-assembly
        assembly {
            let max := not(0)
            let isMax := eq(x, max)
            x := sub(x, and(shr(1, x), div(max, 3)))
            x := add(and(x, div(max, 5)), and(shr(2, x), div(max, 5)))
            x := and(add(x, shr(4, x)), div(max, 17))
            c := or(shl(8, isMax), shr(248, mul(x, div(max, 255))))
        }
    }

    /// @dev Returns whether `x` is a power of 2.
    function isPo2(uint256 x) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `x && !(x & (x - 1))`.
            result := iszero(add(and(x, sub(x, 1)), iszero(x)))
        }
    }

    /// @dev Returns `x` reversed at the bit level.
    function reverseBits(uint256 x) internal pure returns (uint256 r) {
        uint256 m0 = 0x0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f;
        uint256 m1 = m0 ^ (m0 << 2);
        uint256 m2 = m1 ^ (m1 << 1);
        r = reverseBytes(x);
        r = (m2 & (r >> 1)) | ((m2 & r) << 1);
        r = (m1 & (r >> 2)) | ((m1 & r) << 2);
        r = (m0 & (r >> 4)) | ((m0 & r) << 4);
    }

    /// @dev Returns `x` reversed at the byte level.
    function reverseBytes(uint256 x) internal pure returns (uint256 r) {
        unchecked {
            // Computing masks on-the-fly reduces bytecode size by about 200 bytes.
            uint256 m0 = 0x100000000000000000000000000000001 * (~toUint(x == 0) >> 192);
            uint256 m1 = m0 ^ (m0 << 32);
            uint256 m2 = m1 ^ (m1 << 16);
            uint256 m3 = m2 ^ (m2 << 8);
            r = (m3 & (x >> 8)) | ((m3 & x) << 8);
            r = (m2 & (r >> 16)) | ((m2 & r) << 16);
            r = (m1 & (r >> 32)) | ((m1 & r) << 32);
            r = (m0 & (r >> 64)) | ((m0 & r) << 64);
            r = (r >> 128) | (r << 128);
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     BOOLEAN OPERATIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // A Solidity bool on the stack or memory is represented as a 256-bit word.
    // Non-zero values are true, zero is false.
    // A clean bool is either 0 (false) or 1 (true) under the hood.
    // Usually, if not always, the bool result of a regular Solidity expression,
    // or the argument of a public/external function will be a clean bool.
    // You can usually use the raw variants for more performance.
    // If uncertain, test (best with exact compiler settings).
    // Or use the non-raw variants (compiler can sometimes optimize out the double `iszero`s).

    /// @dev Returns `x & y`. Inputs must be clean.
    function rawAnd(bool x, bool y) internal pure returns (bool z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := and(x, y)
        }
    }

    /// @dev Returns `x & y`.
    function and(bool x, bool y) internal pure returns (bool z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := and(iszero(iszero(x)), iszero(iszero(y)))
        }
    }

    /// @dev Returns `x | y`. Inputs must be clean.
    function rawOr(bool x, bool y) internal pure returns (bool z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(x, y)
        }
    }

    /// @dev Returns `x | y`.
    function or(bool x, bool y) internal pure returns (bool z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(iszero(iszero(x)), iszero(iszero(y)))
        }
    }

    /// @dev Returns 1 if `b` is true, else 0. Input must be clean.
    function rawToUint(bool b) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := b
        }
    }

    /// @dev Returns 1 if `b` is true, else 0.
    function toUint(bool b) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := iszero(iszero(b))
        }
    }
}

Settings
{
  "remappings": [
    "forge-std/=test/utils/forge-std/",
    "murky/=lib/murky/",
    "solady/=lib/solady/src/",
    "@openzeppelin-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "@openzeppelin/=lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/",
    "permit2/=lib/permit2/src/",
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
    "forge-gas-snapshot/=lib/permit2/lib/forge-gas-snapshot/src/",
    "forge-std/=lib/forge-std/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
    "murky/=lib/murky/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "openzeppelin-contracts/=lib/murky/lib/openzeppelin-contracts/",
    "solady/=lib/solady/src/",
    "solmate/=lib/permit2/lib/solmate/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 1000
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "shanghai",
  "viaIR": false,
  "libraries": {}
}

Contract ABI

[{"inputs":[],"stateMutability":"payable","type":"constructor"},{"inputs":[],"name":"AlreadyInitialized","type":"error"},{"inputs":[],"name":"ApprovalCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"DNAlreadyInitialized","type":"error"},{"inputs":[],"name":"ExchangeSameToken","type":"error"},{"inputs":[],"name":"ExchangeTokenLocked","type":"error"},{"inputs":[],"name":"InsufficientAllowance","type":"error"},{"inputs":[],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"InsufficientBalanceToMaintainLockedTokens","type":"error"},{"inputs":[],"name":"InvalidOrderToken","type":"error"},{"inputs":[],"name":"InvalidSalePrice","type":"error"},{"inputs":[],"name":"InvalidSellerOrBuyer","type":"error"},{"inputs":[],"name":"InvalidUnit","type":"error"},{"inputs":[],"name":"LinkMirrorContractFailed","type":"error"},{"inputs":[],"name":"MirrorAddressIsZero","type":"error"},{"inputs":[],"name":"NewOwnerIsZeroAddress","type":"error"},{"inputs":[],"name":"NoHandoverRequest","type":"error"},{"inputs":[],"name":"SenderNotMirror","type":"error"},{"inputs":[],"name":"TokenDoesNotExist","type":"error"},{"inputs":[],"name":"TokenLockStatusNoChange","type":"error"},{"inputs":[],"name":"TokenNotLocked","type":"error"},{"inputs":[],"name":"TotalSupplyOverflow","type":"error"},{"inputs":[],"name":"TransferCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"TransferFromIncorrectOwner","type":"error"},{"inputs":[],"name":"TransferToZeroAddress","type":"error"},{"inputs":[],"name":"Unauthorized","type":"error"},{"inputs":[],"name":"UnauthorizedCallContext","type":"error"},{"inputs":[],"name":"UpgradeFailed","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"feeBips","type":"uint256"}],"name":"ExchangeMarketFeeSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"feeBips","type":"uint256"}],"name":"ListMarketFeeSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverCanceled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverRequested","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"roles","type":"uint256"}],"name":"RolesUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"target","type":"address"},{"indexed":false,"internalType":"bool","name":"status","type":"bool"}],"name":"SkipNFTSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"implementation","type":"address"}],"name":"Upgraded","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"cancelOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"completeOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"getSkipNFT","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"grantRoles","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"hasAllRoles","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"hasAnyRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"name_","type":"string"},{"internalType":"string","name":"symbol_","type":"string"},{"internalType":"address","name":"mirror","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"mirrorERC721","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"result","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"ownershipHandoverExpiresAt","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"proxiableUUID","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"renounceRoles","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"requestOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"revokeRoles","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"rolesOf","outputs":[{"internalType":"uint256","name":"roles","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"baseURI_","type":"string"}],"name":"setBaseURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"feeBips","type":"uint256"}],"name":"setExchangeNFTFeeRate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"feeBips","type":"uint256"}],"name":"setListMarketNFTFeeRate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"name_","type":"string"},{"internalType":"string","name":"symbol_","type":"string"}],"name":"setNameAndSymbol","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"skipNFT","type":"bool"}],"name":"setSkipNFT","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bool","name":"state","type":"bool"}],"name":"setSkipNFTFor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"result","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"newImplementation","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"upgradeToAndCall","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]

Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.