Feature Tip: Add private address tag to any address under My Name Tag !
ERC-20
Decentralized Web
Overview
Max Total Supply
2,000,000,000 EML
Holders
1,176 ( 2.976%)
Market
Price
$0.00 @ 0.000000 ETH (-44.86%)
Onchain Market Cap
$1,740,684.80
Circulating Supply Market Cap
$34,592.03
Other Info
Token Contract (WITH 18 Decimals)
Balance
7,154.27676 EMLValue
$6.23 ( ~0.00171397689870729 Eth) [0.0004%]Loading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Minimal Proxy Contract for 0x61985f8d774d15f53fa62aa733db49fa8457f982
Contract Name:
TokenImplementation
Compiler Version
v0.8.11+commit.d7f03943
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; // import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; // import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; // import "@openzeppelin/contracts/access/Ownable.sol"; // import "@openzeppelin/contracts/security/Pausable.sol"; // import "@openzeppelin/contracts/utils/Context.sol"; // import "@openzeppelin/contracts/utils/math/SafeMath.sol"; import "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol"; import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol"; import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/utils/math/SafeMathUpgradeable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (a supervisor) that can be granted exclusive access to * specific functions. * * By default, the supervisor account will be the one that deploys the contract. This * can later be changed with {transferSupervisorOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlySupervisor`, which can be applied to your functions to restrict their use to * the supervisor. */ abstract contract Supervisable is Initializable, ContextUpgradeable { address private _supervisor; event SupervisorOwnershipTransferred(address indexed previouSupervisor, address indexed newSupervisor); function __Supervisable_init() internal onlyInitializing { __Supervisable_init_unchained(); } function __Supervisable_init_unchained() internal onlyInitializing { _transferSupervisorOwnership(_msgSender()); } /** * @dev Returns the address of the current supervisor. */ function supervisor() public view virtual returns (address) { return _supervisor; } /** * @dev Throws if called by any account other than the supervisor. */ modifier onlySupervisor() { require(supervisor() == _msgSender(), "Supervisable: caller is not the supervisor"); _; } /** * @dev Transfers supervisor ownership of the contract to a new account (`newSupervisor`). * Internal function without access restriction. */ function _transferSupervisorOwnership(address newSupervisor) internal virtual { address oldSupervisor = _supervisor; _supervisor = newSupervisor; emit SupervisorOwnershipTransferred(oldSupervisor, newSupervisor); } } /** * @dev Extension of {ERC20} that allows token holders to destroy both their own * tokens and those that they have an allowance for, in a way that can be * recognized off-chain (via event analysis). */ abstract contract Burnable is ContextUpgradeable { mapping(address => bool) private _burners; event BurnerAdded(address indexed account); event BurnerRemoved(address indexed account); /** * @dev Returns whether the address is burner. */ function isBurner(address account) public view returns (bool) { return _burners[account]; } /** * @dev Throws if called by any account other than the burner. */ modifier onlyBurner() { require(_burners[_msgSender()], "Burnable: caller is not a burner"); _; } /** * @dev Add burner, only owner can add burner. */ function _addBurner(address account) internal { _burners[account] = true; emit BurnerAdded(account); } /** * @dev Remove operator, only owner can remove operator */ function _removeBurner(address account) internal { _burners[account] = false; emit BurnerRemoved(account); } } /** * @dev Contract for freezing mechanism. * Owner can add freezed account. * Supervisor can remove freezed account. */ contract Freezable is ContextUpgradeable { mapping(address => bool) private _freezes; event Freezed(address indexed account); event Unfreezed(address indexed account); /** * @dev Freeze account, only owner can freeze */ function _freeze(address account) internal { _freezes[account] = true; emit Freezed(account); } /** * @dev Unfreeze account, only supervisor can unfreeze */ function _unfreeze(address account) internal { _freezes[account] = false; emit Unfreezed(account); } /** * @dev Returns whether the address is freezed. */ function isFreezed(address account) public view returns (bool) { return _freezes[account]; } } /** * @dev Contract for locking mechanism. * Locker can add and remove locked account. */ contract Lockable is ContextUpgradeable { using SafeMathUpgradeable for uint256; struct TimeLock { uint256 amount; uint256 lockedAt; uint256 expiresAt; } struct VestingLock { uint256 amount; uint256 lockedAt; uint256 startsAt; uint256 period; uint256 count; } mapping(address => bool) private _lockers; mapping(address => TimeLock[]) private _timeLocks; mapping(address => VestingLock[]) private _vestingLocks; event LockerAdded(address indexed account); event LockerRemoved(address indexed account); event TimeLocked(address indexed account); event TimeUnlocked(address indexed account); event