ETH Price: $2,341.94 (-0.28%)

Token

AUSD (AUSD)
 

Overview

Max Total Supply

35,230,849.42 AUSD

Holders

58 ( 1.695%)

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 6 Decimals)

Balance
0 AUSD

Value
$0.00
0x89110e56Ab5FA7df1Fd9D4EaC8786730d072d8b4
Loading...
Loading
Loading...
Loading
Loading...
Loading

OVERVIEW

AUSD, a digital dollar minted 1:1 with USD fiat. AUSD is designed to be a secure digital currency, utilizing one of the world’s largest custodian banks to safeguard assets. AUSD enables users to participate in trading, lending and payments.

# Exchange Pair Price  24H Volume % Volume

Contract Source Code Verified (Exact Match)

Contract Name:
AgoraDollarErc1967Proxy

Compiler Version
v0.8.21+commit.d9974bed

Optimization Enabled:
Yes with 100000000 runs

Other Settings:
shanghai EvmVersion
File 1 of 27 : AgoraDollarErc1967Proxy.sol
// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.21;

// ====================================================================
//             _        ______     ___   _______          _
//            / \     .' ___  |  .'   `.|_   __ \        / \
//           / _ \   / .'   \_| /  .-.  \ | |__) |      / _ \
//          / ___ \  | |   ____ | |   | | |  __ /      / ___ \
//        _/ /   \ \_\ `.___]  |\  `-'  /_| |  \ \_  _/ /   \ \_
//       |____| |____|`._____.'  `.___.'|____| |___||____| |____|
// ====================================================================
// ===================== AgoraDollarErc1967Proxy ======================
// ====================================================================

import { Proxy } from "@openzeppelin/contracts/proxy/Proxy.sol";
import { Address } from "@openzeppelin/contracts/utils/Address.sol";
import { SafeCastLib } from "solady/src/utils/SafeCastLib.sol";

import { Eip3009, Eip712 } from "../Eip3009.sol";
import { AgoraProxyAdmin } from "./AgoraProxyAdmin.sol";

import { StorageLib } from "./StorageLib.sol";

import { ITransparentUpgradeableProxy } from "../interfaces/ITransparentUpgradeableProxy.sol";

/// @notice The constructor params for the AgoraDollarErc1967Proxy contract
/// @dev Allows for an experience closer to named parameters in constructor calls
/// @param proxyAdminOwnerAddress The address of the proxy admin owner
/// @param eip712Name The name of the Eip712 domain
/// @param eip712Version The version of the Eip712 domain
struct ConstructorParams {
    address proxyAdminOwnerAddress;
    string eip712Name;
    string eip712Version;
}

/// @title AgoraDollarErc1967Proxy
/// @notice The AgoraDollarErc1967Proxy contract is a proxy contract that delegatecalls to an implementation contract
/// @dev The AgoraDollarErc1967Proxy contract implements some additional functionality directly for gas savings
/// @author Agora
contract AgoraDollarErc1967Proxy is Eip3009, Proxy {
    using SafeCastLib for uint256;
    using StorageLib for uint256;

    address private immutable PROXY_ADMIN_ADDRESS;

    /// @notice The AgoraDollarErc1967Proxy constructor
    /// @param _params The constructor params for the AgoraDollarErc1967Proxy contract
    constructor(
        ConstructorParams memory _params
    ) payable Eip712(_params.eip712Name, _params.eip712Version, address(this)) {
        // Effects: Set the proxy admin address in both bytecode and storage
        // Stored directly in bytecode for gas efficiency
        PROXY_ADMIN_ADDRESS = address(new AgoraProxyAdmin({ _initialOwner: _params.proxyAdminOwnerAddress }));
        // Stored again in storage to comply with Erc1967 standard
        StorageLib.getPointerToAgoraDollarErc1967ProxyAdminStorage().proxyAdminAddress = PROXY_ADMIN_ADDRESS;

        // Emit event
        emit AdminChanged({ previousAdmin: address(0), newAdmin: PROXY_ADMIN_ADDRESS });
    }

    fallback() external payable override {
        _fallback();
    }

    //==============================================================================
    // Proxy Functions
    //==============================================================================

    function _implementation() internal view override returns (address _implementationAddress) {
        _implementationAddress = StorageLib.sloadImplementationSlotDataAsUint256().implementation();
    }

    /// @notice The ```_fallback``` function is an internal function which allows the proxy to delegate to the new implementation address
    /// @dev ProxyAdmin is restricted to only calling upgradeToAndCall
    function _fallback() internal override {
        if (msg.sender == PROXY_ADMIN_ADDRESS) {
            if (msg.sig != ITransparentUpgradeableProxy.upgradeToAndCall.selector) {
                revert ProxyDeniedAdminAccess();
            } else {
                (address _newImplementation, bytes memory _callData) = abi.decode(msg.data[4:], (address, bytes));
                _upgradeToAndCall({ _newImplementation: _newImplementation, _callData: _callData });
            }
        } else {
            super._fallback();
        }
    }

    /// @notice The ```_upgradeToAndCall``` function is an internal function which sets the new implementation address and calls the new implementation with the given calldata
    /// @param _newImplementation The address of the new implementation
    /// @param _callData The call data using the new implementation as a target
    function _upgradeToAndCall(address _newImplementation, bytes memory _callData) internal {
        // Checks: Ensure the new implementation is a contract
        if (_newImplementation.code.length == 0) revert ImplementationTargetNotAContract();

        // Effects: Write the storage value for new implementation
        StorageLib.AgoraDollarErc1967ProxyContractStorage storage contractData = StorageLib
            .getPointerToAgoraDollarErc1967ProxyContractStorage();
        contractData.implementationAddress = _newImplementation;

        // Emit event
        emit Upgraded({ implementation: _newImplementation });

        // Execute calldata for new implementation
        if (_callData.length > 0) Address.functionDelegateCall({ target: _newImplementation, data: _callData });
        else if (msg.value > 0) revert AgoraDollarErc1967NonPayable();
    }

    //==============================================================================
    // Erc20 Overridden Functions
    //==============================================================================

    /// @notice The ```transfer``` function transfers tokens which belong to the caller
    /// @dev This function reverts on failure
    /// @param _to The address of the recipient
    /// @param _transferValue The amount of tokens to transfer
    /// @return A boolean indicating success or failure
    function transfer(address _to, uint256 _transferValue) external returns (bool) {
        // Get data from implementation slot as a uint256
        uint256 _contractData = StorageLib.sloadImplementationSlotDataAsUint256();

        bool _isTransferUpgraded = _contractData.isTransferUpgraded();
        if (_isTransferUpgraded) {
            // new implementation address is stored in the least significant 160 bits of the contract data
            address _newImplementation = address(uint160(_contractData));
            _delegate({ implementation: _newImplementation });
        } else {
            // Checks: contract-wide access control
            if (_contractData.isTransferPaused()) revert StorageLib.TransferPaused();

            // Effects: Transfer the tokens
            _transfer({ _from: msg.sender, _to: _to, _transferValue: _transferValue.toUint248() });
            return true;
        }
    }

    /// @notice The ```transferFrom``` function transfers tokens on behalf of an owner
    /// @dev This function reverts on failure
    /// @param _from The address of the owner of the tokens to transfer
    /// @param _to The address of the recipient of the tokens
    /// @param _transferValue The amount of tokens to transfer
    /// @return A boolean indicating success or failure
    function transferFrom(address _from, address _to, uint256 _transferValue) external returns (bool) {
        uint256 _contractData = StorageLib.sloadImplementationSlotDataAsUint256();

        bool _isTransferFromUpgraded = _contractData.isTransferFromUpgraded();
        if (_isTransferFromUpgraded) {
            // new implementation address is stored in the least significant 160 bits of the contract data
            address _newImplementation = address(uint160(_contractData));
            _delegate({ implementation: _newImplementation });
        } else {
            // Reading account data for sender adds gas so we should only do it if set true
            bool _isMsgSenderFrozenCheckEnabled = _contractData.isMsgSenderFrozenCheckEnabled();
            if (
                _isMsgSenderFrozenCheckEnabled &&
                StorageLib.getPointerToErc20CoreStorage().accountData[msg.sender].isFrozen
            ) revert AccountIsFrozen({ frozenAccount: msg.sender });

            // Checks: contract-wide access control
            if (_contractData.isTransferPaused()) revert StorageLib.TransferPaused();

            // Effects: Decrease the allowance of the spender
            _spendAllowance({ _owner: _from, _spender: msg.sender, _value: _transferValue });

            // Effects: Transfer the tokens
            _transfer({ _from: _from, _to: _to, _transferValue: _transferValue.toUint248() });
            return true;
        }
    }

    //==============================================================================
    // Eip-3009 Overridden Functions
    //==============================================================================

    /// @notice The ```transferWithAuthorization``` function executes a transfer with a signed authorization according to Eip3009
    /// @dev EOA wallet signatures should be packed in the order of r, s, v
    /// @param _from Payer's address (Authorizer)
    /// @param _to Payee's address
    /// @param _value Amount to be transferred
    /// @param _validAfter The block.timestamp after which the authorization is valid
    /// @param _validBefore The block.timestamp before which the authorization is valid
    /// @param _nonce Unique nonce
    /// @param _v ECDSA signature parameter v
    /// @param _r ECDSA signature parameters r
    /// @param _s ECDSA signature parameters s
    function transferWithAuthorization(
        address _from,
        address _to,
        uint256 _value,
        uint256 _validAfter,
        uint256 _validBefore,
        bytes32 _nonce,
        uint8 _v,
        bytes32 _r,
        bytes32 _s
    ) external {
        // Packs signature pieces into bytes
        transferWithAuthorization({
            _from: _from,
            _to: _to,
            _value: _value,
            _validAfter: _validAfter,
            _validBefore: _validBefore,
            _nonce: _nonce,
            _signature: abi.encodePacked(_r, _s, _v)
        });
    }

    /// @notice The ```transferWithAuthorization``` function executes a transfer with a signed authorization according to Eip3009
    /// @dev EOA wallet signatures should be packed in the order of r, s, v
    /// @param _from Payer's address (Authorizer)
    /// @param _to Payee's address
    /// @param _value Amount to be transferred
    /// @param _validAfter The block.timestamp after which the authorization is valid
    /// @param _validBefore The block.timestamp before which the authorization is valid
    /// @param _nonce Unique nonce
    /// @param _signature Signature byte array produced by an EOA wallet or a contract wallet
    function transferWithAuthorization(
        address _from,
        address _to,
        uint256 _value,
        uint256 _validAfter,
        uint256 _validBefore,
        bytes32 _nonce,
        bytes memory _signature
    ) public {
        // Get data from implementation slot as a uint256
        uint256 _contractData = StorageLib.sloadImplementationSlotDataAsUint256();

        bool _isTransferWithAuthorizationUpgraded = _contractData.isTransferWithAuthorizationUpgraded();
        if (_isTransferWithAuthorizationUpgraded) {
            // new implementation address is stored in the least significant 160 bits of the contract data
            address _newImplementation = address(uint160(_contractData));
            _delegate({ implementation: _newImplementation });
        } else {
            // Reading account data for sender adds gas so we should only do it if set true
            bool _isMsgSenderFrozenCheckEnabled = _contractData.isMsgSenderFrozenCheckEnabled();
            if (
                _isMsgSenderFrozenCheckEnabled &&
                StorageLib.getPointerToErc20CoreStorage().accountData[msg.sender].isFrozen
            ) revert AccountIsFrozen({ frozenAccount: msg.sender });

            // Checks: contract-wide access control
            if (_contractData.isTransferPaused()) revert StorageLib.TransferPaused();
            if (_contractData.isSignatureVerificationPaused()) revert StorageLib.SignatureVerificationPaused();

            // Effects: transfer the tokens
            _transferWithAuthorization({
                _from: _from,
                _to: _to,
                _value: _value,
                _validAfter: _validAfter,
                _validBefore: _validBefore,
                _nonce: _nonce,
                _signature: _signature
            });
        }
    }

    /// @notice The ```receiveWithAuthorization``` function receives a transfer with a signed authorization from the payer
    /// @dev This has an additional check to ensure that the payee's address matches the caller of this function to prevent front-running attacks
    /// @dev EOA wallet signatures should be packed in the order of r, s, v
    /// @param _from Payer's address (Authorizer)
    /// @param _to Payee's address
    /// @param _value Amount to be transferred
    /// @param _validAfter The block.timestamp after which the authorization is valid
    /// @param _validBefore The block.timestamp before which the authorization is valid
    /// @param _nonce Unique nonce
    /// @param _v ECDSA signature parameter v
    /// @param _r ECDSA signature parameters r
    /// @param _s ECDSA signature parameters s
    function receiveWithAuthorization(
        address _from,
        address _to,
        uint256 _value,
        uint256 _validAfter,
        uint256 _validBefore,
        bytes32 _nonce,
        uint8 _v,
        bytes32 _r,
        bytes32 _s
    ) external {
        // Packs signature pieces into bytes
        receiveWithAuthorization({
            _from: _from,
            _to: _to,
            _value: _value,
            _validAfter: _validAfter,
            _validBefore: _validBefore,
            _nonce: _nonce,
            _signature: abi.encodePacked(_r, _s, _v)
        });
    }

    /// @notice The ```receiveWithAuthorization``` function receives a transfer with a signed authorization from the payer
    /// @dev This has an additional check to ensure that the payee's address matches the caller of this function to prevent front-running attacks
    /// @dev EOA wallet signatures should be packed in the order of r, s, v
    /// @param _from Payer's address (Authorizer)
    /// @param _to Payee's address
    /// @param _value Amount to be transferred
    /// @param _validAfter The block.timestamp after which the authorization is valid
    /// @param _validBefore The block.timestamp before which the authorization is valid
    /// @param _nonce Unique nonce
    /// @param _signature Signature byte array produced by an EOA wallet or a contract wallet
    function receiveWithAuthorization(
        address _from,
        address _to,
        uint256 _value,
        uint256 _validAfter,
        uint256 _validBefore,
        bytes32 _nonce,
        bytes memory _signature
    ) public {
        // Get data from implementation slot as a uint256
        uint256 _contractData = StorageLib.sloadImplementationSlotDataAsUint256();

        bool _isReceiveWithAuthorizationUpgraded = _contractData.isReceiveWithAuthorizationUpgraded();
        if (_isReceiveWithAuthorizationUpgraded) {
            // new implementation address is stored in the least significant 160 bits of the contract data
            address _newImplementation = address(uint160(_contractData));
            _delegate({ implementation: _newImplementation });
        } else {
            // Checks: contract-wide access control
            if (_contractData.isTransferPaused()) revert StorageLib.TransferPaused();
            if (_contractData.isSignatureVerificationPaused()) revert StorageLib.SignatureVerificationPaused();

            // Effects: transfer the tokens
            _receiveWithAuthorization({
                _from: _from,
                _to: _to,
                _value: _value,
                _validAfter: _validAfter,
                _validBefore: _validBefore,
                _nonce: _nonce,
                _signature: _signature
            });
        }
    }

    //==============================================================================
    // Events
    //==============================================================================

    /// @notice The ```Upgraded``` event is emitted when the implementation is upgraded
    /// @param implementation The address of the new implementation
    event Upgraded(address indexed implementation);

    /// @notice The ```AdminChanged``` event is emitted when the admin account has changed
    /// @param previousAdmin The address of the previous admin
    /// @param newAdmin The address of the new admin
    event AdminChanged(address previousAdmin, address newAdmin);

    //==============================================================================
    // Errors
    //==============================================================================

    /// @notice The ```AgoraDollarErc1967NonPayable``` error is emitted when trying to send ether to a non-payable contract
    error AgoraDollarErc1967NonPayable();

