ERC-20
Overview
Max Total Supply
4,422.867480459776196604 ERC20 ***
Holders
34
Market
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 18 Decimals)
Balance
0.300320360270551209 ERC20 ***Value
$0.00Loading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Contract Name:
StablePool
Compiler Version
v0.7.1+commit.f4a555be
Optimization Enabled:
Yes with 9999 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-interfaces/contracts/pool-stable/StablePoolUserData.sol"; import "@balancer-labs/v2-interfaces/contracts/pool-utils/IRateProvider.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol"; import "@balancer-labs/v2-pool-utils/contracts/BaseGeneralPool.sol"; import "@balancer-labs/v2-pool-utils/contracts/LegacyBaseMinimalSwapInfoPool.sol"; import "./StableMath.sol"; /** * @notice Pool designed to hold tokens of similar value. * @dev Stable Pools are designed specifically for assets that are expected to consistently trade at near parity, * such as different varieties of stablecoins or synthetics. Stable Pools use Stable Math (based on StableSwap, * popularized by Curve) which allows for significantly larger trades before encountering substantial price impact, * vastly increasing capital efficiency for like-kind swaps. */ contract StablePool is BaseGeneralPool, LegacyBaseMinimalSwapInfoPool, IRateProvider { using WordCodec for bytes32; using FixedPoint for uint256; using StablePoolUserData for bytes; // This contract uses timestamps to slowly update its Amplification parameter over time. These changes must occur // over a minimum time period much larger than the blocktime, making timestamp manipulation a non-issue. // solhint-disable not-rely-on-time // Amplification factor changes must happen over a minimum period of one day, and can at most divide or multiply the // current value by 2 every day. // WARNING: this only limits *a single* amplification change to have a maximum rate of change of twice the original // value daily. It is possible to perform multiple amplification changes in sequence to increase this value more // rapidly: for example, by doubling the value every day it can increase by a factor of 8 over three days (2^3). uint256 private constant _MIN_UPDATE_TIME = 1 days; uint256 private constant _MAX_AMP_UPDATE_DAILY_RATE = 2; bytes32 private _packedAmplificationData; event AmpUpdateStarted(uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime); event AmpUpdateStopped(uint256 currentValue); uint256 private immutable _totalTokens; IERC20 internal immutable _token0; IERC20 internal immutable _token1; IERC20 internal immutable _token2; IERC20 internal immutable _token3; IERC20 internal immutable _token4; // All token balances are normalized to behave as if the token had 18 decimals. We assume a token's decimals will // not change throughout its lifetime, and store the corresponding scaling factor for each at construction time. // These factors are always greater than or equal to one: tokens with more than 18 decimals are not supported. uint256 internal immutable _scalingFactor0; uint256 internal immutable _scalingFactor1; uint256 internal immutable _scalingFactor2; uint256 internal immutable _scalingFactor3; uint256 internal immutable _scalingFactor4; // To track how many tokens are owed to the Vault as protocol fees, we measure and store the value of the invariant // after every join and exit. All invariant growth that happens between join and exit events is due to swap fees. uint256 internal _lastInvariant; // Because the invariant depends on the amplification parameter, and this value may change over time, we should only // compare invariants that were computed using the same value. We therefore store it whenever we store // _lastInvariant. uint256 internal _lastInvariantAmp; constructor( IVault vault, string memory name, string memory symbol, IERC20[] memory tokens, uint256 amplificationParameter, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner ) LegacyBasePool( vault, // Because we're inheriting from both BaseGeneralPool and LegacyBaseMinimalSwapInfoPool we can choose any // specialization setting. Since this Pool never registers or deregisters any tokens after construction, // picking Two Token when the Pool only has two tokens is free gas savings. tokens.length == 2 ? IVault.PoolSpecialization.TWO_TOKEN : IVault.PoolSpecialization.GENERAL, name, symbol, tokens, new address[](tokens.length), swapFeePercentage, pauseWindowDuration, bufferPeriodDuration, owner ) { _require(amplificationParameter >= StableMath._MIN_AMP, Errors.MIN_AMP); _require(amplificationParameter <= StableMath._MAX_AMP, Errors.MAX_AMP); uint256 totalTokens = tokens.length; _totalTokens = totalTokens; // Immutable variables cannot be initialized inside an if statement, so we must do conditional assignments _token0 = tokens[0]; _token1 = tokens[1]; _token2 = totalTokens > 2 ? tokens[2] : IERC20(0); _token3 = totalTokens > 3 ? tokens[3] : IERC20(0); _token4 = totalTokens > 4 ? tokens[4] : IERC20(0); _scalingFactor0 = _computeScalingFactor(tokens[0]); _scalingFactor1 = _computeScalingFactor(tokens[1]); _scalingFactor2 = totalTokens > 2 ? _computeScalingFactor(tokens[2]) : 0; _scalingFactor3 = totalTokens > 3 ? _computeScalingFactor(tokens[3]) : 0; _scalingFactor4 = totalTokens > 4 ? _computeScalingFactor(tokens[4]) : 0; uint256 initialAmp = Math.mul(amplificationParameter, StableMath._AMP_PRECISION); _setAmplificationData(initialAmp); } function getLastInvariant() external view returns (uint256 lastInvariant, uint256 lastInvariantAmp) { lastInvariant = _lastInvariant; lastInvariantAmp = _lastInvariantAmp; } // Base Pool handlers // Swap - General Pool specialization (from BaseGeneralPool) function _onSwapGivenIn( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) internal virtual override whenNotPaused returns (uint256) { (uint256 currentAmp, ) = _getAmplificationParameter(); uint256 invariant = StableMath._calculateInvariant(currentAmp, balances); uint256 amountOut = StableMath._calcOutGivenIn( currentAmp, balances, indexIn, indexOut, swapRequest.amount, invariant ); return amountOut; } function _onSwapGivenOut( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) internal virtual override whenNotPaused returns (uint256) { (uint256 currentAmp, ) = _getAmplificationParameter(); uint256 invariant = StableMath._calculateInvariant(currentAmp, balances); uint256 amountIn = StableMath._calcInGivenOut( currentAmp, balances, indexIn, indexOut, swapRequest.amount, invariant ); return amountIn; } // Swap - Two Token Pool specialization (from LegacyBaseMinimalSwapInfoPool) function _onSwapGivenIn( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal virtual override returns (uint256) { _require(_getTotalTokens() == 2, Errors.NOT_TWO_TOKENS); (uint256[] memory balances, uint256 indexIn, uint256 indexOut) = _getSwapBalanceArrays( swapRequest, balanceTokenIn, balanceTokenOut ); return _onSwapGivenIn(swapRequest, balances, indexIn, indexOut); } function _onSwapGivenOut( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal virtual override returns (uint256) { _require(_getTotalTokens() == 2, Errors.NOT_TWO_TOKENS); (uint256[] memory balances, uint256 indexIn, uint256 indexOut) = _getSwapBalanceArrays( swapRequest, balanceTokenIn, balanceTokenOut ); return _onSwapGivenOut(swapRequest, balances, indexIn, indexOut); } function _getSwapBalanceArrays( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) private view returns ( uint256[] memory balances, uint256 indexIn, uint256 indexOut ) { balances = new uint256[](2); if (_isToken0(swapRequest.tokenIn)) { indexIn = 0; indexOut = 1; balances[0] = balanceTokenIn; balances[1] = balanceTokenOut; } else { // _token0 == swapRequest.tokenOut indexOut = 0; indexIn = 1; balances[0] = balanceTokenOut; balances[1] = balanceTokenIn; } } // Initialize function _onInitializePool( bytes32, address, address, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override returns (uint256, uint256[] memory) { StablePoolUserData.JoinKind kind = userData.joinKind(); _require(kind == StablePoolUserData.JoinKind.INIT, Errors.UNINITIALIZED); uint256[] memory amountsIn = userData.initialAmountsIn(); InputHelpers.ensureInputLengthMatch(amountsIn.length, _getTotalTokens()); _upscaleArray(amountsIn, scalingFactors); (uint256 currentAmp, ) = _getAmplificationParameter(); uint256 invariantAfterJoin = StableMath._calculateInvariant(currentAmp, amountsIn); // Set the initial BPT to the value of the invariant. uint256 bptAmountOut = invariantAfterJoin; _updateLastInvariant(invariantAfterJoin, currentAmp); return (bptAmountOut, amountsIn); } // Join function _onJoinPool( bytes32, address, address, uint256[] memory balances, uint256, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override returns ( uint256, uint256[] memory, uint256[] memory ) { // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous join // or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids spending gas to // calculate the fee amounts during each individual swap. uint256[] memory dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(balances, protocolSwapFeePercentage); // Update current balances by subtracting the protocol fee amounts _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub); (uint256 bptAmountOut, uint256[] memory amountsIn) = _doJoin(balances, scalingFactors, userData); // Update the invariant with the balances the Pool will have after the join, in order to compute the // protocol swap fee amounts due in future joins and exits. _updateInvariantAfterJoin(balances, amountsIn); return (bptAmountOut, amountsIn, dueProtocolFeeAmounts); } function _doJoin( uint256[] memory balances, uint256[] memory scalingFactors, bytes memory userData ) private view returns (uint256, uint256[] memory) { StablePoolUserData.JoinKind kind = userData.joinKind(); if (kind == StablePoolUserData.JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT) { return _joinExactTokensInForBPTOut(balances, scalingFactors, userData); } else if (kind == StablePoolUserData.JoinKind.TOKEN_IN_FOR_EXACT_BPT_OUT) { return _joinTokenInForExactBPTOut(balances, userData); } else { _revert(Errors.UNHANDLED_JOIN_KIND); } } function _joinExactTokensInForBPTOut( uint256[] memory balances, uint256[] memory scalingFactors, bytes memory userData ) private view returns (uint256, uint256[] memory) { (uint256[] memory amountsIn, uint256 minBPTAmountOut) = userData.exactTokensInForBptOut(); InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length); _upscaleArray(amountsIn, scalingFactors); (uint256 currentAmp, ) = _getAmplificationParameter(); uint256 bptAmountOut = StableMath._calcBptOutGivenExactTokensIn( currentAmp, balances, amountsIn, totalSupply(), getSwapFeePercentage() ); _require(bptAmountOut >= minBPTAmountOut, Errors.BPT_OUT_MIN_AMOUNT); return (bptAmountOut, amountsIn); } function _joinTokenInForExactBPTOut(uint256[] memory balances, bytes memory userData) private view returns (uint256, uint256[] memory) { (uint256 bptAmountOut, uint256 tokenIndex) = userData.tokenInForExactBptOut(); // Note that there is no maximum amountIn parameter: this is handled by `IVault.joinPool`. _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS); uint256[] memory amountsIn = new uint256[](_getTotalTokens()); (uint256 currentAmp, ) = _getAmplificationParameter(); amountsIn[tokenIndex] = StableMath._calcTokenInGivenExactBptOut( currentAmp, balances, tokenIndex, bptAmountOut, totalSupply(), getSwapFeePercentage() ); return (bptAmountOut, amountsIn); } // Exit function _onExitPool( bytes32, address, address, uint256[] memory balances, uint256, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ) { // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous // join or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids // spending gas calculating fee amounts during each individual swap dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(balances, protocolSwapFeePercentage); // Update current balances by subtracting the protocol fee amounts _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub); (bptAmountIn, amountsOut) = _doExit(balances, scalingFactors, userData); // Update the invariant with the balances the Pool will have after the exit, in order to compute the // protocol swap fee amounts due in future joins and exits. // Note that this is not done on recovery mode exits, but that is fine as the pool pays no protocol // fees anyway while recovery mode is active. _updateInvariantAfterExit(balances, amountsOut); return (bptAmountIn, amountsOut, dueProtocolFeeAmounts); } function _doExit( uint256[] memory balances, uint256[] memory scalingFactors, bytes memory userData ) private view returns (uint256, uint256[] memory) { StablePoolUserData.ExitKind kind = userData.exitKind(); if (kind == StablePoolUserData.ExitKind.EXACT_BPT_IN_FOR_ONE_TOKEN_OUT) { return _exitExactBPTInForTokenOut(balances, userData); } else if (kind == StablePoolUserData.ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT) { return _exitExactBPTInForTokensOut(balances, userData); } else if (kind == StablePoolUserData.ExitKind.BPT_IN_FOR_EXACT_TOKENS_OUT) { return _exitBPTInForExactTokensOut(balances, scalingFactors, userData); } else { _revert(Errors.UNHANDLED_EXIT_KIND); } } function _exitExactBPTInForTokenOut(uint256[] memory balances, bytes memory userData) private view returns (uint256, uint256[] memory) { (uint256 bptAmountIn, uint256 tokenIndex) = userData.exactBptInForTokenOut(); // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`. _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS); // We exit in a single token, so initialize amountsOut with zeros uint256[] memory amountsOut = new uint256[](_getTotalTokens()); // And then assign the result to the selected token (uint256 currentAmp, ) = _getAmplificationParameter(); amountsOut[tokenIndex] = StableMath._calcTokenOutGivenExactBptIn( currentAmp, balances, tokenIndex, bptAmountIn, totalSupply(), getSwapFeePercentage() ); return (bptAmountIn, amountsOut); } function _exitExactBPTInForTokensOut(uint256[] memory balances, bytes memory userData) private view returns (uint256, uint256[] memory) { uint256 bptAmountIn = userData.exactBptInForTokensOut(); // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`. uint256[] memory amountsOut = StableMath._calcTokensOutGivenExactBptIn(balances, bptAmountIn, totalSupply()); return (bptAmountIn, amountsOut); } function _exitBPTInForExactTokensOut( uint256[] memory balances, uint256[] memory scalingFactors, bytes memory userData ) private view returns (uint256, uint256[] memory) { (uint256[] memory amountsOut, uint256 maxBPTAmountIn) = userData.bptInForExactTokensOut(); InputHelpers.ensureInputLengthMatch(amountsOut.length, _getTotalTokens()); _upscaleArray(amountsOut, scalingFactors); (uint256 currentAmp, ) = _getAmplificationParameter(); uint256 bptAmountIn = StableMath._calcBptInGivenExactTokensOut( currentAmp, balances, amountsOut, totalSupply(), getSwapFeePercentage() ); _require(bptAmountIn <= maxBPTAmountIn, Errors.BPT_IN_MAX_AMOUNT); return (bptAmountIn, amountsOut); } function _setRecoveryMode(bool enabled) internal virtual override { super._setRecoveryMode(enabled); // Enabling recovery mode disables payment of protocol fees, forfeiting any fees accumulated between // the last join or exit before activating recovery mode, and it being disabled. // We therefore reset the 'last invariant' when disabling recovery mode (something that is otherwise only done // after joins and exits) to clear any outstanding fees, as if a join or exit had just taken place // and fees had been paid out. if (!enabled) { (, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId()); _upscaleArray(balances, _scalingFactors()); (uint256 currentAmp, ) = _getAmplificationParameter(); _updateLastInvariant(StableMath._calculateInvariant(currentAmp, balances), currentAmp); } } // Helpers /** * @dev Stores the last measured invariant, and the amplification parameter used to compute it. */ function _updateLastInvariant(uint256 invariant, uint256 amplificationParameter) internal { _lastInvariant = invariant; _lastInvariantAmp = amplificationParameter; } /** * @dev Returns the amount of protocol fees to pay, given the value of the last stored invariant and the current * balances. */ function _getDueProtocolFeeAmounts(uint256[] memory balances, uint256 protocolSwapFeePercentage) private view returns (uint256[] memory) { // Initialize with zeros uint256[] memory dueProtocolFeeAmounts = new uint256[](_getTotalTokens()); // Early return if the protocol swap fee percentage is zero, saving gas. if (protocolSwapFeePercentage == 0) { return dueProtocolFeeAmounts; } // Instead of paying the protocol swap fee in all tokens proportionally, we will pay it in a single one. This // will reduce gas costs for single asset joins and exits, as at most only two Pool balances will change (the // token joined/exited, and the token in which fees will be paid). // The protocol fee is charged using the token with the highest balance in the pool. uint256 chosenTokenIndex = 0; uint256 maxBalance = balances[0]; for (uint256 i = 1; i < _getTotalTokens(); ++i) { uint256 currentBalance = balances[i]; if (currentBalance > maxBalance) { chosenTokenIndex = i; maxBalance = currentBalance; } } // Set the fee amount to pay in the selected token dueProtocolFeeAmounts[chosenTokenIndex] = StableMath._calcDueTokenProtocolSwapFeeAmount( _lastInvariantAmp, balances, _lastInvariant, chosenTokenIndex, protocolSwapFeePercentage ); return dueProtocolFeeAmounts; } /** * @dev Computes and stores the value of the invariant after a join, which is required to compute due protocol fees * in the future. */ function _updateInvariantAfterJoin(uint256[] memory balances, uint256[] memory amountsIn) private { _mutateAmounts(balances, amountsIn, FixedPoint.add); (uint256 currentAmp, ) = _getAmplificationParameter(); // This invariant is used only to compute the final balance when calculating the protocol fees. These are // rounded down, so we round the invariant up. _updateLastInvariant(StableMath._calculateInvariant(currentAmp, balances), currentAmp); } /** * @dev Computes and stores the value of the invariant after an exit, which is required to compute due protocol fees * in the future. */ function _updateInvariantAfterExit(uint256[] memory balances, uint256[] memory amountsOut) private { _mutateAmounts(balances, amountsOut, FixedPoint.sub); (uint256 currentAmp, ) = _getAmplificationParameter(); // This invariant is used only to compute the final balance when calculating the protocol fees. These are // rounded down, so we round the invariant up. _updateLastInvariant(StableMath._calculateInvariant(currentAmp, balances), currentAmp); } /** * @dev Mutates `amounts` by applying `mutation` with each entry in `arguments`. * * Equivalent to `amounts = amounts.map(mutation)`. */ function _mutateAmounts( uint256[] memory toMutate, uint256[] memory arguments, function(uint256, uint256) pure returns (uint256) mutation ) private view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { toMutate[i] = mutation(toMutate[i], arguments[i]); } } /** * @dev This function returns the appreciation of one BPT relative to the * underlying tokens. This starts at 1 when the pool is created and grows over time */ function getRate() public view virtual override returns (uint256) { (, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId()); _upscaleArray(balances, _scalingFactors()); (uint256 currentAmp, ) = _getAmplificationParameter(); return StableMath._getRate(balances, currentAmp, totalSupply()); } // Amplification /** * @dev Begins changing the amplification parameter to `rawEndValue` over time. The value will change linearly until * `endTime` is reached, when it will be `rawEndValue`. * * NOTE: Internally, the amplification parameter is represented using higher precision. The values returned by * `getAmplificationParameter` have to be corrected to account for this when comparing to `rawEndValue`. */ function startAmplificationParameterUpdate(uint256 rawEndValue, uint256 endTime) external authenticate { _require(rawEndValue >= StableMath._MIN_AMP, Errors.MIN_AMP); _require(rawEndValue <= StableMath._MAX_AMP, Errors.MAX_AMP); uint256 duration = Math.sub(endTime, block.timestamp); _require(duration >= _MIN_UPDATE_TIME, Errors.AMP_END_TIME_TOO_CLOSE); (uint256 currentValue, bool isUpdating) = _getAmplificationParameter(); _require(!isUpdating, Errors.AMP_ONGOING_UPDATE); uint256 endValue = Math.mul(rawEndValue, StableMath._AMP_PRECISION); // daily rate = (endValue / currentValue) / duration * 1 day // We perform all multiplications first to not reduce precision, and round the division up as we want to avoid // large rates. Note that these are regular integer multiplications and divisions, not fixed point. uint256 dailyRate = endValue > currentValue ? Math.divUp(Math.mul(1 days, endValue), Math.mul(currentValue, duration)) : Math.divUp(Math.mul(1 days, currentValue), Math.mul(endValue, duration)); _require(dailyRate <= _MAX_AMP_UPDATE_DAILY_RATE, Errors.AMP_RATE_TOO_HIGH); _setAmplificationData(currentValue, endValue, block.timestamp, endTime); } /** * @dev Stops the amplification parameter change process, keeping the current value. */ function stopAmplificationParameterUpdate() external authenticate { (uint256 currentValue, bool isUpdating) = _getAmplificationParameter(); _require(isUpdating, Errors.AMP_NO_ONGOING_UPDATE); _setAmplificationData(currentValue); } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) { return (actionId == getActionId(StablePool.startAmplificationParameterUpdate.selector)) || (actionId == getActionId(StablePool.stopAmplificationParameterUpdate.selector)) || super._isOwnerOnlyAction(actionId); } function getAmplificationParameter() external view returns ( uint256 value, bool isUpdating, uint256 precision ) { (value, isUpdating) = _getAmplificationParameter(); precision = StableMath._AMP_PRECISION; } function _getAmplificationParameter() internal view returns (uint256 value, bool isUpdating) { (uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime) = _getAmplificationData(); // Note that block.timestamp >= startTime, since startTime is set to the current time when an update starts if (block.timestamp < endTime) { isUpdating = true; // We can skip checked arithmetic as: // - block.timestamp is always larger or equal to startTime // - endTime is always larger than startTime // - the value delta is bounded by the largest amplification parameter, which never causes the // multiplication to overflow. // This also means that the following computation will never revert nor yield invalid results. if (endValue > startValue) { value = startValue + ((endValue - startValue) * (block.timestamp - startTime)) / (endTime - startTime); } else { value = startValue - ((startValue - endValue) * (block.timestamp - startTime)) / (endTime - startTime); } } else { isUpdating = false; value = endValue; } } function _getMaxTokens() internal pure override returns (uint256) { return StableMath._MAX_STABLE_TOKENS; } function _getTotalTokens() internal view virtual override returns (uint256) { return _totalTokens; } function _scalingFactor(IERC20 token) internal view virtual override returns (uint256) { // prettier-ignore if (_isToken0(token)) { return _getScalingFactor0(); } else if (_isToken1(token)) { return _getScalingFactor1(); } else if (token == _token2) { return _getScalingFactor2(); } else if (token == _token3) { return _getScalingFactor3(); } else if (token == _token4) { return _getScalingFactor4(); } else { _revert(Errors.INVALID_TOKEN); } } function _scalingFactors() internal view virtual override returns (uint256[] memory) { uint256 totalTokens = _getTotalTokens(); uint256[] memory scalingFactors = new uint256[](totalTokens); // prettier-ignore { scalingFactors[0] = _getScalingFactor0(); scalingFactors[1] = _getScalingFactor1(); if (totalTokens > 2) { scalingFactors[2] = _getScalingFactor2(); } else { return scalingFactors; } if (totalTokens > 3) { scalingFactors[3] = _getScalingFactor3(); } else { return scalingFactors; } if (totalTokens > 4) { scalingFactors[4] = _getScalingFactor4(); } else { return scalingFactors; } } return scalingFactors; } function _setAmplificationData(uint256 value) private { _storeAmplificationData(value, value, block.timestamp, block.timestamp); emit AmpUpdateStopped(value); } function _setAmplificationData( uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime ) private { _storeAmplificationData(startValue, endValue, startTime, endTime); emit AmpUpdateStarted(startValue, endValue, startTime, endTime); } function _storeAmplificationData( uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime ) private { _packedAmplificationData = WordCodec.encodeUint(startValue, 0, 64) | WordCodec.encodeUint(endValue, 64, 64) | WordCodec.encodeUint(startTime, 64 * 2, 64) | WordCodec.encodeUint(endTime, 64 * 3, 64); } function _getAmplificationData() private view returns ( uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime ) { startValue = _packedAmplificationData.decodeUint(0, 64); endValue = _packedAmplificationData.decodeUint(64, 64); startTime = _packedAmplificationData.decodeUint(64 * 2, 64); endTime = _packedAmplificationData.decodeUint(64 * 3, 64); } function _isToken0(IERC20 token) internal view returns (bool) { return token == _token0; } function _isToken1(IERC20 token) internal view returns (bool) { return token == _token1; } function _getScalingFactor0() internal view returns (uint256) { return _scalingFactor0; } function _getScalingFactor1() internal view returns (uint256) { return _scalingFactor1; } function _getScalingFactor2() internal view returns (uint256) { return _scalingFactor2; } function _getScalingFactor3() internal view returns (uint256) { return _scalingFactor3; } function _getScalingFactor4() internal view returns (uint256) { return _scalingFactor4; } }
// SPDX-License-Identifier: MIT // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated // documentation files (the “Software”), to deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the // Software. // THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol"; /* solhint-disable */ /** * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument). * * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural * exponentiation and logarithm (where the base is Euler's number). * * @author Fernando Martinelli - @fernandomartinelli * @author Sergio Yuhjtman - @sergioyuhjtman * @author Daniel Fernandez - @dmf7z */ library LogExpMath { // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying // two numbers, and multiply by ONE when dividing them. // All arguments and return values are 18 decimal fixed point numbers. int256 constant ONE_18 = 1e18; // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the // case of ln36, 36 decimals. int256 constant ONE_20 = 1e20; int256 constant ONE_36 = 1e36; // The domain of natural exponentiation is bound by the word size and number of decimals used. // // Because internally the result will be stored using 20 decimals, the largest possible result is // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221. // The smallest possible result is 10^(-18), which makes largest negative argument // ln(10^(-18)) = -41.446531673892822312. // We use 130.0 and -41.0 to have some safety margin. int256 constant MAX_NATURAL_EXPONENT = 130e18; int256 constant MIN_NATURAL_EXPONENT = -41e18; // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point // 256 bit integer. int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17; int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17; uint256 constant MILD_EXPONENT_BOUND = 2**254 / uint256(ONE_20); // 18 decimal constants int256 constant x0 = 128000000000000000000; // 2ˆ7 int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals) int256 constant x1 = 64000000000000000000; // 2ˆ6 int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals) // 20 decimal constants int256 constant x2 = 3200000000000000000000; // 2ˆ5 int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2) int256 constant x3 = 1600000000000000000000; // 2ˆ4 int256 constant a3 = 888611052050787263676000000; // eˆ(x3) int256 constant x4 = 800000000000000000000; // 2ˆ3 int256 constant a4 = 298095798704172827474000; // eˆ(x4) int256 constant x5 = 400000000000000000000; // 2ˆ2 int256 constant a5 = 5459815003314423907810; // eˆ(x5) int256 constant x6 = 200000000000000000000; // 2ˆ1 int256 constant a6 = 738905609893065022723; // eˆ(x6) int256 constant x7 = 100000000000000000000; // 2ˆ0 int256 constant a7 = 271828182845904523536; // eˆ(x7) int256 constant x8 = 50000000000000000000; // 2ˆ-1 int256 constant a8 = 164872127070012814685; // eˆ(x8) int256 constant x9 = 25000000000000000000; // 2ˆ-2 int256 constant a9 = 128402541668774148407; // eˆ(x9) int256 constant x10 = 12500000000000000000; // 2ˆ-3 int256 constant a10 = 113314845306682631683; // eˆ(x10) int256 constant x11 = 6250000000000000000; // 2ˆ-4 int256 constant a11 = 106449445891785942956; // eˆ(x11) /** * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent. * * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`. */ function pow(uint256 x, uint256 y) internal pure returns (uint256) { if (y == 0) { // We solve the 0^0 indetermination by making it equal one. return uint256(ONE_18); } if (x == 0) { return 0; } // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to // arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means // x^y = exp(y * ln(x)). // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range. _require(x >> 255 == 0, Errors.X_OUT_OF_BOUNDS); int256 x_int256 = int256(x); // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end. // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range. _require(y < MILD_EXPONENT_BOUND, Errors.Y_OUT_OF_BOUNDS); int256 y_int256 = int256(y); int256 logx_times_y; if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) { int256 ln_36_x = _ln_36(x_int256); // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the // (downscaled) last 18 decimals. logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18); } else { logx_times_y = _ln(x_int256) * y_int256; } logx_times_y /= ONE_18; // Finally, we compute exp(y * ln(x)) to arrive at x^y _require( MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT, Errors.PRODUCT_OUT_OF_BOUNDS ); return uint256(exp(logx_times_y)); } /** * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent. * * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`. */ function exp(int256 x) internal pure returns (int256) { _require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, Errors.INVALID_EXPONENT); if (x < 0) { // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT). // Fixed point division requires multiplying by ONE_18. return ((ONE_18 * ONE_18) / exp(-x)); } // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n, // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7 // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the // decomposition. // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this // decomposition, which will be lower than the smallest x_n. // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1. // We mutate x by subtracting x_n, making it the remainder of the decomposition. // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause // intermediate overflows. Instead we store them as plain integers, with 0 decimals. // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the // decomposition. // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct // it and compute the accumulated product. int256 firstAN; if (x >= x0) { x -= x0; firstAN = a0; } else if (x >= x1) { x -= x1; firstAN = a1; } else { firstAN = 1; // One with no decimal places } // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the // smaller terms. x *= 100; // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point // one. Recall that fixed point multiplication requires dividing by ONE_20. int256 product = ONE_20; if (x >= x2) { x -= x2; product = (product * a2) / ONE_20; } if (x >= x3) { x -= x3; product = (product * a3) / ONE_20; } if (x >= x4) { x -= x4; product = (product * a4) / ONE_20; } if (x >= x5) { x -= x5; product = (product * a5) / ONE_20; } if (x >= x6) { x -= x6; product = (product * a6) / ONE_20; } if (x >= x7) { x -= x7; product = (product * a7) / ONE_20; } if (x >= x8) { x -= x8; product = (product * a8) / ONE_20; } if (x >= x9) { x -= x9; product = (product * a9) / ONE_20; } // x10 and x11 are unnecessary here since we have high enough precision already. // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!). int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places. int256 term; // Each term in the sum, where the nth term is (x^n / n!). // The first term is simply x. term = x; seriesSum += term; // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number, // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not. term = ((term * x) / ONE_20) / 2; seriesSum += term; term = ((term * x) / ONE_20) / 3; seriesSum += term; term = ((term * x) / ONE_20) / 4; seriesSum += term; term = ((term * x) / ONE_20) / 5; seriesSum += term; term = ((term * x) / ONE_20) / 6; seriesSum += term; term = ((term * x) / ONE_20) / 7; seriesSum += term; term = ((term * x) / ONE_20) / 8; seriesSum += term; term = ((term * x) / ONE_20) / 9; seriesSum += term; term = ((term * x) / ONE_20) / 10; seriesSum += term; term = ((term * x) / ONE_20) / 11; seriesSum += term; term = ((term * x) / ONE_20) / 12; seriesSum += term; // 12 Taylor terms are sufficient for 18 decimal precision. // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication), // and then drop two digits to return an 18 decimal value. return (((product * seriesSum) / ONE_20) * firstAN) / 100; } /** * @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument. */ function log(int256 arg, int256 base) internal pure returns (int256) { // This performs a simple base change: log(arg, base) = ln(arg) / ln(base). // Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by // upscaling. int256 logBase; if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) { logBase = _ln_36(base); } else { logBase = _ln(base) * ONE_18; } int256 logArg; if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) { logArg = _ln_36(arg); } else { logArg = _ln(arg) * ONE_18; } // When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places return (logArg * ONE_18) / logBase; } /** * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function ln(int256 a) internal pure returns (int256) { // The real natural logarithm is not defined for negative numbers or zero. _require(a > 0, Errors.OUT_OF_BOUNDS); if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) { return _ln_36(a) / ONE_18; } else { return _ln(a); } } /** * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function _ln(int256 a) private pure returns (int256) { if (a < ONE_18) { // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call. // Fixed point division requires multiplying by ONE_18. return (-_ln((ONE_18 * ONE_18) / a)); } // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is, // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a. // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this // decomposition, which will be lower than the smallest a_n. // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1. // We mutate a by subtracting a_n, making it the remainder of the decomposition. // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by // ONE_18 to convert them to fixed point. // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide // by it and compute the accumulated sum. int256 sum = 0; if (a >= a0 * ONE_18) { a /= a0; // Integer, not fixed point division sum += x0; } if (a >= a1 * ONE_18) { a /= a1; // Integer, not fixed point division sum += x1; } // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format. sum *= 100; a *= 100; // Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them. if (a >= a2) { a = (a * ONE_20) / a2; sum += x2; } if (a >= a3) { a = (a * ONE_20) / a3; sum += x3; } if (a >= a4) { a = (a * ONE_20) / a4; sum += x4; } if (a >= a5) { a = (a * ONE_20) / a5; sum += x5; } if (a >= a6) { a = (a * ONE_20) / a6; sum += x6; } if (a >= a7) { a = (a * ONE_20) / a7; sum += x7; } if (a >= a8) { a = (a * ONE_20) / a8; sum += x8; } if (a >= a9) { a = (a * ONE_20) / a9; sum += x9; } if (a >= a10) { a = (a * ONE_20) / a10; sum += x10; } if (a >= a11) { a = (a * ONE_20) / a11; sum += x11; } // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series // that converges rapidly for values of `a` close to one - the same one used in ln_36. // Let z = (a - 1) / (a + 1). // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires // division by ONE_20. int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20); int256 z_squared = (z * z) / ONE_20; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_20; seriesSum += num / 3; num = (num * z_squared) / ONE_20; seriesSum += num / 5; num = (num * z_squared) / ONE_20; seriesSum += num / 7; num = (num * z_squared) / ONE_20; seriesSum += num / 9; num = (num * z_squared) / ONE_20; seriesSum += num / 11; // 6 Taylor terms are sufficient for 36 decimal precision. // Finally, we multiply by 2 (non fixed point) to compute ln(remainder) seriesSum *= 2; // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal // value. return (sum + seriesSum) / 100; } /** * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument, * for x close to one. * * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND. */ function _ln_36(int256 x) private pure returns (int256) { // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits // worthwhile. // First, we transform x to a 36 digit fixed point value. x *= ONE_18; // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1). // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires // division by ONE_36. int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36); int256 z_squared = (z * z) / ONE_36; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_36; seriesSum += num / 3; num = (num * z_squared) / ONE_36; seriesSum += num / 5; num = (num * z_squared) / ONE_36; seriesSum += num / 7; num = (num * z_squared) / ONE_36; seriesSum += num / 9; num = (num * z_squared) / ONE_36; seriesSum += num / 11; num = (num * z_squared) / ONE_36; seriesSum += num / 13; num = (num * z_squared) / ONE_36; seriesSum += num / 15; // 8 Taylor terms are sufficient for 36 decimal precision. // All that remains is multiplying by 2 (non fixed point). return seriesSum * 2; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; // solhint-disable /** * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are * supported. */ function _require(bool condition, uint256 errorCode) pure { if (!condition) _revert(errorCode); } /** * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported. */ function _revert(uint256 errorCode) pure { // We're going to dynamically create a revert string based on the error code, with the following format: // 'BAL#{errorCode}' // where the code is left-padded with zeroes to three digits (so they range from 000 to 999). // // We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a // number (8 to 16 bits) than the individual string characters. // // The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a // much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a // safe place to rely on it without worrying about how its usage might affect e.g. memory contents. assembly { // First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999 // range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for // the '0' character. let units := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let tenths := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let hundreds := add(mod(errorCode, 10), 0x30) // With the individual characters, we can now construct the full string. The "BAL#" part is a known constant // (0x42414c23): we simply shift this by 24 (to provide space for the 3 bytes of the error code), and add the // characters to it, each shifted by a multiple of 8. // The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits // per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte // array). let revertReason := shl(200, add(0x42414c23000000, add(add(units, shl(8, tenths)), shl(16, hundreds)))) // We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded // message will have the following layout: // [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ] // The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We // also write zeroes to the next 28 bytes of memory, but those are about to be overwritten. mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000) // Next is the offset to the location of the string, which will be placed immediately after (20 bytes away). mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020) // The string length is fixed: 7 characters. mstore(0x24, 7) // Finally, the string itself is stored. mstore(0x44, revertReason) // Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of // the encoded message is therefore 4 + 32 + 32 + 32 = 100. revert(0, 100) } } library Errors { // Math uint256 internal constant ADD_OVERFLOW = 0; uint256 internal constant SUB_OVERFLOW = 1; uint256 internal constant SUB_UNDERFLOW = 2; uint256 internal constant MUL_OVERFLOW = 3; uint256 internal constant ZERO_DIVISION = 4; uint256 internal constant DIV_INTERNAL = 5; uint256 internal constant X_OUT_OF_BOUNDS = 6; uint256 internal constant Y_OUT_OF_BOUNDS = 7; uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8; uint256 internal constant INVALID_EXPONENT = 9; // Input uint256 internal constant OUT_OF_BOUNDS = 100; uint256 internal constant UNSORTED_ARRAY = 101; uint256 internal constant UNSORTED_TOKENS = 102; uint256 internal constant INPUT_LENGTH_MISMATCH = 103; uint256 internal constant ZERO_TOKEN = 104; // Shared pools uint256 internal constant MIN_TOKENS = 200; uint256 internal constant MAX_TOKENS = 201; uint256 internal constant MAX_SWAP_FEE_PERCENTAGE = 202; uint256 internal constant MIN_SWAP_FEE_PERCENTAGE = 203; uint256 internal constant MINIMUM_BPT = 204; uint256 internal constant CALLER_NOT_VAULT = 205; uint256 internal constant UNINITIALIZED = 206; uint256 internal constant BPT_IN_MAX_AMOUNT = 207; uint256 internal constant BPT_OUT_MIN_AMOUNT = 208; uint256 internal constant EXPIRED_PERMIT = 209; uint256 internal constant NOT_TWO_TOKENS = 210; uint256 internal constant DISABLED = 211; // Pools uint256 internal constant MIN_AMP = 300; uint256 internal constant MAX_AMP = 301; uint256 internal constant MIN_WEIGHT = 302; uint256 internal constant MAX_STABLE_TOKENS = 303; uint256 internal constant MAX_IN_RATIO = 304; uint256 internal constant MAX_OUT_RATIO = 305; uint256 internal constant MIN_BPT_IN_FOR_TOKEN_OUT = 306; uint256 internal constant MAX_OUT_BPT_FOR_TOKEN_IN = 307; uint256 internal constant NORMALIZED_WEIGHT_INVARIANT = 308; uint256 internal constant INVALID_TOKEN = 309; uint256 internal constant UNHANDLED_JOIN_KIND = 310; uint256 internal constant ZERO_INVARIANT = 311; uint256 internal constant ORACLE_INVALID_SECONDS_QUERY = 312; uint256 internal constant ORACLE_NOT_INITIALIZED = 313; uint256 internal constant ORACLE_QUERY_TOO_OLD = 314; uint256 internal constant ORACLE_INVALID_INDEX = 315; uint256 internal constant ORACLE_BAD_SECS = 316; uint256 internal constant AMP_END_TIME_TOO_CLOSE = 317; uint256 internal constant AMP_ONGOING_UPDATE = 318; uint256 internal constant AMP_RATE_TOO_HIGH = 319; uint256 internal constant AMP_NO_ONGOING_UPDATE = 320; uint256 internal constant STABLE_INVARIANT_DIDNT_CONVERGE = 321; uint256 internal constant STABLE_GET_BALANCE_DIDNT_CONVERGE = 322; uint256 internal constant RELAYER_NOT_CONTRACT = 323; uint256 internal constant BASE_POOL_RELAYER_NOT_CALLED = 324; uint256 internal constant REBALANCING_RELAYER_REENTERED = 325; uint256 internal constant GRADUAL_UPDATE_TIME_TRAVEL = 326; uint256 internal constant SWAPS_DISABLED = 327; uint256 internal constant CALLER_IS_NOT_LBP_OWNER = 328; uint256 internal constant PRICE_RATE_OVERFLOW = 329; uint256 internal constant INVALID_JOIN_EXIT_KIND_WHILE_SWAPS_DISABLED = 330; uint256 internal constant WEIGHT_CHANGE_TOO_FAST = 331; uint256 internal constant LOWER_GREATER_THAN_UPPER_TARGET = 332; uint256 internal constant UPPER_TARGET_TOO_HIGH = 333; uint256 internal constant UNHANDLED_BY_LINEAR_POOL = 334; uint256 internal constant OUT_OF_TARGET_RANGE = 335; uint256 internal constant UNHANDLED_EXIT_KIND = 336; uint256 internal constant UNAUTHORIZED_EXIT = 337; uint256 internal constant MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE = 338; uint256 internal constant UNHANDLED_BY_MANAGED_POOL = 339; uint256 internal constant UNHANDLED_BY_PHANTOM_POOL = 340; uint256 internal constant TOKEN_DOES_NOT_HAVE_RATE_PROVIDER = 341; uint256 internal constant INVALID_INITIALIZATION = 342; uint256 internal constant OUT_OF_NEW_TARGET_RANGE = 343; uint256 internal constant UNAUTHORIZED_OPERATION = 344; uint256 internal constant UNINITIALIZED_POOL_CONTROLLER = 345; uint256 internal constant SET_SWAP_FEE_DURING_FEE_CHANGE = 346; uint256 internal constant SET_SWAP_FEE_PENDING_FEE_CHANGE = 347; uint256 internal constant CHANGE_TOKENS_DURING_WEIGHT_CHANGE = 348; uint256 internal constant CHANGE_TOKENS_PENDING_WEIGHT_CHANGE = 349; uint256 internal constant MAX_WEIGHT = 350; uint256 internal constant UNAUTHORIZED_JOIN = 351; uint256 internal constant MAX_MANAGEMENT_AUM_FEE_PERCENTAGE = 352; // Lib uint256 internal constant REENTRANCY = 400; uint256 internal constant SENDER_NOT_ALLOWED = 401; uint256 internal constant PAUSED = 402; uint256 internal constant PAUSE_WINDOW_EXPIRED = 403; uint256 internal constant MAX_PAUSE_WINDOW_DURATION = 404; uint256 internal constant MAX_BUFFER_PERIOD_DURATION = 405; uint256 internal constant INSUFFICIENT_BALANCE = 406; uint256 internal constant INSUFFICIENT_ALLOWANCE = 407; uint256 internal constant ERC20_TRANSFER_FROM_ZERO_ADDRESS = 408; uint256 internal constant ERC20_TRANSFER_TO_ZERO_ADDRESS = 409; uint256 internal constant ERC20_MINT_TO_ZERO_ADDRESS = 410; uint256 internal constant ERC20_BURN_FROM_ZERO_ADDRESS = 411; uint256 internal constant ERC20_APPROVE_FROM_ZERO_ADDRESS = 412; uint256 internal constant ERC20_APPROVE_TO_ZERO_ADDRESS = 413; uint256 internal constant ERC20_TRANSFER_EXCEEDS_ALLOWANCE = 414; uint256 internal constant ERC20_DECREASED_ALLOWANCE_BELOW_ZERO = 415; uint256 internal constant ERC20_TRANSFER_EXCEEDS_BALANCE = 416; uint256 internal constant ERC20_BURN_EXCEEDS_ALLOWANCE = 417; uint256 internal constant SAFE_ERC20_CALL_FAILED = 418; uint256 internal constant ADDRESS_INSUFFICIENT_BALANCE = 419; uint256 internal constant ADDRESS_CANNOT_SEND_VALUE = 420; uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_INT256 = 421; uint256 internal constant GRANT_SENDER_NOT_ADMIN = 422; uint256 internal constant REVOKE_SENDER_NOT_ADMIN = 423; uint256 internal constant RENOUNCE_SENDER_NOT_ALLOWED = 424; uint256 internal constant BUFFER_PERIOD_EXPIRED = 425; uint256 internal constant CALLER_IS_NOT_OWNER = 426; uint256 internal constant NEW_OWNER_IS_ZERO = 427; uint256 internal constant CODE_DEPLOYMENT_FAILED = 428; uint256 internal constant CALL_TO_NON_CONTRACT = 429; uint256 internal constant LOW_LEVEL_CALL_FAILED = 430; uint256 internal constant NOT_PAUSED = 431; uint256 internal constant ADDRESS_ALREADY_ALLOWLISTED = 432; uint256 internal constant ADDRESS_NOT_ALLOWLISTED = 433; uint256 internal constant ERC20_BURN_EXCEEDS_BALANCE = 434; uint256 internal constant INVALID_OPERATION = 435; uint256 internal constant CODEC_OVERFLOW = 436; uint256 internal constant IN_RECOVERY_MODE = 437; uint256 internal constant NOT_IN_RECOVERY_MODE = 438; // Vault uint256 internal constant INVALID_POOL_ID = 500; uint256 internal constant CALLER_NOT_POOL = 501; uint256 internal constant SENDER_NOT_ASSET_MANAGER = 502; uint256 internal constant USER_DOESNT_ALLOW_RELAYER = 503; uint256 internal constant INVALID_SIGNATURE = 504; uint256 internal constant EXIT_BELOW_MIN = 505; uint256 internal constant JOIN_ABOVE_MAX = 506; uint256 internal constant SWAP_LIMIT = 507; uint256 internal constant SWAP_DEADLINE = 508; uint256 internal constant CANNOT_SWAP_SAME_TOKEN = 509; uint256 internal constant UNKNOWN_AMOUNT_IN_FIRST_SWAP = 510; uint256 internal constant MALCONSTRUCTED_MULTIHOP_SWAP = 511; uint256 internal constant INTERNAL_BALANCE_OVERFLOW = 512; uint256 internal constant INSUFFICIENT_INTERNAL_BALANCE = 513; uint256 internal constant INVALID_ETH_INTERNAL_BALANCE = 514; uint256 internal constant INVALID_POST_LOAN_BALANCE = 515; uint256 internal constant INSUFFICIENT_ETH = 516; uint256 internal constant UNALLOCATED_ETH = 517; uint256 internal constant ETH_TRANSFER = 518; uint256 internal constant CANNOT_USE_ETH_SENTINEL = 519; uint256 internal constant TOKENS_MISMATCH = 520; uint256 internal constant TOKEN_NOT_REGISTERED = 521; uint256 internal constant TOKEN_ALREADY_REGISTERED = 522; uint256 internal constant TOKENS_ALREADY_SET = 523; uint256 internal constant TOKENS_LENGTH_MUST_BE_2 = 524; uint256 internal constant NONZERO_TOKEN_BALANCE = 525; uint256 internal constant BALANCE_TOTAL_OVERFLOW = 526; uint256 internal constant POOL_NO_TOKENS = 527; uint256 internal constant INSUFFICIENT_FLASH_LOAN_BALANCE = 528; // Fees uint256 internal constant SWAP_FEE_PERCENTAGE_TOO_HIGH = 600; uint256 internal constant FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH = 601; uint256 internal constant INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT = 602; uint256 internal constant AUM_FEE_PERCENTAGE_TOO_HIGH = 603; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol"; import "./LogExpMath.sol"; /* solhint-disable private-vars-leading-underscore */ library FixedPoint { uint256 internal constant ONE = 1e18; // 18 decimal places uint256 internal constant TWO = 2 * ONE; uint256 internal constant FOUR = 4 * ONE; uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14) // Minimum base for the power function when the exponent is 'free' (larger than ONE). uint256 internal constant MIN_POW_BASE_FREE_EXPONENT = 0.7e18; function add(uint256 a, uint256 b) internal pure returns (uint256) { // Fixed Point addition is the same as regular checked addition uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { // Fixed Point addition is the same as regular checked addition _require(b <= a, Errors.SUB_OVERFLOW); uint256 c = a - b; return c; } function mulDown(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW); return product / ONE; } function mulUp(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW); if (product == 0) { return 0; } else { // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, which we already tested for. return ((product - 1) / ONE) + 1; } } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { uint256 aInflated = a * ONE; _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow return aInflated / b; } } function divUp(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { uint256 aInflated = a * ONE; _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, which we already tested for. return ((aInflated - 1) / b) + 1; } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above * the true value (that is, the error function expected - actual is always positive). */ function powDown(uint256 x, uint256 y) internal pure returns (uint256) { // Optimize for when y equals 1.0, 2.0 or 4.0, as those are very simple to implement and occur often in 50/50 // and 80/20 Weighted Pools if (y == ONE) { return x; } else if (y == TWO) { return mulDown(x, x); } else if (y == FOUR) { uint256 square = mulDown(x, x); return mulDown(square, square); } else { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1); if (raw < maxError) { return 0; } else { return sub(raw, maxError); } } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below * the true value (that is, the error function expected - actual is always negative). */ function powUp(uint256 x, uint256 y) internal pure returns (uint256) { // Optimize for when y equals 1.0, 2.0 or 4.0, as those are very simple to implement and occur often in 50/50 // and 80/20 Weighted Pools if (y == ONE) { return x; } else if (y == TWO) { return mulUp(x, x); } else if (y == FOUR) { uint256 square = mulUp(x, x); return mulUp(square, square); } else { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1); return add(raw, maxError); } } /** * @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1. * * Useful when computing the complement for values with some level of relative error, as it strips this error and * prevents intermediate negative values. */ function complement(uint256 x) internal pure returns (uint256) { return (x < ONE) ? (ONE - x) : 0; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol"; // These functions start with an underscore, as if they were part of a contract and not a library. At some point this // should be fixed. Additionally, some variables have non mixed case names (e.g. P_D) that relate to the mathematical // derivations. // solhint-disable private-vars-leading-underscore, var-name-mixedcase library StableMath { using FixedPoint for uint256; uint256 internal constant _MIN_AMP = 1; uint256 internal constant _MAX_AMP = 5000; uint256 internal constant _AMP_PRECISION = 1e3; uint256 internal constant _MAX_STABLE_TOKENS = 5; // Note on unchecked arithmetic: // This contract performs a large number of additions, subtractions, multiplications and divisions, often inside // loops. Since many of these operations are gas-sensitive (as they happen e.g. during a swap), it is important to // not make any unnecessary checks. We rely on a set of invariants to avoid having to use checked arithmetic (the // Math library), including: // - the number of tokens is bounded by _MAX_STABLE_TOKENS // - the amplification parameter is bounded by _MAX_AMP * _AMP_PRECISION, which fits in 23 bits // - the token balances are bounded by 2^112 (guaranteed by the Vault) times 1e18 (the maximum scaling factor), // which fits in 172 bits // // This means e.g. we can safely multiply a balance by the amplification parameter without worrying about overflow. // About swap fees on joins and exits: // Any join or exit that is not perfectly balanced (e.g. all single token joins or exits) is mathematically // equivalent to a perfectly balanced join or exit followed by a series of swaps. Since these swaps would charge // swap fees, it follows that (some) joins and exits should as well. // On these operations, we split the token amounts in 'taxable' and 'non-taxable' portions, where the 'taxable' part // is the one to which swap fees are applied. // Computes the invariant given the current balances, using the Newton-Raphson approximation. // The amplification parameter equals: A n^(n-1) // See: https://github.com/curvefi/curve-contract/blob/b0bbf77f8f93c9c5f4e415bce9cd71f0cdee960e/contracts/pool-templates/base/SwapTemplateBase.vy#L206 // solhint-disable-previous-line max-line-length function _calculateInvariant(uint256 amplificationParameter, uint256[] memory balances) internal pure returns (uint256) { /********************************************************************************************** // invariant // // D = invariant D^(n+1) // // A = amplification coefficient A n^n S + D = A D n^n + ----------- // // S = sum of balances n^n P // // P = product of balances // // n = number of tokens // **********************************************************************************************/ // Always round down, to match Vyper's arithmetic (which always truncates). uint256 sum = 0; // S in the Curve version uint256 numTokens = balances.length; for (uint256 i = 0; i < numTokens; i++) { sum = sum.add(balances[i]); } if (sum == 0) { return 0; } uint256 prevInvariant; // Dprev in the Curve version uint256 invariant = sum; // D in the Curve version uint256 ampTimesTotal = amplificationParameter * numTokens; // Ann in the Curve version for (uint256 i = 0; i < 255; i++) { uint256 D_P = invariant; for (uint256 j = 0; j < numTokens; j++) { // (D_P * invariant) / (balances[j] * numTokens) D_P = Math.divDown(Math.mul(D_P, invariant), Math.mul(balances[j], numTokens)); } prevInvariant = invariant; invariant = Math.divDown( Math.mul( // (ampTimesTotal * sum) / AMP_PRECISION + D_P * numTokens (Math.divDown(Math.mul(ampTimesTotal, sum), _AMP_PRECISION).add(Math.mul(D_P, numTokens))), invariant ), // ((ampTimesTotal - _AMP_PRECISION) * invariant) / _AMP_PRECISION + (numTokens + 1) * D_P ( Math.divDown(Math.mul((ampTimesTotal - _AMP_PRECISION), invariant), _AMP_PRECISION).add( Math.mul((numTokens + 1), D_P) ) ) ); if (invariant > prevInvariant) { if (invariant - prevInvariant <= 1) { return invariant; } } else if (prevInvariant - invariant <= 1) { return invariant; } } _revert(Errors.STABLE_INVARIANT_DIDNT_CONVERGE); } // Computes how many tokens can be taken out of a pool if `tokenAmountIn` are sent, given the current balances. // The amplification parameter equals: A n^(n-1) // The invariant should be rounded up. function _calcOutGivenIn( uint256 amplificationParameter, uint256[] memory balances, uint256 tokenIndexIn, uint256 tokenIndexOut, uint256 tokenAmountIn, uint256 invariant ) internal pure returns (uint256) { /************************************************************************************************************** // outGivenIn token x for y - polynomial equation to solve // // ay = amount out to calculate // // by = balance token out // // y = by - ay (finalBalanceOut) // // D = invariant D D^(n+1) // // A = amplification coefficient y^2 + ( S - ---------- - D) * y - ------------- = 0 // // n = number of tokens (A * n^n) A * n^2n * P // // S = sum of final balances but y // // P = product of final balances but y // **************************************************************************************************************/ // Amount out, so we round down overall. balances[tokenIndexIn] = balances[tokenIndexIn].add(tokenAmountIn); uint256 finalBalanceOut = _getTokenBalanceGivenInvariantAndAllOtherBalances( amplificationParameter, balances, invariant, tokenIndexOut ); // No need to use checked arithmetic since `tokenAmountIn` was actually added to the same balance right before // calling `_getTokenBalanceGivenInvariantAndAllOtherBalances` which doesn't alter the balances array. balances[tokenIndexIn] = balances[tokenIndexIn] - tokenAmountIn; return balances[tokenIndexOut].sub(finalBalanceOut).sub(1); } // Computes how many tokens must be sent to a pool if `tokenAmountOut` are sent given the // current balances, using the Newton-Raphson approximation. // The amplification parameter equals: A n^(n-1) // The invariant should be rounded up. function _calcInGivenOut( uint256 amplificationParameter, uint256[] memory balances, uint256 tokenIndexIn, uint256 tokenIndexOut, uint256 tokenAmountOut, uint256 invariant ) internal pure returns (uint256) { /************************************************************************************************************** // inGivenOut token x for y - polynomial equation to solve // // ax = amount in to calculate // // bx = balance token in // // x = bx + ax (finalBalanceIn) // // D = invariant D D^(n+1) // // A = amplification coefficient x^2 + ( S - ---------- - D) * x - ------------- = 0 // // n = number of tokens (A * n^n) A * n^2n * P // // S = sum of final balances but x // // P = product of final balances but x // **************************************************************************************************************/ // Amount in, so we round up overall. balances[tokenIndexOut] = balances[tokenIndexOut].sub(tokenAmountOut); uint256 finalBalanceIn = _getTokenBalanceGivenInvariantAndAllOtherBalances( amplificationParameter, balances, invariant, tokenIndexIn ); // No need to use checked arithmetic since `tokenAmountOut` was actually subtracted from the same balance right // before calling `_getTokenBalanceGivenInvariantAndAllOtherBalances` which doesn't alter the balances array. balances[tokenIndexOut] = balances[tokenIndexOut] + tokenAmountOut; return finalBalanceIn.sub(balances[tokenIndexIn]).add(1); } function _calcBptOutGivenExactTokensIn( uint256 amp, uint256[] memory balances, uint256[] memory amountsIn, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { // BPT out, so we round down overall. // First loop calculates the sum of all token balances, which will be used to calculate // the current weights of each token, relative to this sum uint256 sumBalances = 0; for (uint256 i = 0; i < balances.length; i++) { sumBalances = sumBalances.add(balances[i]); } // Calculate the weighted balance ratio without considering fees uint256[] memory balanceRatiosWithFee = new uint256[](amountsIn.length); // The weighted sum of token balance ratios with fee uint256 invariantRatioWithFees = 0; for (uint256 i = 0; i < balances.length; i++) { uint256 currentWeight = balances[i].divDown(sumBalances); balanceRatiosWithFee[i] = balances[i].add(amountsIn[i]).divDown(balances[i]); invariantRatioWithFees = invariantRatioWithFees.add(balanceRatiosWithFee[i].mulDown(currentWeight)); } // Second loop calculates new amounts in, taking into account the fee on the percentage excess uint256[] memory newBalances = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { uint256 amountInWithoutFee; // Check if the balance ratio is greater than the ideal ratio to charge fees or not if (balanceRatiosWithFee[i] > invariantRatioWithFees) { uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithFees.sub(FixedPoint.ONE)); uint256 taxableAmount = amountsIn[i].sub(nonTaxableAmount); // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50% amountInWithoutFee = nonTaxableAmount.add(taxableAmount.mulDown(FixedPoint.ONE - swapFeePercentage)); } else { amountInWithoutFee = amountsIn[i]; } newBalances[i] = balances[i].add(amountInWithoutFee); } // Get current and new invariants, taking swap fees into account uint256 currentInvariant = _calculateInvariant(amp, balances); uint256 newInvariant = _calculateInvariant(amp, newBalances); uint256 invariantRatio = newInvariant.divDown(currentInvariant); // If the invariant didn't increase for any reason, we simply don't mint BPT if (invariantRatio > FixedPoint.ONE) { return bptTotalSupply.mulDown(invariantRatio - FixedPoint.ONE); } else { return 0; } } function _calcTokenInGivenExactBptOut( uint256 amp, uint256[] memory balances, uint256 tokenIndex, uint256 bptAmountOut, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { // Token in, so we round up overall. // Get the current invariant uint256 currentInvariant = _calculateInvariant(amp, balances); // Calculate new invariant uint256 newInvariant = bptTotalSupply.add(bptAmountOut).divUp(bptTotalSupply).mulUp(currentInvariant); // Calculate amount in without fee. uint256 newBalanceTokenIndex = _getTokenBalanceGivenInvariantAndAllOtherBalances( amp, balances, newInvariant, tokenIndex ); uint256 amountInWithoutFee = newBalanceTokenIndex.sub(balances[tokenIndex]); // First calculate the sum of all token balances, which will be used to calculate // the current weight of each token uint256 sumBalances = 0; for (uint256 i = 0; i < balances.length; i++) { sumBalances = sumBalances.add(balances[i]); } // We can now compute how much extra balance is being deposited and used in virtual swaps, and charge swap fees // accordingly. uint256 currentWeight = balances[tokenIndex].divDown(sumBalances); uint256 taxablePercentage = currentWeight.complement(); uint256 taxableAmount = amountInWithoutFee.mulUp(taxablePercentage); uint256 nonTaxableAmount = amountInWithoutFee.sub(taxableAmount); // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50% return nonTaxableAmount.add(taxableAmount.divUp(FixedPoint.ONE - swapFeePercentage)); } /* Flow of calculations: amountsTokenOut -> amountsOutProportional -> amountOutPercentageExcess -> amountOutBeforeFee -> newInvariant -> amountBPTIn */ function _calcBptInGivenExactTokensOut( uint256 amp, uint256[] memory balances, uint256[] memory amountsOut, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { // BPT in, so we round up overall. // First loop calculates the sum of all token balances, which will be used to calculate // the current weights of each token relative to this sum uint256 sumBalances = 0; for (uint256 i = 0; i < balances.length; i++) { sumBalances = sumBalances.add(balances[i]); } // Calculate the