VestingLocked(address indexed account); event VestingUnlocked(address indexed account); event VestingUpdated(address indexed account, uint256 index); /** * @dev Throws if called by any account other than the locker. */ modifier onlyLocker() { require(_lockers[_msgSender()], "Lockable: caller is not a locker"); _; } /** * @dev Returns whether the address is locker. */ function isLocker(address account) public view returns (bool) { return _lockers[account]; } /** * @dev Add locker, only owner can add locker */ function _addLocker(address account) internal { _lockers[account] = true; emit LockerAdded(account); } /** * @dev Remove locker, only owner can remove locker */ function _removeLocker(address account) internal { _lockers[account] = false; emit LockerRemoved(account); } /** * @dev Add time lock, only locker can add */ function _addTimeLock( address account, uint256 amount, uint256 expiresAt ) internal { require(amount > 0, "TimeLock: lock amount is 0"); require(expiresAt > block.timestamp, "TimeLock: invalid expire date"); _timeLocks[account].push(TimeLock(amount, block.timestamp, expiresAt)); emit TimeLocked(account); } /** * @dev Remove time lock, only locker can remove * @param account The address want to remove time lock * @param index Time lock index */ function _removeTimeLock(address account, uint8 index) internal { require(_timeLocks[account].length > index && index >= 0, "TimeLock: invalid index"); uint256 len = _timeLocks[account].length; if (len - 1 != index) { // if it is not last item, swap it _timeLocks[account][index] = _timeLocks[account][len - 1]; } _timeLocks[account].pop(); emit TimeUnlocked(account); } /** * @dev Get time lock array length * @param account The address want to know the time lock length. * @return time lock length */ function getTimeLockLength(address account) public view returns (uint256) { return _timeLocks[account].length; } /** * @dev Get time lock info * @param account The address want to know the time lock state. * @param index Time lock index * @return time lock info */ function getTimeLock(address account, uint8 index) public view returns (uint256, uint256) { require(_timeLocks[account].length > index && index >= 0, "TimeLock: invalid index"); return (_timeLocks[account][index].amount, _timeLocks[account][index].expiresAt); } function getAllTimeLocks(address account) public view returns (TimeLock[] memory) { require(account != address(0), "TimeLock: query for the zero address"); return _timeLocks[account]; } /** * @dev get total time locked amount of address * @param account The address want to know the time lock amount. * @return time locked amount */ function getTimeLockedAmount(address account) public view returns (uint256) { uint256 timeLockedAmount = 0; uint256 len = _timeLocks[account].length; for (uint256 i = 0; i < len; i++) { if (block.timestamp < _timeLocks[account][i].expiresAt) { timeLockedAmount = timeLockedAmount + _timeLocks[account][i].amount; } } return timeLockedAmount; } /** * @dev Add vesting lock, only locker can add * @param account vesting lock account. * @param amount vesting lock amount. * @param startsAt vesting lock release start date. * @param period vesting lock period. End date is startsAt + (period - 1) * count * @param count vesting lock count. If count is 1, it works like a time lock */ function _addVestingLock( address account, uint256 amount, uint256 startsAt, uint256 period, uint256 count ) internal { require(account != address(0), "VestingLock: lock from the zero address"); // require(startsAt > block.timestamp, "VestingLock: must set after now"); require(period > 0, "VestingLock: period is 0"); require(count > 0, "VestingLock: count is 0"); _vestingLocks[account].push(VestingLock(amount, block.timestamp, startsAt, period, count)); emit VestingLocked(account); } /** * @dev Remove vesting lock, only supervisor can remove * @param account The address want to remove the vesting lock */ function _removeVestingLock(address account, uint256 index) internal { require(index < _vestingLocks[account].length, "Invalid index"); if (index != _vestingLocks[account].length - 1) { _vestingLocks[account][index] = _vestingLocks[account][_vestingLocks[account].length - 1]; } _vestingLocks[account].pop(); } function _updateVestingLock( address account, uint256 index, uint256 amount, uint256 startsAt, uint256 period, uint256 count ) internal { require(account != address(0), "VestingLock: lock from the zero address"); // require(startsAt > block.timestamp, "VestingLock: must set after now"); require(amount > 0, "VestingLock: amount is 0"); require(period > 0, "VestingLock: period is 0"); require(count > 0, "VestingLock: count is 0"); VestingLock storage lock = _vestingLocks[account][index]; lock.amount = amount; lock.startsAt = startsAt; lock.period = period; lock.count = count; emit VestingUpdated(account, index); } /** * @dev Get vesting lock info * @param account The address want to know the vesting lock state. * @return vesting lock info */ function getVestingLock(address account, uint256 index) public view returns (VestingLock memory) { return _vestingLocks[account][index]; } /** * @dev Get total vesting locked amount of address, locked amount will be released by 