    /// @notice The ```ProxyDeniedAdminAccess``` error is emitted when the proxy admin tries to call a function that is not upgradeToAndCall
    error ProxyDeniedAdminAccess();

    /// @notice The ```ImplementationTargetNotAContract``` error is emitted when the target of the proxy is not a contract
    error ImplementationTargetNotAContract();
}

File 2 of 27 : Proxy.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol)

pragma solidity ^0.8.20;

/**
 * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
 * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
 * be specified by overriding the virtual {_implementation} function.
 *
 * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
 * different contract through the {_delegate} function.
 *
 * The success and return data of the delegated call will be returned back to the caller of the proxy.
 */
abstract contract Proxy {
    /**
     * @dev Delegates the current call to `implementation`.
     *
     * This function does not return to its internal call site, it will return directly to the external caller.
     */
    function _delegate(address implementation) internal virtual {
        assembly {
            // Copy msg.data. We take full control of memory in this inline assembly
            // block because it will not return to Solidity code. We overwrite the
            // Solidity scratch pad at memory position 0.
            calldatacopy(0, 0, calldatasize())

            // Call the implementation.
            // out and outsize are 0 because we don't know the size yet.
            let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)

            // Copy the returned data.
            returndatacopy(0, 0, returndatasize())

            switch result
            // delegatecall returns 0 on error.
            case 0 {
                revert(0, returndatasize())
            }
            default {
                return(0, returndatasize())
            }
        }
    }

    /**
     * @dev This is a virtual function that should be overridden so it returns the address to which the fallback
     * function and {_fallback} should delegate.
     */
    function _implementation() internal view virtual returns (address);

    /**
     * @dev Delegates the current call to the address returned by `_implementation()`.
     *
     * This function does not return to its internal call site, it will return directly to the external caller.
     */
    function _fallback() internal virtual {
        _delegate(_implementation());
    }

    /**
     * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
     * function in the contract matches the call data.
     */
    fallback() external payable virtual {
        _fallback();
    }
}

File 3 of 27 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

File 4 of 27 : SafeCastLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Safe integer casting library that reverts on overflow.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeCastLib.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeCast.sol)
library SafeCastLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    error Overflow();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*          UNSIGNED INTEGER SAFE CASTING OPERATIONS          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    function toUint8(uint256 x) internal pure returns (uint8) {
        if (x >= 1 << 8) _revertOverflow();
        return uint8(x);
    }

    function toUint16(uint256 x) internal pure returns (uint16) {
        if (x >= 1 << 16) _revertOverflow();
        return uint16(x);
    }

    function toUint24(uint256 x) internal pure returns (uint24) {
        if (x >= 1 << 24) _revertOverflow();
        return uint24(x);
    }

    function toUint32(uint256 x) internal pure returns (uint32) {
        if (x >= 1 << 32) _revertOverflow();
        return uint32(x);
    }

    function toUint40(uint256 x) internal pure returns (uint40) {
        if (x >= 1 << 40) _revertOverflow();
        return uint40(x);
    }

    function toUint48(uint256 x) internal pure returns (uint48) {
        if (x >= 1 << 48) _revertOverflow();
        return uint48(x);
    }

    function toUint56(uint256 x) internal pure returns (uint56) {
        if (x >= 1 << 56) _revertOverflow();
        return uint56(x);
    }

    function toUint64(uint256 x) internal pure returns (uint64) {
        if (x >= 1 << 64) _revertOverflow();
        return uint64(x);
    }

    function toUint72(uint256 x) internal pure returns (uint72) {
        if (x >= 1 << 72) _revertOverflow();
        return uint72(x);
    }

    function toUint80(uint256 x) internal pure returns (uint80) {
        if (x >= 1 << 80) _revertOverflow();
        return uint80(x);
    }

    function toUint88(uint256 x) internal pure returns (uint88) {
        if (x >= 1 << 88) _revertOverflow();
        return uint88(x);
    }

    function toUint96(uint256 x) internal pure returns (uint96) {
        if (x >= 1 << 96) _revertOverflow();
        return uint96(x);
    }

    function toUint104(uint256 x) internal pure returns (uint104) {
        if (x >= 1 << 104) _revertOverflow();
        return uint104(x);
    }

    function toUint112(uint256 x) internal pure returns (uint112) {
        if (x >= 1 << 112) _revertOverflow();
        return uint112(x);
    }

    function toUint120(uint256 x) internal pure returns (uint120) {
        if (x >= 1 << 120) _revertOverflow();
        return uint120(x);
    }

    function toUint128(uint256 x) internal pure returns (uint128) {
        if (x >= 1 << 128) _revertOverflow();
        return uint128(x);
    }

    function toUint136(uint256 x) internal pure returns (uint136) {
        if (x >= 1 << 136) _revertOverflow();
        return uint136(x);
    }

    function toUint144(uint256 x) internal pure returns (uint144) {
        if (x >= 1 << 144) _revertOverflow();
        return uint144(x);
    }

    function toUint152(uint256 x) internal pure returns (uint152) {
        if (x >= 1 << 152) _revertOverflow();
        return uint152(x);
    }

    function toUint160(uint256 x) internal pure returns (uint160) {
        if (x >= 1 << 160) _revertOverflow();
        return uint160(x);
    }

    function toUint168(uint256 x) internal pure returns (uint168) {
        if (x >= 1 << 168) _revertOverflow();
        return uint168(x);
    }

    function toUint176(uint256 x) internal pure returns (uint176) {
        if (x >= 1 << 176) _revertOverflow();
        return uint176(x);
    }

    function toUint184(uint256 x) internal pure returns (uint184) {
        if (x >= 1 << 184) _revertOverflow();
        return uint184(x);
    }

    function toUint192(uint256 x) internal pure returns (uint192) {
        if (x >= 1 << 192) _revertOverflow();
        return uint192(x);
    }

    function toUint200(uint256 x) internal pure returns (uint200) {
        if (x >= 1 << 200) _revertOverflow();
        return uint200(x);
    }

    function toUint208(uint256 x) internal pure returns (uint208) {
        if (x >= 1 << 208) _revertOverflow();
        return uint208(x);
    }

    function toUint216(uint256 x) internal pure returns (uint216) {
        if (x >= 1 << 216) _revertOverflow();
        return uint216(x);
    }

    function toUint224(uint256 x) internal pure returns (uint224) {
        if (x >= 1 << 224) _revertOverflow();
        return uint224(x);
    }

    function toUint232(uint256 x) internal pure returns (uint232) {
        if (x >= 1 << 232) _revertOverflow();
        return uint232(x);
    }

    function toUint240(uint256 x) internal pure returns (uint240) {
        if (x >= 1 << 240) _revertOverflow();
        return uint240(x);
    }

    function toUint248(uint256 x) internal pure returns (uint248) {
        if (x >= 1 << 248) _revertOverflow();
        return uint248(x);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*           SIGNED INTEGER SAFE CASTING OPERATIONS           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    function toInt8(int256 x) internal pure returns (int8) {
        int8 y = int8(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt16(int256 x) internal pure returns (int16) {
        int16 y = int16(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt24(int256 x) internal pure returns (int24) {
        int24 y = int24(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt32(int256 x) internal pure returns (int32) {
        int32 y = int32(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt40(int256 x) internal pure returns (int40) {
        int40 y = int40(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt48(int256 x) internal pure returns (int48) {
        int48 y = int48(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt56(int256 x) internal pure returns (int56) {
        int56 y = int56(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt64(int256 x) internal pure returns (int64) {
        int64 y = int64(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt72(int256 x) internal pure returns (int72) {
        int72 y = int72(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt80(int256 x) internal pure returns (int80) {
        int80 y = int80(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt88(int256 x) internal pure returns (int88) {
        int88 y = int88(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt96(int256 x) internal pure returns (int96) {
        int96 y = int96(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt104(int256 x) internal pure returns (int104) {
        int104 y = int104(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt112(int256 x) internal pure returns (int112) {
        int112 y = int112(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt120(int256 x) internal pure returns (int120) {
        int120 y = int120(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt128(int256 x) internal pure returns (int128) {
        int128 y = int128(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt136(int256 x) internal pure returns (int136) {
        int136 y = int136(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt144(int256 x) internal pure returns (int144) {
        int144 y = int144(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt152(int256 x) internal pure returns (int152) {
        int152 y = int152(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt160(int256 x) internal pure returns (int160) {
        int160 y = int160(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt168(int256 x) internal pure returns (int168) {
        int168 y = int168(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt176(int256 x) internal pure returns (int176) {
        int176 y = int176(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt184(int256 x) internal pure returns (int184) {
        int184 y = int184(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt192(int256 x) internal pure returns (int192) {
        int192 y = int192(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt200(int256 x) internal pure returns (int200) {
        int200 y = int200(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt208(int256 x) internal pure returns (int208) {
        int208 y = int208(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt216(int256 x) internal pure returns (int216) {
        int216 y = int216(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt224(int256 x) internal pure returns (int224) {
        int224 y = int224(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt232(int256 x) internal pure returns (int232) {
        int232 y = int232(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt240(int256 x) internal pure returns (int240) {
        int240 y = int240(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt248(int256 x) internal pure returns (int248) {
        int248 y = int248(x);
        if (x != y) _revertOverflow();
        return y;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*               OTHER SAFE CASTING OPERATIONS                */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    function toInt256(uint256 x) internal pure returns (int256) {
        if (x >= 1 << 255) _revertOverflow();
        return int256(x);
    }

    function toUint256(int256 x) internal pure returns (uint256) {
        if (x < 0) _revertOverflow();
        return uint256(x);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      PRIVATE HELPERS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    function _revertOverflow() private pure {
        /// @solidity memory-safe-assembly
        assembly {
            // Store the function selector of `Overflow()`.
            mstore(0x00, 0x35278d12)
            // Revert with (offset, size).
            revert(0x1c, 0x04)
        }
    }
}

File 5 of 27 : Eip3009.sol
// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.21;

// ====================================================================
//             _        ______     ___   _______          _
//            / \     .' ___  |  .'   `.|_   __ \        / \
//           / _ \   / .'   \_| /  .-.  \ | |__) |      / _ \
//          / ___ \  | |   ____ | |   | | |  __ /      / ___ \
//        _/ /   \ \_\ `.___]  |\  `-'  /_| |  \ \_  _/ /   \ \_
//       |____| |____|`._____.'  `.___.'|____| |___||____| |____|
// ====================================================================
// ============================= Eip3009 ==============================
// ====================================================================

import { MessageHashUtils } from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
import { SafeCastLib } from "solady/src/utils/SafeCastLib.sol";
import { SignatureCheckerLib } from "solady/src/utils/SignatureCheckerLib.sol";

import { Eip712 } from "./Eip712.sol";
import { Erc20Core } from "./Erc20Core.sol";

import { StorageLib } from "./proxy/StorageLib.sol";

/// @title Eip3009
/// @notice Eip3009 provides internal implementations for gas-abstracted transfers under Eip3009 guidelines
/// @author Agora, inspired by Circle's Eip3009 implementation
abstract contract Eip3009 is Eip712, Erc20Core {
    using SafeCastLib for uint256;
    using StorageLib for uint256;

    /// @notice keccak256("TransferWithAuthorization(address from,address to,uint256 value,uint256 validAfter,uint256 validBefore,bytes32 nonce)")
    bytes32 internal constant TRANSFER_WITH_AUTHORIZATION_TYPEHASH_ =
        0x7c7c6cdb67a18743f49ec6fa9b35f50d52ed05cbed4cc592e13b44501c1a2267;

    /// @notice keccak256("ReceiveWithAuthorization(address from,address to,uint256 value,uint256 validAfter,uint256 validBefore,bytes32 nonce)")
    bytes32 internal constant RECEIVE_WITH_AUTHORIZATION_TYPEHASH_ =
        0xd099cc98ef71107a616c4f0f941f04c322d8e254fe26b3c6668db87aae413de8;

    /// @notice keccak256("CancelAuthorization(address authorizer,bytes32 nonce)")
    bytes32 internal constant CANCEL_AUTHORIZATION_TYPEHASH_ =
        0x158b0a9edf7a828aad02f63cd515c68ef2f50ba807396f6d12842833a1597429;

    //==============================================================================
    // Internal Procedural Functions
    //==============================================================================

    /// @notice The ```_transferWithAuthorization``` function executes a transfer with a signed authorization
    /// @dev EOA wallet signatures should be packed in the order of r, s, v
    /// @param _from Payer's address (Authorizer)
    /// @param _to Payee's address
    /// @param _value Amount to be transferred
    /// @param _validAfter The time after which this is valid (unix time)
    /// @param _validBefore The time before which this is valid (unix time)
    /// @param _nonce Unique nonce
    /// @param _signature Signature byte array produced by an EOA wallet or a contract wallet
    function _transferWithAuthorization(
        address _from,
        address _to,
        uint256 _value,
        uint256 _validAfter,
        uint256 _validBefore,
        bytes32 _nonce,
        bytes memory _signature
    ) internal {
        // Checks: authorization validity
        if (block.timestamp <= _validAfter) revert InvalidAuthorization();
        if (block.timestamp >= _validBefore) revert ExpiredAuthorization();
        _requireUnusedAuthorization({ _authorizer: _from, _nonce: _nonce });

        // Checks: valid signature
        _requireIsValidSignatureNow({
            _signer: _from,
            _dataHash: keccak256(
                abi.encode(TRANSFER_WITH_AUTHORIZATION_TYPEHASH_, _from, _to, _value, _validAfter, _validBefore, _nonce)
            ),
            _signature: _signature
        });

        // Effects: mark authorization as used and transfer
        _markAuthorizationAsUsed({ _authorizer: _from, _nonce: _nonce });
        _transfer({ _from: _from, _to: _to, _transferValue: _value.toUint248() });
    }

    /// @notice The ```_receiveWithAuthorization``` function receives a transfer with a signed authorization from the payer
    /// @dev This has an additional check to ensure that the payee's address matches the caller of this function to prevent front-running attacks
    /// @dev EOA wallet signatures should be packed in the order of r, s, v
    /// @param _from Payer's address (Authorizer)
    /// @param _to Payee's address
    /// @param _value Amount to be transferred
    /// @param _validAfter The block.timestamp after which the authorization is valid
    /// @param _validBefore The block.timestamp before which the authorization is valid
    /// @param _nonce Unique nonce
    /// @param _signature Signature byte array produced by an EOA wallet or a contract wallet
    function _receiveWithAuthorization(
        address _from,
        address _to,
        uint256 _value,
        uint256 _validAfter,
        uint256 _validBefore,
        bytes32 _nonce,
        bytes memory _signature
    ) internal {
        // Checks: authorization validity
        if (_to != msg.sender) revert InvalidPayee({ caller: msg.sender, payee: _to });
        if (block.timestamp <= _validAfter) revert InvalidAuthorization();
        if (block.timestamp >= _validBefore) revert ExpiredAuthorization();
        _requireUnusedAuthorization({ _authorizer: _from, _nonce: _nonce });

        // Checks: valid signature
        _requireIsValidSignatureNow({
            _signer: _from,
            _dataHash: keccak256(
                abi.encode(RECEIVE_WITH_AUTHORIZATION_TYPEHASH_, _from, _to, _value, _validAfter, _validBefore, _nonce)
            ),
            _signature: _signature
        });

        // Effects: mark authorization as used and transfer
        _markAuthorizationAsUsed({ _authorizer: _from, _nonce: _nonce });
        _transfer({ _from: _from, _to: _to, _transferValue: _value.toUint248() });
    }

