ETH Price: $3,326.47 (+0.13%)
Gas: 7.21 Gwei
 

Overview

Max Total Supply

131.254905505985871006 crvUSDUSDP-f

Holders

3

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Filtered by Token Holder
Michael Egorov
Balance
2.363947235556003903 crvUSDUSDP-f

Value
$0.00
0x7a16ff8270133f063aab6c9977183d9e72835428
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
# Exchange Pair Price  24H Volume % Volume

Minimal Proxy Contract for 0xaee70429bdfbf599a979f50d5fde5eb0d317e0f7

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0xb9f861B7...3607b1f24
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
Vyper_contract

Compiler Version
vyper:0.3.7

Optimization Enabled:
N/A

Other Settings:
default evmVersion, None license

Contract Source Code (Vyper language format)

# @version 0.3.7
"""
@title StableSwap
@author Curve.Fi
@license Copyright (c) Curve.Fi, 2020-2023 - all rights reserved
@notice 2 coin pool implementation with no lending
@dev ERC20 support for return True/revert, return True/False, return None
"""

from vyper.interfaces import ERC20

interface Factory:
    def get_fee_receiver(_pool: address) -> address: view
    def admin() -> address: view

interface ERC1271:
    def isValidSignature(_hash: bytes32, _signature: Bytes[65]) -> bytes32: view


event Transfer:
    sender: indexed(address)
    receiver: indexed(address)
    value: uint256

event Approval:
    owner: indexed(address)
    spender: indexed(address)
    value: uint256

event TokenExchange:
    buyer: indexed(address)
    sold_id: int128
    tokens_sold: uint256
    bought_id: int128
    tokens_bought: uint256

event AddLiquidity:
    provider: indexed(address)
    token_amounts: uint256[N_COINS]
    fees: uint256[N_COINS]
    invariant: uint256
    token_supply: uint256

event RemoveLiquidity:
    provider: indexed(address)
    token_amounts: uint256[N_COINS]
    fees: uint256[N_COINS]
    token_supply: uint256

event RemoveLiquidityOne:
    provider: indexed(address)
    token_amount: uint256
    coin_amount: uint256
    token_supply: uint256

event RemoveLiquidityImbalance:
    provider: indexed(address)
    token_amounts: uint256[N_COINS]
    fees: uint256[N_COINS]
    invariant: uint256
    token_supply: uint256

event RampA:
    old_A: uint256
    new_A: uint256
    initial_time: uint256
    future_time: uint256

event StopRampA:
    A: uint256
    t: uint256

event CommitNewFee:
    new_fee: uint256

event ApplyNewFee:
    fee: uint256


N_COINS: constant(uint256) = 2
N_COINS_128: constant(int128) = 2
PRECISION: constant(uint256) = 10 ** 18
ADMIN_ACTIONS_DEADLINE_DT: constant(uint256) = 86400 * 3

FEE_DENOMINATOR: constant(uint256) = 10 ** 10
ADMIN_FEE: constant(uint256) = 5000000000

A_PRECISION: constant(uint256) = 100
MAX_FEE: constant(uint256) = 5 * 10 ** 9
MAX_A: constant(uint256) = 10 ** 6
MAX_A_CHANGE: constant(uint256) = 10
MIN_RAMP_TIME: constant(uint256) = 86400

EIP712_TYPEHASH: constant(bytes32) = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")
PERMIT_TYPEHASH: constant(bytes32) = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)")

# keccak256("isValidSignature(bytes32,bytes)")[:4] << 224
ERC1271_MAGIC_VAL: constant(bytes32) = 0x1626ba7e00000000000000000000000000000000000000000000000000000000
VERSION: constant(String[8]) = "v6.0.1"


factory: public(address)

coins: public(address[N_COINS])
balances: public(uint256[N_COINS])
fee: public(uint256)  # fee * 1e10
future_fee: public(uint256)
admin_action_deadline: public(uint256)

initial_A: public(uint256)
future_A: public(uint256)
initial_A_time: public(uint256)
future_A_time: public(uint256)

rate_multipliers: uint256[N_COINS]

name: public(String[64])
symbol: public(String[32])

balanceOf: public(HashMap[address, uint256])
allowance: public(HashMap[address, HashMap[address, uint256]])
totalSupply: public(uint256)

DOMAIN_SEPARATOR: public(bytes32)
nonces: public(HashMap[address, uint256])

last_prices_packed: uint256  #  [last_price, ma_price]
ma_exp_time: public(uint256)
ma_last_time: public(uint256)


@external
def __init__():
    # we do this to prevent the implementation contract from being used as a pool
    self.factory = 0x0000000000000000000000000000000000000001
    assert N_COINS == 2


@external
def initialize(
    _name: String[32],
    _symbol: String[10],
    _coins: address[4],
    _rate_multipliers: uint256[4],
    _A: uint256,
    _fee: uint256,
):
    """
    @notice Contract constructor
    @param _name Name of the new pool
    @param _symbol Token symbol
    @param _coins List of all ERC20 conract addresses of coins
    @param _rate_multipliers List of number of decimals in coins
    @param _A Amplification coefficient multiplied by n ** (n - 1)
    @param _fee Fee to charge for exchanges
    """
    # check if factory was already set to prevent initializing contract twice
    assert self.factory == empty(address)

    for i in range(N_COINS):
        coin: address = _coins[i]
        if coin == empty(address):
            break
        self.coins[i] = coin
        self.rate_multipliers[i] = _rate_multipliers[i]

    A: uint256 = _A * A_PRECISION
    self.initial_A = A
    self.future_A = A
    self.fee = _fee
    self.factory = msg.sender
    self.ma_exp_time = 866  # = 600 / ln(2)
    self.last_prices_packed = self.pack_prices(10**18, 10**18)
    self.ma_last_time = block.timestamp

    name: String[64] = concat("Curve.fi Factory Plain Pool: ", _name)
    self.name = name
    self.symbol = concat(_symbol, "-f")

    self.DOMAIN_SEPARATOR = keccak256(
        _abi_encode(EIP712_TYPEHASH, keccak256(name), keccak256(VERSION), chain.id, self)
    )

