Feature Tip: Add private address tag to any address under My Name Tag !
ERC-20
Overview
Max Total Supply
991,677.694775959126362889 DEATH
Holders
32
Market
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 18 Decimals)
Balance
100 DEATHValue
$0.00Loading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Minimal Proxy Contract for 0x176e2d1a1471b2307f03b38804e24b5a48666c44
Contract Name:
ShardedWallet
Compiler Version
v0.8.3+commit.8d00100c
Optimization Enabled:
Yes with 999 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "@openzeppelin/contracts/utils/Address.sol"; import "@openzeppelin/contracts/utils/math/Math.sol"; import "../governance/IGovernance.sol"; import "../initializable/Ownable.sol"; import "../initializable/ERC20.sol"; import "../initializable/ERC1363.sol"; contract ShardedWallet is Ownable, ERC20, ERC1363Approve { // bytes32 public constant ALLOW_GOVERNANCE_UPGRADE = bytes32(uint256(keccak256("ALLOW_GOVERNANCE_UPGRADE")) - 1); bytes32 public constant ALLOW_GOVERNANCE_UPGRADE = 0xedde61aea0459bc05d70dd3441790ccfb6c17980a380201b00eca6f9ef50452a; IGovernance public governance; address public artistWallet; event Received(address indexed sender, uint256 value, bytes data); event Execute(address indexed to, uint256 value, bytes data); event ModuleExecute(address indexed module, address indexed to, uint256 value, bytes data); event GovernanceUpdated(address indexed oldGovernance, address indexed newGovernance); event ArtistUpdated(address indexed oldArtist, address indexed newArtist); modifier onlyModule() { require(_isModule(msg.sender), "Access restricted to modules"); _; } /************************************************************************* * Contructor and fallbacks * *************************************************************************/ constructor() { governance = IGovernance(address(0xdead)); } receive() external payable { emit Received(msg.sender, msg.value, bytes("")); } fallback() external payable { address module = governance.getModule(address(this), msg.sig); if (module != address(0) && _isModule(module)) { (bool success, /*bytes memory returndata*/) = module.staticcall(msg.data); // returning bytes in fallback is not supported until solidity 0.8.0 // solhint-disable-next-line no-inline-assembly assembly { returndatacopy(0, 0, returndatasize()) switch success case 0 { revert(0, returndatasize()) } default { return (0, returndatasize()) } } } else { emit Received(msg.sender, msg.value, msg.data); } } /************************************************************************* * Initialization * *************************************************************************/ function initialize( address governance_, address minter_, string calldata name_, string calldata symbol_, address artistWallet_ ) external { require(address(governance) == address(0)); governance = IGovernance(governance_); Ownable._setOwner(minter_); ERC20._initialize(name_, symbol_); artistWallet = artistWallet_; emit GovernanceUpdated(address(0), governance_); } function _isModule(address module) internal view returns (bool) { return governance.isModule(address(this), module); } /************************************************************************* * Owner interactions * *************************************************************************/ function execute(address to, uint256 value, bytes calldata data) external onlyOwner() { Address.functionCallWithValue(to, data, value); emit Execute(to, value, data); } function retrieve(address newOwner) external { ERC20._burn(msg.sender, Math.max(ERC20.totalSupply(), 1)); Ownable._setOwner(newOwner); } /************************************************************************* * Module interactions * *************************************************************************/ function moduleExecute(address to, uint256 value, bytes calldata data) external onlyModule() { if (Address.isContract(to)) { Address.functionCallWithValue(to, data, value); } else { Address.sendValue(payable(to), value); } emit ModuleExecute(msg.sender, to, value, data); } function moduleMint(address to, uint256 value) external onlyModule() { ERC20._mint(to, value); } function moduleBurn(address from, uint256 value) external onlyModule() { ERC20._burn(from, value); } function moduleTransfer(address from, address to, uint256 value) external onlyModule() { ERC20._transfer(from, to, value); } function moduleTransferOwnership(address to) external onlyModule() { Ownable._setOwner(to); } function updateGovernance(address newGovernance) external onlyModule() { emit GovernanceUpdated(address(governance), newGovernance); require(governance.getConfig(address(this), ALLOW_GOVERNANCE_UPGRADE) > 0); require(Address.isContract(newGovernance)); governance = IGovernance(newGovernance); } function updateArtistWallet(address newArtistWallet) external onlyModule() { emit ArtistUpdated(artistWallet, newArtistWallet); artistWallet = newArtistWallet; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow, so we distribute return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IGovernance { function isModule(address, address) external view returns (bool); function isAuthorized(address, address) external view returns (bool); function getModule(address, bytes4) external view returns (address); function getConfig(address, bytes32) external view returns (uint256); function getNiftexWallet() external view returns (address); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "@openzeppelin/contracts/utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function _setOwner(address owner_) internal { emit OwnershipTransferred(_owner, owner_); _owner = owner_; } /** * @dev Returns the address of the current owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(_owner == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _setOwner(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _setOwner(newOwner); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "@openzeppelin/contracts/utils/Context.