    /// @notice The ```_cancelAuthorization``` function cancels an authorization
    /// @dev EOA wallet signatures should be packed in the order of r, s, v
    /// @param _authorizer Authorizer's address
    /// @param _nonce Nonce of the authorization
    /// @param _signature Signature byte array produced by an EOA wallet or a contract wallet
    function _cancelAuthorization(address _authorizer, bytes32 _nonce, bytes memory _signature) internal {
        _requireUnusedAuthorization({ _authorizer: _authorizer, _nonce: _nonce });
        _requireIsValidSignatureNow({
            _signer: _authorizer,
            _dataHash: keccak256(abi.encode(CANCEL_AUTHORIZATION_TYPEHASH_, _authorizer, _nonce)),
            _signature: _signature
        });

        StorageLib.getPointerToEip3009Storage().isAuthorizationUsed[_authorizer][_nonce] = true;
        emit AuthorizationCanceled({ authorizer: _authorizer, nonce: _nonce });
    }

    //==============================================================================
    // Internal Checks Functions
    //==============================================================================

    /// @notice The ```_requireIsValidSignatureNow``` function validates that signature against input data struct
    /// @param _signer Signer's address
    /// @param _dataHash Hash of encoded data struct
    /// @param _signature Signature byte array produced by an EOA wallet or a contract wallet
    function _requireIsValidSignatureNow(address _signer, bytes32 _dataHash, bytes memory _signature) private view {
        if (
            !SignatureCheckerLib.isValidSignatureNow({
                signer: _signer,
                hash: MessageHashUtils.toTypedDataHash({
                    domainSeparator: _domainSeparatorV4(),
                    structHash: _dataHash
                }),
                signature: _signature
            })
        ) revert InvalidSignature();
    }

    /// @notice The ```_requireUnusedAuthorization``` checks that an authorization nonce is unused
    /// @param _authorizer    Authorizer's address
    /// @param _nonce         Nonce of the authorization
    function _requireUnusedAuthorization(address _authorizer, bytes32 _nonce) private view {
        if (StorageLib.getPointerToEip3009Storage().isAuthorizationUsed[_authorizer][_nonce])
            revert UsedOrCanceledAuthorization();
    }

    //==============================================================================
    // Internal Effects Functions
    //==============================================================================

    /// @notice The ```_markAuthorizationAsUsed``` function marks an authorization nonce as used
    /// @param _authorizer    Authorizer's address
    /// @param _nonce         Nonce of the authorization
    function _markAuthorizationAsUsed(address _authorizer, bytes32 _nonce) private {
        StorageLib.getPointerToEip3009Storage().isAuthorizationUsed[_authorizer][_nonce] = true;
        emit AuthorizationUsed({ authorizer: _authorizer, nonce: _nonce });
    }

    //==============================================================================
    // Events
    //==============================================================================

    /// @notice ```AuthorizationUsed``` event is emitted when an authorization is used
    /// @param authorizer Authorizer's address
    /// @param nonce Nonce of the authorization
    event AuthorizationUsed(address indexed authorizer, bytes32 indexed nonce);

    /// @notice ```AuthorizationCanceled``` event is emitted when an authorization is canceled
    /// @param authorizer Authorizer's address
    /// @param nonce Nonce of the authorization
    event AuthorizationCanceled(address indexed authorizer, bytes32 indexed nonce);

    //==============================================================================
    // Errors
    //==============================================================================

    /// @notice The ```InvalidPayee``` error is emitted when the payee does not match sender in receiveWithAuthorization
    /// @param caller The caller of the function
    /// @param payee The expected payee in the function
    error InvalidPayee(address caller, address payee);

    /// @notice The ```InvalidAuthorization``` error is emitted when the authorization is invalid because its too early
    error InvalidAuthorization();

    /// @notice The ```ExpiredAuthorization``` error is emitted when the authorization is expired
    error ExpiredAuthorization();

    /// @notice The ```InvalidSignature``` error is emitted when the signature is invalid
    error InvalidSignature();

    /// @notice The ```UsedOrCanceledAuthorization``` error is emitted when the authorization nonce is already used or canceled
    error UsedOrCanceledAuthorization();
}

File 6 of 27 : AgoraProxyAdmin.sol
// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.21;

// ====================================================================
//             _        ______     ___   _______          _
//            / \     .' ___  |  .'   `.|_   __ \        / \
//           / _ \   / .'   \_| /  .-.  \ | |__) |      / _ \
//          / ___ \  | |   ____ | |   | | |  __ /      / ___ \
//        _/ /   \ \_\ `.___]  |\  `-'  /_| |  \ \_  _/ /   \ \_
//       |____| |____|`._____.'  `.___.'|____| |___||____| |____|
// ====================================================================
// ======================== AgoraProxyAdmin ===========================
// ====================================================================

import { Ownable, Ownable2Step } from "@openzeppelin/contracts/access/Ownable2Step.sol";
import { ProxyAdmin } from "@openzeppelin/contracts/proxy/transparent/ProxyAdmin.sol";

/// @title AgoraProxyAdmin
/// @notice A proxy admin contract that extends the OpenZeppelin ProxyAdmin contract and adds a two-step ownership transfer mechanism
/// @author Agora
contract AgoraProxyAdmin is ProxyAdmin, Ownable2Step {
    /// @notice Initializes the contract with the initial owner
    /// @param _initialOwner The address that will be set as the initial owner of the contract
    constructor(address _initialOwner) ProxyAdmin(_initialOwner) {}

    /// @notice Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one
    /// @dev Can only be called by the current owner
    /// @param _newOwner The address to which ownership of the contract will be transferred
    function transferOwnership(address _newOwner) public override(Ownable, Ownable2Step) onlyOwner {
        // NOTE: Order of inheritance/override is important to ensure we are calling Ownable2Step version of transferOwnership
        super.transferOwnership({ newOwner: _newOwner });
    }

    /// @notice Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner
    /// @dev Internal function without access restriction
    /// @param _newOwner The address to which ownership of the contract will be transferred
    function _transferOwnership(address _newOwner) internal override(Ownable, Ownable2Step) {
        // NOTE: Order of inheritance/override is important to ensure we are calling Ownable2Step version of _transferOwnership
        super._transferOwnership({ newOwner: _newOwner });
    }
}

File 7 of 27 : StorageLib.sol
// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.21;

// ====================================================================
//             _        ______     ___   _______          _
//            / \     .' ___  |  .'   `.|_   __ \        / \
//           / _ \   / .'   \_| /  .-.  \ | |__) |      / _ \
//          / ___ \  | |   ____ | |   | | |  __ /      / ___ \
//        _/ /   \ \_\ `.___]  |\  `-'  /_| |  \ \_  _/ /   \ \_
//       |____| |____|`._____.'  `.___.'|____| |___||____| |____|
// ====================================================================
// ============================ StorageLib ============================
// ====================================================================

/**
 * This library contains information for accessing unstructured storage following erc1967
 * and erc7201 standards.
 *
 * The erc1967 storage slots are defined using their own formula/namespace.
 * These are listed last in the contract.
 *
 * The erc7201 namespace is defined as <ContractName>.<Namespace>
 * The deriveErc7201StorageSlot() function is used to derive the storage slot for a given namespace
 * and to check that value against the hard-coded bytes32 value for the slot location in testing frameworks
 * Each inherited contract has its own struct of the form <ContractName>Storage which matches <Namespace>
 * from above. Each struct is held in a unique namespace and has a unique storage slot.
 * See: https://eips.ethereum.org/EIPS/eip-7201 for additional information regarding this standard
 */
/// @title StorageLib
/// @dev Implements pure functions for calculating and accessing storage slots according to eip1967 and eip7201
/// @author Agora
library StorageLib {
    /// @notice Global namespace for use in deriving storage slot locations
    string internal constant GLOBAL_ERC7201_NAMESPACE = "AgoraDollarErc1967Proxy";

    // Use this function to check hardcoded bytes32 values against the expected formula
    function deriveErc7201StorageSlot(string memory _localNamespace) internal pure returns (bytes32) {
        bytes memory _namespace = abi.encodePacked(GLOBAL_ERC7201_NAMESPACE, ".", _localNamespace);
        return keccak256(abi.encode(uint256(keccak256(_namespace)) - 1)) & ~bytes32(uint256(0xff));
    }

    //==============================================================================
    // Eip3009 Storage Items
    //==============================================================================

    /// @notice The EIP3009 namespace
    string internal constant EIP3009_NAMESPACE = "Eip3009Storage";

    /// @notice The Eip3009Storage struct
    /// @param isAuthorizationUsed A mapping of authorizer to nonce to boolean to indicate if the nonce has been used
    /// @custom:storage-location erc7201:AgoraDollarErc1967Proxy.Eip3009Storage
    struct Eip3009Storage {
        mapping(address _authorizer => mapping(bytes32 _nonce => bool _isNonceUsed)) isAuthorizationUsed;
    }

    /// @notice The ```EIP3009_STORAGE_SLOT_``` is the storage slot for the Eip3009Storage struct
    /// @dev keccak256(abi.encode(uint256(keccak256("AgoraDollarErc1967Proxy.Eip3009Storage")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 internal constant EIP3009_STORAGE_SLOT_ =
        0xbb0a37da742be2e3b68bdb11d195150f4243c03fb37d3cdfa756046082a38600;

    /// @notice The ```getPointerToEip3009Storage``` function returns a pointer to the Eip3009Storage struct
    /// @return $ A pointer to the Eip3009Storage struct
    function getPointerToEip3009Storage() internal pure returns (Eip3009Storage storage $) {
        /// @solidity memory-safe-assembly
        assembly {
            $.slot := EIP3009_STORAGE_SLOT_
        }
    }

    //==============================================================================
    // Erc2612 Storage Items
    //==============================================================================

    /// @notice The Erc2612 namespace
    string internal constant ERC2612_NAMESPACE = "Erc2612Storage";

    /// @notice The Erc2612Storage struct
    /// @param nonces A mapping of signer address to uint256 to store the nonce
    /// @custom:storage-location erc7201:AgoraDollarErc1967Proxy.Erc2612Storage
    struct Erc2612Storage {
        mapping(address _signer => uint256 _nonce) nonces;
    }

    /// @notice The ```ERC2612_STORAGE_SLOT_``` is the storage slot for the Erc2612Storage struct
    /// @dev keccak256(abi.encode(uint256(keccak256("AgoraDollarErc1967Proxy.Erc2612Storage")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 internal constant ERC2612_STORAGE_SLOT_ =
        0x69e87f5b9323740fce20cdf574dacd1d10e756da64a1f2df70fd1ace4c7cc300;

    /// @notice The ```getPointerToErc2612Storage``` function returns a pointer to the Erc2612Storage struct
    /// @return $ A pointer to the Erc2612Storage struct
    function getPointerToErc2612Storage() internal pure returns (Erc2612Storage storage $) {
        /// @solidity memory-safe-assembly
        assembly {
            $.slot := ERC2612_STORAGE_SLOT_
        }
    }

    //==============================================================================
    // Erc20Core Storage Items
    //==============================================================================

    /// @notice The Erc20Core namespace
    string internal constant ERC20_CORE_NAMESPACE = "Erc20CoreStorage";

    /// @notice The Erc20AccountData struct
    /// @param isFrozen A boolean to indicate if the account is frozen
    /// @param balance A uint248 to store the balance of the account
    struct Erc20AccountData {
        bool isFrozen;
        uint248 balance;
    }

    /// @notice The Erc20CoreStorage struct
    /// @param accountData A mapping of address to Erc20AccountData to store account data
    /// @param accountAllowances A mapping of owner to spender to uint256 to store the allowance
    /// @param totalSupply A uint256 to store the total supply of tokens
    /// @custom:storage-location erc7201:AgoraDollarErc1967Proxy.Erc20CoreStorage
    struct Erc20CoreStorage {
        /// @dev _account The account whose data we are accessing
        /// @dev _accountData The account data for the account
        mapping(address _account => Erc20AccountData _accountData) accountData;
        /// @dev _owner The owner of the tokens
        /// @dev _spender The spender of the tokens
        /// @dev _accountAllowance The allowance of the spender
        mapping(address _owner => mapping(address _spender => uint256 _accountAllowance)) accountAllowances;
        /// @dev The total supply of tokens
        uint256 totalSupply;
    }

    /// @notice The ```ERC20_CORE_STORAGE_SLOT_``` is the storage slot for the Erc20CoreStorage struct
    /// @dev keccak256(abi.encode(uint256(keccak256("AgoraDollarErc1967Proxy.Erc20CoreStorage")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 internal constant ERC20_CORE_STORAGE_SLOT_ =
        0x455730fed596673e69db1907be2e521374ba893f1a04cc5f5dd931616cd6b700;

    /// @notice The ```getPointerToErc20CoreStorage``` function returns a pointer to the Erc20CoreStorage struct
    /// @return $ A pointer to the Erc20CoreStorage struct
    function getPointerToErc20CoreStorage() internal pure returns (Erc20CoreStorage storage $) {
        /// @solidity memory-safe-assembly
        assembly {
            $.slot := ERC20_CORE_STORAGE_SLOT_
        }
    }

    //==============================================================================
    // AgoraDollarAccessControl Storage Items
    //==============================================================================

    /// @notice The AgoraDollarAccessControl namespace
    string internal constant AGORA_DOLLAR_ACCESS_CONTROL_NAMESPACE = "AgoraDollarAccessControlStorage";

    /// @notice The RoleData struct
    /// @param pendingRoleAddress The address of the nominated (pending) role
    /// @param currentRoleAddress The address of the current role
    struct AgoraDollarAccessControlRoleData {
        address pendingRoleAddress;
        address currentRoleAddress;
    }

    /// @notice The AgoraDollarAccessControlStorage struct
    /// @param roleData A mapping of role identifier to AgoraDollarAccessControlRoleData to store role data
    /// @custom:storage-location erc7201:AgoraDollarErc1967Proxy.AgoraDollarAccessControlStorage
    struct AgoraDollarAccessControlStorage {
        mapping(bytes32 _role => AgoraDollarAccessControlRoleData _roleData) roleData;
    }

    /// @notice The ```AGORA_DOLLAR_ACCESS_CONTROL_STORAGE_SLOT_``` is the storage slot for the AgoraDollarAccessControlStorage struct
    /// @dev keccak256(abi.encode(uint256(keccak256("AgoraDollarErc1967Proxy.AgoraDollarAccessControlStorage")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 internal constant AGORA_DOLLAR_ACCESS_CONTROL_STORAGE_SLOT_ =
        0x9d28e63f6379c0b2127b14120db65179caba9597ddafa73863de41a4ba1fe700;

    /// @notice The ```getPointerToAgoraDollarAccessControlStorage``` function returns a pointer to the AgoraDollarAccessControlStorage struct
    /// @return $ A pointer to the AgoraDollarAccessControlStorage struct
    function getPointerToAgoraDollarAccessControlStorage()
        internal
        pure
        returns (AgoraDollarAccessControlStorage storage $)
    {
        /// @solidity memory-safe-assembly
        assembly {
            $.slot := AGORA_DOLLAR_ACCESS_CONTROL_STORAGE_SLOT_
        }
    }

    //==============================================================================
    // AgoraDollarErc1967 Admin Slot Items
    //==============================================================================

    /// @notice The AgoraDollarErc1967ProxyAdminStorage struct
    /// @param proxyAdminAddress The address of the proxy admin contract
    /// @custom:storage-location erc1967:eip1967.proxy.admin
    struct AgoraDollarErc1967ProxyAdminStorage {
        address proxyAdminAddress;
    }