    # fire a transfer event so block explorers identify the contract as an ERC20
    log Transfer(empty(address), self, 0)


### ERC20 Functionality ###

@view
@external
def decimals() -> uint8:
    """
    @notice Get the number of decimals for this token
    @dev Implemented as a view method to reduce gas costs
    @return uint8 decimal places
    """
    return 18


@internal
def _transfer(_from: address, _to: address, _value: uint256):
    # # NOTE: vyper does not allow underflows
    # #       so the following subtraction would revert on insufficient balance
    self.balanceOf[_from] -= _value
    self.balanceOf[_to] += _value

    log Transfer(_from, _to, _value)


@external
def transfer(_to : address, _value : uint256) -> bool:
    """
    @dev Transfer token for a specified address
    @param _to The address to transfer to.
    @param _value The amount to be transferred.
    """
    self._transfer(msg.sender, _to, _value)
    return True


@external
def transferFrom(_from : address, _to : address, _value : uint256) -> bool:
    """
     @dev Transfer tokens from one address to another.
     @param _from address The address which you want to send tokens from
     @param _to address The address which you want to transfer to
     @param _value uint256 the amount of tokens to be transferred
    """
    self._transfer(_from, _to, _value)

    _allowance: uint256 = self.allowance[_from][msg.sender]
    if _allowance != max_value(uint256):
        self.allowance[_from][msg.sender] = _allowance - _value

    return True


@external
def approve(_spender : address, _value : uint256) -> bool:
    """
    @notice Approve the passed address to transfer the specified amount of
            tokens on behalf of msg.sender
    @dev Beware that changing an allowance via this method brings the risk that
         someone may use both the old and new allowance by unfortunate transaction
         ordering: https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
    @param _spender The address which will transfer the funds
    @param _value The amount of tokens that may be transferred
    @return bool success
    """
    self.allowance[msg.sender][_spender] = _value

    log Approval(msg.sender, _spender, _value)
    return True


@external
def permit(
    _owner: address,
    _spender: address,
    _value: uint256,
    _deadline: uint256,
    _v: uint8,
    _r: bytes32,
    _s: bytes32
) -> bool:
    """
    @notice Approves spender by owner's signature to expend owner's tokens.
        See https://eips.ethereum.org/EIPS/eip-2612.
    @dev Inspired by https://github.com/yearn/yearn-vaults/blob/main/contracts/Vault.vy#L753-L793
    @dev Supports smart contract wallets which implement ERC1271
        https://eips.ethereum.org/EIPS/eip-1271
    @param _owner The address which is a source of funds and has signed the Permit.
    @param _spender The address which is allowed to spend the funds.
    @param _value The amount of tokens to be spent.
    @param _deadline The timestamp after which the Permit is no longer valid.
    @param _v The bytes[64] of the valid secp256k1 signature of permit by owner
    @param _r The bytes[0:32] of the valid secp256k1 signature of permit by owner
    @param _s The bytes[32:64] of the valid secp256k1 signature of permit by owner
    @return True, if transaction completes successfully
    """
    assert _owner != empty(address)
    assert block.timestamp <= _deadline

    nonce: uint256 = self.nonces[_owner]
    digest: bytes32 = keccak256(
        concat(
            b"\x19\x01",
            self.DOMAIN_SEPARATOR,
            keccak256(_abi_encode(PERMIT_TYPEHASH, _owner, _spender, _value, nonce, _deadline))
        )
    )

    if _owner.is_contract:
        sig: Bytes[65] = concat(_abi_encode(_r, _s), slice(convert(_v, bytes32), 31, 1))
        # reentrancy not a concern since this is a staticcall
        assert ERC1271(_owner).isValidSignature(digest, sig) == ERC1271_MAGIC_VAL
    else:
        assert ecrecover(digest, convert(_v, uint256), convert(_r, uint256), convert(_s, uint256)) == _owner

    self.allowance[_owner][_spender] = _value
    self.nonces[_owner] = nonce + 1

    log Approval(_owner, _spender, _value)
    return True


### StableSwap Functionality ###

@pure
@internal
def pack_prices(p1: uint256, p2: uint256) -> uint256:
    assert p1 < 2**128
    assert p2 < 2**128
    return p1 | shift(p2, 128)


@view
@external
def last_price() -> uint256:
    return self.last_prices_packed & (2**128 - 1)


@view
@external
def ema_price() -> uint256:
    return shift(self.last_prices_packed, -128)


@view
@external
def get_balances() -> uint256[N_COINS]:
    return self.balances


@view
@internal
def _A() -> uint256:
    """
    Handle ramping A up or down
    """
    t1: uint256 = self.future_A_time
    A1: uint256 = self.future_A

    if block.timestamp < t1:
        A0: uint256 = self.initial_A
        t0: uint256 = self.initial_A_time
        # Expressions in uint256 cannot have negative numbers, thus "if"
        if A1 > A0:
            return A0 + (A1 - A0) * (block.timestamp - t0) / (t1 - t0)
        else:
            return A0 - (A0 - A1) * (block.timestamp - t0) / (t1 - t0)

    else:  # when t1 == 0 or block.timestamp >= t1
        return A1


@view
@external
def admin_fee() -> uint256:
    return ADMIN_FEE


@view
@external
def A() -> uint256:
    return self._A() / A_PRECISION


@view
@external
def A_precise() -> uint256:
    return self._A()


@pure
@internal
def _xp_mem(_rates: uint256[N_COINS], _balances: uint256[N_COINS]) -> uint256[N_COINS]:
    result: uint256[N_COINS] = empty(uint256[N_COINS])
    for i in range(N_COINS):
        result[i] = _rates[i] * _balances[i] / PRECISION
    return result


@pure
@internal
def get_D(_xp: uint256[N_COINS], _amp: uint256) -> uint256:
    """
    D invariant calculation in non-overflowing integer operations
    iteratively