weighted balance ratio without considering fees uint256[] memory balanceRatiosWithoutFee = new uint256[](amountsOut.length); uint256 invariantRatioWithoutFees = 0; for (uint256 i = 0; i < balances.length; i++) { uint256 currentWeight = balances[i].divUp(sumBalances); balanceRatiosWithoutFee[i] = balances[i].sub(amountsOut[i]).divUp(balances[i]); invariantRatioWithoutFees = invariantRatioWithoutFees.add(balanceRatiosWithoutFee[i].mulUp(currentWeight)); } // Second loop calculates new amounts in, taking into account the fee on the percentage excess uint256[] memory newBalances = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it to // 'token out'. This results in slightly larger price impact. uint256 amountOutWithFee; if (invariantRatioWithoutFees > balanceRatiosWithoutFee[i]) { uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithoutFees.complement()); uint256 taxableAmount = amountsOut[i].sub(nonTaxableAmount); // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50% amountOutWithFee = nonTaxableAmount.add(taxableAmount.divUp(FixedPoint.ONE - swapFeePercentage)); } else { amountOutWithFee = amountsOut[i]; } newBalances[i] = balances[i].sub(amountOutWithFee); } // Get current and new invariants, taking into account swap fees uint256 currentInvariant = _calculateInvariant(amp, balances); uint256 newInvariant = _calculateInvariant(amp, newBalances); uint256 invariantRatio = newInvariant.divDown(currentInvariant); // return amountBPTIn return bptTotalSupply.mulUp(invariantRatio.complement()); } function _calcTokenOutGivenExactBptIn( uint256 amp, uint256[] memory balances, uint256 tokenIndex, uint256 bptAmountIn, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { // Token out, so we round down overall. // Get the current and new invariants. uint256 currentInvariant = _calculateInvariant(amp, balances); uint256 newInvariant = bptTotalSupply.sub(bptAmountIn).divUp(bptTotalSupply).mulUp(currentInvariant); // Calculate amount out without fee uint256 newBalanceTokenIndex = _getTokenBalanceGivenInvariantAndAllOtherBalances( amp, balances, newInvariant, tokenIndex ); uint256 amountOutWithoutFee = balances[tokenIndex].sub(newBalanceTokenIndex); // First calculate the sum of all token balances, which will be used to calculate // the current weight of each token uint256 sumBalances = 0; for (uint256 i = 0; i < balances.length; i++) { sumBalances = sumBalances.add(balances[i]); } // We can now compute how much excess balance is being withdrawn as a result of the virtual swaps, which result // in swap fees. uint256 currentWeight = balances[tokenIndex].divDown(sumBalances); uint256 taxablePercentage = currentWeight.complement(); // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it // to 'token out'. This results in slightly larger price impact. Fees are rounded up. uint256 taxableAmount = amountOutWithoutFee.mulUp(taxablePercentage); uint256 nonTaxableAmount = amountOutWithoutFee.sub(taxableAmount); // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50% return nonTaxableAmount.add(taxableAmount.mulDown(FixedPoint.ONE - swapFeePercentage)); } function _calcTokensOutGivenExactBptIn( uint256[] memory balances, uint256 bptAmountIn, uint256 bptTotalSupply ) internal pure returns (uint256[] memory) { /********************************************************************************************** // exactBPTInForTokensOut // // (per token) // // aO = tokenAmountOut / bptIn \ // // b = tokenBalance a0 = b * | --------------------- | // // bptIn = bptAmountIn \ bptTotalSupply / // // bpt = bptTotalSupply // **********************************************************************************************/ // Since we're computing an amount out, we round down overall. This means rounding down on both the // multiplication and division. uint256 bptRatio = bptAmountIn.divDown(bptTotalSupply); uint256[] memory amountsOut = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { amountsOut[i] = balances[i].mulDown(bptRatio); } return amountsOut; } // The amplification parameter equals: A n^(n-1) function _calcDueTokenProtocolSwapFeeAmount( uint256 amplificationParameter, uint256[] memory balances, uint256 lastInvariant, uint256 tokenIndex, uint256 protocolSwapFeePercentage ) internal pure returns (uint256) { /************************************************************************************************************** // oneTokenSwapFee - polynomial equation to solve // // af = fee amount to calculate in one token // // bf = balance of fee token // // f = bf - af (finalBalanceFeeToken) // // D = old invariant D D^(n+1) // // A = amplification coefficient f^2 + ( S - ---------- - D) * f - ------------- = 0 // // n = number of tokens (A * n^n) A * n^2n * P // // S = sum of final balances but f // // P = product of final balances but f // **************************************************************************************************************/ // Protocol swap fee amount, so we round down overall. uint256 finalBalanceFeeToken = _getTokenBalanceGivenInvariantAndAllOtherBalances( amplificationParameter, balances, lastInvariant, tokenIndex ); if (balances[tokenIndex] <= finalBalanceFeeToken) { // This shouldn't happen outside of rounding errors, but have this safeguard nonetheless to prevent the Pool // from entering a locked state in which joins and exits revert while computing accumulated swap fees. return 0; } // Result is rounded down uint256 accumulatedTokenSwapFees = balances[tokenIndex] - finalBalanceFeeToken; return accumulatedTokenSwapFees.mulDown(protocolSwapFeePercentage); } // This function calculates the balance of a given token (tokenIndex) // given all the other balances and the invariant function _getTokenBalanceGivenInvariantAndAllOtherBalances( uint256 amplificationParameter, uint256[] memory balances, uint256 invariant, uint256 tokenIndex ) internal pure returns (uint256) { // Rounds result up overall uint256 ampTimesTotal = amplificationParameter * balances.length; uint256 sum = balances[0]; uint256 P_D = balances[0] * balances.length; for (uint256 j = 1; j < balances.length; j++) { P_D = Math.divDown(Math.mul(Math.mul(P_D, balances[j]), balances.length), invariant); sum = sum.add(balances[j]); } // No need to use safe math, based on the loop above `sum` is greater than or equal to `balances[tokenIndex]` sum = sum - balances[tokenIndex]; uint256 inv2 = Math.mul(invariant, invariant); // We remove the balance from c by multiplying it uint256 c = Math.mul( Math.mul(Math.divUp(inv2, Math.mul(ampTimesTotal, P_D)), _AMP_PRECISION), balances[tokenIndex] ); uint256 b = sum.add(Math.mul(Math.divDown(invariant, ampTimesTotal), _AMP_PRECISION)); // We iterate to find the balance uint256 prevTokenBalance = 0; // We multiply the first iteration outside the loop with the invariant to set the value of the // initial approximation. uint256 tokenBalance = Math.divUp(inv2.add(c), invariant.add(b)); for (uint256 i = 0; i < 255; i++) { prevTokenBalance = tokenBalance; tokenBalance = Math.divUp( Math.mul(tokenBalance, tokenBalance).add(c), Math.mul(tokenBalance, 2).add(b).sub(invariant) ); if (tokenBalance > prevTokenBalance) { if (tokenBalance - prevTokenBalance <= 1) { return tokenBalance; } } else if (prevTokenBalance - tokenBalance <= 1) { return tokenBalance; } } _revert(Errors.STABLE_GET_BALANCE_DIDNT_CONVERGE); } function _getRate( uint256[] memory balances, uint256 amp, uint256 supply ) internal pure returns (uint256) { // When calculating the current BPT rate, we may not have paid the protocol fees, therefore // the invariant should be smaller than its current value. Then, we round down overall. uint256 invariant = _calculateInvariant(amp, balances); return invariant.divDown(supply); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol"; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow checks. * Adapted from OpenZeppelin's SafeMath library. */ library Math { /** * @dev Returns the absolute value of a signed integer. */ function abs(int256 a) internal pure returns (uint256) { return a > 0 ? uint256(a) : uint256(-a); } /** * @dev Returns the addition of two unsigned integers of 256 bits, reverting on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the addition of two signed integers, reverting on overflow. */ function add(int256 a, int256 b) internal pure returns (int256) { int256 c = a + b; _require((b >= 0 && c >= a) || (b < 0 && c < a), Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the subtraction of two unsigned integers of 256 bits, reverting on overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { _require(b <= a, Errors.SUB_OVERFLOW); uint256 c = a - b; return c; } /** * @dev Returns the subtraction of two signed integers, reverting on overflow. */ function sub(int256 a, int256 b) internal pure returns (int256) { int256 c = a - b; _require((b >= 0 && c <= a) || (b < 0 && c > a), Errors.SUB_OVERFLOW); return c; } /** * @dev Returns the largest of two numbers of 256 bits. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers of 256 bits. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } function mul(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a * b; _require(a == 0 || c / a == b, Errors.MUL_OVERFLOW); return c; } function div( uint256 a, uint256 b, bool roundUp ) internal pure returns (uint256) { return roundUp ? divUp(a, b) : divDown(a, b); } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); return a / b; } function divUp(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { return 1 + (a - 1) / b; } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IRateProvider { /** * @dev Returns an 18 decimal fixed point number that is the exchange rate of the token to some other underlying * token. The meaning of this rate depends on the context. */ function getRate() external view returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol"; import "../math/Math.sol"; /** * @dev Library for encoding and decoding values stored inside a 256 bit word. Typically used to pack multiple values in * a single storage slot, saving gas by performing less storage accesses. * * Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two * 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128. * * We could use Solidity structs to pack values together in a single storage slot instead of relying on a custom and * error-prone library, but unfortunately Solidity only allows for structs to live in either storage, calldata or * memory. Because a memory struct uses not just memory but also a slot in the stack (to store its memory location), * using memory for word-sized values (i.e. of 256 bits or less) is strictly less gas performant, and doesn't even * prevent stack-too-deep issues. This is compounded by the fact that Balancer contracts typically are memory-intensive, * and the cost of accesing memory increases quadratically with the number of allocated words. Manual packing and * unpacking is therefore the preferred approach. */ library WordCodec { // Masks are values with the least significant N bits set. They can be used to extract an encoded value from a word, // or to insert a new one replacing the old. uint256 private constant _MASK_1 = 2**(1) - 1; uint256 private constant _MASK_192 = 2**(192) - 1; // In-place insertion /** * @dev Inserts an unsigned integer of bitLength, shifted by an offset, into a 256 bit word, * replacing the old value. Returns the new word. */ function insertUint( bytes32 word, uint256 value, uint256 offset, uint256 bitLength ) internal pure returns (bytes32) { _validateEncodingParams(value, offset, bitLength); uint256 mask = (1 << bitLength) - 1; bytes32 clearedWord = bytes32(uint256(word) & ~(mask << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a signed integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` can be represented using `bitLength` bits. */ function insertInt( bytes32 word, int256 value, uint256 offset, uint256 bitLength ) internal pure returns (bytes32) { _validateEncodingParams(value, offset, bitLength); uint256 mask = (1 << bitLength) - 1; bytes32 clearedWord = bytes32(uint256(word) & ~(mask << offset)); // Integer values need masking to remove the upper bits of negative values. return clearedWord | bytes32((uint256(value) & mask) << offset); } // Encoding /** * @dev Encodes an unsigned integer shifted by an offset. Ensures value fits within * `bitLength` bits. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeUint( uint256 value, uint256 offset, uint256 bitLength ) internal pure returns (bytes32) { _validateEncodingParams(value, offset, bitLength); return bytes32(value << offset); } /** * @dev Encodes a signed integer shifted by an offset. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeInt( int256 value, uint256 offset, uint256 bitLength ) internal pure returns (bytes32) { _validateEncodingParams(value, offset, bitLength); uint256 mask = (1 << bitLength) - 1; // Integer values need masking to remove the upper bits of negative values. return bytes32((uint256(value) & mask) << offset); } // Decoding /** * @dev Decodes and returns an unsigned integer with `bitLength` bits, shifted by an offset, from a 256 bit word. */ function decodeUint( bytes32 word, uint256 offset, uint256 bitLength ) internal pure returns (uint256) { return uint256(word >> offset) & ((1 << bitLength) - 1); } /** * @dev Decodes and returns a signed integer with `bitLength` bits, shifted by an offset, from a 256 bit word. */ function decodeInt( bytes32 word, uint256 offset, uint256 bitLength ) internal pure returns (int256) { int256 maxInt = int256((1 << (bitLength - 1)) - 1); uint256 mask = (1 << bitLength) - 1; int256 value = int256(uint256(word >> offset) & mask); // In case the decoded value is greater than the max positive integer that can be represented with bitLength // bits, we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit // representation. return value > maxInt ? (value | int256(~mask)) : value; } // Special cases /** * @dev Decodes and returns a boolean shifted by an offset from a 256 bit word. */ function decodeBool(bytes32 word, uint256 offset) internal pure returns (bool) { return (uint256(word >> offset) & _MASK_1) == 1; } /** * @dev Inserts a 192 bit value shifted by an offset into a 256 bit word, replacing the old value. * Returns the new word. * * Assumes `value` can be represented using 192 bits. */ function insertBits192( bytes32 word, bytes32 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_192 << offset)); return clearedWord | bytes32((uint256(value) & _MASK_192) << offset); } /** * @dev Inserts a boolean value shifted by an offset into a 256 bit word, replacing the old value. Returns the new * word. */ function insertBool( bytes32 word, bool value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_1 << offset)); return clearedWord | bytes32(uint256(value ? 1 : 0) << offset); } // Helpers function _validateEncodingParams( uint256 value, uint256 offset, uint256 bitLength ) private pure { _require(offset < 256, Errors.OUT_OF_BOUNDS); // We never accept 256 bit values (which would make the codec pointless), and the larger the offset the smaller // the maximum bit length. _require(bitLength >= 1 && bitLength <= Math.min(255, 256 - offset), Errors.OUT_OF_BOUNDS); // Testing unsigned values for size is straightforward: their upper bits must be cleared. _require(value >> bitLength == 0, Errors.CODEC_OVERFLOW); } function _validateEncodingParams( int256 value, uint256 offset, uint256 bitLength ) private pure { _require(offset < 256, Errors.OUT_OF_BOUNDS); // We never accept 256 bit values (which would make the codec pointless), and the larger the offset the smaller // the maximum bit length. _require(bitLength >= 1 && bitLength <= Math.min(255, 256 - offset), Errors.OUT_OF_BOUNDS); // Testing signed values for size is a bit more involved. if (value >= 0) { // For positive values, we can simply check that the upper bits are clear. Notice we remove one bit from the // length for the sign bit. _require(value >> (bitLength - 1) == 0, Errors.CODEC_OVERFLOW); } else { // Negative values can receive the same treatment by making them positive, with the caveat that the range // for negative values in two's complement supports one more value than for the positive case. _require(Math.abs(value + 1) >> (bitLength - 1) == 0, Errors.CODEC_OVERFLOW); } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../solidity-utils/openzeppelin/IERC20.sol"; library StablePoolUserData { // In order to preserve backwards compatibility, make sure new join and exit kinds are added at the end of the enum. enum JoinKind { INIT, EXACT_TOKENS_IN_FOR_BPT_OUT, TOKEN_IN_FOR_EXACT_BPT_OUT } enum ExitKind { EXACT_BPT_IN_FOR_ONE_TOKEN_OUT, EXACT_BPT_IN_FOR_TOKENS_OUT, BPT_IN_FOR_EXACT_TOKENS_OUT } function joinKind(bytes memory self) internal pure returns (JoinKind) { return abi.decode(self, (JoinKind)); } function exitKind(bytes memory self) internal pure returns (ExitKind) { return abi.decode(self, (ExitKind)); } // Joins function initialAmountsIn(bytes memory self) internal pure returns (uint256[] memory amountsIn) { (, amountsIn) = abi.decode(self, (JoinKind, uint256[])); } function exactTokensInForBptOut(bytes memory self) internal pure returns (uint256[] memory amountsIn, uint256 minBPTAmountOut) { (, amountsIn, minBPTAmountOut) = abi.decode(self, (JoinKind, uint256[], uint256)); } function tokenInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut, uint256 tokenIndex) { (, bptAmountOut, tokenIndex) = abi.decode(self, (JoinKind, uint256, uint256)); } // Exits function exactBptInForTokenOut(bytes memory self) internal pure returns (uint256 bptAmountIn, uint256 tokenIndex) { (, bptAmountIn, tokenIndex) = abi.decode(self, (ExitKind, uint256, uint256)); } function exactBptInForTokensOut(bytes memory self) internal pure returns (uint256 bptAmountIn) { (, bptAmountIn) = abi.decode(self, (ExitKind, uint256)); } function bptInForExactTokensOut(bytes memory self) internal pure returns (uint256[] memory amountsOut, uint256 maxBPTAmountIn) { (, amountsOut, maxBPTAmountIn) = abi.decode(self, (ExitKind, uint256[], uint256)); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/openzeppelin/IERC20.sol"; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol"; library InputHelpers { function ensureInputLengthMatch(uint256 a, uint256 b) internal pure { _require(a == b, Errors.INPUT_LENGTH_MISMATCH); } function ensureInputLengthMatch( uint256 a, uint256 b, uint256 c ) internal pure { _require(a == b && b == c, Errors.INPUT_LENGTH_MISMATCH); } function ensureArrayIsSorted(IERC20[] memory array) internal pure { address[] memory addressArray; // solhint-disable-next-line no-inline-assembly assembly { addressArray := array } ensureArrayIsSorted(addressArray); } function ensureArrayIsSorted(address[] memory array) internal pure { if (array.length < 2) { return; } address previous = array[0]; for (uint256 i = 1; i < array.length; ++i) { address current = array[i]; _require(previous < current, Errors.UNSORTED_ARRAY); previous = current; } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-interfaces/contracts/vault/IGeneralPool.sol"; import "./LegacyBasePool.sol"; /** * @dev Extension of `BasePool`, adding a handler for `IGeneralPool.onSwap`. * * Derived contracts must call `BasePool`'s constructor, and implement `_onSwapGivenIn` and `_onSwapGivenOut` along with * `BasePool`'s virtual functions. Inheriting from this contract lets derived contracts choose the General * specialization setting. */ abstract contract BaseGeneralPool is IGeneralPool, LegacyBasePool { // Swap Hooks function onSwap( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) public virtual override onlyVault(swapRequest.poolId) returns (uint256) { _validateIndexes(indexIn, indexOut, _getTotalTokens()); uint256[] memory scalingFactors = _scalingFactors(); return swapRequest.kind == IVault.SwapKind.GIVEN_IN ? _swapGivenIn(swapRequest, balances, indexIn, indexOut, scalingFactors) : _swapGivenOut(swapRequest, balances, indexIn, indexOut, scalingFactors); } function _swapGivenIn( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut, uint256[] memory scalingFactors ) internal returns (uint256) { // Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis. swapRequest.amount = _subtractSwapFeeAmount(swapRequest.amount); _upscaleArray(balances, scalingFactors); swapRequest.amount = _upscale(swapRequest.amount, scalingFactors[indexIn]); uint256 amountOut = _onSwapGivenIn(swapRequest, balances, indexIn, indexOut); // amountOut tokens are exiting the Pool, so we round down. return _downscaleDown(amountOut, scalingFactors[indexOut]); } function _swapGivenOut( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut, uint256[] memory scalingFactors ) internal returns (uint256) { _upscaleArray(balances, scalingFactors); swapRequest.amount = _upscale(swapRequest.amount, scalingFactors[indexOut]); uint256 amountIn = _onSwapGivenOut(swapRequest, balances, indexIn, indexOut); // amountIn tokens are entering the Pool, so we round up. amountIn = _downscaleUp(amountIn, scalingFactors[indexIn]); // Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis. return _addSwapFeeAmount(amountIn); } /* * @dev Called when a swap with the Pool occurs, where the amount of tokens entering the Pool is known. * * Returns the amount of tokens that will be taken from the Pool in return. * * All amounts inside `swapRequest` and `balances` are upscaled. The swap fee has already been deducted from * `swapRequest.amount`. * * The return value is also considered upscaled, and will be downscaled (rounding down) before returning it to the * Vault. */ function _onSwapGivenIn( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) internal virtual returns (uint256); /* * @dev Called when a swap with the Pool occurs, where the amount of tokens exiting the Pool is known. * * Returns the amount of tokens that will be granted to the Pool in return. * * All amounts inside `swapRequest` and `balances` are upscaled. * * The return value is also considered upscaled, and will be downscaled (rounding up) before applying the swap fee * and returning it to the Vault. */ function _onSwapGivenOut( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) internal virtual returns (uint256); function _validateIndexes( uint256 indexIn, uint256 indexOut, uint256 limit ) private pure { _require(indexIn < limit && indexOut < limit, Errors.OUT_OF_BOUNDS); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-interfaces/contracts/vault/IMinimalSwapInfoPool.sol"; import "./LegacyBasePool.sol"; /** * @dev Extension of `BasePool`, adding a handler for `IMinimalSwapInfoPool.onSwap`. * * Derived contracts must call `BasePool`'s constructor, and implement `_onSwapGivenIn` and `_onSwapGivenOut` along with * `BasePool`'s virtual functions. Inheriting from this contract lets derived contracts choose the Two Token or Minimal * Swap Info specialization settings. */ abstract contract LegacyBaseMinimalSwapInfoPool is IMinimalSwapInfoPool, LegacyBasePool { // Swap Hooks function onSwap( SwapRequest memory request, uint256 balanceTokenIn, uint256 balanceTokenOut ) public virtual override onlyVault(request.poolId) returns (uint256) { uint256 scalingFactorTokenIn = _scalingFactor(request.tokenIn); uint256 scalingFactorTokenOut = _scalingFactor(request.tokenOut); if (request.kind == IVault.SwapKind.GIVEN_IN) { // Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis. uint256 amountInMinusSwapFees = _subtractSwapFeeAmount(request.amount); // Process the (upscaled!) swap fee. uint256 swapFee = request.amount - amountInMinusSwapFees; _processSwapFeeAmount(request.tokenIn, _upscale(swapFee, scalingFactorTokenIn)); request.amount = amountInMinusSwapFees; // All token amounts are upscaled. balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn); balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut); request.amount = _upscale(request.amount, scalingFactorTokenIn); uint256 amountOut = _onSwapGivenIn(request, balanceTokenIn, balanceTokenOut); // amountOut tokens are exiting the Pool, so we round down. return _downscaleDown(amountOut, scalingFactorTokenOut); } else { // All token amounts are upscaled. balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn); balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut); request.amount = _upscale(request.amount, scalingFactorTokenOut); uint256 amountIn = _onSwapGivenOut(request, balanceTokenIn, balanceTokenOut); // amountIn tokens are entering the Pool, so we round up. amountIn = _downscaleUp(amountIn, scalingFactorTokenIn); // Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis. uint256 amountInPlusSwapFees = _addSwapFeeAmount(amountIn); // Process the (upscaled!) swap fee. uint256 swapFee = amountInPlusSwapFees - amountIn; _processSwapFeeAmount(request.tokenIn, _upscale(swapFee, scalingFactorTokenIn)); return amountInPlusSwapFees; } } /* * @dev Called when a swap with the Pool occurs, where the amount of tokens entering the Pool is known. * * Returns the amount of tokens that will be taken from the Pool in return. * * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled. The swap fee has already * been deducted from `swapRequest.amount`. * * The return value is also considered upscaled, and will be downscaled (rounding down) before returning it to the * Vault. */ function _onSwapGivenIn( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal virtual returns (uint256); /* * @dev Called when a swap with the Pool occurs, where the amount of tokens exiting the Pool is known. * * Returns the amount of tokens that will be granted to the Pool in return. * * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled. * * The return value is also considered upscaled, and will be downscaled (rounding up) before applying the swap fee * and returning it to the Vault. */ function _onSwapGivenOut( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal virtual returns (uint256); /** * @dev Called whenever a swap fee is charged. Implementations should call their parents via super, to ensure all * implementations in the inheritance tree are called. * * Callers must call one of the three `_processSwapFeeAmount` functions when swap fees are computed, * and upscale `amount`. */ function _processSwapFeeAmount( uint256, /*index*/ uint256 /*amount*/ ) internal virtual { // solhint-disable-previous-line no-empty-blocks } function _processSwapFeeAmount(IERC20 token, uint256 amount) internal { _processSwapFeeAmount(_tokenAddressToIndex(token), amount); } function _processSwapFeeAmounts(uint256[] memory amounts) internal { InputHelpers.ensureInputLengthMatch(amounts.length, _getTotalTokens()); for (uint256 i = 0; i < _getTotalTokens(); ++i) { _processSwapFeeAmount(i, amounts[i]); } } /** * @dev Returns the index of `token` in the Pool's token array (i.e. the one `vault.getPoolTokens()` would return). * * A trivial (and incorrect!) implementation is already provided for Pools that don't override * `_processSwapFeeAmount` and skip the entire feature. However, Pools that do override `_processSwapFeeAmount` * *must* override this function with a meaningful implementation. */ function _tokenAddressToIndex( IERC20 /*token*/ ) internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./IBasePool.sol"; /** * @dev IPools with the General specialization setting should implement this interface. * * This is called by the Vault when a user calls `IVault.swap` or `IVault.batchSwap` to swap with this Pool. * Returns the number of tokens the Pool will grant to the user in a 'given in' swap, or that the user will * grant to the pool in a 'given out' swap. * * This can often be implemented by a `view` function, since many pricing algorithms don't need to track state * changes in swaps. However, contracts implementing this in non-view functions should check that the caller is * indeed the Vault. */ interface IGeneralPool is IBasePool { function onSwap( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) external returns (uint256 amount); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-interfaces/contracts/asset-manager-utils/IAssetManager.sol"; import "@balancer-labs/v2-interfaces/contracts/vault/IVault.sol"; import "@balancer-labs/v2-interfaces/contracts/vault/IBasePool.