    /// @notice The ```AGORA_DOLLAR_ERC1967_PROXY_ADMIN_STORAGE_SLOT_``` is the storage slot for the AgoraDollarErc1967ProxyAdminStorage struct
    /// @dev NOTE: deviates from erc7201 standard because erc1967 defines its own storage slot algorithm
    /// @dev bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1)
    bytes32 internal constant AGORA_DOLLAR_ERC1967_PROXY_ADMIN_STORAGE_SLOT_ =
        0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

    /// @notice The ```getPointerToAgoraDollarErc1967ProxyAdminStorage``` function returns a pointer to the AgoraDollarErc1967ProxyAdminStorage struct
    /// @return adminSlot A pointer to the AgoraDollarErc1967ProxyAdminStorage struct
    function getPointerToAgoraDollarErc1967ProxyAdminStorage()
        internal
        pure
        returns (AgoraDollarErc1967ProxyAdminStorage storage adminSlot)
    {
        /// @solidity memory-safe-assembly
        assembly {
            adminSlot.slot := AGORA_DOLLAR_ERC1967_PROXY_ADMIN_STORAGE_SLOT_
        }
    }

    //==============================================================================
    // AgoraDollarErc1967Proxy Implementation Slot Items
    //==============================================================================

    /// @notice The AgoraDollarErc1967ProxyContractStorage struct
    /// @param implementationAddress The address of the implementation contract
    /// @param placeholder A placeholder for bits to be used as bitmask items
    /// @custom:storage-location erc1967:eip1967.proxy.implementation
    struct AgoraDollarErc1967ProxyContractStorage {
        address implementationAddress; // least significant bits first
        uint96 placeholder; // Placeholder for bitmask items defined below
    }

    /// @notice The ```AGORA_DOLLAR_ERC1967_PROXY_CONTRACT_STORAGE_SLOT_``` is the storage slot for the AgoraDollarErc1967ProxyContractStorage struct
    /// @dev bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1)
    bytes32 internal constant AGORA_DOLLAR_ERC1967_PROXY_CONTRACT_STORAGE_SLOT_ =
        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /// @notice The ```getPointerToAgoraDollarErc1967ProxyContractStorage``` function returns a pointer to the storage slot for the implementation address
    /// @return contractData A pointer to the data in the storage slot for the implementation address and other contract data
    function getPointerToAgoraDollarErc1967ProxyContractStorage()
        internal
        pure
        returns (AgoraDollarErc1967ProxyContractStorage storage contractData)
    {
        /// @solidity memory-safe-assembly
        assembly {
            contractData.slot := AGORA_DOLLAR_ERC1967_PROXY_CONTRACT_STORAGE_SLOT_
        }
    }

    /// @notice The ```sloadImplementationSlotDataAsUint256``` function returns the data at the implementation slot as a uint256
    /// @dev Named this way to draw attention to the sload call
    /// @return _contractData The data at the implementation slot as a uint256
    function sloadImplementationSlotDataAsUint256() internal view returns (uint256 _contractData) {
        /// @solidity memory-safe-assembly
        assembly {
            _contractData := sload(AGORA_DOLLAR_ERC1967_PROXY_CONTRACT_STORAGE_SLOT_)
        }
    }

    /// @notice The ```sstoreImplementationSlotDataAsUint256``` function stores the data at the implementation slot
    /// @dev Named this way to draw attention to the sstore call
    /// @param _contractData The data to store at the implementation slot, given as a uint256
    function sstoreImplementationSlotDataAsUint256(uint256 _contractData) internal {
        /// @solidity memory-safe-assembly
        assembly {
            sstore(AGORA_DOLLAR_ERC1967_PROXY_CONTRACT_STORAGE_SLOT_, _contractData)
        }
    }

    // Contract Access Control masks
    uint256 internal constant IS_MSG_SENDER_FROZEN_CHECK_ENABLED_BIT_POSITION_ = 1 << (255 - 95);
    uint256 internal constant IS_MINT_PAUSED_BIT_POSITION_ = 1 << (255 - 94);
    uint256 internal constant IS_BURN_FROM_PAUSED_BIT_POSITION_ = 1 << (255 - 93);
    uint256 internal constant IS_FREEZING_PAUSED_BIT_POSITION_ = 1 << (255 - 92);
    uint256 internal constant IS_TRANSFER_PAUSED_BIT_POSITION_ = 1 << (255 - 91);
    uint256 internal constant IS_SIGNATURE_VERIFICATION_PAUSED_BIT_POSITION_ = 1 << (255 - 90);

    // internal function upgrade masks
    // Erc20
    uint256 internal constant IS_TRANSFER_UPGRADED_BIT_POSITION_ = 1 << (255 - 89);
    uint256 internal constant IS_TRANSFER_FROM_UPGRADED_BIT_POSITION_ = 1 << (255 - 88);

    // Eip 3009
    uint256 internal constant IS_TRANSFER_WITH_AUTHORIZATION_UPGRADED_BIT_POSITION_ = 1 << (255 - 87);
    uint256 internal constant IS_RECEIVE_WITH_AUTHORIZATION_UPGRADED_BIT_POSITION_ = 1 << (255 - 86);

    //==============================================================================
    // Bitmask Functions
    //==============================================================================

    // These function use a bitmask to check if a specific bit is set in the contract data
    function isMsgSenderFrozenCheckEnabled(uint256 _contractData) internal pure returns (bool) {
        return _contractData & IS_MSG_SENDER_FROZEN_CHECK_ENABLED_BIT_POSITION_ != 0;
    }

    function isMintPaused(uint256 _contractData) internal pure returns (bool) {
        return _contractData & IS_MINT_PAUSED_BIT_POSITION_ != 0;
    }

    function isBurnFromPaused(uint256 _contractData) internal pure returns (bool) {
        return _contractData & IS_BURN_FROM_PAUSED_BIT_POSITION_ != 0;
    }

    function isFreezingPaused(uint256 _contractData) internal pure returns (bool) {
        return _contractData & IS_FREEZING_PAUSED_BIT_POSITION_ != 0;
    }

    function isTransferPaused(uint256 _contractData) internal pure returns (bool) {
        return _contractData & IS_TRANSFER_PAUSED_BIT_POSITION_ != 0;
    }

    function isSignatureVerificationPaused(uint256 _contractData) internal pure returns (bool) {
        return _contractData & IS_SIGNATURE_VERIFICATION_PAUSED_BIT_POSITION_ != 0;
    }

    function isTransferUpgraded(uint256 _contractData) internal pure returns (bool) {
        return _contractData & IS_TRANSFER_UPGRADED_BIT_POSITION_ != 0;
    }

    function isTransferFromUpgraded(uint256 _contractData) internal pure returns (bool) {
        return _contractData & IS_TRANSFER_FROM_UPGRADED_BIT_POSITION_ != 0;
    }

    function isTransferWithAuthorizationUpgraded(uint256 _contractData) internal pure returns (bool) {
        return _contractData & IS_TRANSFER_WITH_AUTHORIZATION_UPGRADED_BIT_POSITION_ != 0;
    }

    function isReceiveWithAuthorizationUpgraded(uint256 _contractData) internal pure returns (bool) {
        return _contractData & IS_RECEIVE_WITH_AUTHORIZATION_UPGRADED_BIT_POSITION_ != 0;
    }

    function implementation(uint256 _contractData) internal pure returns (address) {
        // return least significant 160 bits and cast to an address
        return address(uint160(_contractData));
    }

    function setBitWithMask(
        uint256 _original,
        uint256 _bitToSet,
        bool _setBitToOne
    ) internal pure returns (uint256 _new) {
        // Sets the specified bit to 1 or 0
        _new = _setBitToOne ? _original | _bitToSet : _original & ~_bitToSet;
    }

    //==============================================================================
    // Errors
    //==============================================================================

    /// @notice The ```TransferPaused``` error is emitted when transfers are paused during an attempted transfer
    error TransferPaused();

    /// @notice The ```SignatureVerificationPaused``` error is emitted when signature verification is paused during an attempted transfer
    error SignatureVerificationPaused();

    /// @notice The ```MintPaused``` error is emitted when minting is paused during an attempted mint
    error MintPaused();

    /// @notice The ```BurnFromPaused``` error is emitted when burning is paused during an attempted burn
    error BurnFromPaused();

    /// @notice The ```FreezingPaused``` error is emitted when freezing is paused during an attempted call to freeze() or unfreeze()
    error FreezingPaused();
}

File 8 of 27 : ITransparentUpgradeableProxy.sol
// SPDX-License-Identifier: Apache-2.0
pragma solidity >=0.8.0;

interface ITransparentUpgradeableProxy {
    function upgradeToAndCall(address, bytes calldata) external payable;
}

File 9 of 27 : MessageHashUtils.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

File 10 of 27 : SignatureCheckerLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Signature verification helper that supports both ECDSA signatures from EOAs
/// and ERC1271 signatures from smart contract wallets like Argent and Gnosis safe.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SignatureCheckerLib.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/SignatureChecker.sol)
///
/// @dev Note:
/// - The signature checking functions use the ecrecover precompile (0x1).
/// - The `bytes memory signature` variants use the identity precompile (0x4)
///   to copy memory internally.
/// - Unlike ECDSA signatures, contract signatures are revocable.
/// - As of Solady version 0.0.134, all `bytes signature` variants accept both
///   regular 65-byte `(r, s, v)` and EIP-2098 `(r, vs)` short form signatures.
///   See: https://eips.ethereum.org/EIPS/eip-2098
///   This is for calldata efficiency on smart accounts prevalent on L2s.
///
/// WARNING! Do NOT use signatures as unique identifiers:
/// - Use a nonce in the digest to prevent replay attacks on the same contract.
/// - Use EIP-712 for the digest to prevent replay attacks across different chains and contracts.
///   EIP-712 also enables readable signing of typed data for better user safety.
/// This implementation does NOT check if a signature is non-malleable.
library SignatureCheckerLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*               SIGNATURE CHECKING OPERATIONS                */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns whether `signature` is valid for `signer` and `hash`.
    /// If `signer` is a smart contract, the signature is validated with ERC1271.
    /// Otherwise, the signature is validated with `ECDSA.recover`.
    function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature)
        internal
        view
        returns (bool isValid)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Clean the upper 96 bits of `signer` in case they are dirty.
            for { signer := shr(96, shl(96, signer)) } signer {} {
                let m := mload(0x40)
                mstore(0x00, hash)
                mstore(0x40, mload(add(signature, 0x20))) // `r`.
                if eq(mload(signature), 64) {
                    let vs := mload(add(signature, 0x40))
                    mstore(0x20, add(shr(255, vs), 27)) // `v`.
                    mstore(0x60, shr(1, shl(1, vs))) // `s`.
                    let t :=
                        staticcall(
                            gas(), // Amount of gas left for the transaction.
                            1, // Address of `ecrecover`.
                            0x00, // Start of input.
                            0x80, // Size of input.
                            0x01, // Start of output.
                            0x20 // Size of output.
                        )
                    // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                    if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                        isValid := 1
                        mstore(0x60, 0) // Restore the zero slot.
                        mstore(0x40, m) // Restore the free memory pointer.
                        break
                    }
                }
                if eq(mload(signature), 65) {
                    mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
                    mstore(0x60, mload(add(signature, 0x40))) // `s`.
                    let t :=
                        staticcall(
                            gas(), // Amount of gas left for the transaction.
                            1, // Address of `ecrecover`.
                            0x00, // Start of input.
                            0x80, // Size of input.
                            0x01, // Start of output.
                            0x20 // Size of output.
                        )
                    // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                    if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                        isValid := 1
                        mstore(0x60, 0) // Restore the zero slot.
                        mstore(0x40, m) // Restore the free memory pointer.
                        break
                    }
                }
                mstore(0x60, 0) // Restore the zero slot.
                mstore(0x40, m) // Restore the free memory pointer.

                let f := shl(224, 0x1626ba7e)
                mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                mstore(add(m, 0x04), hash)
                let d := add(m, 0x24)
                mstore(d, 0x40) // The offset of the `signature` in the calldata.
                // Copy the `signature` over.
                let n := add(0x20, mload(signature))
                pop(staticcall(gas(), 4, signature, n, add(m, 0x44), n))
                // forgefmt: disable-next-item
                isValid := and(
                    // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                    eq(mload(d), f),
                    // Whether the staticcall does not revert.
                    // This must be placed at the end of the `and` clause,
                    // as the arguments are evaluated from right to left.
                    staticcall(
                        gas(), // Remaining gas.
                        signer, // The `signer` address.
                        m, // Offset of calldata in memory.
                        add(returndatasize(), 0x44), // Length of calldata in memory.
                        d, // Offset of returndata.
                        0x20 // Length of returndata to write.
                    )
                )
                break
            }
        }
    }

    /// @dev Returns whether `signature` is valid for `signer` and `hash`.
    /// If `signer` is a smart contract, the signature is validated with ERC1271.
    /// Otherwise, the signature is validated with `ECDSA.recover`.
    function isValidSignatureNowCalldata(address signer, bytes32 hash, bytes calldata signature)
        internal
        view
        returns (bool isValid)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Clean the upper 96 bits of `signer` in case they are dirty.
            for { signer := shr(96, shl(96, signer)) } signer {} {
                let m := mload(0x40)
                mstore(0x00, hash)
                if eq(signature.length, 64) {
                    let vs := calldataload(add(signature.offset, 0x20))
                    mstore(0x20, add(shr(255, vs), 27)) // `v`.
                    mstore(0x40, calldataload(signature.offset)) // `r`.
                    mstore(0x60, shr(1, shl(1, vs))) // `s`.
                    let t :=
                        staticcall(
                            gas(), // Amount of gas left for the transaction.
                            1, // Address of `ecrecover`.
                            0x00, // Start of input.
                            0x80, // Size of input.
                            0x01, // Start of output.
                            0x20 // Size of output.
                        )
                    // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                    if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                        isValid := 1
                        mstore(0x60, 0) // Restore the zero slot.
                        mstore(0x40, m) // Restore the free memory pointer.
                        break
                    }
                }
                if eq(signature.length, 65) {
                    mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
                    calldatacopy(0x40, signature.offset, 0x40) // `r`, `s`.
                    let t :=
                        staticcall(
                            gas(), // Amount of gas left for the transaction.
                            1, // Address of `ecrecover`.
                            0x00, // Start of input.
                            0x80, // Size of input.
                            0x01, // Start of output.
                            0x20 // Size of output.
                        )
                    // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                    if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                        isValid := 1
                        mstore(0x60, 0) // Restore the zero slot.
                        mstore(0x40, m) // Restore the free memory pointer.
                        break
                    }
                }
                mstore(0x60, 0) // Restore the zero slot.
                mstore(0x40, m) // Restore the free memory pointer.

                let f := shl(224, 0x1626ba7e)
                mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                mstore(add(m, 0x04), hash)
                let d := add(m, 0x24)
                mstore(d, 0x40) // The offset of the `signature` in the calldata.
                mstore(add(m, 0x44), signature.length)
                // Copy the `signature` over.
                calldatacopy(add(m, 0x64), signature.offset, signature.length)
                // forgefmt: disable-next-item
                isValid := and(
                    // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                    eq(mload(d), f),
                    // Whether the staticcall does not revert.
                    // This must be placed at the end of the `and` clause,
                    // as the arguments are evaluated from right to left.
                    staticcall(
                        gas(), // Remaining gas.
                        signer, // The `signer` address.
                        m, // Offset of calldata in memory.
                        add(signature.length, 0x64), // Length of calldata in memory.
                        d, // Offset of returndata.
                        0x20 // Length of returndata to write.
                    )
                )
                break
            }
        }
    }