    A * sum(x_i) * n**n + D = A * D * n**n + D**(n+1) / (n**n * prod(x_i))

    Converging solution:
    D[j+1] = (A * n**n * sum(x_i) - D[j]**(n+1) / (n**n prod(x_i))) / (A * n**n - 1)
    """
    S: uint256 = 0
    for x in _xp:
        S += x
    if S == 0:
        return 0

    D: uint256 = S
    Ann: uint256 = _amp * N_COINS
    for i in range(255):
        D_P: uint256 = D * D / _xp[0] * D / _xp[1] / N_COINS**N_COINS
        Dprev: uint256 = D
        D = (Ann * S / A_PRECISION + D_P * N_COINS) * D / ((Ann - A_PRECISION) * D / A_PRECISION + (N_COINS + 1) * D_P)
        # Equality with the precision of 1
        if D > Dprev:
            if D - Dprev <= 1:
                return D
        else:
            if Dprev - D <= 1:
                return D
    # convergence typically occurs in 4 rounds or less, this should be unreachable!
    # if it does happen the pool is borked and LPs can withdraw via `remove_liquidity`
    raise


@view
@internal
def get_D_mem(_rates: uint256[N_COINS], _balances: uint256[N_COINS], _amp: uint256) -> uint256:
    xp: uint256[N_COINS] = self._xp_mem(_rates, _balances)
    return self.get_D(xp, _amp)


@internal
@view
def _get_p(xp: uint256[N_COINS], amp: uint256, D: uint256) -> uint256:
    # dx_0 / dx_1 only, however can have any number of coins in pool
    ANN: uint256 = amp * N_COINS
    Dr: uint256 = D / (N_COINS**N_COINS)
    for i in range(N_COINS):
        Dr = Dr * D / xp[i]
    return 10**18 * (ANN * xp[0] / A_PRECISION + Dr * xp[0] / xp[1]) / (ANN * xp[0] / A_PRECISION + Dr)


@external
@view
def get_p() -> uint256:
    amp: uint256 = self._A()
    xp: uint256[N_COINS] = self._xp_mem(self.rate_multipliers, self.balances)
    D: uint256 = self.get_D(xp, amp)
    return self._get_p(xp, amp, D)


@internal
@view
def exp(power: int256) -> uint256:
    if power <= -42139678854452767551:
        return 0

    if power >= 135305999368893231589:
        raise "exp overflow"

    x: int256 = unsafe_div(unsafe_mul(power, 2**96), 10**18)

    k: int256 = unsafe_div(
        unsafe_add(
            unsafe_div(unsafe_mul(x, 2**96), 54916777467707473351141471128),
            2**95),
        2**96)
    x = unsafe_sub(x, unsafe_mul(k, 54916777467707473351141471128))

    y: int256 = unsafe_add(x, 1346386616545796478920950773328)
    y = unsafe_add(unsafe_div(unsafe_mul(y, x), 2**96), 57155421227552351082224309758442)
    p: int256 = unsafe_sub(unsafe_add(y, x), 94201549194550492254356042504812)
    p = unsafe_add(unsafe_div(unsafe_mul(p, y), 2**96), 28719021644029726153956944680412240)
    p = unsafe_add(unsafe_mul(p, x), (4385272521454847904659076985693276 * 2**96))

    q: int256 = x - 2855989394907223263936484059900
    q = unsafe_add(unsafe_div(unsafe_mul(q, x), 2**96), 50020603652535783019961831881945)
    q = unsafe_sub(unsafe_div(unsafe_mul(q, x), 2**96), 533845033583426703283633433725380)
    q = unsafe_add(unsafe_div(unsafe_mul(q, x), 2**96), 3604857256930695427073651918091429)
    q = unsafe_sub(unsafe_div(unsafe_mul(q, x), 2**96), 14423608567350463180887372962807573)
    q = unsafe_add(unsafe_div(unsafe_mul(q, x), 2**96), 26449188498355588339934803723976023)

    return shift(
        unsafe_mul(convert(unsafe_div(p, q), uint256), 3822833074963236453042738258902158003155416615667),
        unsafe_sub(k, 195))


@internal
@view
def _ma_price() -> uint256:
    ma_last_time: uint256 = self.ma_last_time

    pp: uint256 = self.last_prices_packed
    last_price: uint256 = min(pp & (2**128 - 1), 2 * 10**18)
    last_ema_price: uint256 = shift(pp, -128)

    if ma_last_time < block.timestamp:
        alpha: uint256 = self.exp(- convert((block.timestamp - ma_last_time) * 10**18 / self.ma_exp_time, int256))
        return (last_price * (10**18 - alpha) + last_ema_price * alpha) / 10**18

    else:
        return last_ema_price


@external
@view
def price_oracle() -> uint256:
    return self._ma_price()


@internal
def save_p_from_price(last_price: uint256):
    """
    Saves current price and its EMA
    """
    if last_price != 0:
        self.last_prices_packed = self.pack_prices(last_price, self._ma_price())
        if self.ma_last_time < block.timestamp:
            self.ma_last_time = block.timestamp


@internal
def save_p(xp: uint256[N_COINS], amp: uint256, D: uint256):
    """
    Saves current price and its EMA
    """
    self.save_p_from_price(self._get_p(xp, amp, D))


@view
@external
def get_virtual_price() -> uint256:
    """
    @notice The current virtual price of the pool LP token
    @dev Useful for calculating profits
    @return LP token virtual price normalized to 1e18
    """
    amp: uint256 = self._A()
    xp: uint256[N_COINS] = self._xp_mem(self.rate_multipliers, self.balances)
    D: uint256 = self.get_D(xp, amp)
    # D is in the units similar to DAI (e.g. converted to precision 1e18)
    # When balanced, D = n * x_u - total virtual value of the portfolio
    return D * PRECISION / self.totalSupply