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/TemporarilyPausable.sol"; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol"; import "./BalancerPoolToken.sol"; import "./RecoveryMode.sol"; // solhint-disable max-states-count /** * @notice Reference implementation for the base layer of a Pool contract * @dev Manages a single Pool with optional Asset Managers, an admin-controlled swap fee percentage, a temporary * emergency pause mechanism that disables the pool, and a permanent Recovery Mode option that ensures LPs can * always proportionally exit the pool, even if it's in a pathological state. * * Note that neither swap fees nor the pause mechanism are used by this contract. They are passed through so that * derived contracts can use them via the `_addSwapFeeAmount` and `_subtractSwapFeeAmount` functions, and the * `whenNotPaused` modifier. * * No admin permissions are checked here: instead, this contract delegates that to the Vault's own Authorizer. * * Because this contract doesn't implement the swap hooks, derived contracts should generally inherit from * BaseGeneralPool or BaseMinimalSwapInfoPool. Otherwise, subclasses must inherit from the corresponding interfaces * and implement the swap callbacks themselves. */ abstract contract LegacyBasePool is IBasePool, BalancerPoolToken, TemporarilyPausable, RecoveryMode { using WordCodec for bytes32; using FixedPoint for uint256; using BasePoolUserData for bytes; uint256 private constant _MIN_TOKENS = 2; uint256 private constant _DEFAULT_MINIMUM_BPT = 1e6; // 1e18 corresponds to 1.0, or a 100% fee uint256 private constant _MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001% uint256 private constant _MAX_SWAP_FEE_PERCENTAGE = 1e17; // 10% - this fits in 64 bits // Storage slot that can be used to store unrelated pieces of information. In particular, by default is used // to store only the swap fee percentage of a pool. But it can be extended to store some more pieces of information. // The swap fee percentage is stored in the most-significant 64 bits, therefore the remaining 192 bits can be // used to store any other piece of information. bytes32 private _miscData; uint256 private constant _SWAP_FEE_PERCENTAGE_OFFSET = 192; bytes32 private immutable _poolId; event SwapFeePercentageChanged(uint256 swapFeePercentage); constructor( IVault vault, IVault.PoolSpecialization specialization, string memory name, string memory symbol, IERC20[] memory tokens, address[] memory assetManagers, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner ) // Base Pools are expected to be deployed using factories. By using the factory address as the action // disambiguator, we make all Pools deployed by the same factory share action identifiers. This allows for // simpler management of permissions (such as being able to manage granting the 'set fee percentage' action in // any Pool created by the same factory), while still making action identifiers unique among different factories // if the selectors match, preventing accidental errors. Authentication(bytes32(uint256(msg.sender))) BalancerPoolToken(name, symbol, vault) BasePoolAuthorization(owner) TemporarilyPausable(pauseWindowDuration, bufferPeriodDuration) { _require(tokens.length >= _MIN_TOKENS, Errors.MIN_TOKENS); _require(tokens.length <= _getMaxTokens(), Errors.MAX_TOKENS); // The Vault only requires the token list to be ordered for the Two Token Pools specialization. However, // to make the developer experience consistent, we are requiring this condition for all the native pools. // Also, since these Pools will register tokens only once, we can ensure the Pool tokens will follow the same // order. We rely on this property to make Pools simpler to write, as it lets us assume that the // order of token-specific parameters (such as token weights) will not change. InputHelpers.ensureArrayIsSorted(tokens); _setSwapFeePercentage(swapFeePercentage); bytes32 poolId = vault.registerPool(specialization); vault.registerTokens(poolId, tokens, assetManagers); // Set immutable state variables - these cannot be read from during construction _poolId = poolId; } // Getters / Setters /** * @notice Return the pool id. */ function getPoolId() public view override returns (bytes32) { return _poolId; } function _getTotalTokens() internal view virtual returns (uint256); function _getMaxTokens() internal pure virtual returns (uint256); /** * @dev Returns the minimum BPT supply. This amount is minted to the zero address during initialization, effectively * locking it. * * This is useful to make sure Pool initialization happens only once, but derived Pools can change this value (even * to zero) by overriding this function. */ function _getMinimumBpt() internal pure virtual returns (uint256) { return _DEFAULT_MINIMUM_BPT; } /** * @notice Return the current value of the swap fee percentage. * @dev This is stored in the MSB 64 bits of the `_miscData`. */ function getSwapFeePercentage() public view returns (uint256) { return _miscData.decodeUint(_SWAP_FEE_PERCENTAGE_OFFSET, 64); } /** * @notice Set the swap fee percentage. * @dev This is a permissioned function, and disabled if the pool is paused. The swap fee must be within the * bounds set by MIN_SWAP_FEE_PERCENTAGE/MAX_SWAP_FEE_PERCENTAGE. Emits the SwapFeePercentageChanged event. */ function setSwapFeePercentage(uint256 swapFeePercentage) public virtual authenticate whenNotPaused { _setSwapFeePercentage(swapFeePercentage); } function _setSwapFeePercentage(uint256 swapFeePercentage) private { _require(swapFeePercentage >= _MIN_SWAP_FEE_PERCENTAGE, Errors.MIN_SWAP_FEE_PERCENTAGE); _require(swapFeePercentage <= _MAX_SWAP_FEE_PERCENTAGE, Errors.MAX_SWAP_FEE_PERCENTAGE); _miscData = _miscData.insertUint(swapFeePercentage, _SWAP_FEE_PERCENTAGE_OFFSET, 64); emit SwapFeePercentageChanged(swapFeePercentage); } function setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) public virtual authenticate whenNotPaused { _setAssetManagerPoolConfig(token, poolConfig); } /** * @notice Set the asset manager parameters for the given token. * @dev This is a permissioned function, unavailable when the pool is paused. * The details of the configuration data are set by each Asset Manager. (For an example, see * `RewardsAssetManager`.) */ function _setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) private { bytes32 poolId = getPoolId(); (, , , address assetManager) = getVault().getPoolTokenInfo(poolId, token); IAssetManager(assetManager).setConfig(poolId, poolConfig); } /** * @notice Pause the pool: an emergency action which disables all pool functions. * @dev This is a permissioned function that will only work during the Pause Window set during pool factory * deployment (see `TemporarilyPausable`). */ function pause() external authenticate { _setPaused(true); } /** * @notice Reverse a `pause` operation, and restore a pool to normal functionality. * @dev This is a permissioned function that will only work on a paused pool within the Buffer Period set during * pool factory deployment (see `TemporarilyPausable`). Note that any paused pools will automatically unpause after * the Buffer Period expires. */ function unpause() external authenticate { _setPaused(false); } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) { return (actionId == getActionId(this.setSwapFeePercentage.selector)) || (actionId == getActionId(this.setAssetManagerPoolConfig.selector)); } function _getMiscData() internal view returns (bytes32) { return _miscData; } /** * @dev Inserts data into the least-significant 192 bits of the misc data storage slot. * Note that the remaining 64 bits are used for the swap fee percentage and cannot be overloaded. */ function _setMiscData(bytes32 newData) internal { _miscData = _miscData.insertBits192(newData, 0); } // Join / Exit Hooks modifier onlyVault(bytes32 poolId) { _require(msg.sender == address(getVault()), Errors.CALLER_NOT_VAULT); _require(poolId == getPoolId(), Errors.INVALID_POOL_ID); _; } /** * @notice Vault hook for adding liquidity to a pool (including the first time, "initializing" the pool). * @dev This function can only be called from the Vault, from `joinPool`. */ function onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) { uint256[] memory scalingFactors = _scalingFactors(); // Joins are unsupported when paused // It would be strange for the Pool to be paused before it is initialized, but for consistency we prevent // initialization in this case. _ensureNotPaused(); if (totalSupply() == 0) { (uint256 bptAmountOut, uint256[] memory amountsIn) = _onInitializePool( poolId, sender, recipient, scalingFactors, userData ); // On initialization, we lock _getMinimumBpt() by minting it for the zero address. This BPT acts as a // minimum as it will never be burned, which reduces potential issues with rounding, and also prevents the // Pool from ever being fully drained. _require(bptAmountOut >= _getMinimumBpt(), Errors.MINIMUM_BPT); _mintPoolTokens(address(0), _getMinimumBpt()); _mintPoolTokens(recipient, bptAmountOut - _getMinimumBpt()); // amountsIn are amounts entering the Pool, so we round up. _downscaleUpArray(amountsIn, scalingFactors); return (amountsIn, new uint256[](_getTotalTokens())); } else { _upscaleArray(balances, scalingFactors); (uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts) = _onJoinPool( poolId, sender, recipient, balances, lastChangeBlock, inRecoveryMode() ? 0 : protocolSwapFeePercentage, // Protocol fees are disabled while in recovery mode scalingFactors, userData ); // Note we no longer use `balances` after calling `_onJoinPool`, which may mutate it. _mintPoolTokens(recipient, bptAmountOut); // amountsIn are amounts entering the Pool, so we round up. _downscaleUpArray(amountsIn, scalingFactors); // dueProtocolFeeAmounts are amounts exiting the Pool, so we round down. _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors); return (amountsIn, dueProtocolFeeAmounts); } } /** * @notice Vault hook for removing liquidity from a pool. * @dev This function can only be called from the Vault, from `exitPool`. */ function onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) { uint256[] memory dueProtocolFeeAmounts; uint256[] memory amountsOut; uint256 bptAmountIn; // When a user calls `exitPool`, this is the first point of entry from the Vault. // We first check whether this is a Recovery Mode exit - if so, we proceed using this special lightweight exit // mechanism which avoids computing any complex values, interacting with external contracts, etc., and generally // should always work, even if the Pool's mathematics or a dependency break down. if (userData.isRecoveryModeExitKind()) { // This exit kind is only available in Recovery Mode. _ensureInRecoveryMode(); // Protocol fees are skipped when processing recovery mode exits, since these are pool-agnostic and it // is therefore impossible to know how many fees are due. For consistency, all regular joins and exits are // processed as if the protocol swap fee percentage was zero. dueProtocolFeeAmounts = new uint256[](balances.length); (bptAmountIn, amountsOut) = _doRecoveryModeExit(balances, totalSupply(), userData); } else { // Exits are unsupported when paused _ensureNotPaused(); uint256[] memory scalingFactors = _scalingFactors(); _upscaleArray(balances, scalingFactors); // Note we no longer use `balances` after calling `_onExitPool`, which may mutate it. (bptAmountIn, amountsOut, dueProtocolFeeAmounts) = _onExitPool( poolId, sender, recipient, balances, lastChangeBlock, inRecoveryMode() ? 0 : protocolSwapFeePercentage, // Protocol fees are disabled while in recovery mode scalingFactors, userData ); // Both amountsOut and dueProtocolFeeAmounts are amounts exiting the Pool, so we round down. _downscaleDownArray(amountsOut, scalingFactors); _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors); } _burnPoolTokens(sender, bptAmountIn); return (amountsOut, dueProtocolFeeAmounts); } // Query functions /** * @notice "Dry run" `onJoinPool`. * @dev Returns the amount of BPT that would be granted to `recipient` if the `onJoinPool` hook were called by the * Vault with the same arguments, along with the number of tokens `sender` would have to supply. * * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault * data, such as the protocol swap fee percentage and Pool balances. * * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must * explicitly use eth_call instead of eth_sendTransaction. */ function queryJoin( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptOut, uint256[] memory amountsIn) { InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens()); _queryAction( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData, _onJoinPool, _downscaleUpArray ); // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement, // and we don't need to return anything here - it just silences compiler warnings. return (bptOut, amountsIn); } /** * @notice "Dry run" `onExitPool`. * @dev Returns the amount of BPT that would be burned from `sender` if the `onExitPool` hook were called by the * Vault with the same arguments, along with the number of tokens `recipient` would receive. * * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault * data, such as the protocol swap fee percentage and Pool balances. * * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must * explicitly use eth_call instead of eth_sendTransaction. */ function queryExit( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptIn, uint256[] memory amountsOut) { InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens()); _queryAction( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData, _onExitPool, _downscaleDownArray ); // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement, // and we don't need to return anything here - it just silences compiler warnings. return (bptIn, amountsOut); } // Internal hooks to be overridden by derived contracts - all token amounts (except BPT) in these interfaces are // upscaled. /** * @dev Called when the Pool is joined for the first time; that is, when the BPT total supply is zero. * * Returns the amount of BPT to mint, and the token amounts the Pool will receive in return. * * Minted BPT will be sent to `recipient`, except for _getMinimumBpt(), which will be deducted from this amount and * sent to the zero address instead. This will cause that BPT to remain forever locked there, preventing total BTP * from ever dropping below that value, and ensuring `_onInitializePool` can only be called once in the entire * Pool's lifetime. * * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will * be downscaled (rounding up) before being returned to the Vault. */ function _onInitializePool( bytes32 poolId, address sender, address recipient, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns (uint256 bptAmountOut, uint256[] memory amountsIn); /** * @dev Called whenever the Pool is joined after the first initialization join (see `_onInitializePool`). * * Returns the amount of BPT to mint, the token amounts that the Pool will receive in return, and the number of * tokens to pay in protocol swap fees. * * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely. * * Minted BPT will be sent to `recipient`. * * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will * be downscaled (rounding up) before being returned to the Vault. * * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onJoinPool`). These * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault. */ function _onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns ( uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts ); /** * @dev Called whenever the Pool is exited. * * Returns the amount of BPT to burn, the token amounts for each Pool token that the Pool will grant in return, and * the number of tokens to pay in protocol swap fees. * * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely. * * BPT will be burnt from `sender`. * * The Pool will grant tokens to `recipient`. These amounts are considered upscaled and will be downscaled * (rounding down) before being returned to the Vault. * * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onExitPool`). These * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault. */ function _onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ); /** * @dev Adds swap fee amount to `amount`, returning a higher value. */ function _addSwapFeeAmount(uint256 amount) internal view returns (uint256) { // This returns amount + fee amount, so we round up (favoring a higher fee amount). return amount.divUp(FixedPoint.ONE.sub(getSwapFeePercentage())); } /** * @dev Subtracts swap fee amount from `amount`, returning a lower value. */ function _subtractSwapFeeAmount(uint256 amount) internal view returns (uint256) { // This returns amount - fee amount, so we round up (favoring a higher fee amount). uint256 feeAmount = amount.mulUp(getSwapFeePercentage()); return amount.sub(feeAmount); } // Scaling /** * @dev Returns a scaling factor that, when multiplied to a token amount for `token`, normalizes its balance as if * it had 18 decimals. */ function _computeScalingFactor(IERC20 token) internal view returns (uint256) { if (address(token) == address(this)) { return FixedPoint.ONE; } // Tokens that don't implement the `decimals` method are not supported. uint256 tokenDecimals = ERC20(address(token)).decimals(); // Tokens with more than 18 decimals are not supported. uint256 decimalsDifference = Math.sub(18, tokenDecimals); return FixedPoint.ONE * 10**decimalsDifference; } /** * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the * Pool. * * All scaling factors are fixed-point values with 18 decimals, to allow for this function to be overridden by * derived contracts that need to apply further scaling, making these factors potentially non-integer. * * The largest 'base' scaling factor (i.e. in tokens with less than 18 decimals) is 10**18, which in fixed-point is * 10**36. This value can be multiplied with a 112 bit Vault balance with no overflow by a factor of ~1e7, making * even relatively 'large' factors safe to use. * * The 1e7 figure is the result of 2**256 / (1e18 * 1e18 * 2**112). */ function _scalingFactor(IERC20 token) internal view virtual returns (uint256); /** * @dev Same as `_scalingFactor()`, except for all registered tokens (in the same order as registered). The Vault * will always pass balances in this order when calling any of the Pool hooks. */ function _scalingFactors() internal view virtual returns (uint256[] memory); /** * @notice Return the set of scaling factors for the pool tokens. * @dev Scaling factors are used to convert token balances to and from 18-decimal floating point values. * The Vault expects all values to be 18-decimal, yet all I/O is performed in native decimals. So we scale "up" * when sending user-supplied balances to the Vault, and scale "down" to return results. * For instance, an 18-decimal token has a scaling factor of 1, while a 6-decimal token has a scaling factor of * 10^12. */ function getScalingFactors() external view returns (uint256[] memory) { return _scalingFactors(); } /** * @dev Applies `scalingFactor` to `amount`, resulting in a larger or equal value depending on whether it needed * scaling or not. */ function _upscale(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { // Upscale rounding wouldn't necessarily always go in the same direction: in a swap for example the balance of // token in should be rounded up, and that of token out rounded down. This is the only place where we round in // the same direction for all amounts, as the impact of this rounding is expected to be minimal (and there's no // rounding error unless `_scalingFactor()` is overriden). return FixedPoint.mulDown(amount, scalingFactor); } /** * @dev Same as `_upscale`, but for an entire array. This function does not return anything, but instead *mutates* * the `amounts` array. */ function _upscaleArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.mulDown(amounts[i], scalingFactors[i]); } } /** * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on * whether it needed scaling or not. The result is rounded down. */ function _downscaleDown(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { return FixedPoint.divDown(amount, scalingFactor); } /** * @dev Same as `_downscaleDown`, but for an entire array. This function does not return anything, but instead * *mutates* the `amounts` array. */ function _downscaleDownArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.divDown(amounts[i], scalingFactors[i]); } } /** * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on * whether it needed scaling or not. The result is rounded up. */ function _downscaleUp(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { return FixedPoint.divUp(amount, scalingFactor); } /** * @dev Same as `_downscaleUp`, but for an entire array. This function does not return anything, but instead * *mutates* the `amounts` array. */ function _downscaleUpArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.divUp(amounts[i], scalingFactors[i]); } } function _getAuthorizer() internal view override returns (IAuthorizer) { // Access control management is delegated to the Vault's Authorizer. This lets Balancer Governance manage which // accounts can call permissioned functions: for example, to perform emergency pauses. // If the owner is delegated, then *all* permissioned functions, including `setSwapFeePercentage`, will be under // Governance control. return getVault().getAuthorizer(); } function _queryAction( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData, function(bytes32, address, address, uint256[] memory, uint256, uint256, uint256[] memory, bytes memory) internal returns (uint256, uint256[] memory, uint256[] memory) _action, function(uint256[] memory, uint256[] memory) internal view _downscaleArray ) private { // This uses the same technique used by the Vault in queryBatchSwap. Refer to that function for a detailed // explanation. if (msg.sender != address(this)) { // We perform an external call to ourselves, forwarding the same calldata. In this call, the else clause of // the preceding if statement will be executed instead. // solhint-disable-next-line avoid-low-level-calls (bool success, ) = address(this).call(msg.data); // solhint-disable-next-line no-inline-assembly assembly { // This call should always revert to decode the bpt and token amounts from the revert reason switch success case 0 { // Note we are manually writing the memory slot 0. We can safely overwrite whatever is // stored there as we take full control of the execution and then immediately return. // We copy the first 4 bytes to check if it matches with the expected signature, otherwise // there was another revert reason and we should forward it. returndatacopy(0, 0, 0x04) let error := and(mload(0), 0xffffffff00000000000000000000000000000000000000000000000000000000) // If the first 4 bytes don't match with the expected signature, we forward the revert reason. if eq(eq(error, 0x43adbafb00000000000000000000000000000000000000000000000000000000), 0) { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } // The returndata contains the signature, followed by the raw memory representation of the // `bptAmount` and `tokenAmounts` (array: length + data). We need to return an ABI-encoded // representation of these. // An ABI-encoded response will include one additional field to indicate the starting offset of // the `tokenAmounts` array. The `bptAmount` will be laid out in the first word of the // returndata. // // In returndata: // [ signature ][ bptAmount ][ tokenAmounts length ][ tokenAmounts values ] // [ 4 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ] // // We now need to return (ABI-encoded values): // [ bptAmount ][ tokeAmounts offset ][ tokenAmounts length ][ tokenAmounts values ] // [ 32 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ] // We copy 32 bytes for the `bptAmount` from returndata into memory. // Note that we skip the first 4 bytes for the error signature returndatacopy(0, 0x04, 32) // The offsets are 32-bytes long, so the array of `tokenAmounts` will start after // the initial 64 bytes. mstore(0x20, 64) // We now copy the raw memory array for the `tokenAmounts` from returndata into memory. // Since bpt amount and offset take up 64 bytes, we start copying at address 0x40. We also // skip the first 36 bytes from returndata, which correspond to the signature plus bpt amount. returndatacopy(0x40, 0x24, sub(returndatasize(), 36)) // We finally return the ABI-encoded uint256 and the array, which has a total length equal to // the size of returndata, plus the 32 bytes of the offset but without the 4 bytes of the // error signature. return(0, add(returndatasize(), 28)) } default { // This call should always revert, but we fail nonetheless if that didn't happen invalid() } } } else { uint256[] memory scalingFactors = _scalingFactors(); _upscaleArray(balances, scalingFactors); (uint256 bptAmount, uint256[] memory tokenAmounts, ) = _action( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); _downscaleArray(tokenAmounts, scalingFactors); // solhint-disable-next-line no-inline-assembly assembly { // We will return a raw representation of `bptAmount` and `tokenAmounts` in memory, which is composed of // a 32-byte uint256, followed by a 32-byte for the array length, and finally the 32-byte uint256 values // Because revert expects a size in bytes, we multiply the array length (stored at `tokenAmounts`) by 32 let size := mul(mload(tokenAmounts), 32) // We store the `bptAmount` in the previous slot to the `tokenAmounts` array. We can make sure there // will be at least one available slot due to how the memory scratch space works. // We can safely overwrite whatever is stored in this slot as we will revert immediately after that. let start := sub(tokenAmounts, 0x20) mstore(start, bptAmount) // We send one extra value for the error signature "QueryError(uint256,uint256[])" which is 0x43adbafb // We use the previous slot to `bptAmount`. mstore(sub(start, 0x20), 0x0000000000000000000000000000000000000000000000000000000043adbafb) start := sub(start, 0x04) // When copying from `tokenAmounts` into returndata, we copy the additional 68 bytes to also return // the `bptAmount`, the array 's length, and the error signature. revert(start, add(size, 68)) } } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./IVault.sol"; import "./IPoolSwapStructs.sol"; /** * @dev Interface for adding and removing liquidity that all Pool contracts should implement. Note that this is not * the complete Pool contract interface, as it is missing the swap hooks. Pool contracts should also inherit from * either IGeneralPool or IMinimalSwapInfoPool */ interface IBasePool is IPoolSwapStructs { /** * @dev Called by the Vault when a user calls `IVault.joinPool` to add liquidity to this Pool. Returns how many of * each registered token the user should provide, as well as the amount of protocol fees the Pool owes to the Vault. * The Vault will then take tokens from `sender` and add them to the Pool's balances, as well as collect * the reported amount in protocol fees, which the pool should calculate based on `protocolSwapFeePercentage`. * * Protocol fees are reported and charged on join events so that the Pool is free of debt whenever new users join. * * `sender` is the account performing the join (from which tokens will be withdrawn), and `recipient` is the account * designated to receive any benefits (typically pool shares). `balances` contains the total balances * for each token the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return. * * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total * balance. * * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of * join (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.) * * Contracts implementing this function should check that the caller is indeed the Vault before performing any * state-changing operations, such as minting pool shares. */ function onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts); /** * @dev Called by the Vault when a user calls `IVault.exitPool` to remove liquidity from this Pool. Returns how many * tokens the Vault should deduct from the Pool's balances, as well as the amount of protocol fees the Pool owes * to the Vault. The Vault will then take tokens from the Pool's balances and send them to `recipient`, * as well as collect the reported amount in protocol fees, which the Pool should calculate based on * `protocolSwapFeePercentage`. * * Protocol fees are charged on exit events to guarantee that users exiting the Pool have paid their share. * * `sender` is the account performing the exit (typically the pool shareholder), and `recipient` is the account * to which the Vault will send the proceeds. `balances` contains the total token balances for each token * the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return. * * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total * balance. * * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of * exit (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.) * * Contracts implementing this function should check that the caller is indeed the Vault before performing any * state-changing operations, such as burning pool shares. */ function onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts); function getPoolId() external view returns (bytes32); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma experimental ABIEncoderV2; import "../solidity-utils/openzeppelin/IERC20.sol"; import "../solidity-utils/helpers/IAuthentication.sol"; import "../solidity-utils/helpers/ISignaturesValidator.sol"; import "../solidity-utils/helpers/ITemporarilyPausable.sol"; import "../solidity-utils/misc/IWETH.sol"; import "./IAsset.sol"; import "./IAuthorizer.sol"; import "./IFlashLoanRecipient.sol"; import "./IProtocolFeesCollector.sol"; pragma solidity ^0.7.0; /** * @dev Full external interface for the Vault core contract - no external or public methods exist in the contract that * don't override one of these declarations. */ interface IVault is ISignaturesValidator, ITemporarilyPausable, IAuthentication { // Generalities about the Vault: // // - Whenever documentation refers to 'tokens', it strictly refers to ERC20-compliant token contracts. Tokens are // transferred out of the Vault by calling the `IERC20.transfer` function, and transferred in by calling // `IERC20.transferFrom`. In these cases, the sender must have previously allowed the Vault to use their tokens by // calling `IERC20.approve`. The only deviation from the ERC20 standard that is supported is functions not returning // a boolean value: in these scenarios, a non-reverting call is assumed to be successful. // // - All non-view functions in the Vault are non-reentrant: calling them while another one is mid-execution (e.g. // while execution control is transferred to a token contract during a swap) will result in a revert. View // functions can be called in a re-reentrant way, but doing so might cause them to return inconsistent results. // Contracts calling view functions in the Vault must make sure the Vault has not already been entered. // // - View functions revert if referring to either unregistered Pools, or unregistered tokens for registered Pools. // Authorizer // // Some system actions are permissioned, like setting and collecting protocol fees. This permissioning system exists // outside of the Vault in the Authorizer contract: the Vault simply calls the Authorizer to check if the caller // can perform a given action. /** * @dev Returns the Vault's Authorizer. */ function getAuthorizer() external view returns (IAuthorizer); /** * @dev Sets a new Authorizer for the Vault. The caller must be allowed by the current Authorizer to do this. * * Emits an `AuthorizerChanged` event. */ function setAuthorizer(IAuthorizer newAuthorizer) external; /** * @dev Emitted when a new authorizer is set by `setAuthorizer`. */ event AuthorizerChanged(IAuthorizer indexed newAuthorizer); // Relayers // // Additionally, it is possible for an account to perform certain actions on behalf of another one, using their // Vault ERC20 allowance and Internal Balance. These accounts are said to be 'relayers' for these Vault functions, // and are expected to be smart contracts with sound authentication mechanisms. For an account to be able to wield // this power, two things must occur: // - The Authorizer must grant the account the permission to be a relayer for the relevant Vault function. This // means that Balancer governance must approve each individual contract to act as a relayer for the intended // functions. // - Each user must approve the relayer to act on their behalf. // This double protection means users cannot be tricked into approving malicious relayers (because they will not // have been allowed by the Authorizer via governance), nor can malicious relayers approved by a compromised // Authorizer or governance drain user funds, since they would also need to be approved by each individual user. /** * @dev Returns true if `user` has approved `relayer` to act as a relayer for them. */ function hasApprovedRelayer(address user, address relayer) external view returns (bool); /** * @dev Allows `relayer` to act as a relayer for `sender` if `approved` is true, and disallows it otherwise. * * Emits a `RelayerApprovalChanged` event. */ function setRelayerApproval( address sender, address relayer, bool approved ) external; /** * @dev Emitted every time a relayer is approved or disapproved by `setRelayerApproval`. */ event RelayerApprovalChanged(address indexed relayer, address indexed sender, bool approved); // Internal Balance // // Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later // transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination // when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced // gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users. // // Internal Balance management features batching, which means a single contract call can be used to perform multiple // operations of different kinds, with different senders and recipients, at once. /** * @dev Returns `user`'s Internal Balance for a set of tokens. */ function getInternalBalance(address user, IERC20[] memory tokens) external view returns (uint256[] memory); /** * @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer) * and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as * it lets integrators reuse a user's Vault allowance. * * For each operation, if the caller is not `sender`, it must be an authorized relayer for them. */ function manageUserBalance(UserBalanceOp[] memory ops) external payable; /** * @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received without manual WETH wrapping or unwrapping. */ struct UserBalanceOp { UserBalanceOpKind kind; IAsset asset; uint256 amount; address sender; address payable recipient; } // There are four possible operations in `manageUserBalance`: // // - DEPOSIT_INTERNAL // Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding // `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`. // // ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped // and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is // relevant for relayers). // // Emits an `InternalBalanceChanged` event. // // // - WITHDRAW_INTERNAL // Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`. // // ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send // it to the recipient as ETH. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_INTERNAL // Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`. // // Reverts if the ETH sentinel value is passed. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_EXTERNAL // Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by // relayers, as it lets them reuse a user's Vault allowance. // // Reverts if the ETH sentinel value is passed. // // Emits an `ExternalBalanceTransfer` event. enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL } /** * @dev Emitted when a user's Internal Balance changes, either from calls to `manageUserBalance`, or through * interacting with Pools using Internal Balance. * * Because Internal Balance works exclusively with ERC20 tokens, ETH deposits and withdrawals will use the WETH * address. */ event InternalBalanceChanged(address indexed user, IERC20 indexed token, int256 delta); /** * @dev Emitted when a user's Vault ERC20 allowance is used by the Vault to transfer tokens to an external account. */ event ExternalBalanceTransfer(IERC20 indexed token, address indexed sender, address recipient, uint256 amount); // Pools // // There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced // functionality: // // - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the // balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads), // which increase with the number of registered tokens. // // - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the // balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted // constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are // independent of the number of registered tokens. // // - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like // minimal swap info Pools, these are called via IMinimalSwapInfoPool. enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN } /** * @dev Registers the caller account as a Pool with a given specialization setting. Returns the Pool's ID, which * is used in all Pool-related functions. Pools cannot be deregistered, nor can the Pool's specialization be * changed. * * The caller is expected to be a smart contract that implements either `IGeneralPool` or `IMinimalSwapInfoPool`, * depending on the chosen specialization setting. This contract is known as the Pool's contract. * * Note that the same contract may register itself as multiple Pools with unique Pool IDs, or in other words, * multiple Pools may share the same contract. * * Emits a `PoolRegistered` event. */ function registerPool(PoolSpecialization specialization) external returns (bytes32); /** * @dev Emitted when a Pool is registered by calling `registerPool`. */ event PoolRegistered(bytes32 indexed poolId, address indexed poolAddress, PoolSpecialization specialization); /** * @dev Returns a Pool's contract address and specialization setting. */ function getPool(bytes32 poolId) external view returns (address, PoolSpecialization); /** * @dev Registers `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Pools can only interact with tokens they have registered. Users join a Pool by transferring registered tokens, * exit by receiving registered tokens, and can only swap registered tokens. * * Each token can only be registered once. For Pools with the Two Token specialization, `tokens` must have a length * of two, that is, both tokens must be registered in the same `registerTokens` call, and they must be sorted in * ascending order. * * The `tokens` and `assetManagers` arrays must have the same length, and each entry in these indicates the Asset * Manager for the corresponding token. Asset Managers can manage a Pool's tokens via `managePoolBalance`, * depositing and withdrawing them directly, and can even set their balance to arbitrary amounts. They are therefore * expected to be highly secured smart contracts with sound design principles, and the decision to register an * Asset Manager should not be made lightly. * * Pools can choose not to assign an Asset Manager to a given token by passing in the zero address. Once an Asset * Manager is set, it cannot be changed except by deregistering the associated token and registering again with a * different Asset Manager. * * Emits a `TokensRegistered` event. */ function registerTokens( bytes32 poolId, IERC20[] memory tokens, address[] memory assetManagers ) external; /** * @dev Emitted when a Pool registers tokens by calling `registerTokens`. */ event TokensRegistered(bytes32 indexed poolId, IERC20[] tokens, address[] assetManagers); /** * @dev Deregisters `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Only registered tokens (via `registerTokens`) can be deregistered. Additionally, they must have zero total * balance. For Pools with the Two Token specialization, `tokens` must have a length of two, that is, both tokens * must be deregistered in the same `deregisterTokens` call. * * A deregistered token can be re-registered later on, possibly with a different Asset Manager. * * Emits a `TokensDeregistered` event. */ function deregisterTokens(bytes32 poolId, IERC20[] memory tokens) external; /** * @dev Emitted when a Pool deregisters tokens by calling `deregisterTokens`. */ event TokensDeregistered(bytes32 indexed poolId, IERC20[] tokens); /** * @dev Returns detailed information for a Pool's registered token. * * `cash` is the number of tokens the Vault currently holds for the Pool. `managed` is the number of tokens * withdrawn and held outside the Vault by the Pool's token Asset Manager. The Pool's total balance for `token` * equals the sum of `cash` and `managed`. * * Internally, `cash` and `managed` are stored using 112 bits. No action can ever cause a Pool's token `cash`, * `managed` or `total` balance to be greater than 2^112 - 1. * * `lastChangeBlock` is the number of the block in which `token`'s total balance was last modified (via either a * join, exit, swap, or Asset Manager update). This value is useful to avoid so-called 'sandwich attacks', for * example when developing price oracles. A change of zero (e.g. caused by a swap with amount zero) is considered a * change for this purpose, and will update `lastChangeBlock`. * * `assetManager` is the Pool's token Asset Manager. */ function getPoolTokenInfo(bytes32 poolId, IERC20 token) external view returns ( uint256 cash, uint256 managed, uint256 lastChangeBlock, address assetManager ); /** * @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of * the tokens' `balances` changed. * * The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all * Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order. * * If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same * order as passed to `registerTokens`. * * Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are * the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo` * instead. */ function getPoolTokens(bytes32 poolId) external view returns ( IERC20[] memory tokens, uint256[] memory balances, uint256 lastChangeBlock ); /** * @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will * trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized * Pool shares. * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount * to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces * these maximums. * * If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable * this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the * WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent * back to the caller (not the sender, which is important for relayers). * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be * sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final * `assets` array might not be sorted. Pools with no registered tokens cannot be joined. * * If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only * be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be * withdrawn from Internal Balance: attempting to do so will trigger a revert. * * This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed * directly to the Pool's contract, as is `recipient`. * * Emits a `PoolBalanceChanged` event. */ function joinPool( bytes32 poolId, address sender, address recipient, JoinPoolRequest memory request ) external payable; struct JoinPoolRequest { IAsset[] assets; uint256[] maxAmountsIn; bytes userData; bool fromInternalBalance; } /** * @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will * trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized * Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see * `getPoolTokenInfo`). * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum * token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault: * it just enforces these minimums. * * If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To * enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead * of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit. * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must * be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the * final `assets` array might not be sorted. Pools with no registered tokens cannot be exited. * * If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise, * an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to * do so will trigger a revert. * * `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the * `tokens` array. This array must match the Pool's registered tokens. * * This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and * passed directly to the Pool's contract. * * Emits a `PoolBalanceChanged` event. */ function exitPool( bytes32 poolId, address sender, address payable recipient, ExitPoolRequest memory request ) external; struct ExitPoolRequest { IAsset[] assets; uint256[] minAmountsOut; bytes userData; bool toInternalBalance; } /** * @dev Emitted when a user joins or exits a Pool by calling `joinPool` or `exitPool`, respectively. */ event PoolBalanceChanged( bytes32 indexed poolId, address indexed liquidityProvider, IERC20[] tokens, int256[] deltas, uint256[] protocolFeeAmounts ); enum PoolBalanceChangeKind { JOIN, EXIT } // Swaps // // Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this, // they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be // aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote. // // The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence. // In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'), // and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out'). // More complex swaps, such as one token in to multiple tokens out can be achieved by batching together // individual swaps. // // There are two swap kinds: // - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the // `onSwap` hook) the amount of tokens out (to send to the recipient). // - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines // (via the `onSwap` hook) the amount of tokens in (to receive from the sender). // // Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with // the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated // tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended // swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at // the final intended token. // // In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal // Balance) after all individual swaps have been completed, and the net token balance change computed. This makes // certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost // much less gas than they would otherwise. // // It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple // Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only // updating the Pool's internal accounting). // // To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token // involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the // minimum amount of tokens to receive (by passing a negative value) is specified. // // Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after // this point in time (e.g. if the transaction failed to be included in a block promptly). // // If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do // the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be // passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the // same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers). // // Finally, Internal Balance can be used when either sending or receiving tokens. enum SwapKind { GIVEN_IN, GIVEN_OUT } /** * @dev Performs a swap with a single Pool. * * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens * taken from the Pool, which must be greater than or equal to `limit`. * * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens * sent to the Pool, which must be less than or equal to `limit`. * * Internal Balance usage and the recipient are determined by the `funds` struct. * * Emits a `Swap` event. */ function swap( SingleSwap memory singleSwap, FundManagement memory funds, uint256 limit, uint256 deadline ) external payable returns (uint256); /** * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on * the `kind` value. * * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address). * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct SingleSwap { bytes32 poolId; SwapKind kind; IAsset assetIn; IAsset assetOut; uint256 amount; bytes userData; } /** * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either * the amount of tokens sent to or received from the Pool, depending on the `kind` value. * * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at * the same index in the `assets` array. * * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or * `amountOut` depending on the swap kind. * * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`. * * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses, * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to * or unwrapped from WETH by the Vault. * * Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies * the minimum or maximum amount of each token the vault is allowed to transfer. * * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the * equivalent `swap` call. * * Emits `Swap` events. */ function batchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds, int256[] memory limits, uint256 deadline ) external payable returns (int256[] memory); /** * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the * `assets` array passed to that function, and ETH assets are converted to WETH. * * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out * from the previous swap, depending on the swap kind. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct BatchSwapStep { bytes32 poolId; uint256 assetInIndex; uint256 assetOutIndex; uint256 amount; bytes userData; } /** * @dev Emitted for each individual swap performed by `swap` or `batchSwap`. */ event Swap( bytes32 indexed poolId, IERC20 indexed tokenIn, IERC20 indexed tokenOut, uint256 amountIn, uint256 amountOut ); /** * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the * `recipient` account. * * If the caller is not `sender`, it must be an authorized relayer for them. * * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20 * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender` * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of * `joinPool`. * * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of * transferred. This matches the behavior of `exitPool`. * * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a * revert. */ struct FundManagement { address sender; bool fromInternalBalance; address payable recipient; bool toInternalBalance; } /** * @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be * simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result. * * Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH) * the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it * receives are the same that an equivalent `batchSwap` call would receive. * * Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct. * This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens, * approve them for the Vault, or even know a user's address. * * Note that this function is not 'view' (due to implementation details): the client code must explicitly execute * eth_call instead of eth_sendTransaction. */ function queryBatchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds ) external returns (int256[] memory assetDeltas); // Flash Loans /** * @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it, * and then reverting unless the tokens plus a proportional protocol fee have been returned. * * The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount * for each token contract. `tokens` must be sorted in ascending order. * * The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the * `receiveFlashLoan` call. * * Emits `FlashLoan` events. */ function flashLoan( IFlashLoanRecipient recipient, IERC20[] memory tokens, uint256[] memory amounts, bytes memory userData ) external; /** * @dev Emitted for each individual flash loan performed by `flashLoan`. */ event FlashLoan(IFlashLoanRecipient indexed recipient, IERC20 indexed token, uint256 amount, uint256 feeAmount); // Asset Management // // Each token registered for a Pool can be assigned an Asset Manager, which is able to freely withdraw the Pool's // tokens from the Vault, deposit them, or assign arbitrary values to its `managed` balance (see // `getPoolTokenInfo`). This makes them extremely powerful and dangerous. Even if an Asset Manager only directly // controls one of the tokens in a Pool, a malicious manager could set that token's balance to manipulate the // prices of the other tokens, and then drain the Pool with swaps. The risk of using Asset Managers is therefore // not constrained to the tokens they are managing, but extends to the entire Pool's holdings. // // However, a properly designed Asset Manager smart contract can be safely used for the Pool's benefit, // for example by lending unused tokens out for interest, or using them to participate in voting protocols. // // This concept is unrelated to the IAsset interface. /** * @dev Performs a set of Pool balance operations, which may be either withdrawals, deposits or updates. * * Pool Balance management features batching, which means a single contract call can be used to perform multiple * operations of different kinds, with different Pools and tokens, at once. * * For each operation, the caller must be registered as the Asset Manager for `token` in `poolId`. */ function managePoolBalance(PoolBalanceOp[] memory ops) external; struct PoolBalanceOp { PoolBalanceOpKind kind; bytes32 poolId; IERC20 token; uint256 amount; } /** * Withdrawals decrease the Pool's cash, but increase its managed balance, leaving the total balance unchanged. * * Deposits increase the Pool's cash, but decrease its managed balance, leaving the total balance unchanged. * * Updates don't affect the Pool's cash balance, but because the managed balance changes, it does alter the total. * The external amount can be either increased or decreased by this call (i.e., reporting a gain or a loss). */ enum PoolBalanceOpKind { WITHDRAW, DEPOSIT, UPDATE } /** * @dev Emitted when a Pool's token Asset Manager alters its balance via `managePoolBalance`. */ event PoolBalanceManaged( bytes32 indexed poolId, address indexed assetManager, IERC20 indexed token, int256 cashDelta, int256 managedDelta ); // Protocol Fees // // Some operations cause the Vault to collect tokens in the form of protocol fees, which can then be withdrawn by // permissioned accounts. // // There are two kinds of protocol fees: // // - flash loan fees: charged on all flash loans, as a percentage of the amounts lent. // // - swap fees: a percentage of the fees charged by Pools when performing swaps. For a number of reasons, including // swap gas costs and interface simplicity, protocol swap fees are not charged on each individual swap. Rather, // Pools are expected to keep track of how much they have charged in swap fees, and pay any outstanding debts to the // Vault when they are joined or exited. This prevents users from joining a Pool with unpaid debt, as well as // exiting a Pool in debt without first paying their share. /** * @dev Returns the current protocol fee module. */ function getProtocolFeesCollector() external view returns (IProtocolFeesCollector); /** * @dev Safety mechanism to pause most Vault operations in the event of an emergency - typically detection of an * error in some part of the system. * * The Vault can only be paused during an initial time period, after which pausing is forever disabled. * * While the contract is paused, the following features are disabled: * - depositing and transferring internal balance * - transferring external balance (using the Vault's allowance) * - swaps * - joining Pools * - Asset Manager interactions * * Internal Balance can still be withdrawn, and Pools exited. */ function setPaused(bool paused) external; /** * @dev Returns the Vault's WETH instance. */ function WETH() external view returns (IWETH); // solhint-disable-previous-line func-name-mixedcase }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "../solidity-utils/openzeppelin/IERC20.sol"; import "./IVault.sol"; interface IPoolSwapStructs { // This is not really an interface - it just defines common structs used by other interfaces: IGeneralPool and // IMinimalSwapInfoPool. // // This data structure represents a request for a token swap, where `kind` indicates the swap type ('given in' or // 'given out') which indicates whether or not the amount sent by the pool is known. // // The pool receives `tokenIn` and sends `tokenOut`. `amount` is the number of `tokenIn` tokens the pool will take // in, or the number of `tokenOut` tokens the Pool will send out, depending on the given swap `kind`. // // All other fields are not strictly necessary for most swaps, but are provided to support advanced scenarios in // some Pools. // // `poolId` is the ID of the Pool involved in the swap - this is useful for Pool contracts that implement more than // one Pool. // // The meaning of `lastChangeBlock` depends on the Pool specialization: // - Two Token or Minimal Swap Info: the last block in which either `tokenIn` or `tokenOut` changed its total // balance. // - General: the last block in which *any* of the Pool's registered tokens changed its total balance. // // `from` is the origin address for the funds the Pool receives, and `to` is the destination address // where the Pool sends the outgoing tokens. // // `userData` is extra data provided by the caller - typically a signature from a trusted party. struct SwapRequest { IVault.SwapKind kind; IERC20 tokenIn; IERC20 tokenOut; uint256 amount; // Misc data bytes32 poolId; uint256 lastChangeBlock; address from; address to; bytes userData; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IAuthentication { /** * @dev Returns the action identifier associated with the external function described by `selector`. */ function getActionId(bytes4 selector) external view returns (bytes32); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Interface for the SignatureValidator helper, used to support meta-transactions. */ interface ISignaturesValidator { /** * @dev Returns the EIP712 domain separator. */ function getDomainSeparator() external view returns (bytes32); /** * @dev Returns the next nonce used by an address to sign messages. */ function getNextNonce(address user) external view returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Interface for the TemporarilyPausable helper. */ interface ITemporarilyPausable { /** * @dev Emitted every time the pause state changes by `_setPaused`. */ event PausedStateChanged(bool paused); /** * @dev Returns the current paused state. */ function getPausedState() external view returns ( bool paused, uint256 pauseWindowEndTime, uint256 bufferPeriodEndTime ); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../openzeppelin/IERC20.sol"; /** * @dev Interface for WETH9. * See https://github.com/gnosis/canonical-weth/blob/0dd1ea3e295eef916d0c6223ec63141137d22d67/contracts/WETH9.sol */ interface IWETH is IERC20 { function deposit() external payable; function withdraw(uint256 amount) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero * address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like * types. * * This concept is unrelated to a Pool's Asset Managers. */ interface IAsset { // solhint-disable-previous-line no-empty-blocks }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IAuthorizer { /** * @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`. */ function canPerform( bytes32 actionId, address account, address where ) external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; // Inspired by Aave Protocol's IFlashLoanReceiver. import "../solidity-utils/openzeppelin/IERC20.sol"; interface IFlashLoanRecipient { /** * @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient. * * At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this * call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the * Vault, or else the entire flash loan will revert. * * `userData` is the same value passed in the `IVault.flashLoan` call. */ function receiveFlashLoan( IERC20[] memory tokens, uint256[] memory amounts, uint256[] memory feeAmounts, bytes memory userData ) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "../solidity-utils/openzeppelin/IERC20.sol"; import "./IVault.sol"; import "./IAuthorizer.sol"; interface IProtocolFeesCollector { event SwapFeePercentageChanged(uint256 newSwapFeePercentage); event FlashLoanFeePercentageChanged(uint256 newFlashLoanFeePercentage); function withdrawCollectedFees( IERC20[] calldata tokens, uint256[] calldata amounts, address recipient ) external; function setSwapFeePercentage(uint256 newSwapFeePercentage) external; function setFlashLoanFeePercentage(uint256 newFlashLoanFeePercentage) external; function getSwapFeePercentage() external view returns (uint256); function getFlashLoanFeePercentage() external view returns (uint256); function getCollectedFeeAmounts(IERC20[] memory tokens) external view returns (uint256[] memory feeAmounts); function getAuthorizer() external view returns (IAuthorizer); function vault() external view returns (IVault); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "../solidity-utils/openzeppelin/IERC20.sol"; interface IAssetManager { /** * @notice Emitted when asset manager is rebalanced */ event Rebalance(bytes32 poolId); /** * @notice Sets the config */ function setConfig(bytes32 poolId, bytes calldata config) external; /** * Note: No function to read the asset manager config is included in IAssetManager * as the signature is expected to vary between asset manager implementations */ /** * @notice Returns the asset manager's token */ function getToken() external view returns (IERC20); /** * @return the current assets under management of this asset manager */ function getAUM(bytes32 poolId) external view returns (uint256); /** * @return poolCash - The up-to-date cash balance of the pool * @return poolManaged - The up-to-date managed balance of the pool */ function getPoolBalances(bytes32 poolId) external view returns (uint256 poolCash, uint256 poolManaged); /** * @return The difference in tokens between the target investment * and the currently invested amount (i.e. the amount that can be invested) */ function maxInvestableBalance(bytes32 poolId) external view returns (int256); /** * @notice Updates the Vault on the value of the pool's investment returns */ function updateBalanceOfPool(bytes32 poolId) external; /** * @notice Determines whether the pool should rebalance given the provided balances */ function shouldRebalance(uint256 cash, uint256 managed) external view returns (bool); /** * @notice Rebalances funds between the pool and the asset manager to maintain target investment percentage. * @param poolId - the poolId of the pool to be rebalanced * @param force - a boolean representing whether a rebalance should be forced even when the pool is near balance */ function rebalance(bytes32 poolId, bool force) external; /** * @notice allows an authorized rebalancer to remove capital to facilitate large withdrawals * @param poolId - the poolId of the pool to withdraw funds back to * @param amount - the amount of tokens to withdraw back to the pool */ function capitalOut(bytes32 poolId, uint256 amount) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol"; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/ITemporarilyPausable.sol"; /** * @dev Allows for a contract to be paused during an initial period after deployment, disabling functionality. Can be * used as an emergency switch in case a security vulnerability or threat is identified. * * The contract can only be paused during the Pause Window, a period that starts at deployment. It can also be * unpaused and repaused any number of times during this period. This is intended to serve as a safety measure: it lets * system managers react quickly to potentially dangerous situations, knowing that this action is reversible if careful * analysis later determines there was a false alarm. * * If the contract is paused when the Pause Window finishes, it will remain in the paused state through an additional * Buffer Period, after which it will be automatically unpaused forever. This is to ensure there is always enough time * to react to an emergency, even if the threat is discovered shortly before the Pause Window expires. * * Note that since the contract can only be paused within the Pause Window, unpausing during the Buffer Period is * irreversible. */ abstract contract TemporarilyPausable is ITemporarilyPausable { // The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy. // solhint-disable not-rely-on-time uint256 private constant _MAX_PAUSE_WINDOW_DURATION = 90 days; uint256 private constant _MAX_BUFFER_PERIOD_DURATION = 30 days; uint256 private immutable _pauseWindowEndTime; uint256 private immutable _bufferPeriodEndTime; bool private _paused; constructor(uint256 pauseWindowDuration, uint256 bufferPeriodDuration) { _require(pauseWindowDuration <= _MAX_PAUSE_WINDOW_DURATION, Errors.MAX_PAUSE_WINDOW_DURATION); _require(bufferPeriodDuration <= _MAX_BUFFER_PERIOD_DURATION, Errors.MAX_BUFFER_PERIOD_DURATION); uint256 pauseWindowEndTime = block.timestamp + pauseWindowDuration; _pauseWindowEndTime = pauseWindowEndTime; _bufferPeriodEndTime = pauseWindowEndTime + bufferPeriodDuration; } /** * @dev Reverts if the contract is paused. */ modifier whenNotPaused() { _ensureNotPaused(); _; } /** * @dev Returns the current contract pause status, as well as the end times of the Pause Window and Buffer * Period. */ function getPausedState() external view override returns ( bool paused, uint256 pauseWindowEndTime, uint256 bufferPeriodEndTime ) { paused = !_isNotPaused(); pauseWindowEndTime = _getPauseWindowEndTime(); bufferPeriodEndTime = _getBufferPeriodEndTime(); } /** * @dev Sets the pause state to `paused`. The contract can only be paused until the end of the Pause Window, and * unpaused until the end of the Buffer Period. * * Once the Buffer Period expires, this function reverts unconditionally. */ function _setPaused(bool paused) internal { if (paused) { _require(block.timestamp < _getPauseWindowEndTime(), Errors.PAUSE_WINDOW_EXPIRED); } else { _require(block.timestamp < _getBufferPeriodEndTime(), Errors.BUFFER_PERIOD_EXPIRED); } _paused = paused; emit PausedStateChanged(paused); } /** * @dev Reverts if the contract is paused. */ function _ensureNotPaused() internal view { _require(_isNotPaused(), Errors.PAUSED); } /** * @dev Reverts if the contract is not paused. */ function _ensurePaused() internal view { _require(!_isNotPaused(), Errors.NOT_PAUSED); } /** * @dev Returns true if the contract is unpaused. * * Once the Buffer Period expires, the gas cost of calling this function is reduced dramatically, as storage is no * longer accessed. */ function _isNotPaused() internal view returns (bool) { // After the Buffer Period, the (inexpensive) timestamp check short-circuits the storage access. return block.timestamp > _getBufferPeriodEndTime() || !_paused; } // These getters lead to reduced bytecode size by inlining the immutable variables in a single place. function _getPauseWindowEndTime() private view returns (uint256) { return _pauseWindowEndTime; } function _getBufferPeriodEndTime() private view returns (uint256) { return _bufferPeriodEndTime; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol"; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/openzeppelin/IERC20.sol"; import "./SafeMath.