    /// @dev Returns whether the signature (`r`, `vs`) is valid for `signer` and `hash`.
    /// If `signer` is a smart contract, the signature is validated with ERC1271.
    /// Otherwise, the signature is validated with `ECDSA.recover`.
    function isValidSignatureNow(address signer, bytes32 hash, bytes32 r, bytes32 vs)
        internal
        view
        returns (bool isValid)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Clean the upper 96 bits of `signer` in case they are dirty.
            for { signer := shr(96, shl(96, signer)) } signer {} {
                let m := mload(0x40)
                mstore(0x00, hash)
                mstore(0x20, add(shr(255, vs), 27)) // `v`.
                mstore(0x40, r) // `r`.
                mstore(0x60, shr(1, shl(1, vs))) // `s`.
                let t :=
                    staticcall(
                        gas(), // Amount of gas left for the transaction.
                        1, // Address of `ecrecover`.
                        0x00, // Start of input.
                        0x80, // Size of input.
                        0x01, // Start of output.
                        0x20 // Size of output.
                    )
                // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                    isValid := 1
                    mstore(0x60, 0) // Restore the zero slot.
                    mstore(0x40, m) // Restore the free memory pointer.
                    break
                }

                let f := shl(224, 0x1626ba7e)
                mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                mstore(add(m, 0x04), hash)
                let d := add(m, 0x24)
                mstore(d, 0x40) // The offset of the `signature` in the calldata.
                mstore(add(m, 0x44), 65) // Length of the signature.
                mstore(add(m, 0x64), r) // `r`.
                mstore(add(m, 0x84), mload(0x60)) // `s`.
                mstore8(add(m, 0xa4), mload(0x20)) // `v`.
                // forgefmt: disable-next-item
                isValid := and(
                    // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                    eq(mload(d), f),
                    // Whether the staticcall does not revert.
                    // This must be placed at the end of the `and` clause,
                    // as the arguments are evaluated from right to left.
                    staticcall(
                        gas(), // Remaining gas.
                        signer, // The `signer` address.
                        m, // Offset of calldata in memory.
                        0xa5, // Length of calldata in memory.
                        d, // Offset of returndata.
                        0x20 // Length of returndata to write.
                    )
                )
                mstore(0x60, 0) // Restore the zero slot.
                mstore(0x40, m) // Restore the free memory pointer.
                break
            }
        }
    }

    /// @dev Returns whether the signature (`v`, `r`, `s`) is valid for `signer` and `hash`.
    /// If `signer` is a smart contract, the signature is validated with ERC1271.
    /// Otherwise, the signature is validated with `ECDSA.recover`.
    function isValidSignatureNow(address signer, bytes32 hash, uint8 v, bytes32 r, bytes32 s)
        internal
        view
        returns (bool isValid)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Clean the upper 96 bits of `signer` in case they are dirty.
            for { signer := shr(96, shl(96, signer)) } signer {} {
                let m := mload(0x40)
                mstore(0x00, hash)
                mstore(0x20, and(v, 0xff)) // `v`.
                mstore(0x40, r) // `r`.
                mstore(0x60, s) // `s`.
                let t :=
                    staticcall(
                        gas(), // Amount of gas left for the transaction.
                        1, // Address of `ecrecover`.
                        0x00, // Start of input.
                        0x80, // Size of input.
                        0x01, // Start of output.
                        0x20 // Size of output.
                    )
                // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                    isValid := 1
                    mstore(0x60, 0) // Restore the zero slot.
                    mstore(0x40, m) // Restore the free memory pointer.
                    break
                }

                let f := shl(224, 0x1626ba7e)
                mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                mstore(add(m, 0x04), hash)
                let d := add(m, 0x24)
                mstore(d, 0x40) // The offset of the `signature` in the calldata.
                mstore(add(m, 0x44), 65) // Length of the signature.
                mstore(add(m, 0x64), r) // `r`.
                mstore(add(m, 0x84), s) // `s`.
                mstore8(add(m, 0xa4), v) // `v`.
                // forgefmt: disable-next-item
                isValid := and(
                    // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                    eq(mload(d), f),
                    // Whether the staticcall does not revert.
                    // This must be placed at the end of the `and` clause,
                    // as the arguments are evaluated from right to left.
                    staticcall(
                        gas(), // Remaining gas.
                        signer, // The `signer` address.
                        m, // Offset of calldata in memory.
                        0xa5, // Length of calldata in memory.
                        d, // Offset of returndata.
                        0x20 // Length of returndata to write.
                    )
                )
                mstore(0x60, 0) // Restore the zero slot.
                mstore(0x40, m) // Restore the free memory pointer.
                break
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     ERC1271 OPERATIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns whether `signature` is valid for `hash` for an ERC1271 `signer` contract.
    function isValidERC1271SignatureNow(address signer, bytes32 hash, bytes memory signature)
        internal
        view
        returns (bool isValid)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            let f := shl(224, 0x1626ba7e)
            mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
            mstore(add(m, 0x04), hash)
            let d := add(m, 0x24)
            mstore(d, 0x40) // The offset of the `signature` in the calldata.
            // Copy the `signature` over.
            let n := add(0x20, mload(signature))
            pop(staticcall(gas(), 4, signature, n, add(m, 0x44), n))
            // forgefmt: disable-next-item
            isValid := and(
                // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                eq(mload(d), f),
                // Whether the staticcall does not revert.
                // This must be placed at the end of the `and` clause,
                // as the arguments are evaluated from right to left.
                staticcall(
                    gas(), // Remaining gas.
                    signer, // The `signer` address.
                    m, // Offset of calldata in memory.
                    add(returndatasize(), 0x44), // Length of calldata in memory.
                    d, // Offset of returndata.
                    0x20 // Length of returndata to write.
                )
            )
        }
    }

    /// @dev Returns whether `signature` is valid for `hash` for an ERC1271 `signer` contract.
    function isValidERC1271SignatureNowCalldata(
        address signer,
        bytes32 hash,
        bytes calldata signature
    ) internal view returns (bool isValid) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            let f := shl(224, 0x1626ba7e)
            mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
            mstore(add(m, 0x04), hash)
            let d := add(m, 0x24)
            mstore(d, 0x40) // The offset of the `signature` in the calldata.
            mstore(add(m, 0x44), signature.length)
            // Copy the `signature` over.
            calldatacopy(add(m, 0x64), signature.offset, signature.length)
            // forgefmt: disable-next-item
            isValid := and(
                // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                eq(mload(d), f),
                // Whether the staticcall does not revert.
                // This must be placed at the end of the `and` clause,
                // as the arguments are evaluated from right to left.
                staticcall(
                    gas(), // Remaining gas.
                    signer, // The `signer` address.
                    m, // Offset of calldata in memory.
                    add(signature.length, 0x64), // Length of calldata in memory.
                    d, // Offset of returndata.
                    0x20 // Length of returndata to write.
                )
            )
        }
    }

    /// @dev Returns whether the signature (`r`, `vs`) is valid for `hash`
    /// for an ERC1271 `signer` contract.
    function isValidERC1271SignatureNow(address signer, bytes32 hash, bytes32 r, bytes32 vs)
        internal
        view
        returns (bool isValid)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            let f := shl(224, 0x1626ba7e)
            mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
            mstore(add(m, 0x04), hash)
            let d := add(m, 0x24)
            mstore(d, 0x40) // The offset of the `signature` in the calldata.
            mstore(add(m, 0x44), 65) // Length of the signature.
            mstore(add(m, 0x64), r) // `r`.
            mstore(add(m, 0x84), shr(1, shl(1, vs))) // `s`.
            mstore8(add(m, 0xa4), add(shr(255, vs), 27)) // `v`.
            // forgefmt: disable-next-item
            isValid := and(
                // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                eq(mload(d), f),
                // Whether the staticcall does not revert.
                // This must be placed at the end of the `and` clause,
                // as the arguments are evaluated from right to left.
                staticcall(
                    gas(), // Remaining gas.
                    signer, // The `signer` address.
                    m, // Offset of calldata in memory.
                    0xa5, // Length of calldata in memory.
                    d, // Offset of returndata.
                    0x20 // Length of returndata to write.
                )
            )
        }
    }

    /// @dev Returns whether the signature (`v`, `r`, `s`) is valid for `hash`
    /// for an ERC1271 `signer` contract.
    function isValidERC1271SignatureNow(address signer, bytes32 hash, uint8 v, bytes32 r, bytes32 s)
        internal
        view
        returns (bool isValid)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            let f := shl(224, 0x1626ba7e)
            mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
            mstore(add(m, 0x04), hash)
            let d := add(m, 0x24)
            mstore(d, 0x40) // The offset of the `signature` in the calldata.
            mstore(add(m, 0x44), 65) // Length of the signature.
            mstore(add(m, 0x64), r) // `r`.
            mstore(add(m, 0x84), s) // `s`.
            mstore8(add(m, 0xa4), v) // `v`.
            // forgefmt: disable-next-item
            isValid := and(
                // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                eq(mload(d), f),
                // Whether the staticcall does not revert.
                // This must be placed at the end of the `and` clause,
                // as the arguments are evaluated from right to left.
                staticcall(
                    gas(), // Remaining gas.
                    signer, // The `signer` address.
                    m, // Offset of calldata in memory.
                    0xa5, // Length of calldata in memory.
                    d, // Offset of returndata.
                    0x20 // Length of returndata to write.
                )
            )
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     HASHING OPERATIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns an Ethereum Signed Message, created from a `hash`.
    /// This produces a hash corresponding to the one signed with the
    /// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
    /// JSON-RPC method as part of EIP-191.
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x20, hash) // Store into scratch space for keccak256.
            mstore(0x00, "\x00\x00\x00\x00\x19Ethereum Signed Message:\n32") // 28 bytes.
            result := keccak256(0x04, 0x3c) // `32 * 2 - (32 - 28) = 60 = 0x3c`.
        }
    }

    /// @dev Returns an Ethereum Signed Message, created from `s`.
    /// This produces a hash corresponding to the one signed with the
    /// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
    /// JSON-RPC method as part of EIP-191.
    /// Note: Supports lengths of `s` up to 999999 bytes.
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let sLength := mload(s)
            let o := 0x20
            mstore(o, "\x19Ethereum Signed Message:\n") // 26 bytes, zero-right-padded.
            mstore(0x00, 0x00)
            // Convert the `s.length` to ASCII decimal representation: `base10(s.length)`.
            for { let temp := sLength } 1 {} {
                o := sub(o, 1)
                mstore8(o, add(48, mod(temp, 10)))
                temp := div(temp, 10)
                if iszero(temp) { break }
            }
            let n := sub(0x3a, o) // Header length: `26 + 32 - o`.
            // Throw an out-of-offset error (consumes all gas) if the header exceeds 32 bytes.
            returndatacopy(returndatasize(), returndatasize(), gt(n, 0x20))
            mstore(s, or(mload(0x00), mload(n))) // Temporarily store the header.
            result := keccak256(add(s, sub(0x20, n)), add(n, sLength))
            mstore(s, sLength) // Restore the length.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   EMPTY CALLDATA HELPERS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns an empty calldata bytes.
    function emptySignature() internal pure returns (bytes calldata signature) {
        /// @solidity memory-safe-assembly
        assembly {
            signature.length := 0
        }
    }
}

File 11 of 27 : Eip712.sol
// SPDX-License-Identifier: Apache-2.0

// ***NOTE***: This file has been modified to remove external functions and storage for use in a transparent-ish proxy
// ***NOTE***: Modified from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/dbb6104ce834628e473d2173bbc9d47f81a9eec3/contracts/utils/cryptography/EIP712.sol

pragma solidity 0.8.21;

// ====================================================================
//             _        ______     ___   _______          _
//            / \     .' ___  |  .'   `.|_   __ \        / \
//           / _ \   / .'   \_| /  .-.  \ | |__) |      / _ \
//          / ___ \  | |   ____ | |   | | |  __ /      / ___ \
//        _/ /   \ \_\ `.___]  |\  `-'  /_| |  \ \_  _/ /   \ \_
//       |____| |____|`._____.'  `.___.'|____| |___||____| |____|
// ====================================================================
// ============================= Eip712 ===============================
// ====================================================================

import { ShortString, ShortStrings } from "@openzeppelin/contracts/utils/ShortStrings.sol";
import { MessageHashUtils } from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 */

/// @title Eip712
/// @author Agora, modified from OpenZeppelin implementation
abstract contract Eip712 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     */
    constructor(string memory name, string memory version, address expectedProxyAddress) {
        _name = name.toShortString();
        _version = version.toShortString();
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = keccak256(
            abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, expectedProxyAddress)
        );
        _cachedThis = expectedProxyAddress;
    }

    /// @dev Returns the domain separator for the current chain
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) return _cachedDomainSeparator;
        else return _buildDomainSeparator();
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view returns (bytes32) {
        return MessageHashUtils.toTypedDataHash({ domainSeparator: _domainSeparatorV4(), structHash: structHash });
    }

    /**
     * @dev The name parameter for the Eip712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _Eip712Name() internal view returns (string memory) {
        return _name.toString();
    }

    /**
     * @dev The version parameter for the Eip712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _Eip712Version() internal view returns (string memory) {
        return _version.toString();
    }
}

File 12 of 27 : Erc20Core.sol
// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.21;

// ====================================================================
//             _        ______     ___   _______          _
//            / \     .' ___  |  .'   `.|_   __ \        / \
//           / _ \   / .'   \_| /  .-.  \ | |__) |      / _ \
//          / ___ \  | |   ____ | |   | | |  __ /      / ___ \
//        _/ /   \ \_\ `.___]  |\  `-'  /_| |  \ \_  _/ /   \ \_
//       |____| |____|`._____.'  `.___.'|____| |___||____| |____|
// ====================================================================
// ============================ Erc20Core =============================
// ====================================================================

import { IERC20Errors as IErc20Errors } from "@openzeppelin/contracts/interfaces/draft-IErc6093.sol";
import { SafeCastLib } from "solady/src/utils/SafeCastLib.sol";

import { StorageLib } from "./proxy/StorageLib.sol";

/// @notice The ```Erc20Core``` contract is a base contract for the Erc20 standard
/// @title Erc20Core
/// @author Agora
abstract contract Erc20Core is IErc20Errors {
    using StorageLib for uint256;
    using SafeCastLib for uint256;

    //==============================================================================
    // Internal Procedural Functions
    //==============================================================================

    /// The ```_approve``` function is used to approve a spender to spend a certain amount of tokens on behalf of the caller
    /// @dev This function reverts on failure
    /// @param _spender The address of the spender
    /// @param _value The amount of tokens to approve for spending
    function _approve(address _owner, address _spender, uint256 _value) internal {
        StorageLib.getPointerToErc20CoreStorage().accountAllowances[_owner][_spender] = _value;
        emit Approval({ owner: _owner, spender: _spender, value: _value });
    }

    /// @notice The ```_transfer``` function transfers tokens which belong to the caller
    /// @dev This function reverts on failure
    /// @param _to The address of the recipient
    /// @param _transferValue The amount of tokens to transfer
    function _transfer(address _from, address _to, uint248 _transferValue) internal {
        // Checks: Ensure _from address is not frozen
        StorageLib.Erc20AccountData memory _accountDataFrom = StorageLib.getPointerToErc20CoreStorage().accountData[
            _from
        ];
        if (_accountDataFrom.isFrozen) revert AccountIsFrozen({ frozenAccount: _from });

        // Checks: Ensure _from has enough balance
        if (_accountDataFrom.balance < _transferValue)
            revert ERC20InsufficientBalance({
                sender: _from,
                balance: _accountDataFrom.balance,
                needed: _transferValue
            });