@view
@external
def calc_token_amount(_amounts: uint256[N_COINS], _is_deposit: bool) -> uint256:
    """
    @notice Calculate addition or reduction in token supply from a deposit or withdrawal
    @param _amounts Amount of each coin being deposited
    @param _is_deposit set True for deposits, False for withdrawals
    @return Expected amount of LP tokens received
    """
    amp: uint256 = self._A()
    old_balances: uint256[N_COINS] = self.balances
    rates: uint256[N_COINS] = self.rate_multipliers

    # Initial invariant
    D0: uint256 = self.get_D_mem(rates, old_balances, amp)

    total_supply: uint256 = self.totalSupply
    new_balances: uint256[N_COINS] = old_balances
    for i in range(N_COINS):
        amount: uint256 = _amounts[i]
        if _is_deposit:
            new_balances[i] += amount
        else:
            new_balances[i] -= amount

    # Invariant after change
    D1: uint256 = self.get_D_mem(rates, new_balances, amp)

    # We need to recalculate the invariant accounting for fees
    # to calculate fair user's share
    D2: uint256 = D1
    if total_supply > 0:
        # Only account for fees if we are not the first to deposit
        base_fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
        for i in range(N_COINS):
            ideal_balance: uint256 = D1 * old_balances[i] / D0
            difference: uint256 = 0
            new_balance: uint256 = new_balances[i]
            if ideal_balance > new_balance:
                difference = ideal_balance - new_balance
            else:
                difference = new_balance - ideal_balance
            new_balances[i] -= base_fee * difference / FEE_DENOMINATOR
        xp: uint256[N_COINS] = self._xp_mem(rates, new_balances)
        D2 = self.get_D(xp, amp)
    else:
        return D1  # Take the dust if there was any


    diff: uint256 = 0
    if _is_deposit:
        diff = D2 - D0
    else:
        diff = D0 - D2
    return diff * total_supply / D0


@external
@nonreentrant('lock')
def add_liquidity(
    _amounts: uint256[N_COINS],
    _min_mint_amount: uint256,
    _receiver: address = msg.sender
) -> uint256:
    """
    @notice Deposit coins into the pool
    @param _amounts List of amounts of coins to deposit
    @param _min_mint_amount Minimum amount of LP tokens to mint from the deposit
    @param _receiver Address that owns the minted LP tokens
    @return Amount of LP tokens received by depositing
    """
    amp: uint256 = self._A()
    old_balances: uint256[N_COINS] = self.balances
    rates: uint256[N_COINS] = self.rate_multipliers

    # Initial invariant
    D0: uint256 = self.get_D_mem(rates, old_balances, amp)

    total_supply: uint256 = self.totalSupply
    new_balances: uint256[N_COINS] = old_balances
    for i in range(N_COINS):
        amount: uint256 = _amounts[i]
        if amount > 0:
            assert ERC20(self.coins[i]).transferFrom(msg.sender, self, amount, default_return_value=True)  # dev: failed transfer
            new_balances[i] += amount
        else:
            assert total_supply != 0  # dev: initial deposit requires all coins

    # Invariant after change
    D1: uint256 = self.get_D_mem(rates, new_balances, amp)
    assert D1 > D0

    # We need to recalculate the invariant accounting for fees
    # to calculate fair user's share
    fees: uint256[N_COINS] = empty(uint256[N_COINS])
    mint_amount: uint256 = 0

    if total_supply > 0:
        # Only account for fees if we are not the first to deposit
        base_fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
        for i in range(N_COINS):
            ideal_balance: uint256 = D1 * old_balances[i] / D0
            difference: uint256 = 0
            new_balance: uint256 = new_balances[i]
            if ideal_balance > new_balance:
                difference = ideal_balance - new_balance
            else:
                difference = new_balance - ideal_balance
            fees[i] = base_fee * difference / FEE_DENOMINATOR
            self.balances[i] = new_balance - (fees[i] * ADMIN_FEE / FEE_DENOMINATOR)
            new_balances[i] -= fees[i]
        xp: uint256[N_COINS] = self._xp_mem(rates, new_balances)
        D2: uint256 = self.get_D(xp, amp)
        mint_amount = total_supply * (D2 - D0) / D0
        self.save_p(xp, amp, D2)

    else:
        self.balances = new_balances
        mint_amount = D1  # Take the dust if there was any

    assert mint_amount >= _min_mint_amount, "Slippage screwed you"

    # Mint pool tokens
    total_supply += mint_amount
    self.balanceOf[_receiver] += mint_amount
    self.totalSupply = total_supply
    log Transfer(empty(address), _receiver, mint_amount)

    log AddLiquidity(msg.sender, _amounts, fees, D1, total_supply)

    return mint_amount


@view
@internal
def get_y(i: int128, j: int128, x: uint256, xp: uint256[N_COINS], _amp: uint256, _D: uint256) -> uint256:
    """
    Calculate x[j] if one makes x[i] = x

    Done by solving quadratic equation iteratively.
    x_1**2 + x_1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A)
    x_1**2 + b*x_1 = c

    x_1 = (x_1**2 + c) / (2*x_1 + b)
    """
    # x in the input is converted to the same price/precision

    assert i != j       # dev: same coin
    assert j >= 0       # dev: j below zero
    assert j < N_COINS_128  # dev: j above N_COINS

    # should be unreachable, but good for safety
    assert i >= 0
    assert i < N_COINS_128

    amp: uint256 = _amp
    D: uint256 = _D
    if _D == 0:
        amp = self._A()
        D = self.get_D(xp, amp)
    S_: uint256 = 0
    _x: uint256 = 0
    y_prev: uint256 = 0
    c: uint256 = D
    Ann: uint256 = amp * N_COINS

    for _i in range(N_COINS_128):
        if _i == i:
            _x = x
        elif _i != j:
            _x = xp[_i]
        else:
            continue
        S_ += _x
        c = c * D / (_x * N_COINS)

    c = c * D * A_PRECISION / (Ann * N_COINS)
    b: uint256 = S_ + D * A_PRECISION / Ann  # - D
    y: uint256 = D

    for _i in range(255):
        y_prev = y
        y = (y*y + c) / (2 * y + b - D)
        # Equality with the precision of 1
        if y > y_prev:
            if y - y_prev <= 1:
                return y
        else:
            if y_prev - y <= 1:
                return y
    raise