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is IERC20 { using SafeMath for uint256; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(msg.sender, recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(msg.sender, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, msg.sender, _allowances[sender][msg.sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE) ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue, Errors.ERC20_DECREASED_ALLOWANCE_BELOW_ZERO) ); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { _require(sender != address(0), Errors.ERC20_TRANSFER_FROM_ZERO_ADDRESS); _require(recipient != address(0), Errors.ERC20_TRANSFER_TO_ZERO_ADDRESS); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_BALANCE); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { _require(account != address(0), Errors.ERC20_BURN_FROM_ZERO_ADDRESS); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, Errors.ERC20_BURN_EXCEEDS_BALANCE); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual { // solhint-disable-previous-line no-empty-blocks } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/vault/IVault.sol"; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20Permit.sol"; /** * @title Highly opinionated token implementation * @author Balancer Labs * @dev * - Includes functions to increase and decrease allowance as a workaround * for the well-known issue with `approve`: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * - Allows for 'infinite allowance', where an allowance of 0xff..ff is not * decreased by calls to transferFrom * - Lets a token holder use `transferFrom` to send their own tokens, * without first setting allowance * - Emits 'Approval' events whenever allowance is changed by `transferFrom` * - Assigns infinite allowance for all token holders to the Vault */ contract BalancerPoolToken is ERC20Permit { IVault private immutable _vault; constructor( string memory tokenName, string memory tokenSymbol, IVault vault ) ERC20(tokenName, tokenSymbol) ERC20Permit(tokenName) { _vault = vault; } function getVault() public view returns (IVault) { return _vault; } // Overrides /** * @dev Override to grant the Vault infinite allowance, causing for Pool Tokens to not require approval. * * This is sound as the Vault already provides authorization mechanisms when initiation token transfers, which this * contract inherits. */ function allowance(address owner, address spender) public view override returns (uint256) { if (spender == address(getVault())) { return uint256(-1); } else { return super.allowance(owner, spender); } } /** * @dev Override to allow for 'infinite allowance' and let the token owner use `transferFrom` with no self-allowance */ function transferFrom( address sender, address recipient, uint256 amount ) public override returns (bool) { uint256 currentAllowance = allowance(sender, msg.sender); _require(msg.sender == sender || currentAllowance >= amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE); _transfer(sender, recipient, amount); if (msg.sender != sender && currentAllowance != uint256(-1)) { // Because of the previous require, we know that if msg.sender != sender then currentAllowance >= amount _approve(sender, msg.sender, currentAllowance - amount); } return true; } /** * @dev Override to allow decreasing allowance by more than the current amount (setting it to zero) */ function decreaseAllowance(address spender, uint256 amount) public override returns (bool) { uint256 currentAllowance = allowance(msg.sender, spender); if (amount >= currentAllowance) { _approve(msg.sender, spender, 0); } else { // No risk of underflow due to if condition _approve(msg.sender, spender, currentAllowance - amount); } return true; } // Internal functions function _mintPoolTokens(address recipient, uint256 amount) internal { _mint(recipient, amount); } function _burnPoolTokens(address sender, uint256 amount) internal { _burn(sender, amount); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/IRecoveryMode.sol"; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol"; import "@balancer-labs/v2-interfaces/contracts/pool-utils/BasePoolUserData.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "./BasePoolAuthorization.sol"; /** * @notice Handle storage and state changes for pools that support "Recovery Mode". * * @dev This is intended to provide a safe way to exit any pool during some kind of emergency, to avoid locking funds * in the event the pool enters a non-functional state (i.e., some code that normally runs during exits is causing * them to revert). * * Recovery Mode is *not* the same as pausing the pool. The pause function is only available during a short window * after factory deployment. Pausing can only be intentionally reversed during a buffer period, and the contract * will permanently unpause itself thereafter. Paused pools are completely disabled, in a kind of suspended animation, * until they are voluntarily or involuntarily unpaused. * * By contrast, a privileged account - typically a governance multisig - can place a pool in Recovery Mode at any * time, and it is always reversible. The pool is *not* disabled while in this mode: though of course whatever * condition prompted the transition to Recovery Mode has likely effectively disabled some functions. Rather, * a special "clean" exit is enabled, which runs the absolute minimum code necessary to exit proportionally. * In particular, stable pools do not attempt to compute the invariant (which is a complex, iterative calculation * that can fail in extreme circumstances), and no protocol fees are collected. * * In some pools, such as those with Oracles or Price Rates, Recovery mode takes advantage of mathematical properties * to safely compute the invariant for the special case of proportional withdrawals, without running the usual more * complex code necessary in general (e.g., for non-proportional joins/exits and swaps). This might be enough to * support functions like `getRate`, allowing dependent pools to function normally. (Otherwise, the dependent pools * can themselves be placed into Recovery Mode.) * * It is critical to ensure that turning on Recovery Mode would do no harm, if activated maliciously or in error. */ abstract contract RecoveryMode is IRecoveryMode, BasePoolAuthorization { using FixedPoint for uint256; using BasePoolUserData for bytes; bool private _recoveryMode; /** * @dev Reverts if the contract is in Recovery Mode. */ modifier whenNotInRecoveryMode() { _ensureNotInRecoveryMode(); _; } /** * @notice Enable recovery mode, which enables a special safe exit path for LPs. * @dev Does not otherwise affect pool operations (beyond deferring payment of protocol fees), though some pools may * perform certain operations in a "safer" manner that is less likely to fail, in an attempt to keep the pool * running, even in a pathological state. Unlike the Pause operation, which is only available during a short window * after factory deployment, Recovery Mode can always be enableed. */ function enableRecoveryMode() external authenticate { _setRecoveryMode(true); } /** * @notice Disable recovery mode, which disables the special safe exit path for LPs. * @dev Protocol fees are not paid while in Recovery Mode, so it should only remain active for as long as strictly * necessary. */ function disableRecoveryMode() external authenticate { _setRecoveryMode(false); } /** * @notice Returns whether the pool is in Recovery Mode. */ function inRecoveryMode() public view override returns (bool) { return _recoveryMode; } /** * @dev Sets the recoveryMode state, and emits the corresponding event. Can be overridden * if a pool needs to detect when the Recovery Mode state changes. * * No complex code or external calls that could fail should be placed here, which could jeopardize * the ability to enable and disable Recovery Mode. */ function _setRecoveryMode(bool enabled) internal virtual { _recoveryMode = enabled; emit RecoveryModeStateChanged(enabled); } /** * @dev Reverts if the contract is not in Recovery Mode. */ function _ensureInRecoveryMode() internal view { _require(_recoveryMode, Errors.NOT_IN_RECOVERY_MODE); } /** * @dev Reverts if the contract is in Recovery Mode. */ function _ensureNotInRecoveryMode() internal view { _require(!_recoveryMode, Errors.IN_RECOVERY_MODE); } /** * @dev A minimal proportional exit, suitable as is for most pools: though not for pools with Phantom BPT * or other special considerations. Designed to be overridden if a pool needs to do extra processing, * such as scaling a stored invariant, or caching the new total supply. * * No complex code or external calls should be made in derived contracts that override this! */ function _doRecoveryModeExit( uint256[] memory balances, uint256 totalSupply, bytes memory userData ) internal virtual returns (uint256, uint256[] memory) { uint256 bptAmountIn = userData.recoveryModeExit(); uint256[] memory amountsOut = _computeProportionalAmountsOut(balances, totalSupply, bptAmountIn); return (bptAmountIn, amountsOut); } function _computeProportionalAmountsOut( uint256[] memory balances, uint256 totalSupply, uint256 bptAmountIn ) internal pure returns (uint256[] memory amountsOut) { /********************************************************************************************** // exactBPTInForTokensOut // // (per token) // // aO = tokenAmountOut / bptIn \ // // b = tokenBalance a0 = b * | --------------------- | // // bptIn = bptAmountIn \ bptTotalSupply / // // bpt = bptTotalSupply // **********************************************************************************************/ // Since we're computing an amount out, we round down overall. This means rounding down on both the // multiplication and division. uint256 bptRatio = bptAmountIn.divDown(totalSupply); amountsOut = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { amountsOut[i] = balances[i].mulDown(bptRatio); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol"; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, Errors.SUB_OVERFLOW); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub( uint256 a, uint256 b, uint256 errorCode ) internal pure returns (uint256) { _require(b <= a, errorCode); uint256 c = a - b; return c; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/openzeppelin/IERC20Permit.sol"; import "./ERC20.sol"; import "./EIP712.sol"; /** * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * _Available since v3.4._ */ abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 { mapping(address => uint256) private _nonces; // solhint-disable-next-line var-name-mixedcase bytes32 private immutable _PERMIT_TYPEHASH = keccak256( "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)" ); /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC20 token name. */ constructor(string memory name) EIP712(name, "1") { // solhint-disable-previous-line no-empty-blocks } /** * @dev See {IERC20Permit-permit}. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual override { // solhint-disable-next-line not-rely-on-time _require(block.timestamp <= deadline, Errors.EXPIRED_PERMIT); uint256 nonce = _nonces[owner]; bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, nonce, deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ecrecover(hash, v, r, s); _require((signer != address(0)) && (signer == owner), Errors.INVALID_SIGNATURE); _nonces[owner] = nonce + 1; _approve(owner, spender, value); } /** * @dev See {IERC20Permit-nonces}. */ function nonces(address owner) public view override returns (uint256) { return _nonces[owner]; } /** * @dev See {IERC20Permit-DOMAIN_SEPARATOR}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view override returns (bytes32) { return _domainSeparatorV4(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over `owner`'s tokens, * given `owner`'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible, * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding * they need in their contracts using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * _Available since v3.4._ */ abstract contract EIP712 { /* solhint-disable var-name-mixedcase */ bytes32 private immutable _HASHED_NAME; bytes32 private immutable _HASHED_VERSION; bytes32 private immutable _TYPE_HASH; /* solhint-enable var-name-mixedcase */ /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _HASHED_NAME = keccak256(bytes(name)); _HASHED_VERSION = keccak256(bytes(version)); _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view virtual returns (bytes32) { return keccak256(abi.encode(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION, _getChainId(), address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", _domainSeparatorV4(), structHash)); } function _getChainId() private view returns (uint256 chainId) { // Silence state mutability warning without generating bytecode. // See https://github.com/ethereum/solidity/issues/10090#issuecomment-741789128 and // https://github.com/ethereum/solidity/issues/2691 this; // solhint-disable-next-line no-inline-assembly assembly { chainId := chainid() } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Interface for the RecoveryMode helper. */ interface IRecoveryMode { /** * @dev Emitted every time the recovery mode changes through `_setRecoveryMode`. */ event RecoveryModeStateChanged(bool enabled); /** * @notice Return whether the pool is in recovery mode. */ function inRecoveryMode() external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; library BasePoolUserData { // Special ExitKind for all pools, used in Recovery Mode. Use the max 8-bit value to prevent conflicts // with future additions to the ExitKind enums (or any front-end code that maps to existing values) uint8 public constant RECOVERY_MODE_EXIT_KIND = 255; // Return true if this is the special exit kind. function isRecoveryModeExitKind(bytes memory self) internal pure returns (bool) { // Check for the "no data" case, or abi.decode would revert return self.length > 0 && abi.decode(self, (uint8)) == RECOVERY_MODE_EXIT_KIND; } // Parse the bptAmountIn out of the userData function recoveryModeExit(bytes memory self) internal pure returns (uint256 bptAmountIn) { (, bptAmountIn) = abi.decode(self, (uint8, uint256)); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/vault/IAuthorizer.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/Authentication.sol"; /** * @dev Base authorization layer implementation for Pools. * * The owner account can call some of the permissioned functions - access control of the rest is delegated to the * Authorizer. Note that this owner is immutable: more sophisticated permission schemes, such as multiple ownership, * granular roles, etc., could be built on top of this by making the owner a smart contract. * * Access control of all other permissioned functions is delegated to an Authorizer. It is also possible to delegate * control of *all* permissioned functions to the Authorizer by setting the owner address to `_DELEGATE_OWNER`. */ abstract contract BasePoolAuthorization is Authentication { address private immutable _owner; address private constant _DELEGATE_OWNER = 0xBA1BA1ba1BA1bA1bA1Ba1BA1ba1BA1bA1ba1ba1B; constructor(address owner) { _owner = owner; } function getOwner() public view returns (address) { return _owner; } function getAuthorizer() external view returns (IAuthorizer) { return _getAuthorizer(); } function _canPerform(bytes32 actionId, address account) internal view override returns (bool) { if ((getOwner() != _DELEGATE_OWNER) && _isOwnerOnlyAction(actionId)) { // Only the owner can perform "owner only" actions, unless the owner is delegated. return msg.sender == getOwner(); } else { // Non-owner actions are always processed via the Authorizer, as "owner only" ones are when delegated. return _getAuthorizer().canPerform(actionId, account, address(this)); } } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual returns (bool); function _getAuthorizer() internal view virtual returns (IAuthorizer); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol"; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/IAuthentication.sol"; /** * @dev Building block for performing access control on external functions. * * This contract is used via the `authenticate` modifier (or the `_authenticateCaller` function), which can be applied * to external functions to only make them callable by authorized accounts. * * Derived contracts must implement the `_canPerform` function, which holds the actual access control logic. */ abstract contract Authentication is IAuthentication { bytes32 private immutable _actionIdDisambiguator; /** * @dev The main purpose of the `actionIdDisambiguator` is to prevent accidental function selector collisions in * multi contract systems. * * There are two main uses for it: * - if the contract is a singleton, any unique identifier can be used to make the associated action identifiers * unique. The contract's own address is a good option. * - if the contract belongs to a family that shares action identifiers for the same functions, an identifier * shared by the entire family (and no other contract) should be used instead. */ constructor(bytes32 actionIdDisambiguator) { _actionIdDisambiguator = actionIdDisambiguator; } /** * @dev Reverts unless the caller is allowed to call this function. Should only be applied to external functions. */ modifier authenticate() { _authenticateCaller(); _; } /** * @dev Reverts unless the caller is allowed to call the entry point function. */ function _authenticateCaller() internal view { bytes32 actionId = getActionId(msg.sig); _require(_canPerform(actionId, msg.sender), Errors.SENDER_NOT_ALLOWED); } function getActionId(bytes4 selector) public view override returns (bytes32) { // Each external function is dynamically assigned an action identifier as the hash of the disambiguator and the // function selector. Disambiguation is necessary to avoid potential collisions in the function selectors of // multiple contracts. return keccak256(abi.encodePacked(_actionIdDisambiguator, selector)); } function _canPerform(bytes32 actionId, address user) internal view virtual returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./IBasePool.sol"; /** * @dev Pool contracts with the MinimalSwapInfo or TwoToken specialization settings should implement this interface. * * This is called by the Vault when a user calls `IVault.swap` or `IVault.batchSwap` to swap with this Pool. * Returns the number of tokens the Pool will grant to the user in a 'given in' swap, or that the user will grant * to the pool in a 'given out' swap. * * This can often be implemented by a `view` function, since many pricing algorithms don't need to track state * changes in swaps. However, contracts implementing this in non-view functions should check that the caller is * indeed the Vault. */ interface IMinimalSwapInfoPool is IBasePool { function onSwap( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) external returns (uint256 amount); }
{ "optimizer": { "enabled": true, "runs": 9999 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"contract IVault","name":"vault","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"uint256","name":"amplificationParameter","type":"uint256"},{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"},{"internalType":"uint256","name":"pauseWindowDuration","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodDuration","type":"uint256"},{"internalType":"address","name":"owner","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"startValue","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"endValue","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"startTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"endTime","type":"uint256"}],"name":"AmpUpdateStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"currentValue","type":"uint256"}],"name":"AmpUpdateStopped","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"paused","type":"bool"}],"name":"PausedStateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"enabled","type":"bool"}],"name":"RecoveryModeStateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"SwapFeePercentageChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"disableRecoveryMode","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"enableRecoveryMode","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"getActionId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAmplificationParameter","outputs":[{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bool","name":"isUpdating","type":"bool"},{"internalType":"uint256","name":"precision","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAuthorizer","outputs":[{"internalType":"contract IAuthorizer","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLastInvariant","outputs":[{"internalType":"uint256","name":"lastInvariant","type":"uint256"},{"internalType":"uint256","name":"lastInvariantAmp","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPausedState","outputs":[{"internalType":"bool","name":"paused","type":"bool"},{"internalType":"uint256","name":"pauseWindowEndTime","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodEndTime","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getScalingFactors","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSwapFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getVault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"inRecoveryMode","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onExitPool","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onJoinPool","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"enum IVault.SwapKind","name":"kind","type":"uint8"},{"internalType":"contract IERC20","name":"tokenIn","type":"address"},{"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes","name":"userData","type":"bytes"}],"internalType":"struct IPoolSwapStructs.SwapRequest","name":"swapRequest","type":"tuple"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"indexIn","type":"uint256"},{"internalType":"uint256","name":"indexOut","type":"uint256"}],"name":"onSwap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"enum IVault.SwapKind","name":"kind","type":"uint8"},{"internalType":"contract IERC20","name":"tokenIn","type":"address"},{"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes","name":"userData","type":"bytes"}],"internalType":"struct IPoolSwapStructs.SwapRequest","name":"request","type":"tuple"},{"internalType":"uint256","name":"balanceTokenIn","type":"uint256"},{"internalType":"uint256","name":"balanceTokenOut","type":"uint256"}],"name":"onSwap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryExit","outputs":[{"internalType":"uint256","name":"bptIn","type":"uint256"},{"internalType":"uint256[]","name":"amountsOut","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryJoin","outputs":[{"internalType":"uint256","name":"bptOut","type":"uint256"},{"internalType":"uint256[]","name":"amountsIn","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"bytes","name":"poolConfig","type":"bytes"}],"name":"setAssetManagerPoolConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"setSwapFeePercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"rawEndValue","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"}],"name":"startAmplificationParameterUpdate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stopAmplificationParameterUpdate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
6103206040527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c960e0523480156200003657600080fd5b50604051620057ec380380620057ec833981016040819052620000599162000b49565b8886516002146200006c5760006200006f565b60025b8989898a516001600160401b03811180156200008a57600080fd5b50604051908082528060200260200182016040528015620000b5578160200160208202803683370190505b508989898980336001600160a01b031660001b84848b8b8f8280604051806040016040528060018152602001603160f81b815250858581600390805190602001906200010392919062000967565b5080516200011990600490602084019062000967565b505060058054601260ff19909116179055508151602092830120608052805191012060a052507f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60c05260601b6001600160601b03191661010052506200018b90506276a70083111561019462000556565b6200019f62278d0082111561019562000556565b429190910161012081905201610140526101605260601b6001600160601b031916610180528551620001d7906002111560c862000556565b620001f1620001e56200056b565b8751111560c962000556565b62000207866200057060201b620011bd1760201c565b62000212846200057c565b6040516309b2760f60e01b81526000906001600160a01b038c16906309b2760f9062000243908d9060040162000ce5565b602060405180830381600087803b1580156200025e57600080fd5b505af115801562000273573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000299919062000b30565b604051633354e3e960e11b81529091506001600160a01b038c16906366a9c7d290620002ce9084908b908b9060040162000c49565b600060405180830381600087803b158015620002e957600080fd5b505af1158015620002fe573d6000803e3d6000fd5b5050506101a09190915250620003299950505060018d1015965061012c955050620005569350505050565b6200033c61138886111561012d62000556565b85516101c0819052865187906000906200035257fe5b60200260200101516001600160a01b03166101e0816001600160a01b031660601b81525050866001815181106200038557fe5b60200260200101516001600160a01b0316610200816001600160a01b031660601b8152505060028111620003bb576000620003d2565b86600281518110620003c957fe5b60200260200101515b60601b6001600160601b0319166102205260038111620003f45760006200040b565b866003815181106200040257fe5b60200260200101515b60601b6001600160601b03191661024052600481116200042d57600062000444565b866004815181106200043b57fe5b60200260200101515b6001600160a01b0316610260816001600160a01b031660601b8152505062000487876000815181106200047357fe5b60200260200101516200060b60201b60201c565b610280528651620004a090889060019081106200047357fe5b6102a05260028111620004b5576000620004c7565b620004c7876002815181106200047357fe5b6102c05260038111620004dc576000620004ee565b620004ee876003815181106200047357fe5b6102e052600481116200050357600062000515565b62000515876004815181106200047357fe5b6103008181525050600062000538876103e8620006df60201b620011c71760201c565b9050620005458162000710565b505050505050505050505062000d4c565b81620005675762000567816200074f565b5050565b600590565b806200056781620007a2565b6200059164e8d4a5100082101560cb62000556565b620005a967016345785d8a000082111560ca62000556565b620005cb8160c060406008546200082f60201b620011f217909392919060201c565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906200060090839062000cfa565b60405180910390a150565b60006001600160a01b0382163014156200062f5750670de0b6b3a7640000620006da565b6000826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b1580156200066b57600080fd5b505afa15801562000680573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620006a6919062000c26565b60ff1690506000620006c56012836200085460201b6200121a1760201c565b905080600a0a670de0b6b3a764000002925050505b919050565b600082820262000707841580620006ff575083858381620006fc57fe5b04145b600362000556565b90505b92915050565b6200071e818042806200086c565b7fa0d01593e47e69d07e0ccd87bece09411e07dd1ed40ca8f2e7af2976542a02338160405162000600919062000cfa565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b600281511015620007b3576200082c565b600081600081518110620007c357fe5b602002602001015190506000600190505b825181101562000829576000838281518110620007ed57fe5b602002602001015190506200081e816001600160a01b0316846001600160a01b03161060656200055660201b60201c565b9150600101620007d4565b50505b50565b60006200083e848484620008df565b506001901b60001901811b1992909216911b1790565b60006200086683831115600162000556565b50900390565b620008868160c060406200093a60201b620012301760201c565b620008a083608060406200093a60201b620012301760201c565b620008b9856040806200093a60201b620012301760201c565b620008d387600060406200093a60201b620012301760201c565b17171760095550505050565b620008f06101008310606462000556565b62000929600182101580156200092157506200091d60ff84610100036200094f60201b620012431760201c565b8211155b606462000556565b6200082983821c156101b462000556565b600062000949848484620008df565b50501b90565b600081831062000960578162000707565b5090919050565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f10620009aa57805160ff1916838001178555620009da565b82800160010185558215620009da579182015b82811115620009da578251825591602001919060010190620009bd565b50620009e8929150620009ec565b5090565b5b80821115620009e85760008155600101620009ed565b80516200070a8162000d36565b600082601f83011262000a21578081fd5b81516001600160401b0381111562000a37578182fd5b602080820262000a4982820162000d03565b8381529350818401858301828701840188101562000a6657600080fd5b600092505b8483101562000a9657805162000a818162000d36565b82526001929092019190830190830162000a6b565b505050505092915050565b600082601f83011262000ab2578081fd5b81516001600160401b0381111562000ac8578182fd5b602062000ade601f8301601f1916820162000d03565b9250818352848183860101111562000af557600080fd5b60005b8281101562000b1557848101820151848201830152810162000af8565b8281111562000b275760008284860101525b50505092915050565b60006020828403121562000b42578081fd5b5051919050565b60008060008060008060008060006101208a8c03121562000b68578485fd5b62000b748b8b62000a03565b60208b01519099506001600160401b038082111562000b91578687fd5b62000b9f8d838e0162000aa1565b995060408c015191508082111562000bb5578687fd5b62000bc38d838e0162000aa1565b985060608c015191508082111562000bd9578687fd5b5062000be88c828d0162000a10565b96505060808a0151945060a08a0151935060c08a0151925060e08a0151915062000c178b6101008c0162000a03565b90509295985092959850929598565b60006020828403121562000c38578081fd5b815160ff8116811462000707578182fd5b60006060820185835260206060818501528186518084526080860191508288019350845b8181101562000c955762000c82855162000d2a565b8352938301939183019160010162000c6d565b505084810360408601528551808252908201925081860190845b8181101562000cd75762000cc4835162000d2a565b8552938301939183019160010162000caf565b509298975050505050505050565b602081016003831062000cf457fe5b91905290565b90815260200190565b6040518181016001600160401b038111828210171562000d2257600080fd5b604052919050565b6001600160a01b031690565b6001600160a01b03811681146200082c57600080fd5b60805160a05160c05160e0516101005160601c6101205161014051610160516101805160601c6101a0516101c0516101e05160601c6102005160601c6102205160601c6102405160601c6102605160601c610280516102a0516102c0516102e051610300516149ab62000e416000398061247d5250806124595250806124355250806124115250806123ed525080611ffd525080611fbb525080611f79525080612d7a525080612d48525080611269525080610891525080610c3a525080610bc4525080611556525080611532525080610c5e525080610ef35250806117985250806117da5250806117b952506149ab6000f3fe608060405234801561001057600080fd5b50600436106102c85760003560e01c806370a082311161017b5780639d2c110c116100d8578063b7b814fc1161008c578063d5c096c411610071578063d5c096c414610551578063dd62ed3e14610564578063eb0f24d614610577576102c8565b8063b7b814fc14610536578063d505accf1461053e576102c8565b8063a9059cbb116100bd578063a9059cbb14610513578063aaabadc514610526578063b35056b81461052e576102c8565b80639d2c110c146104ed578063a457c2d714610500576102c8565b806387ec68171161012f5780638d928af8116101145780638d928af8146104c757806395d89b41146104cf5780639b02cdde146104d7576102c8565b806387ec68171461049f578063893d20e8146104b2576102c8565b80637ecebe00116101605780637ecebe00146104715780638456cb5914610484578063851c1bb31461048c576102c8565b806370a082311461043d57806374f3b00914610450576102c8565b806338e9922e1161022957806354a844ba116101dd5780636028bfd4116101c25780636028bfd4146103fd578063679aefce1461041e5780636daccffa14610426576102c8565b806354a844ba146103ed57806355c67628146103f5576102c8565b8063395093511161020e57806339509351146103bf5780633f4ba83a146103d257806350dd6ed9146103da576102c8565b806338e9922e146103a457806338fff2d0146103b7576102c8565b80631dd746ea116102805780632f1a0bc9116102655780632f1a0bc914610372578063313ce567146103875780633644e5151461039c576102c8565b80631dd746ea1461034a57806323b872dd1461035f576102c8565b8063095ea7b3116102b1578063095ea7b31461030b57806318160ddd1461032b5780631c0de05114610333576102c8565b806301ec954a146102cd57806306fdde03146102f6575b600080fd5b6102e06102db3660046144d5565b61057f565b6040516102ed91906147ae565b60405180910390f35b6102fe61061d565b6040516102ed9190614884565b61031e610319366004614166565b6106b4565b6040516102ed919061478b565b6102e06106cb565b61033b6106d1565b6040516102ed93929190614796565b6103526106fa565b6040516102ed9190614753565b61031e61036d3660046140b6565b610709565b6103856103803660046145aa565b61077d565b005b61038f610860565b6040516102ed91906148ef565b6102e0610869565b6103856103b2366004614592565b610873565b6102e061088f565b61031e6103cd366004614166565b6108b3565b6103856108ee565b6103856103e836600461437c565b610902565b610385610920565b6102e0610932565b61041061040b36600461427d565b610945565b6040516102ed929190614897565b6102e061097c565b61042e610a49565b6040516102ed939291906148b0565b6102e061044b366004614062565b610a64565b61046361045e36600461427d565b610a83565b6040516102ed929190614766565b6102e061047f366004614062565b610b93565b610385610bae565b6102e061049a366004614320565b610bc0565b6104