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20 { mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; function _initialize(string memory name_, string memory symbol_) internal virtual { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overloaded; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _transfer(sender, recipient, amount); uint256 currentAllowance = _allowances[sender][_msgSender()]; require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance"); _approve(sender, _msgSender(), currentAllowance - amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { uint256 currentAllowance = _allowances[_msgSender()][spender]; require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); _approve(_msgSender(), spender, currentAllowance - subtractedValue); return true; } /** * @dev Destroys `amount` tokens from the caller. * * See {ERC20-_burn}. */ function burn(uint256 amount) public virtual { _burn(_msgSender(), amount); } /** * @dev Destroys `amount` tokens from `account`, deducting from the caller's * allowance. * * See {ERC20-_burn} and {ERC20-allowance}. * * Requirements: * * - the caller must have allowance for ``accounts``'s tokens of at least * `amount`. */ function burnFrom(address account, uint256 amount) public virtual { uint256 currentAllowance = allowance(account, _msgSender()); require(currentAllowance >= amount, "ERC20: burn amount exceeds allowance"); _approve(account, _msgSender(), currentAllowance - amount); _burn(account, amount); } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); uint256 senderBalance = _balances[sender]; require(senderBalance >= amount, "ERC20: transfer amount exceeds balance"); _balances[sender] = senderBalance - amount; _balances[recipient] += amount; emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; _balances[account] += amount; emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); _balances[account] = accountBalance - amount; _totalSupply -= amount; emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./ERC20.sol"; import "../interface/IERC1363.sol"; import "../interface/IERC1363Receiver.sol"; import "../interface/IERC1363Spender.sol"; abstract contract ERC1363Transfer is ERC20, IERC1363Transfer { function transferAndCall(address to, uint256 value) public override returns (bool) { return transferAndCall(to, value, bytes("")); } function transferAndCall(address to, uint256 value, bytes memory data) public override returns (bool) { require(transfer(to, value)); try IERC1363Receiver(to).onTransferReceived(_msgSender(), _msgSender(), value, data) returns (bytes4 selector) { require(selector == IERC1363Receiver(to).onTransferReceived.selector, "ERC1363: onTransferReceived invalid result"); } catch Error(string memory reason) { revert(reason); } catch { revert("ERC1363: onTransferReceived reverted without reason"); } return true; } function transferFromAndCall(address from, address to, uint256 value) public override returns (bool) { return transferFromAndCall(from, to, value, bytes("")); } function transferFromAndCall(address from, address to, uint256 value, bytes memory data) public override returns (bool) { require(transferFrom(from, to, value)); try IERC1363Receiver(to).onTransferReceived(_msgSender(), from, value, data) returns (bytes4 selector) { require(selector == IERC1363Receiver(to).onTransferReceived.selector, "ERC1363: onTransferReceived invalid result"); } catch Error(string memory reason) { revert(reason); } catch { revert("ERC1363: onTransferReceived reverted without reason"); } return true; } } abstract contract ERC1363Approve is ERC20, IERC1363Approve { function approveAndCall(address spender, uint256 value) public override returns (bool) { return approveAndCall(spender, value, bytes("")); } function approveAndCall(address spender, uint256 value, bytes memory data) public override returns (bool) { require(approve(spender, value)); try IERC1363Spender(spender).onApprovalReceived(_msgSender(), value, data) returns (bytes4 selector) { require(selector == IERC1363Spender(spender).onApprovalReceived.selector, "ERC1363: onApprovalReceived invalid result"); } catch Error(string memory reason) { revert(reason); } catch { revert("ERC1363: onApprovalReceived reverted without reason"); } return true; } } abstract contract ERC1363 is ERC1363Transfer, ERC1363Approve {}
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IERC1363Transfer { /* * Note: the ERC-165 identifier for this interface is 0x4bbee2df. * 0x4bbee2df === * bytes4(keccak256('transferAndCall(address,uint256)')) ^ * bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) */ /** * @notice Transfer tokens from `msg.sender` to another address and then call `onTransferReceived` on receiver * @param to address The address which you want to transfer to * @param value uint256 The amount of tokens to be transferred * @return true unless throwing */ function transferAndCall(address to, uint256 value) external returns (bool); /** * @notice Transfer tokens from `msg.sender` to another address and then call `onTransferReceived` on receiver * @param to address The address which you want to transfer to * @param value uint256 The amount of tokens to be transferred * @param data bytes Additional data with no specified format, sent in call to `to` * @return true unless throwing */ function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool); /** * @notice Transfer tokens from one address to another and then call `onTransferReceived` on receiver * @param from address The address which you want to send tokens from * @param to address The address which you want to transfer to * @param value uint256 The amount of tokens to be transferred * @return true unless throwing */ function transferFromAndCall(address from, address to, uint256 value) external returns (bool); /** * @notice Transfer tokens from one address to another and then call `onTransferReceived` on receiver * @param from address The address which you want to send tokens from * @param to address The address which you want to transfer to * @param value uint256 The amount of tokens to be transferred * @param