@view
@external
def get_dy(i: int128, j: int128, dx: uint256) -> uint256:
    """
    @notice Calculate the current output dy given input dx
    @dev Index values can be found via the `coins` public getter method
    @param i Index value for the coin to send
    @param j Index valie of the coin to recieve
    @param dx Amount of `i` being exchanged
    @return Amount of `j` predicted
    """
    rates: uint256[N_COINS] = self.rate_multipliers
    xp: uint256[N_COINS] = self._xp_mem(rates, self.balances)

    x: uint256 = xp[i] + (dx * rates[i] / PRECISION)
    y: uint256 = self.get_y(i, j, x, xp, 0, 0)
    dy: uint256 = xp[j] - y - 1
    fee: uint256 = self.fee * dy / FEE_DENOMINATOR
    return (dy - fee) * PRECISION / rates[j]


@view
@external
def get_dx(i: int128, j: int128, dy: uint256) -> uint256:
    """
    @notice Calculate the current input dx given output dy
    @dev Index values can be found via the `coins` public getter method
    @param i Index value for the coin to send
    @param j Index valie of the coin to recieve
    @param dy Amount of `j` being received after exchange
    @return Amount of `i` predicted
    """
    rates: uint256[N_COINS] = self.rate_multipliers
    xp: uint256[N_COINS] = self._xp_mem(rates, self.balances)

    y: uint256 = xp[j] - (dy * rates[j] / PRECISION + 1) * FEE_DENOMINATOR / (FEE_DENOMINATOR - self.fee)
    x: uint256 = self.get_y(j, i, y, xp, 0, 0)
    return (x - xp[i]) * PRECISION / rates[i]


@external
@nonreentrant('lock')
def exchange(
    i: int128,
    j: int128,
    _dx: uint256,
    _min_dy: uint256,
    _receiver: address = msg.sender,
) -> uint256:
    """
    @notice Perform an exchange between two coins
    @dev Index values can be found via the `coins` public getter method
    @param i Index value for the coin to send
    @param j Index valie of the coin to recieve
    @param _dx Amount of `i` being exchanged
    @param _min_dy Minimum amount of `j` to receive
    @return Actual amount of `j` received
    """
    rates: uint256[N_COINS] = self.rate_multipliers
    old_balances: uint256[N_COINS] = self.balances
    xp: uint256[N_COINS] = self._xp_mem(rates, old_balances)

    x: uint256 = xp[i] + _dx * rates[i] / PRECISION

    amp: uint256 = self._A()
    D: uint256 = self.get_D(xp, amp)
    y: uint256 = self.get_y(i, j, x, xp, amp, D)

    dy: uint256 = xp[j] - y - 1  # -1 just in case there were some rounding errors
    dy_fee: uint256 = dy * self.fee / FEE_DENOMINATOR

    # Convert all to real units
    dy = (dy - dy_fee) * PRECISION / rates[j]
    assert dy >= _min_dy, "Exchange resulted in fewer coins than expected"

    # xp is not used anymore, so we reuse it for price calc
    xp[i] = x
    xp[j] = y
    # D is not changed because we did not apply a fee
    self.save_p(xp, amp, D)

    dy_admin_fee: uint256 = dy_fee * ADMIN_FEE / FEE_DENOMINATOR
    dy_admin_fee = dy_admin_fee * PRECISION / rates[j]

    # Change balances exactly in same way as we change actual ERC20 coin amounts
    self.balances[i] = old_balances[i] + _dx
    # When rounding errors happen, we undercharge admin fee in favor of LP
    self.balances[j] = old_balances[j] - dy - dy_admin_fee

    assert ERC20(self.coins[i]).transferFrom(msg.sender, self, _dx, default_return_value=True)  # dev: failed transfer
    assert ERC20(self.coins[j]).transfer(_receiver, dy, default_return_value=True)  # dev: failed transfer

    log TokenExchange(msg.sender, i, _dx, j, dy)

    return dy


@external
@nonreentrant('lock')
def remove_liquidity(
    _burn_amount: uint256,
    _min_amounts: uint256[N_COINS],
    _receiver: address = msg.sender
) -> uint256[N_COINS]:
    """
    @notice Withdraw coins from the pool
    @dev Withdrawal amounts are based on current deposit ratios
    @param _burn_amount Quantity of LP tokens to burn in the withdrawal
    @param _min_amounts Minimum amounts of underlying coins to receive
    @param _receiver Address that receives the withdrawn coins
    @return List of amounts of coins that were withdrawn
    """
    total_supply: uint256 = self.totalSupply
    amounts: uint256[N_COINS] = empty(uint256[N_COINS])

    for i in range(N_COINS):
        old_balance: uint256 = self.balances[i]
        value: uint256 = old_balance * _burn_amount / total_supply
        assert value >= _min_amounts[i], "Withdrawal resulted in fewer coins than expected"
        self.balances[i] = old_balance - value
        amounts[i] = value
        assert ERC20(self.coins[i]).transfer(_receiver, value, default_return_value=True)  # dev: failed transfer

    total_supply -= _burn_amount
    self.balanceOf[msg.sender] -= _burn_amount
    self.totalSupply = total_supply
    log Transfer(msg.sender, empty(address), _burn_amount)

    log RemoveLiquidity(msg.sender, amounts, empty(uint256[N_COINS]), total_supply)

    return amounts


@external
@nonreentrant('lock')
def remove_liquidity_imbalance(
    _amounts: uint256[N_COINS],
    _max_burn_amount: uint256,
    _receiver: address = msg.sender
) -> uint256:
    """
    @notice Withdraw coins from the pool in an imbalanced amount
    @param _amounts List of amounts of underlying coins to withdraw
    @param _max_burn_amount Maximum amount of LP token to burn in the withdrawal
    @param _receiver Address that receives the withdrawn coins
    @return Actual amount of the LP token burned in the withdrawal
    """
    amp: uint256 = self._A()
    rates: uint256[N_COINS] = self.rate_multipliers
    old_balances: uint256[N_COINS] = self.balances
    D0: uint256 = self.get_D_mem(rates, old_balances, amp)

    new_balances: uint256[N_COINS] = old_balances
    for i in range(N_COINS):
        amount: uint256 = _amounts[i]
        if amount != 0:
            new_balances[i] -= amount
            assert ERC20(self.coins[i]).transfer(_receiver, amount, default_return_value=True)  # dev: failed transfer