100%/months * If months is 5, locked amount released 20% per 1 month. * @param account The address want to know the vesting lock amount. * @return vesting locked amount */ function getVestingLockedAmount(address account) public view returns (uint256) { uint256 vestingLockedAmount = 0; for (uint256 i = 0; i < _vestingLocks[account].length; i++) { VestingLock memory lock = _vestingLocks[account][i]; uint256 amount = lock.amount; if (amount > 0) { uint256 startsAt = lock.startsAt; uint256 period = lock.period; uint256 count = lock.count; uint256 expiresAt = startsAt + period * (count); uint256 timestamp = block.timestamp; if (timestamp < startsAt) { vestingLockedAmount += amount; } else if (timestamp < expiresAt) { vestingLockedAmount += (amount * ((expiresAt - timestamp) / period)) / count; } } } return vestingLockedAmount; } /** * @dev Get all locked amount * @param account The address want to know the all locked amount * @return all locked amount */ function getAllLockedAmount(address account) public view returns (uint256) { return getTimeLockedAmount(account) + getVestingLockedAmount(account); } function getAllVestingCount(address account) public view returns (uint256) { require(account != address(0), "VestingLock: query for the zero address"); return _vestingLocks[account].length; } function getAllVestings(address account) public view returns (VestingLock[] memory) { require(account != address(0), "VestingLock: query for the zero address"); return _vestingLocks[account]; } } /** * @dev Contract for vesting, timelock enabled ERC-20 token */ contract TokenImplementation is Initializable, PausableUpgradeable, OwnableUpgradeable, Supervisable, Burnable, Freezable, Lockable, ERC20Upgradeable { function initialize(address owner, string memory name, string memory symbol, uint256 initialSupply) public initializer { __Ownable_init(); __Supervisable_init(); __ERC20_init(name, symbol); _mint(owner, initialSupply * 10 ** decimals()); addLocker(owner); transferSupervisorOwnership(owner); transferOwnership(owner); } /** * @dev Recover ERC20 token in contract address. * @param tokenAddress The token contract address * @param tokenAmount Number of tokens to be sent */ function recoverToken(address tokenAddress, uint256 tokenAmount) public onlyOwner { IERC20Upgradeable(tokenAddress).transfer(owner(), tokenAmount); } /** * @dev lock and pause before transfer token */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal override(ERC20Upgradeable) { require(!isFreezed(from), "Freezable: token transfer from freezed account"); require(!isFreezed(to), "Freezable: token transfer to freezed account"); require(!isFreezed(_msgSender()), "Freezable: token transfer called from freezed account"); require(!paused(), "Pausable: token transfer while paused"); if (from != address(0)) require(balanceOf(from) - getAllLockedAmount(from) >= amount, "Lockable: insufficient transfer amount"); super._beforeTokenTransfer(from, to, amount); } /** * @dev only supervisor can renounce supervisor ownership */ function renounceSupervisorOwnership() public onlySupervisor whenNotPaused { _transferSupervisorOwnership(address(0)); } /** * @dev only supervisor can transfer supervisor ownership */ function transferSupervisorOwnership(address newSupervisor) public onlySupervisor whenNotPaused { require(newSupervisor != address(0), "Supervisable: new supervisor is the zero address"); _transferSupervisorOwnership(newSupervisor); } /** * @dev pause all coin transfer */ function pause() public onlyOwner whenNotPaused { _pause(); } /** * @dev unpause all coin transfer */ function unpause() public onlyOwner whenPaused { _unpause(); } /** * @dev only owner can lock account */ function freeze(address account) public onlyOwner whenNotPaused { _freeze(account); } /** * @dev only supervisor can unfreeze account */ function unfreeze(address account) public onlySupervisor whenNotPaused { _unfreeze(account); } /** * @dev only owner can add burner */ function addBurner(address account) public onlyOwner whenNotPaused { _addBurner(account); } /** * @dev only owner can remove burner */ function removeBurner(address account) public onlyOwner whenNotPaused { _removeBurner(account); } /** * @dev burn burner's coin */ function burn(uint256 amount) public onlyBurner whenNotPaused { _burn(_msgSender(), amount); } /** * @dev only owner can add locker */ function addLocker(address account) public onlyOwner whenNotPaused { _addLocker(account); } /** * @dev only owner can remove locker */ function removeLocker(address account) public onlyOwner whenNotPaused { _removeLocker(account); } /** * @dev only locker can add time lock */ function addTimeLock( address account, uint256 amount, uint256 expiresAt ) public onlyLocker whenNotPaused { _addTimeLock(account, amount, expiresAt); } /** * @dev only supervisor can remove time lock */ function removeTimeLock(address account, uint8 index) public onlySupervisor whenNotPaused { _removeTimeLock(account, index); } /** * @dev only locker can add vesting lock */ function addVestingLock( address account, uint256 amount, uint256 startsAt, uint256 period, uint256 count ) public onlyLocker whenNotPaused { require(amount > 0 && balanceOf(account) >= amount, "VestingLock: amount is 0 