106104ad36600461427d565b610c12565b6104ba610c38565b6040516102ed919061473f565b6104ba610c5c565b6102fe610c80565b6104df610ce1565b6040516102ed9291906148c6565b6102e06104fb366004614546565b610ceb565b61031e61050e366004614166565b610e49565b61031e610521366004614166565b610e87565b6104ba610e94565b61031e610e9e565b610385610eac565b61038561054c3660046140f6565b610ebe565b61046361055f36600461427d565b611007565b6102e061057236600461407e565b611154565b610385611191565b600084608001516105ac610591610c5c565b6001600160a01b0316336001600160a01b03161460cd611259565b6105c16105b761088f565b82146101f4611259565b6105d384846105ce611267565b61128b565b60606105dd6112a8565b90506000875160018111156105ee57fe5b146106055761060087878787856113d0565b610612565b6106128787878785611447565b979650505050505050565b60038054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156106a95780601f1061067e576101008083540402835291602001916106a9565b820191906000526020600020905b81548152906001019060200180831161068c57829003601f168201915b505050505090505b90565b60006106c13384846114ab565b5060015b92915050565b60025490565b60008060006106de611513565b1592506106e9611530565b91506106f3611554565b9050909192565b60606107046112a8565b905090565b6000806107168533611154565b905061073a336001600160a01b03871614806107325750838210155b61019e611259565b610745858585611578565b336001600160a01b0386161480159061076057506000198114155b156107725761077285338584036114ab565b506001949350505050565b610785611658565b610795600183101561012c611259565b6107a661138883111561012d611259565b60006107b2824261121a565b90506107c66201518082101561013d611259565b6000806107d161169e565b915091506107e2811561013e611259565b60006107f0866103e86111c7565b9050600083821161081f5761081a61080b62015180866111c7565b61081584886111c7565b611712565b610839565b61083961082f62015180846111c7565b61081586886111c7565b905061084b600282111561013f611259565b61085784834289611745565b50505050505050565b60055460ff1690565b6000610704611794565b61087b611658565b610883611831565b61088c81611844565b50565b7f000000000000000000000000000000000000000000000000000000000000000090565b3360008181526001602090815260408083206001600160a01b038716845290915281205490916106c19185906108e990866118bc565b6114ab565b6108f6611658565b61090060006118ce565b565b61090a611658565b610912611831565b61091c828261195f565b5050565b610928611658565b6109006001611a77565b6008546000906107049060c06040611b45565b6000606061095b8651610956611267565b611b54565b61097089898989898989611b61611ba7611c08565b97509795505050505050565b60006060610988610c5c565b6001600160a01b031663f94d466861099e61088f565b6040518263ffffffff1660e01b81526004016109ba91906147ae565b60006040518083038186803b1580156109d257600080fd5b505afa1580156109e6573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610a0e9190810190614191565b50915050610a2381610a1e6112a8565b611d98565b6000610a2d61169e565b509050610a428282610a3d6106cb565b611df9565b9250505090565b6000806000610a5661169e565b90949093506103e892509050565b6001600160a01b0381166000908152602081905260409020545b919050565b60608088610a92610591610c5c565b610a9d6105b761088f565b6060806000610aab87611e12565b15610b1857610ab8611e41565b895167ffffffffffffffff81118015610ad057600080fd5b50604051908082528060200260200182016040528015610afa578160200160208202803683370190505b509250610b0f8a610b096106cb565b89611e58565b92509050610b76565b610b20611831565b6060610b2a6112a8565b9050610b368b82611d98565b610b5a8e8e8e8e8e610b46610e9e565b610b50578e610b53565b60005b878f611b61565b955093509150610b6a8382611ba7565b610b748482611ba7565b505b610b808c82611e86565b50935091505b5097509795505050505050565b6001600160a01b031660009081526006602052604090205490565b610bb6611658565b61090060016118ce565b60007f000000000000000000000000000000000000000000000000000000000000000082604051602001610bf59291906146c9565b604051602081830303815290604052805190602001209050919050565b60006060610c238651610956611267565b61097089898989898989611e90611ee1611c08565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60048054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156106a95780601f1061067e576101008083540402835291602001916106a9565b600a54600b549091565b60008360800151610cfd610591610c5c565b610d086105b761088f565b6000610d178660200151611f42565b90506000610d288760400151611f42565b9050600087516001811115610d3957fe5b1415610dc9576000610d4e8860600151612048565b90506000818960600151039050610d728960200151610d6d8387612069565b612075565b60608901829052610d838885612069565b9750610d8f8784612069565b9650610d9f896060015185612069565b60608a01526000610db18a8a8a612087565b9050610dbd81856120c0565b96505050505050610e41565b610dd38683612069565b9550610ddf8582612069565b9450610def876060015182612069565b60608801526000610e018888886120cc565b9050610e0d81846120fb565b90506000610e1a82612107565b905060008282039050610e358a60200151610d6d8388612069565b509450610e4192505050565b509392505050565b600080610e563385611154565b9050808310610e7057610e6b338560006114ab565b610e7d565b610e7d33858584036114ab565b5060019392505050565b60006106c1338484611578565b600061070461212d565b600754610100900460ff1690565b610eb4611658565b6109006000611a77565b610ecc8442111560d1611259565b6001600160a01b0387166000908152600660209081526040808320549051909291610f23917f0000000000000000000000000000000000000000000000000000000000000000918c918c918c9188918d91016147d6565b6040516020818303038152906040528051906020012090506000610f46826121a7565b9050600060018288888860405160008152602001604052604051610f6d9493929190614866565b6020604051602081039080840390855afa158015610f8f573d6000803e3d6000fd5b5050604051601f1901519150610fd190506001600160a01b03821615801590610fc957508b6001600160a01b0316826001600160a01b0316145b6101f8611259565b6001600160a01b038b166000908152600660205260409020600185019055610ffa8b8b8b6114ab565b5050505050505050505050565b60608088611016610591610c5c565b6110216105b761088f565b606061102b6112a8565b9050611035611831565b61103d6106cb565b6110f057600060606110528d8d8d868b6121c3565b9150915061106b611061612248565b83101560cc611259565b61107d6000611078612248565b61224f565b6110908b611089612248565b840361224f565b61109a8184611ee1565b806110a3611267565b67ffffffffffffffff811180156110b957600080fd5b506040519080825280602002602001820160405280156110e3578160200160208202803683370190505b5095509550505050610b86565b6110fa8882611d98565b60006060806111238e8e8e8e8e61110f610e9e565b611119578e61111c565b60005b8a8f611e90565b9250925092506111338c8461224f565b61113d8285611ee1565b6111478185611ba7565b9095509350610b86915050565b600061115e610c5c565b6001600160a01b0316826001600160a01b0316141561118057506000196106c5565b61118a8383612259565b90506106c5565b611199611658565b6000806111a461169e565b915091506111b481610140611259565b61091c82612284565b8061091c816122bf565b60008282026111eb8415806111e45750838583816111e157fe5b04145b6003611259565b9392505050565b60006111ff848484612338565b5082821b6000196001831b01831b198516175b949350505050565b600061122a838311156001611259565b50900390565b600061123d848484612338565b50501b90565b600081831061125257816111eb565b5090919050565b8161091c5761091c8161237e565b7f000000000000000000000000000000000000000000000000000000000000000090565b6112a3818410801561129c57508183105b6064611259565b505050565b606060006112b4611267565b905060608167ffffffffffffffff811180156112cf57600080fd5b506040519080825280602002602001820160405280156112f9578160200160208202803683370190505b5090506113046123eb565b8160008151811061131157fe5b60200260200101818152505061132561240f565b8160018151811061133257fe5b602002602001018181525050600282111561136d5761134f612433565b8160028151811061135c57fe5b602002602001018181525050611376565b91506106b19050565b600382111561136d57611387612457565b8160038151811061139457fe5b602002602001018181525050600482111561136d576113b161247b565b816004815181106113be57fe5b60200260200101818152505091505090565b60006113dc8583611d98565b6113fd86606001518385815181106113f057fe5b6020026020010151612069565b606087015260006114108787878761249f565b905061142f8184878151811061142257fe5b60200260200101516120fb565b905061143a81612107565b9150505b95945050505050565b60006114568660600151612048565b60608701526114658583611d98565b61147986606001518386815181106113f057fe5b6060870152600061148c878787876124e4565b905061143a8184868151811061149e57fe5b60200260200101516120c0565b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925906115069085906147ae565b60405180910390a3505050565b600061151d611554565b42118061070457505060075460ff161590565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b61158f6001600160a01b0384161515610198611259565b6115a66001600160a01b0383161515610199611259565b6115b18383836112a3565b6001600160a01b0383166000908152602081905260409020546115d790826101a061251d565b6001600160a01b03808516600090815260208190526040808220939093559084168152205461160690826118bc565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906115069085906147ae565b60006116876000357fffffffff0000000000000000000000000000000000000000000000000000000016610bc0565b905061088c6116968233612533565b610191611259565b6000806000806000806116af61261c565b9350935093509350804210156117025760019450838311156116e65781810382420385850302816116dc57fe5b04840195506116fd565b81810382420384860302816116f757fe5b04840395505b61170a565b600094508295505b505050509091565b60006117218215156004611259565b8261172e575060006106c5565b81600184038161173a57fe5b0460010190506106c5565b6117518484848461267b565b7f1835882ee7a34ac194f717a35e09bb1d24c82a3b9d854ab6c9749525b714cdf28484848460405161178694939291906148d4565b60405180910390a150505050565b60007f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000006118016126ba565b3060405160200161181695949392919061480a565b60405160208183030381529060405280519060200120905090565b61090061183c611513565b610192611259565b61185764e8d4a5100082101560cb611259565b61186d67016345785d8a000082111560ca611259565b60085461187e908260c060406111f2565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906118b19083906147ae565b60405180910390a150565b60008282016111eb8482101583611259565b80156118ee576118e96118df611530565b4210610193611259565b611903565b6119036118f9611554565b42106101a9611259565b600780547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be64906118b190839061478b565b600061196961088f565b90506000611975610c5c565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b81526004016119a292919061484f565b60806040518083038186803b1580156119ba57600080fd5b505afa1580156119ce573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906119f291906145cb565b6040517f18e736d40000000000000000000000000000000000000000000000000000000081529094506001600160a01b03851693506318e736d49250611a3f915085908790600401614836565b600060405180830381600087803b158015611a5957600080fd5b505af1158015611a6d573d6000803e3d6000fd5b5050505050505050565b611a80816126be565b8061088c576060611a8f610c5c565b6001600160a01b031663f94d4668611aa561088f565b6040518263ffffffff1660e01b8152600401611ac191906147ae565b60006040518083038186803b158015611ad957600080fd5b505afa158015611aed573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611b159190810190614191565b50915050611b2581610a1e6112a8565b6000611b2f61169e565b5090506112a3611b3f828461271e565b82612880565b6001901b6000190191901c1690565b61091c8183146067611259565b6000606080611b70888761288b565b9050611b7f888261121a612978565b611b8a8886866129e3565b9093509150611b998883612a6d565b985098509895505050505050565b60005b611bb2611267565b8110156112a357611be9838281518110611bc857fe5b6020026020010151838381518110611bdc57fe5b6020026020010151612a94565b838281518110611bf557fe5b6020908102919091010152600101611baa565b333014611cf7576000306001600160a01b0316600036604051611c2c9291906146f9565b6000604051808303816000865af19150503d8060008114611c69576040519150601f19603f3d011682016040523d82523d6000602084013e611c6e565b606091505b505090508060008114611c7d57fe5b60046000803e6000517fffffffff00000000000000000000000000000000000000000000000000000000167f43adbafb000000000000000000000000000000000000000000000000000000008114611cd9573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b6060611d016112a8565b9050611d0d8782611d98565b60006060611d258c8c8c8c8c8c898d8d63ffffffff16565b5091509150611d3881848663ffffffff16565b8051601f1982018390526343adbafb7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc08301526020027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc82016044820181fd5b60005b611da3611267565b8110156112a357611dda838281518110611db957fe5b6020026020010151838381518110611dcd57fe5b6020026020010151612ae5565b838281518110611de657fe5b6020908102919091010152600101611d9b565b600080611e06848661271e565b905061143e8184612a94565b60008082511180156106c5575060ff801682806020019051810190611e37919061460b565b60ff161492915050565b60075461090090610100900460ff166101b6611259565b600060606000611e6784612b11565b90506060611e76878784612b27565b919350909150505b935093915050565b61091c8282612bd6565b60006060806060611ea1898861288b565b9050611eb0898261121a612978565b60006060611ebf8b8989612c92565b91509150611ecd8b82612ceb565b909d909c50909a5098505050505050505050565b60005b611eec611267565b8110156112a357611f23838281518110611f0257fe5b6020026020010151838381518110611f1657fe5b6020026020010151612cf8565b838281518110611f2f57fe5b6020908102919091010152600101611ee4565b6000611f4d82612d46565b15611f6157611f5a6123eb565b9050610a7e565b611f6a82612d78565b15611f7757611f5a61240f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611fb957611f5a612433565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611ffb57611f5a612457565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561203d57611f5a61247b565b610a7e61013561237e565b60008061205d612056610932565b8490612daa565b90506111eb838261121a565b60006111eb8383612ae5565b61091c61208183612de6565b8261091c565b600061209e612094611267565b60021460d2611259565b60606000806120ae878787612dec565b925092509250610612878484846124e4565b60006111eb8383612a94565b60006120d9612094611267565b60606000806120e9878787612dec565b9250925092506106128784848461249f565b60006111eb8383612cf8565b60006106c5612126612117610932565b670de0b6b3a76400009061121a565b8390612cf8565b6000612137610c5c565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b15801561216f57600080fd5b505afa158015612183573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107049190614360565b60006121b1611794565b82604051602001610bf5929190614709565b6000606060006121d284612ead565b90506121ed60008260028111156121e557fe5b1460ce611259565b60606121f885612ec3565b90506122078151610956611267565b6122118187611d98565b600061221b61169e565b509050600061222a828461271e565b9050806122378184612880565b9b929a509198505050505050505050565b620f424090565b61091c8282612ed9565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b6122908182424261267b565b7fa0d01593e47e69d07e0ccd87bece09411e07dd1ed40ca8f2e7af2976542a0233816040516118b191906147ae565b6002815110156122ce5761088c565b6000816000815181106122dd57fe5b602002602001015190506000600190505b82518110156112a357600083828151811061230557fe5b6020026020010151905061232e816001600160a01b0316846001600160a01b0316106065611259565b91506001016122ee565b61234761010083106064611259565b61236f6001821015801561129c575061236560ff8461010003611243565b8211156064611259565b6112a383821c156101b4611259565b7f08c379a0000000000000000000000000000000000000000000000000000000006000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60006124a9611831565b60006124b361169e565b50905060006124c2828761271e565b905060006124d8838888888c6060015187612f67565b98975050505050505050565b60006124ee611831565b60006124f861169e565b5090506000612507828761271e565b905060006124d8838888888c6060015187613010565b600061252c8484111583611259565b5050900390565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b612552610c38565b6001600160a01b03161415801561256d575061256d836130a9565b156125955761257a610c38565b6001600160a01b0316336001600160a01b03161490506106c5565b61259d61212d565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b81526004016125cc939291906147b7565b60206040518083038186803b1580156125e457600080fd5b505afa1580156125f8573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061118a919061425d565b60008060008061263b60006040600954611b459092919063ffffffff16565b60095490945061264d90604080611b45565b6009549093506126609060806040611b45565b6009549092506126739060c06040611b45565b905090919293565b6126888160c06040611230565b6126958360806040611230565b6126a185604080611230565b6126ae8760006040611230565b17171760095550505050565b4690565b600780547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff16610100831515021790556040517feff3d4d215b42bf0960be9c6d5e05c22cba4df6627a3a523e2acee733b5854c8906118b190839061478b565b80516000908190815b8181101561275f5761275585828151811061273e57fe5b6020026020010151846118bc90919063ffffffff16565b9250600101612727565b5081612770576000925050506106c5565b600082868302825b60ff811015612869578260005b868110156127c6576127bc61279a83876111c7565b6127b78c84815181106127a957fe5b60200260200101518a6111c7565b613117565b9150600101612785565b5083945061281f6127fe6127f86127dd848a6111c7565b6127f26127ea888d6111c7565b6103e8613117565b906118bc565b866111c7565b6127b761280e89600101856111c7565b6127f26127ea6103e889038a6111c7565b9350848411156128475760018585031161284257839750505050505050506106c5565b612860565b60018486031161286057839750505050505050506106c5565b50600101612778565b5061287561014161237e565b505050505092915050565b600a91909155600b55565b606080612896611267565b67ffffffffffffffff811180156128ac57600080fd5b506040519080825280602002602001820160405280156128d6578160200160208202803683370190505b509050826128e55790506106c5565b600080856000815181106128f557fe5b602002602001015190506000600190505b61290e611267565b81101561294557600087828151811061292357fe5b602002602001015190508281111561293c578193508092505b50600101612906565b50612957600b5487600a548589613137565b83838151811061296357fe5b60209081029190910101525090949350505050565b60005b612983611267565b8110156129dd576129be84828151811061299957fe5b60200260200101518483815181106129ad57fe5b60200260200101518463ffffffff16565b8482815181106129ca57fe5b602090810291909101015260010161297b565b50505050565b6000606060006129f284612ead565b90506000816002811115612a0257fe5b1415612a1c57612a128685613199565b9250925050611e7e565b6001816002811115612a2a57fe5b1415612a3a57612a12868561325c565b6002816002811115612a4857fe5b1415612a5957612a1286868661328e565b612a6461015061237e565b50935093915050565b612a7a828261121a612978565b6000612a8461169e565b5090506112a3611b3f828561271e565b6000612aa38215156004611259565b82612ab0575060006106c5565b670de0b6b3a764000083810290612ad390858381612aca57fe5b04146005611259565b828181612adc57fe5b049150506106c5565b6000828202612aff8415806111e45750838583816111e157fe5b670de0b6b3a764000090049392505050565b6000818060200190518101906111eb9190614627565b60606000612b358385612a94565b9050845167ffffffffffffffff81118015612b4f57600080fd5b50604051908082528060200260200182016040528015612b79578160200160208202803683370190505b50915060005b8551811015612bcd57612bae82878381518110612b9857fe5b6020026020010151612ae590919063ffffffff16565b838281518110612bba57fe5b6020908102919091010152600101612b7f565b50509392505050565b612bed6001600160a01b038316151561019b611259565b612bf9826000836112a3565b6001600160a01b038216600090815260208190526040902054612c1f90826101b261251d565b6001600160a01b038316600090815260208190526040902055600254612c459082613301565b6002556040516000906001600160a01b038416907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612c869085906147ae565b60405180910390a35050565b600060606000612ca184612ead565b90506001816002811115612cb157fe5b1415612cc257612a1286868661330f565b6002816002811115612cd057fe5b1415612ce057612a128685613379565b612a6461013661237e565b612a7a82826118bc612978565b6000612d078215156004611259565b82612d14575060006106c5565b670de0b6b3a764000083810290612d2e90858381612aca57fe5b826001820381612d3a57fe5b046001019150506106c5565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0390811691161490565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0390811691161490565b6000828202612dc48415806111e45750838583816111e157fe5b80612dd35760009150506106c5565b670de0b6b3a76400006000198201612d3a565b50600090565b60408051600280825260608281019093526000918291816020016020820280368337019050509250612e218660200151612d46565b15612e675760009150600190508483600081518110612e3c57fe5b6020026020010181815250508383600181518110612e5657fe5b602002602001018181525050612ea4565b60009050600191508383600081518110612e7d57fe5b6020026020010181815250508483600181518110612e9757fe5b6020026020010181815250505b93509350939050565b6000818060200190518101906106c591906143ca565b6060818060200190518101906111eb9190614490565b612ee5600083836112a3565b600254612ef290826118bc565b6002556001600160a01b038216600090815260208190526040902054612f1890826118bc565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612c869085906147ae565b6000612f8f83878681518110612f7957fe5b602002602001015161121a90919063ffffffff16565b868581518110612f9b57fe5b6020026020010181815250506000612fb58888858961340e565b905083878681518110612fc457fe5b602002602001015101878681518110612fd957fe5b6020026020010181815250506124d860016127f2898981518110612ff957fe5b60200260200101518461121a90919063ffffffff16565b60006130388387878151811061302257fe5b60200260200101516118bc90919063ffffffff16565b86868151811061304457fe5b602002602001018181525050600061305e8888858861340e565b90508387878151811061306d57fe5b60200260200101510387878151811061308257fe5b6020026020010181815250506124d860016130a3838a8981518110612f7957fe5b9061121a565b60006130d47f2f1a0bc900000000000000000000000000000000000000000000000000000000610bc0565b82148061310857506131057feb0f24d600000000000000000000000000000000000000000000000000000000610bc0565b82145b806106c557506106c5826135cb565b60006131268215156004611259565b81838161312f57fe5b049392505050565b6000806131468787878761340e565b90508086858151811061315557fe5b60200260200101511161316c57600091505061143e565b60008187868151811061317b57fe5b60200260200101510390506124d88482612ae590919063ffffffff16565b600060606000806131a98561362f565b915091506131c16131b8611267565b82106064611259565b60606131cb611267565b67ffffffffffffffff811180156131e157600080fd5b5060405190808252806020026020018201604052801561320b578160200160208202803683370190505b509050600061321861169e565b5090506132378189858761322a6106cb565b613232610932565b613651565b82848151811061324357fe5b6020908102919091010152509196919550909350505050565b60006060600061326b8461376b565b90506060613281868361327c6106cb565b613781565b9196919550909350505050565b6000606080600061329e8561381d565b915091506132af8251610956611267565b6132b98287611d98565b60006132c361169e565b50905060006132e3828a866132d66106cb565b6132de610932565b613835565b90506132f38382111560cf611259565b989297509195505050505050565b60006111eb8383600161251d565b6000606080600061331f8561381d565b9150915061333561332e611267565b8351611b54565b61333f8287611d98565b600061334961169e565b5090506000613369828a8661335c6106cb565b613364610932565b613ac7565b90506132f38382101560d0611259565b600060606000806133898561362f565b915091506133986131b8611267565b60606133a2611267565b67ffffffffffffffff811180156133b857600080fd5b506040519080825280602002602001820160405280156133e2578160200160208202803683370190505b50905060006133ef61169e565b509050613237818985876134016106cb565b613409610932565b613d58565b60008084518602905060008560008151811061342657fe5b60200260200101519050600086518760008151811061344157fe5b60200260200101510290506000600190505b87518110156134a75761348c61348661347f848b858151811061347257fe5b60200260200101516111c7565b8a516111c7565b88613117565b915061349d88828151811061273e57fe5b9250600101613453565b508685815181106134b457fe5b60200260200101518203915060006134cc87886111c7565b905060006134f86134ec6134e48461081589886111c7565b6103e86111c7565b8a898151811061347257fe5b9050600061351361350c6134e48b89613117565b86906118bc565b905060008061352f61352586866118bc565b6108158d866118bc565b905060005b60ff8110156135af57819250613564613551866127f285866111c7565b6108158e6130a3886127f28860026111c7565b91508282111561358d57600183830311613588575097506112129650505050505050565b6135a7565b6001828403116135a7575097506112129650505050505050565b600101613534565b506135bb61014261237e565b5050505050505050949350505050565b60006135f67f38e9922e00000000000000000000000000000000000000000000000000000000610bc0565b8214806106c557506136277f50dd6ed900000000000000000000000000000000000000000000000000000000610bc0565b909114919050565b60008082806020019051810190613646919061445a565b909590945092505050565b60008061365e888861271e565b905060006136808261367a87613674818b61121a565b90612cf8565b90612daa565b905060006136908a8a848b61340e565b905060006136a4828b8b81518110612f7957fe5b90506000805b8b518110156136e3576136d98c82815181106136c257fe5b6020026020010151836118bc90919063ffffffff16565b91506001016136aa565b50600061370c828d8d815181106136f657fe5b6020026020010151612a9490919063ffffffff16565b9050600061371982613e33565b905060006137278583612daa565b90506000613735868361121a565b905061375661374f83670de0b6b3a76400008e9003612ae5565b82906118bc565b99505050505050505050509695505050505050565b6000818060200190518101906111eb919061442d565b6060600061378f8484612a94565b90506060855167ffffffffffffffff811180156137ab57600080fd5b506040519080825280602002602001820160405280156137d5578160200160208202803683370190505b50905060005b8651811015613813576137f483888381518110612b9857fe5b82828151811061380057fe5b60209081029190910101526001016137db565b5095945050505050565b606060008280602001905181019061364691906143e6565b600080805b865181101561385c576138528782815181106136c257fe5b915060010161383a565b506060855167ffffffffffffffff8111801561387757600080fd5b506040519080825280602002602001820160405280156138a1578160200160208202803683370190505b5090506000805b88518110156139685760006138d9858b84815181106138c357fe5b6020026020010151612cf890919063ffffffff16565b90506139158a83815181106138ea57fe5b60200260200101516136748b858151811061390157fe5b60200260200101518d8681518110612f7957fe5b84838151811061392157fe5b60200260200101818152505061395d6139568286858151811061394057fe5b6020026020010151612daa90919063ffffffff16565b84906118bc565b9250506001016138a8565b506060885167ffffffffffffffff8111801561398357600080fd5b506040519080825280602002602001820160405280156139ad578160200160208202803683370190505b50905060005b8951811015613a785760008482815181106139ca57fe5b6020026020010151841115613a315760006139f36139e786613e33565b8d8581518110612b9857fe5b90506000613a07828d8681518110612f7957fe5b9050613a28613a2182670de0b6b3a76400008d9003612cf8565b83906118bc565b92505050613a48565b898281518110613a3d57fe5b602002602001015190505b613a58818c8481518110612f7957fe5b838381518110613a6457fe5b6020908102919091010152506001016139b3565b506000613a858b8b61271e565b90506000613a938c8461271e565b90506000613aa18284612a94565b9050613ab6613aaf82613e33565b8b90612daa565b9d9c50505050505050505050505050565b600080805b8651811015613aee57613ae48782815181106136c257fe5b9150600101613acc565b506060855167ffffffffffffffff81118015613b0957600080fd5b50604051908082528060200260200182016040528015613b33578160200160208202803683370190505b5090506000805b8851811015613bcd576000613b55858b84815181106136f657fe5b9050613b978a8381518110613b6657fe5b6020026020010151613b918b8581518110613b7d57fe5b60200260200101518d868151811061302257fe5b90612a94565b848381518110613ba357fe5b602002602001018181525050613bc261395682868581518110612b9857fe5b925050600101613b3a565b506060885167ffffffffffffffff81118015613be857600080fd5b50604051908082528060200260200182016040528015613c12578160200160208202803683370190505b50905060005b8951811015613cd357600083858381518110613c3057fe5b60200260200101511115613c8c576000613c556139e786670de0b6b3a764000061121a565b90506000613c69828d8681518110612f7957fe5b9050613c83613a2182670de0b6b3a76400008d9003612ae5565b92505050613ca3565b898281518110613c9857fe5b602002602001015190505b613cb3818c848151811061302257fe5b838381518110613cbf57fe5b602090810291909101015250600101613c18565b506000613ce08b8b61271e565b90506000613cee8c8461271e565b90506000613cfc8284612a94565b9050670de0b6b3a7640000811115613d4857613d3a8a7ffffffffffffffffffffffffffffffffffffffffffffffffff21f494c589c00008301612ae5565b97505050505050505061143e565b600097505050505050505061143e565b600080613d65888861271e565b90506000613d7b8261367a87613674818b6118bc565b90506000613d8b8a8a848b61340e565b90506000613db58a8a81518110613d9e57fe5b60200260200101518361121a90919063ffffffff16565b90506000805b8b51811015613ddd57613dd38c82815181106136c257fe5b9150600101613dbb565b506000613df0828d8d815181106136f657fe5b90506000613dfd82613e33565b90506000613e0b8583612daa565b90506000613e19868361121a565b905061375661374f83670de0b6b3a76400008e9003612cf8565b6000670de0b6b3a76400008210613e4b5760006106c5565b50670de0b6b3a76400000390565b80356106c581614944565b600082601f830112613e74578081fd5b8135613e87613e8282614924565b6148fd565b818152915060208083019084810181840286018201871015613ea857600080fd5b60005b8481101561287557813584529282019290820190600101613eab565b600082601f830112613ed7578081fd5b8151613ee5613e8282614924565b818152915060208083019084810181840286018201871015613f0657600080fd5b60005b8481101561287557815184529282019290820190600101613f09565b600082601f830112613f35578081fd5b813567ffffffffffffffff811115613f4b578182fd5b613f5e6020601f19601f840116016148fd565b9150808252836020828501011115613f7557600080fd5b8060208401602084013760009082016020015292915050565b8035600281106106c557600080fd5b6000610120808385031215613fb0578182fd5b613fb9816148fd565b915050613fc68383613f8e565b8152613fd58360208401613e59565b6020820152613fe78360408401613e59565b6040820152606082013560608201526080820135608082015260a082013560a08201526140178360c08401613e59565b60c08201526140298360e08401613e59565b60e08201526101008083013567ffffffffffffffff81111561404a57600080fd5b61405685828601613f25565b82840152505092915050565b600060208284031215614073578081fd5b81356111eb81614944565b60008060408385031215614090578081fd5b823561409b81614944565b915060208301356140ab81614944565b809150509250929050565b6000806000606084860312156140ca578081fd5b83356140d581614944565b925060208401356140e581614944565b929592945050506040919091013590565b600080600080600080600060e0888a031215614110578283fd5b873561411b81614944565b9650602088013561412b81614944565b95506040880135945060608801359350608088013561414981614966565b9699959850939692959460a0840135945060c09093013592915050565b60008060408385031215614178578182fd5b823561418381614944565b946020939093013593505050565b6000806000606084860312156141a5578081fd5b835167ffffffffffffffff808211156141bc578283fd5b818601915086601f8301126141cf578283fd5b81516141dd613e8282614924565b80828252602080830192508086018b8283870289010111156141fd578788fd5b8796505b8487101561422857805161421481614944565b845260019690960195928101928101614201565b50890151909750935050508082111561423f578283fd5b5061424c86828701613ec7565b925050604084015190509250925092565b60006020828403121561426e578081fd5b815180151581146111eb578182fd5b600080600080600080600060e0888a031215614297578081fd5b8735965060208801356142a981614944565b955060408801356142b981614944565b9450606088013567ffffffffffffffff808211156142d5578283fd5b6142e18b838c01613e64565b955060808a0135945060a08a0135935060c08a0135915080821115614304578283fd5b506143118a828b01613f25565b91505092959891949750929550565b600060208284031215614331578081fd5b81357fffffffff00000000000000000000000000000000000000000000000000000000811681146111eb578182fd5b600060208284031215614371578081fd5b81516111eb81614944565b6000806040838503121561438e578182fd5b823561439981614944565b9150602083013567ffffffffffffffff8111156143b4578182fd5b6143c085828601613f25565b9150509250929050565b6000602082840312156143db578081fd5b81516111eb81614959565b6000806000606084860312156143fa578081fd5b835161440581614959565b602085015190935067ffffffffffffffff811115614421578182fd5b61424c86828701613ec7565b6000806040838503121561443f578182fd5b825161444a81614959565b6020939093015192949293505050565b60008060006060848603121561446e578081fd5b835161447981614959565b602085015160409095015190969495509392505050565b600080604083850312156144a2578182fd5b82516144ad81614959565b602084015190925067ffffffffffffffff8111156144c9578182fd5b6143c085828601613ec7565b600080600080608085870312156144ea578182fd5b843567ffffffffffffffff80821115614501578384fd5b61450d88838901613f9d565b95506020870135915080821115614522578384fd5b5061452f87828801613e64565b949794965050505060408301359260600135919050565b60008060006060848603121561455a578081fd5b833567ffffffffffffffff811115614570578182fd5b61457c86828701613f9d565b9660208601359650604090950135949350505050565b6000602082840312156145a3578081fd5b5035919050565b600080604083850312156145bc578182fd5b50508035926020909101359150565b600080600080608085870312156145e0578182fd5b845193506020850151925060408501519150606085015161460081614944565b939692955090935050565b60006020828403121561461c578081fd5b81516111eb81614966565b60008060408385031215614639578182fd5b825161444a81614966565b6000815180845260208085019450808401835b8381101561467357815187529582019590820190600101614657565b509495945050505050565b60008151808452815b818110156146a357602081850181015186830182015201614687565b818111156146b45782602083870101525b50601f01601f19169290920160200192915050565b9182527fffffffff0000000000000000000000000000000000000000000000000000000016602082015260240190565b6000828483379101908152919050565b7f190100000000000000000000000000000000