    D1: uint256 = self.get_D_mem(rates, new_balances, amp)

    fees: uint256[N_COINS] = empty(uint256[N_COINS])
    base_fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
    for i in range(N_COINS):
        ideal_balance: uint256 = D1 * old_balances[i] / D0
        difference: uint256 = 0
        new_balance: uint256 = new_balances[i]
        if ideal_balance > new_balance:
            difference = ideal_balance - new_balance
        else:
            difference = new_balance - ideal_balance
        fees[i] = base_fee * difference / FEE_DENOMINATOR
        self.balances[i] = new_balance - (fees[i] * ADMIN_FEE / FEE_DENOMINATOR)
        new_balances[i] -= fees[i]
    new_balances = self._xp_mem(rates, new_balances)
    D2: uint256 = self.get_D(new_balances, amp)

    self.save_p(new_balances, amp, D2)

    total_supply: uint256 = self.totalSupply
    burn_amount: uint256 = ((D0 - D2) * total_supply / D0) + 1
    assert burn_amount > 1  # dev: zero tokens burned
    assert burn_amount <= _max_burn_amount, "Slippage screwed you"

    total_supply -= burn_amount
    self.totalSupply = total_supply
    self.balanceOf[msg.sender] -= burn_amount
    log Transfer(msg.sender, empty(address), burn_amount)
    log RemoveLiquidityImbalance(msg.sender, _amounts, fees, D1, total_supply)

    return burn_amount


@pure
@internal
def get_y_D(A: uint256, i: int128, xp: uint256[N_COINS], D: uint256) -> uint256:
    """
    Calculate x[i] if one reduces D from being calculated for xp to D

    Done by solving quadratic equation iteratively.
    x_1**2 + x_1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A)
    x_1**2 + b*x_1 = c

    x_1 = (x_1**2 + c) / (2*x_1 + b)
    """
    # x in the input is converted to the same price/precision

    assert i >= 0  # dev: i below zero
    assert i < N_COINS_128  # dev: i above N_COINS

    S_: uint256 = 0
    _x: uint256 = 0
    y_prev: uint256 = 0
    c: uint256 = D
    Ann: uint256 = A * N_COINS

    for _i in range(N_COINS_128):
        if _i != i:
            _x = xp[_i]
        else:
            continue
        S_ += _x
        c = c * D / (_x * N_COINS)

    c = c * D * A_PRECISION / (Ann * N_COINS)
    b: uint256 = S_ + D * A_PRECISION / Ann
    y: uint256 = D

    for _i in range(255):
        y_prev = y
        y = (y*y + c) / (2 * y + b - D)
        # Equality with the precision of 1
        if y > y_prev:
            if y - y_prev <= 1:
                return y
        else:
            if y_prev - y <= 1:
                return y
    raise


@view
@internal
def _calc_withdraw_one_coin(_burn_amount: uint256, i: int128) -> uint256[3]:
    # First, need to calculate
    # * Get current D
    # * Solve Eqn against y_i for D - _token_amount
    amp: uint256 = self._A()
    rates: uint256[N_COINS] = self.rate_multipliers
    xp: uint256[N_COINS] = self._xp_mem(rates, self.balances)
    D0: uint256 = self.get_D(xp, amp)

    total_supply: uint256 = self.totalSupply
    D1: uint256 = D0 - _burn_amount * D0 / total_supply
    new_y: uint256 = self.get_y_D(amp, i, xp, D1)

    base_fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
    xp_reduced: uint256[N_COINS] = empty(uint256[N_COINS])

    for j in range(N_COINS_128):
        dx_expected: uint256 = 0
        xp_j: uint256 = xp[j]
        if j == i:
            dx_expected = xp_j * D1 / D0 - new_y
        else:
            dx_expected = xp_j - xp_j * D1 / D0
        xp_reduced[j] = xp_j - base_fee * dx_expected / FEE_DENOMINATOR

    dy: uint256 = xp_reduced[i] - self.get_y_D(amp, i, xp_reduced, D1)
    dy_0: uint256 = (xp[i] - new_y) * PRECISION / rates[i]  # w/o fees
    dy = (dy - 1) * PRECISION / rates[i]  # Withdraw less to account for rounding errors

    xp[i] = new_y
    last_p: uint256 = 0
    if new_y > 0:
        last_p = self._get_p(xp, amp, D1)

    return [dy, dy_0 - dy, last_p]


@view
@external
def calc_withdraw_one_coin(_burn_amount: uint256, i: int128) -> uint256:
    """
    @notice Calculate the amount received when withdrawing a single coin
    @param _burn_amount Amount of LP tokens to burn in the withdrawal
    @param i Index value of the coin to withdraw
    @return Amount of coin received
    """
    return self._calc_withdraw_one_coin(_burn_amount, i)[0]