        // Effects: update balances on the _from account
        unchecked {
            // Underflow not possible: _transferValue <= fromBalance asserted above
            StorageLib.getPointerToErc20CoreStorage().accountData[_from].balance =
                _accountDataFrom.balance -
                _transferValue;
        }

        // NOTE: typically checks are done before effects, but in this case we need to handle the case where _to == _from and so we want to read the latest values
        // Checks: Ensure _to address is not frozen
        StorageLib.Erc20AccountData memory _accountDataTo = StorageLib.getPointerToErc20CoreStorage().accountData[_to];
        if (_accountDataTo.isFrozen) revert AccountIsFrozen({ frozenAccount: _to });

        // Effects: update balances on the _to account
        unchecked {
            // Overflow not possible: _transferValue + toBalance <= (2^248 -1) x 10^-6 [more money than atoms in the galaxy]
            StorageLib.getPointerToErc20CoreStorage().accountData[_to].balance =
                _accountDataTo.balance +
                _transferValue;
        }

        emit Transfer({ from: _from, to: _to, value: _transferValue });
    }

    /// @notice The ```_spendAllowance``` function decrements a spenders allowance
    /// @dev Treats type(uint256).max as infinite allowance and does not update balance
    /// @param _owner The address of the owner
    /// @param _spender The address of the spender
    /// @param _value The amount of allowance to decrement
    function _spendAllowance(address _owner, address _spender, uint256 _value) internal {
        uint256 _currentAllowance = StorageLib.getPointerToErc20CoreStorage().accountAllowances[_owner][_spender];

        // We treat uint256.max as infinite allowance, so we don't need to read/write storage in that case
        if (_currentAllowance != type(uint256).max) {
            if (_currentAllowance < _value)
                revert ERC20InsufficientAllowance({ spender: _spender, allowance: _currentAllowance, needed: _value });
            unchecked {
                StorageLib.getPointerToErc20CoreStorage().accountAllowances[_owner][_spender] =
                    _currentAllowance -
                    _value;
            }
        }
    }

    //==============================================================================
    // Events
    //==============================================================================

    /// @notice The ```Transfer``` event is emitted when tokens are transferred from one account to another
    /// @param from The account that is transferring tokens
    /// @param to The account that is receiving tokens
    /// @param value The amount of tokens being transferred
    event Transfer(address indexed from, address indexed to, uint256 value);

    /// @notice ```Approval``` emitted when the allowance of a `spender` for an `owner` is set by a call to {approve}
    /// @param owner The account that is allowing the spender to spend
    /// @param spender The account that is allowed to spend
    /// @param value The amount of funds that the spender is allowed to spend
    event Approval(address indexed owner, address indexed spender, uint256 value);

    //==============================================================================
    // Errors
    //==============================================================================

    /// @notice ```AccountIsFrozen``` error is emitted when an account is frozen and a transfer is attempted
    /// @param frozenAccount The account that is frozen
    error AccountIsFrozen(address frozenAccount);
}

File 13 of 27 : Ownable2Step.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.20;

import {Ownable} from "./Ownable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is specified at deployment time in the constructor for `Ownable`. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2Step is Ownable {
    address private _pendingOwner;

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        return _pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        _pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        delete _pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        if (pendingOwner() != sender) {
            revert OwnableUnauthorizedAccount(sender);
        }
        _transferOwnership(sender);
    }
}

File 14 of 27 : ProxyAdmin.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/transparent/ProxyAdmin.sol)

pragma solidity ^0.8.20;

import {ITransparentUpgradeableProxy} from "./TransparentUpgradeableProxy.sol";
import {Ownable} from "../../access/Ownable.sol";

/**
 * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
 * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
 */
contract ProxyAdmin is Ownable {
    /**
     * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgrade(address)`
     * and `upgradeAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
     * while `upgradeAndCall` will invoke the `receive` function if the second argument is the empty byte string.
     * If the getter returns `"5.0.0"`, only `upgradeAndCall(address,bytes)` is present, and the second argument must
     * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
     * during an upgrade.
     */
    string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";

    /**
     * @dev Sets the initial owner who can perform upgrades.
     */
    constructor(address initialOwner) Ownable(initialOwner) {}

    /**
     * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation.
     * See {TransparentUpgradeableProxy-_dispatchUpgradeToAndCall}.
     *
     * Requirements:
     *
     * - This contract must be the admin of `proxy`.
     * - If `data` is empty, `msg.value` must be zero.
     */
    function upgradeAndCall(
        ITransparentUpgradeableProxy proxy,
        address implementation,
        bytes memory data
    ) public payable virtual onlyOwner {
        proxy.upgradeToAndCall{value: msg.value}(implementation, data);
    }
}

File 15 of 27 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 16 of 27 : ShortStrings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 17 of 27 : draft-IErc6093.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

File 18 of 27 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 19 of 27 : TransparentUpgradeableProxy.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/transparent/TransparentUpgradeableProxy.sol)

pragma solidity ^0.8.20;

import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol";
import {ERC1967Proxy} from "../ERC1967/ERC1967Proxy.sol";
import {IERC1967} from "../../interfaces/IERC1967.sol";
import {ProxyAdmin} from "./ProxyAdmin.sol";

/**
 * @dev Interface for {TransparentUpgradeableProxy}. In order to implement transparency, {TransparentUpgradeableProxy}
 * does not implement this interface directly, and its upgradeability mechanism is implemented by an internal dispatch
 * mechanism. The compiler is unaware that these functions are implemented by {TransparentUpgradeableProxy} and will not
 * include them in the ABI so this interface must be used to interact with it.
 */
interface ITransparentUpgradeableProxy is IERC1967 {
    function upgradeToAndCall(address, bytes calldata) external payable;
}

/**
 * @dev This contract implements a proxy that is upgradeable through an associated {ProxyAdmin} instance.
 *
 * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
 * clashing], which can potentially be used in an attack, this contract uses the
 * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
 * things that go hand in hand:
 *
 * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
 * that call matches the {ITransparentUpgradeableProxy-upgradeToAndCall} function exposed by the proxy itself.
 * 2. If the admin calls the proxy, it can call the `upgradeToAndCall` function but any other call won't be forwarded to
 * the implementation. If the admin tries to call a function on the implementation it will fail with an error indicating
 * the proxy admin cannot fallback to the target implementation.
 *
 * These properties mean that the admin account can only be used for upgrading the proxy, so it's best if it's a
 * dedicated account that is not used for anything else. This will avoid headaches due to sudden errors when trying to
 * call a function from the proxy implementation. For this reason, the proxy deploys an instance of {ProxyAdmin} and
 * allows upgrades only if they come through it. You should think of the `ProxyAdmin` instance as the administrative
 * interface of the proxy, including the ability to change who can trigger upgrades by transferring ownership.
 *
 * NOTE: The real interface of this proxy is that defined in `ITransparentUpgradeableProxy`. This contract does not
 * inherit from that interface, and instead `upgradeToAndCall` is implicitly implemented using a custom dispatch
 * mechanism in `_fallback`. Consequently, the compiler will not produce an ABI for this contract. This is necessary to
 * fully implement transparency without decoding reverts caused by selector clashes between the proxy and the
 * implementation.
 *
 * NOTE: This proxy does not inherit from {Context} deliberately. The {ProxyAdmin} of this contract won't send a
 * meta-transaction in any way, and any other meta-transaction setup should be made in the implementation contract.
 *
 * IMPORTANT: This contract avoids unnecessary storage reads by setting the admin only during construction as an
 * immutable variable, preventing any changes thereafter. However, the admin slot defined in ERC-1967 can still be
 * overwritten by the implementation logic pointed to by this proxy. In such cases, the contract may end up in an
 * undesirable state where the admin slot is different from the actual admin.
 *
 * WARNING: It is not recommended to extend this contract to add additional external functions. If you do so, the
 * compiler will not check that there are no selector conflicts, due to the note above. A selector clash between any new
 * function and the functions declared in {ITransparentUpgradeableProxy} will be resolved in favor of the new one. This
 * could render the `upgradeToAndCall` function inaccessible, preventing upgradeability and compromising transparency.
 */
contract TransparentUpgradeableProxy is ERC1967Proxy {
    // An immutable address for the admin to avoid unnecessary SLOADs before each call
    // at the expense of removing the ability to change the admin once it's set.
    // This is acceptable if the admin is always a ProxyAdmin instance or similar contract
    // with its own ability to transfer the permissions to another account.
    address private immutable _admin;

    /**
     * @dev The proxy caller is the current admin, and can't fallback to the proxy target.
     */
    error ProxyDeniedAdminAccess();

    /**
     * @dev Initializes an upgradeable proxy managed by an instance of a {ProxyAdmin} with an `initialOwner`,
     * backed by the implementation at `_logic`, and optionally initialized with `_data` as explained in
     * {ERC1967Proxy-constructor}.
     */
    constructor(address _logic, address initialOwner, bytes memory _data) payable ERC1967Proxy(_logic, _data) {
        _admin = address(new ProxyAdmin(initialOwner));
        // Set the storage value and emit an event for ERC-1967 compatibility
        ERC1967Utils.changeAdmin(_proxyAdmin());
    }

    /**
     * @dev Returns the admin of this proxy.
     */
    function _proxyAdmin() internal virtual returns (address) {
        return _admin;
    }

    /**
     * @dev If caller is the admin process the call internally, otherwise transparently fallback to the proxy behavior.
     */
    function _fallback() internal virtual override {
        if (msg.sender == _proxyAdmin()) {
            if (msg.sig != ITransparentUpgradeableProxy.upgradeToAndCall.selector) {
                revert ProxyDeniedAdminAccess();
            } else {
                _dispatchUpgradeToAndCall();
            }
        } else {
            super._fallback();
        }
    }

    /**
     * @dev Upgrade the implementation of the proxy. See {ERC1967Utils-upgradeToAndCall}.
     *
     * Requirements:
     *
     * - If `data` is empty, `msg.value` must be zero.
     */
    function _dispatchUpgradeToAndCall() private {
        (address newImplementation, bytes memory data) = abi.decode(msg.data[4:], (address, bytes));
        ERC1967Utils.upgradeToAndCall(newImplementation, data);
    }
}

File 20 of 27 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 21 of 27 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 22 of 27 : StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}

File 23 of 27 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 24 of 27 : ERC1967Utils.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Utils.sol)

pragma solidity ^0.8.20;

import {IBeacon} from "../beacon/IBeacon.sol";
import {Address} from "../../utils/Address.sol";
import {StorageSlot} from "../../utils/StorageSlot.sol";

/**
 * @dev This abstract contract provides getters and event emitting update functions for
 * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
 */
library ERC1967Utils {
    // We re-declare ERC-1967 events here because they can't be used directly from IERC1967.
    // This will be fixed in Solidity 0.8.21. At that point we should remove these events.
    /**
     * @dev Emitted when the implementation is upgraded.
     */
    event Upgraded(address indexed implementation);

    /**
     * @dev Emitted when the admin account has changed.
     */
    event AdminChanged(address previousAdmin, address newAdmin);

    /**
     * @dev Emitted when the beacon is changed.
     */
    event BeaconUpgraded(address indexed beacon);

    /**
     * @dev Storage slot with the address of the current implementation.
     * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /**
     * @dev The `implementation` of the proxy is invalid.
     */
    error ERC1967InvalidImplementation(address implementation);

    /**
     * @dev The `admin` of the proxy is invalid.
     */
    error ERC1967InvalidAdmin(address admin);

    /**
     * @dev The `beacon` of the proxy is invalid.
     */
    error ERC1967InvalidBeacon(address beacon);

    /**
     * @dev An upgrade function sees `msg.value > 0` that may be lost.
     */
    error ERC1967NonPayable();

    /**
     * @dev Returns the current implementation address.
     */
    function getImplementation() internal view returns (address) {
        return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
    }

    /**
     * @dev Stores a new address in the EIP1967 implementation slot.
     */
    function _setImplementation(address newImplementation) private {
        if (newImplementation.code.length == 0) {
            revert ERC1967InvalidImplementation(newImplementation);
        }
        StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
    }

    /**
     * @dev Performs implementation upgrade with additional setup call if data is nonempty.
     * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
     * to avoid stuck value in the contract.
     *
     * Emits an {IERC1967-Upgraded} event.
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) internal {
        _setImplementation(newImplementation);
        emit Upgraded(newImplementation);

        if (data.length > 0) {
            Address.functionDelegateCall(newImplementation, data);
        } else {
            _checkNonPayable();
        }
    }

    /**
     * @dev Storage slot with the admin of the contract.
     * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

    /**
     * @dev Returns the current admin.
     *
     * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using
     * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
     * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
     */
    function getAdmin() internal view returns (address) {
        return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
    }

    /**
     * @dev Stores a new address in the EIP1967 admin slot.
     */
    function _setAdmin(address newAdmin) private {
        if (newAdmin == address(0)) {
            revert ERC1967InvalidAdmin(address(0));
        }
        StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
    }

    /**
     * @dev Changes the admin of the proxy.
     *
     * Emits an {IERC1967-AdminChanged} event.
     */
    function changeAdmin(address newAdmin) internal {
        emit AdminChanged(getAdmin(), newAdmin);
        _setAdmin(newAdmin);
    }

    /**
     * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
     * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;

    /**
     * @dev Returns the current beacon.
     */
    function getBeacon() internal view returns (address) {
        return StorageSlot.getAddressSlot(BEACON_SLOT).value;
    }

    /**
     * @dev Stores a new beacon in the EIP1967 beacon slot.
     */
    function _setBeacon(address newBeacon) private {
        if (newBeacon.code.length == 0) {
            revert ERC1967InvalidBeacon(newBeacon);
        }

        StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;

        address beaconImplementation = IBeacon(newBeacon).implementation();
        if (beaconImplementation.code.length == 0) {
            revert ERC1967InvalidImplementation(beaconImplementation);
        }
    }

    /**
     * @dev Change the beacon and trigger a setup call if data is nonempty.
     * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
     * to avoid stuck value in the contract.
     *
     * Emits an {IERC1967-BeaconUpgraded} event.
     *
     * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
     * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
     * efficiency.
     */
    function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
        _setBeacon(newBeacon);
        emit BeaconUpgraded(newBeacon);

        if (data.length > 0) {
            Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
        } else {
            _checkNonPayable();
        }
    }

    /**
     * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
     * if an upgrade doesn't perform an initialization call.
     */
    function _checkNonPayable() private {
        if (msg.value > 0) {
            revert ERC1967NonPayable();
        }
    }
}

File 25 of 27 : ERC1967Proxy.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Proxy.sol)

pragma solidity ^0.8.20;

import {Proxy} from "../Proxy.sol";
import {ERC1967Utils} from "./ERC1967Utils.sol";

/**
 * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
 * implementation address that can be changed. This address is stored in storage in the location specified by
 * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
 * implementation behind the proxy.
 */
contract ERC1967Proxy is Proxy {
    /**
     * @dev Initializes the upgradeable proxy with an initial implementation specified by `implementation`.
     *
     * If `_data` is nonempty, it's used as data in a delegate call to `implementation`. This will typically be an
     * encoded function call, and allows initializing the storage of the proxy like a Solidity constructor.
     *
     * Requirements:
     *
     * - If `data` is empty, `msg.value` must be zero.
     */
    constructor(address implementation, bytes memory _data) payable {
        ERC1967Utils.upgradeToAndCall(implementation, _data);
    }

    /**
     * @dev Returns the current implementation address.
     *
     * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using
     * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
     * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
     */
    function _implementation() internal view virtual override returns (address) {
        return ERC1967Utils.getImplementation();
    }
}

File 26 of 27 : IERC1967.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol)

pragma solidity ^0.8.20;