or over balance"); _addVestingLock(account, amount, startsAt, period, count); } function updateVestingLock( address account, uint256 index, uint256 amount, uint256 startsAt, uint256 period, uint256 count ) public onlyLocker whenNotPaused { _updateVestingLock(account, index, amount, startsAt, period, count); } /** * @dev only supervisor can remove vesting lock */ function removeVestingLock(address account, uint index) public onlySupervisor whenNotPaused { _removeVestingLock(account, index); } function batchTransfer(address[] memory recipients, uint256[] memory amounts) public { require(recipients.length == amounts.length, "EML: recipients and amounts length mismatch"); for (uint256 i = 0; i < recipients.length; i++) { transfer(recipients[i], amounts[i]); } } function vestedTransfer( address recipient, uint256 amount, uint256 startsAt, uint256 period, uint256 count ) public onlyLocker whenNotPaused { // Transfer tokens to the recipient transfer(recipient, amount); // Add a vesting lock for the recipient addVestingLock(recipient, amount, startsAt, period, count); } function lockedTransfer( address recipient, uint256 amount, uint256 expiresAt ) public onlyLocker whenNotPaused { // Transfer tokens to the recipient transfer(recipient, amount); // Add a timed lock for the recipient addTimeLock(recipient, amount, expiresAt); } function batchVestedTransfer( address[] memory recipients, uint256[] memory amounts, uint256[] memory startsAt, uint256[] memory periods, uint256[] memory counts ) public onlyLocker whenNotPaused { require( recipients.length == amounts.length && ((recipients.length == startsAt.length && recipients.length == periods.length && recipients.length == counts.length) || (startsAt.length == 1 && periods.length == 1 && counts.length == 1)), "EML: arrays must have the same length" ); if (startsAt.length == 1 && periods.length == 1 && counts.length == 1) { for (uint256 i = 0; i < recipients.length; i++) { // Transfer tokens to the recipient transfer(recipients[i], amounts[i]); addVestingLock( recipients[i], amounts[i], startsAt[0], periods[0], counts[0] ); } } else { for (uint256 i = 0; i < recipients.length; i++) { // Transfer tokens to the recipient transfer(recipients[i], amounts[i]); addVestingLock( recipients[i], amounts[i], startsAt[i], periods[i], counts[i] ); } } } function batchTimeLockedTransfer( address[] memory recipients, uint256[] memory amounts, uint256[] memory expiresAt ) public onlyLocker whenNotPaused { require( recipients.length == amounts.length && ((recipients.length == expiresAt.length) || (expiresAt.length == 1)), "EML: arrays must have the same length" ); if (expiresAt.length == 1) { for (uint256 i = 0; i < recipients.length; i++) { // Transfer tokens to the recipient transfer(recipients[i], amounts[i]); addTimeLock( recipients[i], amounts[i], expiresAt[0] ); } } else { for (uint256 i = 0; i < recipients.length; i++) { // Transfer tokens to the recipient transfer(recipients[i], amounts[i]); addTimeLock( recipients[i], amounts[i], expiresAt[i] ); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.0; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To initialize the implementation contract, you can either invoke the * initializer manually, or you can include a constructor to automatically mark it as initialized when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() initializer {} * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. */ bool private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Modifier to protect an initializer function from being invoked twice. */ modifier initializer() { // If the contract is initializing we ignore whether _initialized is set in order to support multiple // inheritance patterns, but we only do this in the context of a constructor, because in other contexts the // contract may have been reentered. require(_initializing ? _isConstructor() : !_initialized, "Initializable: contract is already initialized"); bool isTopLevelCall = !_initializing; if (isTopLevelCall) { _initializing = true; _initialized = true; } _; if (isTopLevelCall) { _initializing = false; } } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} modifier, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } function _isConstructor() private view returns (bool) { return !AddressUpgradeable.isContract(address(this)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (security/Pausable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract PausableUpgradeable is Initializable, ContextUpgradeable { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal onlyInitializing { __Pausable_init_unchained(); } function __Pausable_init_unchained() internal onlyInitializing { _paused = false; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { require(!paused(), "Pausable: paused"); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { require(paused(), "Pausable: not paused"); _; } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20Upgradeable.sol"; import "./extensions/IERC20MetadataUpgradeable.sol"; import "../../utils/ContextUpgradeable.sol"; import "../../proxy/utils/Initializable.