@external
@nonreentrant('lock')
def remove_liquidity_one_coin(
    _burn_amount: uint256,
    i: int128,
    _min_received: uint256,
    _receiver: address = msg.sender,
) -> uint256:
    """
    @notice Withdraw a single coin from the pool
    @param _burn_amount Amount of LP tokens to burn in the withdrawal
    @param i Index value of the coin to withdraw
    @param _min_received Minimum amount of coin to receive
    @param _receiver Address that receives the withdrawn coins
    @return Amount of coin received
    """
    dy: uint256[3] = self._calc_withdraw_one_coin(_burn_amount, i)
    assert dy[0] >= _min_received, "Not enough coins removed"

    self.balances[i] -= (dy[0] + dy[1] * ADMIN_FEE / FEE_DENOMINATOR)
    total_supply: uint256 = self.totalSupply - _burn_amount
    self.totalSupply = total_supply
    self.balanceOf[msg.sender] -= _burn_amount
    log Transfer(msg.sender, empty(address), _burn_amount)

    assert ERC20(self.coins[i]).transfer(_receiver, dy[0], default_return_value=True)  # dev: failed transfer
    log RemoveLiquidityOne(msg.sender, _burn_amount, dy[0], total_supply)

    self.save_p_from_price(dy[2])

    return dy[0]


@external
def ramp_A(_future_A: uint256, _future_time: uint256):
    assert msg.sender == Factory(self.factory).admin()  # dev: only owner
    assert block.timestamp >= self.initial_A_time + MIN_RAMP_TIME
    assert _future_time >= block.timestamp + MIN_RAMP_TIME  # dev: insufficient time

    _initial_A: uint256 = self._A()
    _future_A_p: uint256 = _future_A * A_PRECISION

    assert _future_A > 0 and _future_A < MAX_A
    if _future_A_p < _initial_A:
        assert _future_A_p * MAX_A_CHANGE >= _initial_A
    else:
        assert _future_A_p <= _initial_A * MAX_A_CHANGE

    self.initial_A = _initial_A
    self.future_A = _future_A_p
    self.initial_A_time = block.timestamp
    self.future_A_time = _future_time

    log RampA(_initial_A, _future_A_p, block.timestamp, _future_time)


@external
def stop_ramp_A():
    assert msg.sender == Factory(self.factory).admin()  # dev: only owner

    current_A: uint256 = self._A()
    self.initial_A = current_A
    self.future_A = current_A
    self.initial_A_time = block.timestamp
    self.future_A_time = block.timestamp
    # now (block.timestamp < t1) is always False, so we return saved A

    log StopRampA(current_A, block.timestamp)


@external
def set_ma_exp_time(_ma_exp_time: uint256):
    assert msg.sender == Factory(self.factory).admin()  # dev: only owner
    assert _ma_exp_time != 0

    self.ma_exp_time = _ma_exp_time


@view
@external
def admin_balances(i: uint256) -> uint256:
    return ERC20(self.coins[i]).balanceOf(self) - self.balances[i]


@external
def commit_new_fee(_new_fee: uint256):
    assert msg.sender == Factory(self.factory).admin()
    assert _new_fee <= MAX_FEE
    assert self.admin_action_deadline == 0

    self.future_fee = _new_fee
    self.admin_action_deadline = block.timestamp + ADMIN_ACTIONS_DEADLINE_DT
    log CommitNewFee(_new_fee)


@external
def apply_new_fee():
    assert msg.sender == Factory(self.factory).admin()
    deadline: uint256 = self.admin_action_deadline
    assert deadline != 0 and block.timestamp >= deadline

    fee: uint256 = self.future_fee
    self.fee = fee
    self.admin_action_deadline = 0
    log ApplyNewFee(fee)


@external
def withdraw_admin_fees():
    receiver: address = Factory(self.factory).get_fee_receiver(self)

    for i in range(N_COINS):
        coin: address = self.coins[i]
        fees: uint256 = ERC20(coin).balanceOf(self) - self.balances[i]
        assert ERC20(coin).transfer(receiver, fees, default_return_value=True)


@pure
@external
def version() -> String[8]:
    """
    @notice Get the version of this token contract
    """
    return VERSION