data bytes Additional data with no specified format, sent in call to `to` * @return true unless throwing */ function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool); } interface IERC1363Approve { /* * Note: the ERC-165 identifier for this interface is 0xfb9ec8ce. * 0xfb9ec8ce === * bytes4(keccak256('approveAndCall(address,uint256)')) ^ * bytes4(keccak256('approveAndCall(address,uint256,bytes)')) */ /** * @notice Approve the passed address to spend the specified amount of tokens on behalf of msg.sender * and then call `onApprovalReceived` on spender. * @param spender address The address which will spend the funds * @param value uint256 The amount of tokens to be spent */ function approveAndCall(address spender, uint256 value) external returns (bool); /** * @notice Approve the passed address to spend the specified amount of tokens on behalf of msg.sender * and then call `onApprovalReceived` on spender. * @param spender address The address which will spend the funds * @param value uint256 The amount of tokens to be spent * @param data bytes Additional data with no specified format, sent in call to `spender` */ function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool); } interface IERC1363 is IERC1363Transfer, IERC1363Approve { }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title ERC1363Receiver interface * @dev Interface for any contract that wants to support `transferAndCall` or `transferFromAndCall` * from ERC1363 token contracts. */ interface IERC1363Receiver { /* * Note: the ERC-165 identifier for this interface is 0x88a7ca5c. * 0x88a7ca5c === bytes4(keccak256("onTransferReceived(address,address,uint256,bytes)")) */ /** * @notice Handle the receipt of ERC1363 tokens * @dev Any ERC1363 smart contract calls this function on the recipient * after a `transfer` or a `transferFrom`. This function MAY throw to revert and reject the * transfer. Return of other than the magic value MUST result in the * transaction being reverted. * Note: the token contract address is always the message sender. * @param operator address The address which called `transferAndCall` or `transferFromAndCall` function * @param from address The address which are token transferred from * @param value uint256 The amount of tokens transferred * @param data bytes Additional data with no specified format * @return `bytes4(keccak256("onTransferReceived(address,address,uint256,bytes)"))` * unless throwing */ function onTransferReceived(address operator, address from, uint256 value, bytes calldata data) external returns (bytes4); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title ERC1363Spender interface * @dev Interface for any contract that wants to support `approveAndCall` * from ERC1363 token contracts. */ interface IERC1363Spender { /* * Note: the ERC-165 identifier for this interface is 0.8.04a2d0. * 0.8.04a2d0 === bytes4(keccak256("onApprovalReceived(address,uint256,bytes)")) */ /** * @notice Handle the approval of ERC1363 tokens * @dev Any ERC1363 smart contract calls this function on the recipient * after an `approve`. This function MAY throw to revert and reject the * approval. Return of other than the magic value MUST result in the * transaction being reverted. * Note: the token contract address is always the message sender. * @param owner address The address which called `approveAndCall` function * @param value uint256 The amount of tokens to be spent * @param data bytes Additional data with no specified format * @return `bytes4(keccak256("onApprovalReceived(address,uint256,bytes)"))` * unless throwing */ function onApprovalReceived(address owner, uint256 value, bytes calldata data) external returns (bytes4); }
{ "optimizer": { "enabled": true, "runs": 999 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "abi" ] } }, "libraries": {} }
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldArtist","type":"address"},{"indexed":true,"internalType":"address","name":"newArtist","type":"address"}],"name":"ArtistUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"data","type":"bytes"}],"name":"Execute","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldGovernance","type":"address"},{"indexed":true,"internalType":"address","name":"newGovernance","type":"address"}],"name":"GovernanceUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"module","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"data","type":"bytes"}],"name":"ModuleExecute","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"data","type":"bytes"}],"name":"Received","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[],"name":"ALLOW_GOVERNANCE_UPGRADE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approveAndCall","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"approveAndCall","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"artistWallet","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burnFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"execute","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"governance","outputs":[{"internalType":"contract IGovernance","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"governance_","type":"address"},{"internalType":"address","name":"minter_","type":"address"},{"internalType":"string","name":"name_","type":"string"},{"internalType":"string","name":"symbol_","type":"string"},{"internalType":"address","name":"artistWallet_","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"moduleBurn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"moduleExecute","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"moduleMint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"moduleTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"moduleTransferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"retrieve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newArtistWallet","type":"address"}],"name":"updateArtistWallet","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newGovernance","type":"address"}],"name":"updateGovernance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.