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing { __ERC20_init_unchained(name_, symbol_); } function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom( address from, address to, uint256 amount ) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, _allowances[owner][spender] + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = _allowances[owner][spender]; require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `sender` to `recipient`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; } _balances[to] += amount; emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; _balances[account] += amount; emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; } _totalSupply -= amount; emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Spend `amount` form the allowance of `owner` toward `spender`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance( address owner, address spender, uint256 amount ) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[45] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20Upgradeable.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20MetadataUpgradeable is IERC20Upgradeable { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20Upgradeable { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/math/SafeMath.sol) pragma solidity ^0.8.0; // CAUTION // This version of SafeMath should only be used with Solidity 0.8 or later, // because it relies on the compiler's built in overflow checks. /** * @dev Wrappers over Solidity's arithmetic operations. * * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler * now has built in overflow checking. */ library SafeMathUpgradeable { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { return a + b; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { return a * b; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b <= a, errorMessage); return a - b; } } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a / b; } } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a % b; } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for * deploying minimal proxy contracts, also known as "clones". * * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies * > a minimal bytecode implementation that delegates all calls to a known, fixed address. * * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2` * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the * deterministic method. * * _Available since v3.4._ */ library Clones { /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create opcode, which should never revert. */ function clone(address implementation) internal returns (address instance) { // solhint-disable-next-line no-inline-assembly assembly { let ptr := mload(0x40) mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000) mstore(add(ptr, 0x14), shl(0x60, implementation)) mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000) instance := create(0, ptr, 0x37) } require(instance != address(0), "ERC1167: create failed"); } /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create2 opcode and a `salt` to deterministically deploy * the clone. Using the same `implementation` and `salt` multiple time will revert, since * the clones cannot be deployed twice at the same address. */ function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) { // solhint-disable-next-line no-inline-assembly assembly { let ptr := mload(0x40) mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000) mstore(add(ptr, 0x14), shl(0x60, implementation)) mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000) instance := create2(0, ptr, 0x37, salt) } require(instance != address(0), "ERC1167: create2 failed"); } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress(address implementation, bytes32 salt, address deployer) internal pure returns (address predicted) { // solhint-disable-next-line no-inline-assembly assembly { let ptr := mload(0x40) mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000) mstore(add(ptr, 0x14), shl(0x60, implementation)) mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf3ff00000000000000000000000000000000) mstore(add(ptr, 0x38), shl(0x60, deployer)) mstore(add(ptr, 0x4c), salt) mstore(add(ptr, 0x6c), keccak256(ptr, 0x37)) predicted := keccak256(add(ptr, 0x37), 0x55) } } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress(address implementation, bytes32 salt) internal view returns (address predicted) { return predictDeterministicAddress(implementation, salt, address(this)); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/proxy/Clones.sol"; import "./Token_Implementation.sol"; contract TokenFactory is Ownable { address public logicContract; event ProxyCreated(address indexed proxy); constructor(address _logicContract) { logicContract = _logicContract; } function createProxy(address owner, string memory name, string memory symbol, uint256 initialSupply) public onlyOwner returns (address) { address newToken = Clones.clone(logicContract); TokenImplementation(newToken).initialize(owner, name, symbol, initialSupply); emit ProxyCreated(newToken); return newToken; } }
{ "optimizer": { "enabled": true, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "abi" ] } } }