Contract ABI

[{"name":"Transfer","inputs":[{"name":"sender","type":"address","indexed":true},{"name":"receiver","type":"address","indexed":true},{"name":"value","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"Approval","inputs":[{"name":"owner","type":"address","indexed":true},{"name":"spender","type":"address","indexed":true},{"name":"value","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"TokenExchange","inputs":[{"name":"buyer","type":"address","indexed":true},{"name":"sold_id","type":"int128","indexed":false},{"name":"tokens_sold","type":"uint256","indexed":false},{"name":"bought_id","type":"int128","indexed":false},{"name":"tokens_bought","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"AddLiquidity","inputs":[{"name":"provider","type":"address","indexed":true},{"name":"token_amounts","type":"uint256[2]","indexed":false},{"name":"fees","type":"uint256[2]","indexed":false},{"name":"invariant","type":"uint256","indexed":false},{"name":"token_supply","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"RemoveLiquidity","inputs":[{"name":"provider","type":"address","indexed":true},{"name":"token_amounts","type":"uint256[2]","indexed":false},{"name":"fees","type":"uint256[2]","indexed":false},{"name":"token_supply","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"RemoveLiquidityOne","inputs":[{"name":"provider","type":"address","indexed":true},{"name":"token_amount","type":"uint256","indexed":false},{"name":"coin_amount","type":"uint256","indexed":false},{"name":"token_supply","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"RemoveLiquidityImbalance","inputs":[{"name":"provider","type":"address","indexed":true},{"name":"token_amounts","type":"uint256[2]","indexed":false},{"name":"fees","type":"uint256[2]","indexed":false},{"name":"invariant","type":"uint256","indexed":false},{"name":"token_supply","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"RampA","inputs":[{"name":"old_A","type":"uint256","indexed":false},{"name":"new_A","type":"uint256","indexed":false},{"name":"initial_time","type":"uint256","indexed":false},{"name":"future_time","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"StopRampA","inputs":[{"name":"A","type":"uint256","indexed":false},{"name":"t","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"CommitNewFee","inputs":[{"name":"new_fee","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"ApplyNewFee","inputs":[{"name":"fee","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"stateMutability":"nonpayable","type":"constructor","inputs":[],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"initialize","inputs":[{"name":"_name","type":"string"},{"name":"_symbol","type":"string"},{"name":"_coins","type":"address[4]"},{"name":"_rate_multipliers","type":"uint256[4]"},{"name":"_A","type":"uint256"},{"name":"_fee","type":"uint256"}],"outputs":[]},{"stateMutability":"view","type":"function","name":"decimals","inputs":[],"outputs":[{"name":"","type":"uint8"}]},{"stateMutability":"nonpayable","type":"function","name":"transfer","inputs":[{"name":"_to","type":"address"},{"name":"_value","type":"uint256"}],"outputs":[{"name":"","type":"bool"}]},{"stateMutability":"nonpayable","type":"function","name":"transferFrom","inputs":[{"name":"_from","type":"address"},{"name":"_to","type":"address"},{"name":"_value","type":"uint256"}],"outputs":[{"name":"","type":"bool"}]},{"stateMutability":"nonpayable","type":"function","name":"approve","inputs":[{"name":"_spender","type":"address"},{"name":"_value","type":"uint256"}],"outputs":[{"name":"","type":"bool"}]},{"stateMutability":"nonpayable","type":"function","name":"permit","inputs":[{"name":"_owner","type":"address"},{"name":"_spender","type":"address"},{"name":"_value","type":"uint256"},{"name":"_deadline","type":"uint256"},{"name":"_v","type":"uint8"},{"name":"_r","type":"bytes32"},{"name":"_s","type":"bytes32"}],"outputs":[{"name":"","type":"bool"}]},{"stateMutability":"view","type":"function","name":"last_price","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"ema_price","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"get_balances","inputs":[],"outputs":[{"name":"","type":"uint256[2]"}]},{"stateMutability":"view","type":"function","name":"admin_fee","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"A","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"A_precise","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"get_p","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"price_oracle","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"get_virtual_price","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"calc_token_amount","inputs":[{"name":"_amounts","type":"uint256[2]"},{"name":"_is_deposit","type":"bool"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"add_liquidity","inputs":[{"name":"_amounts","type":"uint256[2]"},{"name":"_min_mint_amount","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"add_liquidity","inputs":[{"name":"_amounts","type":"uint256[2]"},{"name":"_min_mint_amount","type":"uint256"},{"name":"_receiver","type":"address"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"get_dy","inputs":[{"name":"i","type":"int128"},{"name":"j","type":"int128"},{"name":"dx","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"get_dx","inputs":[{"name":"i","type":"int128"},{"name":"j","type":"int128"},{"name":"dy","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"exchange","inputs":[{"name":"i","type":"int128"},{"name":"j","type":"int128"},{"name":"_dx","type":"uint256"},{"name":"_min_dy","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"exchange","inputs":[{"name":"i","type":"int128"},{"name":"j","type":"int128"},{"name":"_dx","type":"uint256"},{"name":"_min_dy","type":"uint256"},{"name":"_receiver","type":"address"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity","inputs":[{"name":"_burn_amount","type":"uint256"},{"name":"_min_amounts","type":"uint256[2]"}],"outputs":[{"name":"","type":"uint256[2]"}]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity","inputs":[{"name":"_burn_amount","type":"uint256"},{"name":"_min_amounts","type":"uint256[2]"},{"name":"_receiver","type":"address"}],"outputs":[{"name":"","type":"uint256[2]"}]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity_imbalance","inputs":[{"name":"_amounts","type":"uint256[2]"},{"name":"_max_burn_amount","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity_imbalance","inputs":[{"name":"_amounts","type":"uint256[2]"},{"name":"_max_burn_amount","type":"uint256"},{"name":"_receiver","type":"address"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"calc_withdraw_one_coin","inputs":[{"name":"_burn_amount","type":"uint256"},{"name":"i","type":"int128"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity_one_coin","inputs":[{"name":"_burn_amount","type":"uint256"},{"name":"i","type":"int128"},{"name":"_min_received","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity_one_coin","inputs":[{"name":"_burn_amount","type":"uint256"},{"name":"i","type":"int128"},{"name":"_min_received","type":"uint256"},{"name":"_receiver","type":"address"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"ramp_A","inputs":[{"name":"_future_A","type":"uint256"},{"name":"_future_time","type":"uint256"}],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"stop_ramp_A","inputs":[],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"set_ma_exp_time","inputs":[{"name":"_ma_exp_time","type":"uint256"}],"outputs":[]},{"stateMutability":"view","type":"function","name":"admin_balances","inputs":[{"name":"i","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"commit_new_fee","inputs":[{"name":"_new_fee","type":"uint256"}],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"apply_new_fee","inputs":[],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"withdraw_admin_fees","inputs":[],"outputs":[]},{"stateMutability":"pure","type":"function","name":"version","inputs":[],"outputs":[{"name":"","type":"string"}]},{"stateMutability":"view","type":"function","name":"factory","inputs":[],"outputs":[{"name":"","type":"address"}]},{"stateMutability":"view","type":"function","name":"coins","inputs":[{"name":"arg0","type":"uint256"}],"outputs":[{"name":"","type":"address"}]},{"stateMutability":"view","type":"function","name":"balances","inputs":[{"name":"arg0","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"fee","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_fee","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"admin_action_deadline","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"initial_A","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_A","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"initial_A_time","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_A_time","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"name","inputs":[],"outputs":[{"name":"","type":"string"}]},{"stateMutability":"view","type":"function","name":"symbol","inputs":[],"outputs":[{"name":"","type":"string"}]},{"stateMutability":"view","type":"function","name":"balanceOf","inputs":[{"name":"arg0","type":"address"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"allowance","inputs":[{"name":"arg0","type":"address"},{"name":"arg1","type":"address"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"totalSupply","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"DOMAIN_SEPARATOR","inputs":[],"outputs":[{"name":"","type":"bytes32"}]},{"stateMutability":"view","type":"function","name":"nonces","inputs":[{"name":"arg0","type":"address"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"ma_exp_time","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"ma_last_time","inputs":[],"outputs":[{"name":"","type":"uint256"}]}]

Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.