/**
 * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
 */
interface IERC1967 {
    /**
     * @dev Emitted when the implementation is upgraded.
     */
    event Upgraded(address indexed implementation);

    /**
     * @dev Emitted when the admin account has changed.
     */
    event AdminChanged(address previousAdmin, address newAdmin);

    /**
     * @dev Emitted when the beacon is changed.
     */
    event BeaconUpgraded(address indexed beacon);
}

File 27 of 27 : IBeacon.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is the interface that {BeaconProxy} expects of its beacon.
 */
interface IBeacon {
    /**
     * @dev Must return an address that can be used as a delegate call target.
     *
     * {UpgradeableBeacon} will check that this address is a contract.
     */
    function implementation() external view returns (address);
}

Settings
{
  "remappings": [
    "contracts/=agora-dollar-evm/src/contracts/",
    "interfaces/=agora-dollar-evm/src/contracts/interfaces/",
    "forge-std/=agora-dollar-evm/node_modules/forge-std/src/",
    "ds-test/=agora-dollar-evm/node_modules/ds-test/src/",
    "@openzeppelin/=agora-dollar-evm/node_modules/@openzeppelin/",
    "solady/=agora-dollar-evm/node_modules/solady/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 100000000
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "none",
    "appendCBOR": false
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "shanghai",
  "viaIR": true,
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"components":[{"internalType":"address","name":"proxyAdminOwnerAddress","type":"address"},{"internalType":"string","name":"eip712Name","type":"string"},{"internalType":"string","name":"eip712Version","type":"string"}],"internalType":"struct ConstructorParams","name":"_params","type":"tuple"}],"stateMutability":"payable","type":"constructor"},{"inputs":[{"internalType":"address","name":"frozenAccount","type":"address"}],"name":"AccountIsFrozen","type":"error"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[],"name":"AgoraDollarErc1967NonPayable","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[],"name":"ExpiredAuthorization","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"ImplementationTargetNotAContract","type":"error"},{"inputs":[],"name":"InvalidAuthorization","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"},{"internalType":"address","name":"payee","type":"address"}],"name":"InvalidPayee","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[],"name":"ProxyDeniedAdminAccess","type":"error"},{"inputs":[],"name":"SignatureVerificationPaused","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"inputs":[],"name":"TransferPaused","type":"error"},{"inputs":[],"name":"UsedOrCanceledAuthorization","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"previousAdmin","type":"address"},{"indexed":false,"internalType":"address","name":"newAdmin","type":"address"}],"name":"AdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"authorizer","type":"address"},{"indexed":true,"internalType":"bytes32","name":"nonce","type":"bytes32"}],"name":"AuthorizationCanceled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"authorizer","type":"address"},{"indexed":true,"internalType":"bytes32","name":"nonce","type":"bytes32"}],"name":"AuthorizationUsed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"implementation","type":"address"}],"name":"Upgraded","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[{"internalType":"address","name":"_from","type":"address"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_value","type":"uint256"},{"internalType":"uint256","name":"_validAfter","type":"uint256"},{"internalType":"uint256","name":"_validBefore","type":"uint256"},{"internalType":"bytes32","name":"_nonce","type":"bytes32"},{"internalType":"bytes","name":"_signature","type":"bytes"}],"name":"receiveWithAuthorization","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_from","type":"address"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_value","type":"uint256"},{"internalType":"uint256","name":"_validAfter","type":"uint256"},{"internalType":"uint256","name":"_validBefore","type":"uint256"},{"internalType":"bytes32","name":"_nonce","type":"bytes32"},{"internalType":"uint8","name":"_v","type":"uint8"},{"internalType":"bytes32","name":"_r","type":"bytes32"},{"internalType":"bytes32","name":"_s","type":"bytes32"}],"name":"receiveWithAuthorization","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_transferValue","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_from","type":"address"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_transferValue","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_from","type":"address"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_value","type":"uint256"},{"internalType":"uint256","name":"_validAfter","type":"uint256"},{"internalType":"uint256","name":"_validBefore","type":"uint256"},{"internalType":"bytes32","name":"_nonce","type":"bytes32"},{"internalType":"bytes","name":"_signature","type":"bytes"}],"name":"transferWithAuthorization","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_from","type":"address"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_value","type":"uint256"},{"internalType":"uint256","name":"_validAfter","type":"uint256"},{"internalType":"uint256","name":"_validBefore","type":"uint256"},{"internalType":"bytes32","name":"_nonce","type":"bytes32"},{"internalType":"uint8","name":"_v","type":"uint8"},{"internalType":"bytes32","name":"_r","type":"bytes32"},{"internalType":"bytes32","name":"_s","type":"bytes32"}],"name":"transferWithAuthorization","outputs":[],"stateMutability":"nonpayable","type":"function"}]

6101806040908082526200223880380380916200001d828562000267565b83398101916020908183850312620002635782516001600160401b039384821162000263570190606082860312620002635780519160608301838110868211176200024f57825280516001600160a01b0391908281168103620002635784528481015186811162000263578762000096918301620002ae565b96858501978852838201518781116200026357620000b59201620002ae565b9586838501525192620000c88462000309565b95610120968752620000da8862000309565b94610140958652868151910120978860e05286815191012061010098818a524660a052855191888301917f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f83528784015260608301524660808301523060a083015260a0825260c0820193828510848611176200024f578591858852835190206080523060c05251169161078f928383019160c0830190868210908211176200024f57899462001aa98739520301905ff080156200024557166101608181527fb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d610380546001600160a01b0319168317905582515f815294850191909152927f7e644d79422f17c01e4894b5f4f588d331ebfa28653d42ae832dc59e38c9798f908290a1519261173194856200037886396080518561146f015260a0518561152a015260c05185611440015260e051856114be015251846114e40152518350505182505051816104560152f35b82513d5f823e3d90fd5b634e487b7160e01b5f52604160045260245ffd5b5f80fd5b601f909101601f19168101906001600160401b038211908210176200024f57604052565b5f5b8381106200029d5750505f910152565b81810151838201526020016200028d565b81601f82011215620002635780516001600160401b0381116200024f5760405192620002e5601f8301601f19166020018562000267565b8184526020828401011162000263576200030691602080850191016200028b565b90565b601f8151116200033657602081519101516020821062000327571790565b5f198260200360031b1b161790565b6044604051809263305a27a960e01b8252602060048301526200036981518092816024860152602086860191016200028b565b601f01601f19168101030190fdfe60806040526004361015610018575b61001661043d565b005b5f3560e01c806323b872dd1461007757806388b7ab6314610072578063a9059cbb1461006d578063cf09299514610068578063e3ee160e146100635763ef55bec60361000e57610421565b61038b565b610300565b6102b7565b61029a565b346100d65760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100d65760206100cc6004356100b7816100da565b6024356100c3816100da565b60443591610c88565b6040519015158152f35b5f80fd5b73ffffffffffffffffffffffffffffffffffffffff8116036100d657565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b60c0810190811067ffffffffffffffff82111761014157604052565b6100f8565b610100810190811067ffffffffffffffff82111761014157604052565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761014157604052565b67ffffffffffffffff811161014157601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b81601f820112156100d6578035906101f5826101a4565b926102036040519485610163565b828452602083830101116100d657815f926020809301838601378301015290565b60e07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc8201126100d65760043561025a816100da565b91602435610267816100da565b9160443591606435916084359160a4359160c4359067ffffffffffffffff82116100d657610297916004016101de565b90565b346100d6576100166102ab36610224565b95949094939193611550565b346100d65760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100d65760206100cc6004356102f7816100da565b6024359061078a565b346100d65761001661031136610224565b95949094939193610f1b565b7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc6101209101126100d657600435610354816100da565b90602435610361816100da565b9060443590606435906084359060a4359060c43560ff811681036100d6579060e435906101043590565b346100d65761001661041c6103f06103a23661031d565b60408051602081019390935282015260f89190911b7fff0000000000000000000000000000000000000000000000000000000000000016606082015297909691959294929188906061820190565b037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08101895288610163565b610f1b565b346100d6576100166104386103f06103a23661031d565b611550565b73ffffffffffffffffffffffffffffffffffffffff90337f0000000000000000000000000000000000000000000000000000000000000000831603610567575f9182357fffffffff00000000000000000000000000000000000000000000000000000000167f4f1ef28600000000000000000000000000000000000000000000000000000000146104f25760046040517fd2b576ec000000000000000000000000000000000000000000000000000000008152fd5b366004116105635760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126105635760043590610531826100da565b6024359367ffffffffffffffff8511610560575061055761055e939436906004016101de565b91166105aa565b565b80fd5b8280fd5b507f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc54165b5f808092368280378136915af43d82803e156105a6573d90f35b3d90fd5b803b156106c05773ffffffffffffffffffffffffffffffffffffffff8116907f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc827fffffffffffffffffffffffff00000000000000000000000000000000000000008254161790556040515f927fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b8480a283511561068c5750818084602061068096519101845af4903d15610683573d610663816101a4565b906106716040519283610163565b8152809360203d92013e6106ea565b50565b606092506106ea565b92505050346106985750565b807fcfc04b400000000000000000000000000000000000000000000000000000000060049252fd5b60046040517f9db85088000000000000000000000000000000000000000000000000000000008152fd5b9061072957508051156106ff57805190602001fd5b60046040517f1425ea42000000000000000000000000000000000000000000000000000000008152fd5b81511580610781575b61073a575090565b60249073ffffffffffffffffffffffffffffffffffffffff604051917f9996b315000000000000000000000000000000000000000000000000000000008352166004820152fd5b50803b15610732565b7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc549190744000000000000000000000000000000000000000008316156107e75773ffffffffffffffffffffffffffffffffffffffff831661058c565b9091741000000000000000000000000000000000000000001661081c5761081061081792610846565b90336108d1565b600190565b60046040517fcd1fda9f000000000000000000000000000000000000000000000000000000008152fd5b7f0100000000000000000000000000000000000000000000000000000000000000811015610892577effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff1690565b6335278d125f526004601cfd5b906040516040810181811067ffffffffffffffff82111761014157604052915460ff81161515835260081c6020830152565b919061092261091d8473ffffffffffffffffffffffffffffffffffffffff165f527f455730fed596673e69db1907be2e521374ba893f1a04cc5f5dd931616cd6b70060205260405f2090565b61089f565b8051610c415760200180517effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff9081169084168110610bca57506109af8361098a610a2893517effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff1690565b037effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff1690565b6109f68573ffffffffffffffffffffffffffffffffffffffff165f527f455730fed596673e69db1907be2e521374ba893f1a04cc5f5dd931616cd6b70060205260405f2090565b9060ff7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0083549260081b169116179055565b610a7261091d8273ffffffffffffffffffffffffffffffffffffffff165f527f455730fed596673e69db1907be2e521374ba893f1a04cc5f5dd931616cd6b70060205260405f2090565b8051610b835790610b39610af284610acd60207fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9601517effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff1690565b017effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff1690565b6109f68373ffffffffffffffffffffffffffffffffffffffff165f527f455730fed596673e69db1907be2e521374ba893f1a04cc5f5dd931616cd6b70060205260405f2090565b6040517effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff93909316835273ffffffffffffffffffffffffffffffffffffffff908116931691602090a3565b6040517fcf8eb59700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff83166004820152602490fd5b6040517fe450d38c00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff861660048201527effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff91821660248201529084166044820152606490fd5b6040517fcf8eb59700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff85166004820152602490fd5b7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc54929174800000000000000000000000000000000000000000841615610ce55773ffffffffffffffffffffffffffffffffffffffff841661058c565b909192740100000000000000000000000000000000000000008116151580610d75575b610d4457741000000000000000000000000000000000000000001661081c57610d3e83610d39610817953386610dcc565b610846565b916108d1565b6040517fcf8eb597000000000000000000000000000000000000000000000000000000008152336004820152602490fd5b50610dc7610dc03373ffffffffffffffffffffffffffffffffffffffff165f527f455730fed596673e69db1907be2e521374ba893f1a04cc5f5dd931616cd6b70060205260405f2090565b5460ff1690565b610d08565b91610e3b82610e188573ffffffffffffffffffffffffffffffffffffffff165f527f455730fed596673e69db1907be2e521374ba893f1a04cc5f5dd931616cd6b70160205260405f2090565b9073ffffffffffffffffffffffffffffffffffffffff165f5260205260405f2090565b547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8103610e6a575b50505050565b818110610ec957610ebf9291610e1891039373ffffffffffffffffffffffffffffffffffffffff165f527f455730fed596673e69db1907be2e521374ba893f1a04cc5f5dd931616cd6b70160205260405f2090565b555f808080610e64565b6064935073ffffffffffffffffffffffffffffffffffffffff604051937ffb8f41b200000000000000000000000000000000000000000000000000000000855216600484015260248301526044820152fd5b9492909593917f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc54967501000000000000000000000000000000000000000000881615155f14610f815773ffffffffffffffffffffffffffffffffffffffff881661058c565b90919293949596740100000000000000000000000000000000000000008116151580611016575b610d445774100000000000000000000000000000000000000000811661081c577420000000000000000000000000000000000000000016610fec5761055e96611066565b60046040517fe283c875000000000000000000000000000000000000000000000000000000008152fd5b50611061610dc03373ffffffffffffffffffffffffffffffffffffffff165f527f455730fed596673e69db1907be2e521374ba893f1a04cc5f5dd931616cd6b70060205260405f2090565b610fa8565b94959290939581421115611141578642101561111757611111610d3e94610d399361055e99611095858b611311565b6040519060208201927f7c7c6cdb67a18743f49ec6fa9b35f50d52ed05cbed4cc592e13b44501c1a2267845273ffffffffffffffffffffffffffffffffffffffff808d1660408501528b16606084015288608084015260a083015260c08201528460e082015260e0815261110881610146565b5190208861116b565b8561138f565b60046040517fa899ef93000000000000000000000000000000000000000000000000000000008152fd5b60046040517f2ce87eeb000000000000000000000000000000000000000000000000000000008152fd5b90916042611177611429565b6040948551917f19010000000000000000000000000000000000000000000000000000000000008352600283015260228201522073ffffffffffffffffffffffffffffffffffffffff5f9316806111fd575b505050156111d45750565b600490517f8baa579f000000000000000000000000000000000000000000000000000000008152fd5b90919250835191805f52602091828501518652858551146112c1575b6041855114611281575b5f6060528386527f1626ba7e00000000000000000000000000000000000000000000000000000000938481526004928382015260248101958693888552815186019081604493848601925afa503d01915afa915114165f80806111c9565b6060808601515f1a84528686015181526001848160805f825afa5183183d1517156112ad575050611223565b92509450505f9150925282525f80806111c9565b85850151601b8160ff1c0184527f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6060911681526001848160805f825afa5183183d1517156112ad575050611219565b73ffffffffffffffffffffffffffffffffffffffff165f527fbb0a37da742be2e3b68bdb11d195150f4243c03fb37d3cdfa756046082a3860060205260405f20905f5260205260ff60405f20541661136557565b60046040517f1dbc01d4000000000000000000000000000000000000000000000000000000008152fd5b73ffffffffffffffffffffffffffffffffffffffff167f98de503528ee59b575ef0c0a2576a82497bfc029a5685b209e9ec333479b10a55f8281527fbb0a37da742be2e3b68bdb11d195150f4243c03fb37d3cdfa756046082a38600602052604081208482526020526040812060017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0082541617905580a3565b73ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000000000000000000000000000000000000000000016301480611527575b15611491577f000000000000000000000000000000000000000000000000000000000000000090565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f000000000000000000000000000000000000000000000000000000000000000060408201527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a082015260a0815261152181610125565b51902090565b507f00000000000000000000000000000000000000000000000000000000000000004614611468565b7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc549693959094919392919075020000000000000000000000000000000000000000008816156115b65773ffffffffffffffffffffffffffffffffffffffff881661058c565b9091929394959674100000000000000000000000000000000000000000811661081c577420000000000000000000000000000000000000000016610fec573373ffffffffffffffffffffffffffffffffffffffff8616036116e45786421115611141578142101561111757611111610d3e948785611108896116b887610d399961055e9f6116448389611311565b60405196879560208701998a9260c09491979695929760e08501987fd099cc98ef71107a616c4f0f941f04c322d8e254fe26b3c6668db87aae413de8865273ffffffffffffffffffffffffffffffffffffffff80921660208701521660408501526060840152608083015260a08201520152565b037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08101835282610163565b6040517ffea9444200000000000000000000000000000000000000000000000000000000815233600482015273ffffffffffffffffffffffffffffffffffffffff86166024820152604490fd6080346100c057601f61078f38819003918201601f19168301916001600160401b038311848410176100c4578084926020946040528339810103126100c057516001600160a01b0390818116908190036100c05780156100a85760018060a01b0319918260015416600155815f54938416175f5560405192167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a36106b690816100d98239f35b604051631e4fbdf760e01b81525f6004820152602490fd5b5f80fd5b634e487b7160e01b5f52604160045260245ffdfe604060808152600480361015610013575f80fd5b5f91823560e01c908163715018a61461056557816379ba5097146104855781638da5cb5b146104345781639623609d1461023b578163ad3cb1cc1461017a578163e30c397814610127575063f2fde38b1461006c575f80fd5b346101235760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610123573573ffffffffffffffffffffffffffffffffffffffff80821680920361011f576100c3610666565b6100cb610666565b817fffffffffffffffffffffffff000000000000000000000000000000000000000060015416176001558254167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e227008380a380f35b5f80fd5b5080fd5b83903461012357817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101235760209073ffffffffffffffffffffffffffffffffffffffff600154169051908152f35b9050823461023857807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610238575080519080820182811067ffffffffffffffff82111761020c5761020893508152600582527f352e302e3000000000000000000000000000000000000000000000000000000060208301525191829160208352602083019061060a565b0390f35b6041847f4e487b71000000000000000000000000000000000000000000000000000000005f525260245ffd5b80fd5b905060607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126103ce57813573ffffffffffffffffffffffffffffffffffffffff928382168092036103d25760249182359485168095036104305760443567ffffffffffffffff9182821161042c573660238301121561042c5781840135838111610401577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe092875193603f81601f85011601168401848110868211176103d65788528184528993929190368282018901116103d2578185928960209301838701378401015261032b610666565b803b156103ce576103749787518099819482937f4f1ef286000000000000000000000000000000000000000000000000000000008452898401528a8a840152604483019061060a565b039134905af180156103c457610388578580f35b841161039a575050525f808080808580f35b604185917f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b84513d88823e3d90fd5b8280fd5b8480fd5b878b6041897f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b85896041877f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b8780fd5b8580fd5b83903461012357817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101235773ffffffffffffffffffffffffffffffffffffffff60209254169051908152f35b9050346103ce57827ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126103ce576001549173ffffffffffffffffffffffffffffffffffffffff9133838516036105355750507fffffffffffffffffffffffff0000000000000000000000000000000000000000809216600155825491339083161783553391167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08380a380f35b6024925051907f118cdaa70000000000000000000000000000000000000000000000000000000082523390820152fd5b833461023857807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102385761059c610666565b8073ffffffffffffffffffffffffffffffffffffffff7fffffffffffffffffffffffff0000000000000000000000000000000000000000806001541660015582549081168355167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b91908251928382525f5b8481106106525750507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f845f6020809697860101520116010190565b602081830181015184830182015201610614565b73ffffffffffffffffffffffffffffffffffffffff5f5416330361068657565b60246040517f118cdaa7000000000000000000000000000000000000000000000000000000008152336004820152fd000000000000000000000000000000000000000000000000000000000000002000000000000000000000000068898b77ebf7b55dca8a2e62d6fd74959a2930e2000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000000000000000000000000000000000000000000c41676f726120446f6c6c6172000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000013100000000000000000000000000000000000000000000000000000000000000