[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"BurnerAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"BurnerRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"Freezed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"LockerAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"LockerRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previouSupervisor","type":"address"},{"indexed":true,"internalType":"address","name":"newSupervisor","type":"address"}],"name":"SupervisorOwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"TimeLocked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"TimeUnlocked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"Unfreezed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"VestingLocked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"VestingUnlocked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"index","type":"uint256"}],"name":"VestingUpdated","type":"event"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"addBurner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"addLocker","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"expiresAt","type":"uint256"}],"name":"addTimeLock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"startsAt","type":"uint256"},{"internalType":"uint256","name":"period","type":"uint256"},{"internalType":"uint256","name":"count","type":"uint256"}],"name":"addVestingLock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"recipients","type":"address[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"},{"internalType":"uint256[]","name":"expiresAt","type":"uint256[]"}],"name":"batchTimeLockedTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"recipients","type":"address[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"name":"batchTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"recipients","type":"address[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"},{"internalType":"uint256[]","name":"startsAt","type":"uint256[]"},{"internalType":"uint256[]","name":"periods","type":"uint256[]"},{"internalType":"uint256[]","name":"counts","type":"uint256[]"}],"name":"batchVestedTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"freeze","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"getAllLockedAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"getAllTimeLocks","outputs":[{"components":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"lockedAt","type":"uint256"},{"internalType":"uint256","name":"expiresAt","type":"uint256"}],"internalType":"struct Lockable.TimeLock[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"getAllVestingCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"getAllVestings","outputs":[{"components":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"lockedAt","type":"uint256"},{"internalType":"uint256","name":"startsAt","type":"uint256"},{"internalType":"uint256","name":"period","type":"uint256"},{"internalType":"uint256","name":"count","type":"uint256"}],"internalType":"struct Lockable.VestingLock[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint8","name":"index","type":"uint8"}],"name":"getTimeLock","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"getTimeLockLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"getTimeLockedAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getVestingLock","outputs":[{"components":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"lockedAt","type":"uint256"},{"internalType":"uint256","name":"startsAt","type":"uint256"},{"internalType":"uint256","name":"period","type":"uint256"},{"internalType":"uint256","name":"count","type":"uint256"}],"internalType":"struct Lockable.VestingLock","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"getVestingLockedAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"uint256","name":"initialSupply","type":"uint256"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isBurner","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isFreezed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isLocker","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"expiresAt","type":"uint256"}],"name":"lockedTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint256","name":"tokenAmount","type":"uint256"}],"name":"recoverToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"removeBurner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"removeLocker","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint8","name":"index","type":"uint8"}],"name":"removeTimeLock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"removeVestingLock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceSupervisorOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"supervisor","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newSupervisor","type":"address"}],"name":"transferSupervisorOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"unfreeze","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"startsAt","type":"uint256"},{"internalType":"uint256","name":"period","type":"uint256"},{"internalType":"uint256","name":"count","type":"uint256"}],"name":"updateVestingLock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"startsAt","type":"uint256"},{"internalType":"uint256","name":"period","type":"uint256"},{"internalType":"uint256","name":"count","type":"uint256"}],"name":"vestedTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.