Deployed Bytecode

0x60806040526004361015610018575b61001661043d565b005b5f3560e01c806323b872dd1461007757806388b7ab6314610072578063a9059cbb1461006d578063cf09299514610068578063e3ee160e146100635763ef55bec60361000e57610421565b61038b565b610300565b6102b7565b61029a565b346100d65760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100d65760206100cc6004356100b7816100da565b6024356100c3816100da565b60443591610c88565b6040519015158152f35b5f80fd5b73ffffffffffffffffffffffffffffffffffffffff8116036100d657565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b60c0810190811067ffffffffffffffff82111761014157604052565b6100f8565b610100810190811067ffffffffffffffff82111761014157604052565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761014157604052565b67ffffffffffffffff811161014157601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b81601f820112156100d6578035906101f5826101a4565b926102036040519485610163565b828452602083830101116100d657815f926020809301838601378301015290565b60e07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc8201126100d65760043561025a816100da565b91602435610267816100da565b9160443591606435916084359160a4359160c4359067ffffffffffffffff82116100d657610297916004016101de565b90565b346100d6576100166102ab36610224565b95949094939193611550565b346100d65760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100d65760206100cc6004356102f7816100da565b6024359061078a565b346100d65761001661031136610224565b95949094939193610f1b565b7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc6101209101126100d657600435610354816100da565b90602435610361816100da565b9060443590606435906084359060a4359060c43560ff811681036100d6579060e435906101043590565b346100d65761001661041c6103f06103a23661031d565b60408051602081019390935282015260f89190911b7fff0000000000000000000000000000000000000000000000000000000000000016606082015297909691959294929188906061820190565b037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08101895288610163565b610f1b565b346100d6576100166104386103f06103a23661031d565b611550565b73ffffffffffffffffffffffffffffffffffffffff90337f000000000000000000000000b8fcc66d613e5f54ee6a425ddbf4a2fdbe4dedee831603610567575f9182357fffffffff00000000000000000000000000000000000000000000000000000000167f4f1ef28600000000000000000000000000000000000000000000000000000000146104f25760046040517fd2b576ec000000000000000000000000000000000000000000000000000000008152fd5b366004116105635760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126105635760043590610531826100da565b6024359367ffffffffffffffff8511610560575061055761055e939436906004016101de565b91166105aa565b565b80fd5b8280fd5b507f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc54165b5f808092368280378136915af43d82803e156105a6573d90f35b3d90fd5b803b156106c05773ffffffffffffffffffffffffffffffffffffffff8116907f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc827fffffffffffffffffffffffff00000000000000000000000000000000000000008254161790556040515f927fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b8480a283511561068c5750818084602061068096519101845af4903d15610683573d610663816101a4565b906106716040519283610163565b8152809360203d92013e6106ea565b50565b606092506106ea565b92505050346106985750565b807fcfc04b400000000000000000000000000000000000000000000000000000000060049252fd5b60046040517f9db85088000000000000000000000000000000000000000000000000000000008152fd5b9061072957508051156106ff57805190602001fd5b60046040517f1425ea42000000000000000000000000000000000000000000000000000000008152fd5b81511580610781575b61073a575090565b60249073ffffffffffffffffffffffffffffffffffffffff604051917f9996b315000000000000000000000000000000000000000000000000000000008352166004820152fd5b50803b15610732565b7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc549190744000000000000000000000000000000000000000008316156107e75773ffffffffffffffffffffffffffffffffffffffff831661058c565b9091741000000000000000000000000000000000000000001661081c5761081061081792610846565b90336108d1565b600190565b60046040517fcd1fda9f000000000000000000000000000000000000000000000000000000008152fd5b7f0100000000000000000000000000000000000000000000000000000000000000811015610892577effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff1690565b6335278d125f526004601cfd5b906040516040810181811067ffffffffffffffff82111761014157604052915460ff81161515835260081c6020830152565b919061092261091d8473ffffffffffffffffffffffffffffffffffffffff165f527f455730fed596673e69db1907be2e521374ba893f1a04cc5f5dd931616cd6b70060205260405f2090565b61089f565b8051610c415760200180517effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff9081169084168110610bca57506109af8361098a610a2893517effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff1690565b037effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff1690565b6109f68573ffffffffffffffffffffffffffffffffffffffff165f527f455730fed596673e69db1907be2e521374ba893f1a04cc5f5dd931616cd6b70060205260405f2090565b9060ff7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0083549260081b169116179055565b610a7261091d8273ffffffffffffffffffffffffffffffffffffffff165f527f455730fed596673e69db1907be2e521374ba893f1a04cc5f5dd931616cd6b70060205260405f2090565b8051610b835790610b39610af284610acd60207fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9601517effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff1690565b017effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff1690565b6109f68373ffffffffffffffffffffffffffffffffffffffff165f527f455730fed596673e69db1907be2e521374ba893f1a04cc5f5dd931616cd6b70060205260405f2090565b6040517effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff93909316835273ffffffffffffffffffffffffffffffffffffffff908116931691602090a3565b6040517fcf8eb59700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff83166004820152602490fd5b6040517fe450d38c00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff861660048201527effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff91821660248201529084166044820152606490fd5b6040517fcf8eb59700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff85166004820152602490fd5b7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc54929174800000000000000000000000000000000000000000841615610ce55773ffffffffffffffffffffffffffffffffffffffff841661058c565b909192740100000000000000000000000000000000000000008116151580610d75575b610d4457741000000000000000000000000000000000000000001661081c57610d3e83610d39610817953386610dcc565b610846565b916108d1565b6040517fcf8eb597000000000000000000000000000000000000000000000000000000008152336004820152602490fd5b50610dc7610dc03373ffffffffffffffffffffffffffffffffffffffff165f527f455730fed596673e69db1907be2e521374ba893f1a04cc5f5dd931616cd6b70060205260405f2090565b5460ff1690565b610d08565b91610e3b82610e188573ffffffffffffffffffffffffffffffffffffffff165f527f455730fed596673e69db1907be2e521374ba893f1a04cc5f5dd931616cd6b70160205260405f2090565b9073ffffffffffffffffffffffffffffffffffffffff165f5260205260405f2090565b547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8103610e6a575b50505050565b818110610ec957610ebf9291610e1891039373ffffffffffffffffffffffffffffffffffffffff165f527f455730fed596673e69db1907be2e521374ba893f1a04cc5f5dd931616cd6b70160205260405f2090565b555f808080610e64565b6064935073ffffffffffffffffffffffffffffffffffffffff604051937ffb8f41b200000000000000000000000000000000000000000000000000000000855216600484015260248301526044820152fd5b9492909593917f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc54967501000000000000000000000000000000000000000000881615155f14610f815773ffffffffffffffffffffffffffffffffffffffff881661058c565b90919293949596740100000000000000000000000000000000000000008116151580611016575b610d445774100000000000000000000000000000000000000000811661081c577420000000000000000000000000000000000000000016610fec5761055e96611066565b60046040517fe283c875000000000000000000000000000000000000000000000000000000008152fd5b50611061610dc03373ffffffffffffffffffffffffffffffffffffffff165f527f455730fed596673e69db1907be2e521374ba893f1a04cc5f5dd931616cd6b70060205260405f2090565b610fa8565b94959290939581421115611141578642101561111757611111610d3e94610d399361055e99611095858b611311565b6040519060208201927f7c7c6cdb67a18743f49ec6fa9b35f50d52ed05cbed4cc592e13b44501c1a2267845273ffffffffffffffffffffffffffffffffffffffff808d1660408501528b16606084015288608084015260a083015260c08201528460e082015260e0815261110881610146565b5190208861116b565b8561138f565b60046040517fa899ef93000000000000000000000000000000000000000000000000000000008152fd5b60046040517f2ce87eeb000000000000000000000000000000000000000000000000000000008152fd5b90916042611177611429565b6040948551917f19010000000000000000000000000000000000000000000000000000000000008352600283015260228201522073ffffffffffffffffffffffffffffffffffffffff5f9316806111fd575b505050156111d45750565b600490517f8baa579f000000000000000000000000000000000000000000000000000000008152fd5b90919250835191805f52602091828501518652858551146112c1575b6041855114611281575b5f6060528386527f1626ba7e00000000000000000000000000000000000000000000000000000000938481526004928382015260248101958693888552815186019081604493848601925afa503d01915afa915114165f80806111c9565b6060808601515f1a84528686015181526001848160805f825afa5183183d1517156112ad575050611223565b92509450505f9150925282525f80806111c9565b85850151601b8160ff1c0184527f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6060911681526001848160805f825afa5183183d1517156112ad575050611219565b73ffffffffffffffffffffffffffffffffffffffff165f527fbb0a37da742be2e3b68bdb11d195150f4243c03fb37d3cdfa756046082a3860060205260405f20905f5260205260ff60405f20541661136557565b60046040517f1dbc01d4000000000000000000000000000000000000000000000000000000008152fd5b73ffffffffffffffffffffffffffffffffffffffff167f98de503528ee59b575ef0c0a2576a82497bfc029a5685b209e9ec333479b10a55f8281527fbb0a37da742be2e3b68bdb11d195150f4243c03fb37d3cdfa756046082a38600602052604081208482526020526040812060017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0082541617905580a3565b73ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000efe302beaa2b3e6e1b18d08d69a9012a16301480611527575b15611491577f4a2d637ab67cc3b27da88cf95d6108d7596feb9f8364c0219da88a6dd72a519c90565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f1fff4a77785eee286dafb0db6b1c7e21126d99ba99f92d2242416147d8f70a0160408201527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a082015260a0815261152181610125565b51902090565b507f00000000000000000000000000000000000000000000000000000000000000014614611468565b7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc549693959094919392919075020000000000000000000000000000000000000000008816156115b65773ffffffffffffffffffffffffffffffffffffffff881661058c565b9091929394959674100000000000000000000000000000000000000000811661081c577420000000000000000000000000000000000000000016610fec573373ffffffffffffffffffffffffffffffffffffffff8616036116e45786421115611141578142101561111757611111610d3e948785611108896116b887610d399961055e9f6116448389611311565b60405196879560208701998a9260c09491979695929760e08501987fd099cc98ef71107a616c4f0f941f04c322d8e254fe26b3c6668db87aae413de8865273ffffffffffffffffffffffffffffffffffffffff80921660208701521660408501526060840152608083015260a08201520152565b037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08101835282610163565b6040517ffea9444200000000000000000000000000000000000000000000000000000000815233600482015273ffffffffffffffffffffffffffffffffffffffff86166024820152604490fd

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000000000000000000000000000000000000000002000000000000000000000000068898b77ebf7b55dca8a2e62d6fd74959a2930e2000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000000000000000000000000000000000000000000c41676f726120446f6c6c6172000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000013100000000000000000000000000000000000000000000000000000000000000

-----Decoded View---------------
Arg [0] : _params (tuple): System.Collections.Generic.List`1[Nethereum.ABI.FunctionEncoding.ParameterOutput]

-----Encoded View---------------
8 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000020
Arg [1] : 00000000000000000000000068898b77ebf7b55dca8a2e62d6fd74959a2930e2
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000060
Arg [3] : 00000000000000000000000000000000000000000000000000000000000000a0
Arg [4] : 000000000000000000000000000000000000000000000000000000000000000c
Arg [5] : 41676f726120446f6c6c61720000000000000000000000000000000000000000
Arg [6] : 0000000000000000000000000000000000000000000000000000000000000001
Arg [7] : 3100000000000000000000000000000000000000000000000000000000000000


Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.