000000000000000000000000000081526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b6000602082526111eb6020830184614644565b6000604082526147796040830185614644565b828103602084015261143e8185614644565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b600083825260406020830152611212604083018461467e565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b6000602082526111eb602083018461467e565b6000838252604060208301526112126040830184614644565b9283529015156020830152604082015260600190565b918252602082015260400190565b93845260208401929092526040830152606082015260800190565b60ff91909116815260200190565b60405181810167ffffffffffffffff8111828210171561491c57600080fd5b604052919050565b600067ffffffffffffffff82111561493a578081fd5b5060209081020190565b6001600160a01b038116811461088c57600080fd5b6003811061088c57600080fd5b60ff8116811461088c57600080fdfea26469706673582212200b4ccacd36cf60706a9f9f10be90785ff089fc18314f4312da2aaa6f4a1ddf3264736f6c63430007010033000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c80000000000000000000000000000000000000000000000000000000000000120000000000000000000000000000000000000000000000000000000000000016000000000000000000000000000000000000000000000000000000000000001a000000000000000000000000000000000000000000000000000000000000000c800000000000000000000000000000000000000000000000000005af3107a400000000000000000000000000000000000000000000000000000000000006ce2dd0000000000000000000000000000000000000000000000000000000000278d00000000000000000000000000245bd99c7379df6740332d06530da7dedb062d610000000000000000000000000000000000000000000000000000000000000019464941542d555344432d44414920537461626c6520506f6f6c00000000000000000000000000000000000000000000000000000000000000000000000000000346554400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003000000000000000000000000586aa273f262909eef8fa02d90ab65f5015e05160000000000000000000000006b175474e89094c44da98b954eedeac495271d0f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106102c85760003560e01c806370a082311161017b5780639d2c110c116100d8578063b7b814fc1161008c578063d5c096c411610071578063d5c096c414610551578063dd62ed3e14610564578063eb0f24d614610577576102c8565b8063b7b814fc14610536578063d505accf1461053e576102c8565b8063a9059cbb116100bd578063a9059cbb14610513578063aaabadc514610526578063b35056b81461052e576102c8565b80639d2c110c146104ed578063a457c2d714610500576102c8565b806387ec68171161012f5780638d928af8116101145780638d928af8146104c757806395d89b41146104cf5780639b02cdde146104d7576102c8565b806387ec68171461049f578063893d20e8146104b2576102c8565b80637ecebe00116101605780637ecebe00146104715780638456cb5914610484578063851c1bb31461048c576102c8565b806370a082311461043d57806374f3b00914610450576102c8565b806338e9922e1161022957806354a844ba116101dd5780636028bfd4116101c25780636028bfd4146103fd578063679aefce1461041e5780636daccffa14610426576102c8565b806354a844ba146103ed57806355c67628146103f5576102c8565b8063395093511161020e57806339509351146103bf5780633f4ba83a146103d257806350dd6ed9146103da576102c8565b806338e9922e146103a457806338fff2d0146103b7576102c8565b80631dd746ea116102805780632f1a0bc9116102655780632f1a0bc914610372578063313ce567146103875780633644e5151461039c576102c8565b80631dd746ea1461034a57806323b872dd1461035f576102c8565b8063095ea7b3116102b1578063095ea7b31461030b57806318160ddd1461032b5780631c0de05114610333576102c8565b806301ec954a146102cd57806306fdde03146102f6575b600080fd5b6102e06102db3660046144d5565b61057f565b6040516102ed91906147ae565b60405180910390f35b6102fe61061d565b6040516102ed9190614884565b61031e610319366004614166565b6106b4565b6040516102ed919061478b565b6102e06106cb565b61033b6106d1565b6040516102ed93929190614796565b6103526106fa565b6040516102ed9190614753565b61031e61036d3660046140b6565b610709565b6103856103803660046145aa565b61077d565b005b61038f610860565b6040516102ed91906148ef565b6102e0610869565b6103856103b2366004614592565b610873565b6102e061088f565b61031e6103cd366004614166565b6108b3565b6103856108ee565b6103856103e836600461437c565b610902565b610385610920565b6102e0610932565b61041061040b36600461427d565b610945565b6040516102ed929190614897565b6102e061097c565b61042e610a49565b6040516102ed939291906148b0565b6102e061044b366004614062565b610a64565b61046361045e36600461427d565b610a83565b6040516102ed929190614766565b6102e061047f366004614062565b610b93565b610385610bae565b6102e061049a366004614320565b610bc0565b6104106104ad36600461427d565b610c12565b6104ba610c38565b6040516102ed919061473f565b6104ba610c5c565b6102fe610c80565b6104df610ce1565b6040516102ed9291906148c6565b6102e06104fb366004614546565b610ceb565b61031e61050e366004614166565b610e49565b61031e610521366004614166565b610e87565b6104ba610e94565b61031e610e9e565b610385610eac565b61038561054c3660046140f6565b610ebe565b61046361055f36600461427d565b611007565b6102e061057236600461407e565b611154565b610385611191565b600084608001516105ac610591610c5c565b6001600160a01b0316336001600160a01b03161460cd611259565b6105c16105b761088f565b82146101f4611259565b6105d384846105ce611267565b61128b565b60606105dd6112a8565b90506000875160018111156105ee57fe5b146106055761060087878787856113d0565b610612565b6106128787878785611447565b979650505050505050565b60038054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156106a95780601f1061067e576101008083540402835291602001916106a9565b820191906000526020600020905b81548152906001019060200180831161068c57829003601f168201915b505050505090505b90565b60006106c13384846114ab565b5060015b92915050565b60025490565b60008060006106de611513565b1592506106e9611530565b91506106f3611554565b9050909192565b60606107046112a8565b905090565b6000806107168533611154565b905061073a336001600160a01b03871614806107325750838210155b61019e611259565b610745858585611578565b336001600160a01b0386161480159061076057506000198114155b156107725761077285338584036114ab565b506001949350505050565b610785611658565b610795600183101561012c611259565b6107a661138883111561012d611259565b60006107b2824261121a565b90506107c66201518082101561013d611259565b6000806107d161169e565b915091506107e2811561013e611259565b60006107f0866103e86111c7565b9050600083821161081f5761081a61080b62015180866111c7565b61081584886111c7565b611712565b610839565b61083961082f62015180846111c7565b61081586886111c7565b905061084b600282111561013f611259565b61085784834289611745565b50505050505050565b60055460ff1690565b6000610704611794565b61087b611658565b610883611831565b61088c81611844565b50565b7f178e029173417b1f9c8bc16dcec6f697bc32374600000000000000000000025d90565b3360008181526001602090815260408083206001600160a01b038716845290915281205490916106c19185906108e990866118bc565b6114ab565b6108f6611658565b61090060006118ce565b565b61090a611658565b610912611831565b61091c828261195f565b5050565b610928611658565b6109006001611a77565b6008546000906107049060c06040611b45565b6000606061095b8651610956611267565b611b54565b61097089898989898989611b61611ba7611c08565b97509795505050505050565b60006060610988610c5c565b6001600160a01b031663f94d466861099e61088f565b6040518263ffffffff1660e01b81526004016109ba91906147ae565b60006040518083038186803b1580156109d257600080fd5b505afa1580156109e6573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610a0e9190810190614191565b50915050610a2381610a1e6112a8565b611d98565b6000610a2d61169e565b509050610a428282610a3d6106cb565b611df9565b9250505090565b6000806000610a5661169e565b90949093506103e892509050565b6001600160a01b0381166000908152602081905260409020545b919050565b60608088610a92610591610c5c565b610a9d6105b761088f565b6060806000610aab87611e12565b15610b1857610ab8611e41565b895167ffffffffffffffff81118015610ad057600080fd5b50604051908082528060200260200182016040528015610afa578160200160208202803683370190505b509250610b0f8a610b096106cb565b89611e58565b92509050610b76565b610b20611831565b6060610b2a6112a8565b9050610b368b82611d98565b610b5a8e8e8e8e8e610b46610e9e565b610b50578e610b53565b60005b878f611b61565b955093509150610b6a8382611ba7565b610b748482611ba7565b505b610b808c82611e86565b50935091505b5097509795505050505050565b6001600160a01b031660009081526006602052604090205490565b610bb6611658565b61090060016118ce565b60007f0000000000000000000000008df6efec5547e31b0eb7d1291b511ff8a2bf987c82604051602001610bf59291906146c9565b604051602081830303815290604052805190602001209050919050565b60006060610c238651610956611267565b61097089898989898989611e90611ee1611c08565b7f000000000000000000000000245bd99c7379df6740332d06530da7dedb062d6190565b7f000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c890565b60048054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156106a95780601f1061067e576101008083540402835291602001916106a9565b600a54600b549091565b60008360800151610cfd610591610c5c565b610d086105b761088f565b6000610d178660200151611f42565b90506000610d288760400151611f42565b9050600087516001811115610d3957fe5b1415610dc9576000610d4e8860600151612048565b90506000818960600151039050610d728960200151610d6d8387612069565b612075565b60608901829052610d838885612069565b9750610d8f8784612069565b9650610d9f896060015185612069565b60608a01526000610db18a8a8a612087565b9050610dbd81856120c0565b96505050505050610e41565b610dd38683612069565b9550610ddf8582612069565b9450610def876060015182612069565b60608801526000610e018888886120cc565b9050610e0d81846120fb565b90506000610e1a82612107565b905060008282039050610e358a60200151610d6d8388612069565b509450610e4192505050565b509392505050565b600080610e563385611154565b9050808310610e7057610e6b338560006114ab565b610e7d565b610e7d33858584036114ab565b5060019392505050565b60006106c1338484611578565b600061070461212d565b600754610100900460ff1690565b610eb4611658565b6109006000611a77565b610ecc8442111560d1611259565b6001600160a01b0387166000908152600660209081526040808320549051909291610f23917f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9918c918c918c9188918d91016147d6565b6040516020818303038152906040528051906020012090506000610f46826121a7565b9050600060018288888860405160008152602001604052604051610f6d9493929190614866565b6020604051602081039080840390855afa158015610f8f573d6000803e3d6000fd5b5050604051601f1901519150610fd190506001600160a01b03821615801590610fc957508b6001600160a01b0316826001600160a01b0316145b6101f8611259565b6001600160a01b038b166000908152600660205260409020600185019055610ffa8b8b8b6114ab565b5050505050505050505050565b60608088611016610591610c5c565b6110216105b761088f565b606061102b6112a8565b9050611035611831565b61103d6106cb565b6110f057600060606110528d8d8d868b6121c3565b9150915061106b611061612248565b83101560cc611259565b61107d6000611078612248565b61224f565b6110908b611089612248565b840361224f565b61109a8184611ee1565b806110a3611267565b67ffffffffffffffff811180156110b957600080fd5b506040519080825280602002602001820160405280156110e3578160200160208202803683370190505b5095509550505050610b86565b6110fa8882611d98565b60006060806111238e8e8e8e8e61110f610e9e565b611119578e61111c565b60005b8a8f611e90565b9250925092506111338c8461224f565b61113d8285611ee1565b6111478185611ba7565b9095509350610b86915050565b600061115e610c5c565b6001600160a01b0316826001600160a01b0316141561118057506000196106c5565b61118a8383612259565b90506106c5565b611199611658565b6000806111a461169e565b915091506111b481610140611259565b61091c82612284565b8061091c816122bf565b60008282026111eb8415806111e45750838583816111e157fe5b04145b6003611259565b9392505050565b60006111ff848484612338565b5082821b6000196001831b01831b198516175b949350505050565b600061122a838311156001611259565b50900390565b600061123d848484612338565b50501b90565b600081831061125257816111eb565b5090919050565b8161091c5761091c8161237e565b7f000000000000000000000000000000000000000000000000000000000000000390565b6112a3818410801561129c57508183105b6064611259565b505050565b606060006112b4611267565b905060608167ffffffffffffffff811180156112cf57600080fd5b506040519080825280602002602001820160405280156112f9578160200160208202803683370190505b5090506113046123eb565b8160008151811061131157fe5b60200260200101818152505061132561240f565b8160018151811061133257fe5b602002602001018181525050600282111561136d5761134f612433565b8160028151811061135c57fe5b602002602001018181525050611376565b91506106b19050565b600382111561136d57611387612457565b8160038151811061139457fe5b602002602001018181525050600482111561136d576113b161247b565b816004815181106113be57fe5b60200260200101818152505091505090565b60006113dc8583611d98565b6113fd86606001518385815181106113f057fe5b6020026020010151612069565b606087015260006114108787878761249f565b905061142f8184878151811061142257fe5b60200260200101516120fb565b905061143a81612107565b9150505b95945050505050565b60006114568660600151612048565b60608701526114658583611d98565b61147986606001518386815181106113f057fe5b6060870152600061148c878787876124e4565b905061143a8184868151811061149e57fe5b60200260200101516120c0565b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925906115069085906147ae565b60405180910390a3505050565b600061151d611554565b42118061070457505060075460ff161590565b7f00000000000000000000000000000000000000000000000000000000631916c390565b7f000000000000000000000000000000000000000000000000000000006340a3c390565b61158f6001600160a01b0384161515610198611259565b6115a66001600160a01b0383161515610199611259565b6115b18383836112a3565b6001600160a01b0383166000908152602081905260409020546115d790826101a061251d565b6001600160a01b03808516600090815260208190526040808220939093559084168152205461160690826118bc565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906115069085906147ae565b60006116876000357fffffffff0000000000000000000000000000000000000000000000000000000016610bc0565b905061088c6116968233612533565b610191611259565b6000806000806000806116af61261c565b9350935093509350804210156117025760019450838311156116e65781810382420385850302816116dc57fe5b04840195506116fd565b81810382420384860302816116f757fe5b04840395505b61170a565b600094508295505b505050509091565b60006117218215156004611259565b8261172e575060006106c5565b81600184038161173a57fe5b0460010190506106c5565b6117518484848461267b565b7f1835882ee7a34ac194f717a35e09bb1d24c82a3b9d854ab6c9749525b714cdf28484848460405161178694939291906148d4565b60405180910390a150505050565b60007f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f7f4b1eb6478c5ad74035dbc2ee21863b70eff44e2d282e83219829afa83f11fd1c7fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc66118016126ba565b3060405160200161181695949392919061480a565b60405160208183030381529060405280519060200120905090565b61090061183c611513565b610192611259565b61185764e8d4a5100082101560cb611259565b61186d67016345785d8a000082111560ca611259565b60085461187e908260c060406111f2565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906118b19083906147ae565b60405180910390a150565b60008282016111eb8482101583611259565b80156118ee576118e96118df611530565b4210610193611259565b611903565b6119036118f9611554565b42106101a9611259565b600780547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be64906118b190839061478b565b600061196961088f565b90506000611975610c5c565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b81526004016119a292919061484f565b60806040518083038186803b1580156119ba57600080fd5b505afa1580156119ce573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906119f291906145cb565b6040517f18e736d40000000000000000000000000000000000000000000000000000000081529094506001600160a01b03851693506318e736d49250611a3f915085908790600401614836565b600060405180830381600087803b158015611a5957600080fd5b505af1158015611a6d573d6000803e3d6000fd5b5050505050505050565b611a80816126be565b8061088c576060611a8f610c5c565b6001600160a01b031663f94d4668611aa561088f565b6040518263ffffffff1660e01b8152600401611ac191906147ae565b60006040518083038186803b158015611ad957600080fd5b505afa158015611aed573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611b159190810190614191565b50915050611b2581610a1e6112a8565b6000611b2f61169e565b5090506112a3611b3f828461271e565b82612880565b6001901b6000190191901c1690565b61091c8183146067611259565b6000606080611b70888761288b565b9050611b7f888261121a612978565b611b8a8886866129e3565b9093509150611b998883612a6d565b985098509895505050505050565b60005b611bb2611267565b8110156112a357611be9838281518110611bc857fe5b6020026020010151838381518110611bdc57fe5b6020026020010151612a94565b838281518110611bf557fe5b6020908102919091010152600101611baa565b333014611cf7576000306001600160a01b0316600036604051611c2c9291906146f9565b6000604051808303816000865af19150503d8060008114611c69576040519150601f19603f3d011682016040523d82523d6000602084013e611c6e565b606091505b505090508060008114611c7d57fe5b60046000803e6000517fffffffff00000000000000000000000000000000000000000000000000000000167f43adbafb000000000000000000000000000000000000000000000000000000008114611cd9573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b6060611d016112a8565b9050611d0d8782611d98565b60006060611d258c8c8c8c8c8c898d8d63ffffffff16565b5091509150611d3881848663ffffffff16565b8051601f1982018390526343adbafb7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc08301526020027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc82016044820181fd5b60005b611da3611267565b8110156112a357611dda838281518110611db957fe5b6020026020010151838381518110611dcd57fe5b6020026020010151612ae5565b838281518110611de657fe5b6020908102919091010152600101611d9b565b600080611e06848661271e565b905061143e8184612a94565b60008082511180156106c5575060ff801682806020019051810190611e37919061460b565b60ff161492915050565b60075461090090610100900460ff166101b6611259565b600060606000611e6784612b11565b90506060611e76878784612b27565b919350909150505b935093915050565b61091c8282612bd6565b60006060806060611ea1898861288b565b9050611eb0898261121a612978565b60006060611ebf8b8989612c92565b91509150611ecd8b82612ceb565b909d909c50909a5098505050505050505050565b60005b611eec611267565b8110156112a357611f23838281518110611f0257fe5b6020026020010151838381518110611f1657fe5b6020026020010151612cf8565b838281518110611f2f57fe5b6020908102919091010152600101611ee4565b6000611f4d82612d46565b15611f6157611f5a6123eb565b9050610a7e565b611f6a82612d78565b15611f7757611f5a61240f565b7f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486001600160a01b0316826001600160a01b03161415611fb957611f5a612433565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611ffb57611f5a612457565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561203d57611f5a61247b565b610a7e61013561237e565b60008061205d612056610932565b8490612daa565b90506111eb838261121a565b60006111eb8383612ae5565b61091c61208183612de6565b8261091c565b600061209e612094611267565b60021460d2611259565b60606000806120ae878787612dec565b925092509250610612878484846124e4565b60006111eb8383612a94565b60006120d9612094611267565b60606000806120e9878787612dec565b9250925092506106128784848461249f565b60006111eb8383612cf8565b60006106c5612126612117610932565b670de0b6b3a76400009061121a565b8390612cf8565b6000612137610c5c565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b15801561216f57600080fd5b505afa158015612183573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107049190614360565b60006121b1611794565b82604051602001610bf5929190614709565b6000606060006121d284612ead565b90506121ed60008260028111156121e557fe5b1460ce611259565b60606121f885612ec3565b90506122078151610956611267565b6122118187611d98565b600061221b61169e565b509050600061222a828461271e565b9050806122378184612880565b9b929a509198505050505050505050565b620f424090565b61091c8282612ed9565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b6122908182424261267b565b7fa0d01593e47e69d07e0ccd87bece09411e07dd1ed40ca8f2e7af2976542a0233816040516118b191906147ae565b6002815110156122ce5761088c565b6000816000815181106122dd57fe5b602002602001015190506000600190505b82518110156112a357600083828151811061230557fe5b6020026020010151905061232e816001600160a01b0316846001600160a01b0316106065611259565b91506001016122ee565b61234761010083106064611259565b61236f6001821015801561129c575061236560ff8461010003611243565b8211156064611259565b6112a383821c156101b4611259565b7f08c379a0000000000000000000000000000000000000000000000000000000006000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b7f0000000000000000000000000000000000000000000000000de0b6b3a764000090565b7f0000000000000000000000000000000000000000000000000de0b6b3a764000090565b7f000000000000000000000000000000000000000c9f2c9cd04674edea4000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60006124a9611831565b60006124b361169e565b50905060006124c2828761271e565b905060006124d8838888888c6060015187612f67565b98975050505050505050565b60006124ee611831565b60006124f861169e565b5090506000612507828761271e565b905060006124d8838888888c6060015187613010565b600061252c8484111583611259565b5050900390565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b612552610c38565b6001600160a01b03161415801561256d575061256d836130a9565b156125955761257a610c38565b6001600160a01b0316336001600160a01b03161490506106c5565b61259d61212d565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b81526004016125cc939291906147b7565b60206040518083038186803b1580156125e457600080fd5b505afa1580156125f8573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061118a919061425d565b60008060008061263b60006040600954611b459092919063ffffffff16565b60095490945061264d90604080611b45565b6009549093506126609060806040611b45565b6009549092506126739060c06040611b45565b905090919293565b6126888160c06040611230565b6126958360806040611230565b6126a185604080611230565b6126ae8760006040611230565b17171760095550505050565b4690565b600780547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff16610100831515021790556040517feff3d4d215b42bf0960be9c6d5e05c22cba4df6627a3a523e2acee733b5854c8906118b190839061478b565b80516000908190815b8181101561275f5761275585828151811061273e57fe5b6020026020010151846118bc90919063ffffffff16565b9250600101612727565b5081612770576000925050506106c5565b600082868302825b60ff811015612869578260005b868110156127c6576127bc61279a83876111c7565b6127b78c84815181106127a957fe5b60200260200101518a6111c7565b613117565b9150600101612785565b5083945061281f6127fe6127f86127dd848a6111c7565b6127f26127ea888d6111c7565b6103e8613117565b906118bc565b866111c7565b6127b761280e89600101856111c7565b6127f26127ea6103e889038a6111c7565b9350848411156128475760018585031161284257839750505050505050506106c5565b612860565b60018486031161286057839750505050505050506106c5565b50600101612778565b5061287561014161237e565b505050505092915050565b600a91909155600b55565b606080612896611267565b67ffffffffffffffff811180156128ac57600080fd5b506040519080825280602002602001820160405280156128d6578160200160208202803683370190505b509050826128e55790506106c5565b600080856000815181106128f557fe5b602002602001015190506000600190505b61290e611267565b81101561294557600087828151811061292357fe5b602002602001015190508281111561293c578193508092505b50600101612906565b50612957600b5487600a548589613137565b83838151811061296357fe5b60209081029190910101525090949350505050565b60005b612983611267565b8110156129dd576129be84828151811061299957fe5b60200260200101518483815181106129ad57fe5b60200260200101518463ffffffff16565b8482815181106129ca57fe5b602090810291909101015260010161297b565b50505050565b6000606060006129f284612ead565b90506000816002811115612a0257fe5b1415612a1c57612a128685613199565b9250925050611e7e565b6001816002811115612a2a57fe5b1415612a3a57612a12868561325c565b6002816002811115612a4857fe5b1415612a5957612a1286868661328e565b612a6461015061237e565b50935093915050565b612a7a828261121a612978565b6000612a8461169e565b5090506112a3611b3f828561271e565b6000612aa38215156004611259565b82612ab0575060006106c5565b670de0b6b3a764000083810290612ad390858381612aca57fe5b04146005611259565b828181612adc57fe5b049150506106c5565b6000828202612aff8415806111e45750838583816111e157fe5b670de0b6b3a764000090049392505050565b6000818060200190518101906111eb9190614627565b60606000612b358385612a94565b9050845167ffffffffffffffff81118015612b4f57600080fd5b50604051908082528060200260200182016040528015612b79578160200160208202803683370190505b50915060005b8551811015612bcd57612bae82878381518110612b9857fe5b6020026020010151612ae590919063ffffffff16565b838281518110612bba57fe5b6020908102919091010152600101612b7f565b50509392505050565b612bed6001600160a01b038316151561019b611259565b612bf9826000836112a3565b6001600160a01b038216600090815260208190526040902054612c1f90826101b261251d565b6001600160a01b038316600090815260208190526040902055600254612c459082613301565b6002556040516000906001600160a01b038416907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612c869085906147ae565b60405180910390a35050565b600060606000612ca184612ead565b90506001816002811115612cb157fe5b1415612cc257612a1286868661330f565b6002816002811115612cd057fe5b1415612ce057612a128685613379565b612a6461013661237e565b612a7a82826118bc612978565b6000612d078215156004611259565b82612d14575060006106c5565b670de0b6b3a764000083810290612d2e90858381612aca57fe5b826001820381612d3a57fe5b046001019150506106c5565b7f000000000000000000000000586aa273f262909eef8fa02d90ab65f5015e05166001600160a01b0390811691161490565b7f0000000000000000000000006b175474e89094c44da98b954eedeac495271d0f6001600160a01b0390811691161490565b6000828202612dc48415806111e45750838583816111e157fe5b80612dd35760009150506106c5565b670de0b6b3a76400006000198201612d3a565b50600090565b60408051600280825260608281019093526000918291816020016020820280368337019050509250612e218660200151612d46565b15612e675760009150600190508483600081518110612e3c57fe5b6020026020010181815250508383600181518110612e5657fe5b602002602001018181525050612ea4565b60009050600191508383600081518110612e7d57fe5b6020026020010181815250508483600181518110612e9757fe5b6020026020010181815250505b93509350939050565b6000818060200190518101906106c591906143ca565b6060818060200190518101906111eb9190614490565b612ee5600083836112a3565b600254612ef290826118bc565b6002556001600160a01b038216600090815260208190526040902054612f1890826118bc565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612c869085906147ae565b6000612f8f83878681518110612f7957fe5b602002602001015161121a90919063ffffffff16565b868581518110612f9b57fe5b6020026020010181815250506000612fb58888858961340e565b905083878681518110612fc457fe5b602002602001015101878681518110612fd957fe5b6020026020010181815250506124d860016127f2898981518110612ff957fe5b60200260200101518461121a90919063ffffffff16565b60006130388387878151811061302257fe5b60200260200101516118bc90919063ffffffff16565b86868151811061304457fe5b602002602001018181525050600061305e8888858861340e565b90508387878151811061306d57fe5b60200260200101510387878151811061308257fe5b6020026020010181815250506124d860016130a3838a8981518110612f7957fe5b9061121a565b60006130d47f2f1a0bc900000000000000000000000000000000000000000000000000000000610bc0565b82148061310857506131057feb0f24d600000000000000000000000000000000000000000000000000000000610bc0565b82145b806106c557506106c5826135cb565b60006131268215156004611259565b81838161312f57fe5b049392505050565b6000806131468787878761340e565b90508086858151811061315557fe5b60200260200101511161316c57600091505061143e565b60008187868151811061317b57fe5b60200260200101510390506124d88482612ae590919063ffffffff16565b600060606000806131a98561362f565b915091506131c16131b8611267565b82106064611259565b60606131cb611267565b67ffffffffffffffff811180156131e157600080fd5b5060405190808252806020026020018201604052801561320b578160200160208202803683370190505b509050600061321861169e565b5090506132378189858761322a6106cb565b613232610932565b613651565b82848151811061324357fe5b6020908102919091010152509196919550909350505050565b60006060600061326b8461376b565b90506060613281868361327c6106cb565b613781565b9196919550909350505050565b6000606080600061329e8561381d565b915091506132af8251610956611267565b6132b98287611d98565b60006132c361169e565b50905060006132e3828a866132d66106cb565b6132de610932565b613835565b90506132f38382111560cf611259565b989297509195505050505050565b60006111eb8383600161251d565b6000606080600061331f8561381d565b9150915061333561332e611267565b8351611b54565b61333f8287611d98565b600061334961169e565b5090506000613369828a8661335c6106cb565b613364610932565b613ac7565b90506132f38382101560d0611259565b600060606000806133898561362f565b915091506133986131b8611267565b60606133a2611267565b67ffffffffffffffff811180156133b857600080fd5b506040519080825280602002602001820160405280156133e2578160200160208202803683370190505b50905060006133ef61169e565b509050613237818985876134016106cb565b613409610932565b613d58565b60008084518602905060008560008151811061342657fe5b60200260200101519050600086518760008151811061344157fe5b60200260200101510290506000600190505b87518110156134a75761348c61348661347f848b858151811061347257fe5b60200260200101516111c7565b8a516111c7565b88613117565b915061349d88828151811061273e57fe5b9250600101613453565b508685815181106134b457fe5b60200260200101518203915060006134cc87886111c7565b905060006134f86134ec6134e48461081589886111c7565b6103e86111c7565b8a898151811061347257fe5b9050600061351361350c6134e48b89613117565b86906118bc565b905060008061352f61352586866118bc565b6108158d866118bc565b905060005b60ff8110156135af57819250613564613551866127f285866111c7565b6108158e6130a3886127f28860026111c7565b91508282111561358d57600183830311613588575097506112129650505050505050565b6135a7565b6001828403116135a7575097506112129650505050505050565b600101613534565b506135bb61014261237e565b5050505050505050949350505050565b60006135f67f38e9922e00000000000000000000000000000000000000000000000000000000610bc0565b8214806106c557506136277f50dd6ed900000000000000000000000000000000000000000000000000000000610bc0565b909114919050565b60008082806020019051810190613646919061445a565b909590945092505050565b60008061365e888861271e565b905060006136808261367a87613674818b61121a565b90612cf8565b90612daa565b905060006136908a8a848b61340e565b905060006136a4828b8b81518110612f7957fe5b90506000805b8b518110156136e3576136d98c82815181106136c257fe5b6020026020010151836118bc90919063ffffffff16565b91506001016136aa565b50600061370c828d8d815181106136f657fe5b6020026020010151612a9490919063ffffffff16565b9050600061371982613e33565b905060006137278583612daa565b90506000613735868361121a565b905061375661374f83670de0b6b3a76400008e9003612ae5565b82906118bc565b99505050505050505050509695505050505050565b6000818060200190518101906111eb919061442d565b6060600061378f8484612a94565b90506060855167ffffffffffffffff811180156137ab57600080fd5b506040519080825280602002602001820160405280156137d5578160200160208202803683370190505b50905060005b8651811015613813576137f483888381518110612b9857fe5b82828151811061380057fe5b60209081029190910101526001016137db565b5095945050505050565b606060008280602001905181019061364691906143e6565b600080805b865181101561385c576138528782815181106136c257fe5b915060010161383a565b506060855167ffffffffffffffff8111801561387757600080fd5b506040519080825280602002602001820160405280156138a1578160200160208202803683370190505b5090506000805b88518110156139685760006138d9858b84815181106138c357fe5b6020026020010151612cf890919063ffffffff16565b90506139158a83815181106138ea57fe5b60200260200101516136748b858151811061390157fe5b60200260200101518d8681518110612f7957fe5b84838151811061392157fe5b60200260200101818152505061395d6139568286858151811061394057fe5b6020026020010151612daa90919063ffffffff16565b84906118bc565b9250506001016138a8565b506060885167ffffffffffffffff8111801561398357600080fd5b506040519080825280602002602001820160405280156139ad578160200160208202803683370190505b50905060005b8951811015613a785760008482815181106139ca57fe5b6020026020010151841115613a315760006139f36139e786613e33565b8d8581518110612b9857fe5b90506000613a07828d8681518110612f7957fe5b9050613a28613a2182670de0b6b3a76400008d9003612cf8565b83906118bc565b92505050613a48565b898281518110613a3d57fe5b602002602001015190505b613a58818c8481518110612f7957fe5b838381518110613a6457fe5b6020908102919091010152506001016139b3565b506000613a858b8b61271e565b90506000613a938c8461271e565b90506000613aa18284612a94565b9050613ab6613aaf82613e33565b8b90612daa565b9d9c50505050505050505050505050565b600080805b8651811015613aee57613ae48782815181106136c257fe5b9150600101613acc565b506060855167ffffffffffffffff81118015613b0957600080fd5b50604051908082528060200260200182016040528015613b33578160200160208202803683370190505b5090506000805b8851811015613bcd576000613b55858b84815181106136f657fe5b9050613b978a8381518110613b6657fe5b6020026020010151613b918b8581518110613b7d57fe5b60200260200101518d868151811061302257fe5b90612a94565b848381518110613ba357fe5b602002602001018181525050613bc261395682868581518110612b9857fe5b925050600101613b3a565b506060885167ffffffffffffffff81118015613be857600080fd5b50604051908082528060200260200182016040528015613c12578160200160208202803683370190505b50905060005b8951811015613cd357600083858381518110613c3057fe5b60200260200101511115613c8c576000613c556139e786670de0b6b3a764000061121a565b90506000613c69828d8681518110612f7957fe5b9050613c83613a2182670de0b6b3a76400008d9003612ae5565b92505050613ca3565b898281518110613c9857fe5b602002602001015190505b613cb3818c848151811061302257fe5b838381518110613cbf57fe5b602090810291909101015250600101613c18565b506000613ce08b8b61271e565b90506000613cee8c8461271e565b90506000613cfc8284612a94565b9050670de0b6b3a7640000811115613d4857613d3a8a7ffffffffffffffffffffffffffffffffffffffffffffffffff21f494c589c00008301612ae5565b97505050505050505061143e565b600097505050505050505061143e565b600080613d65888861271e565b90506000613d7b8261367a87613674818b6118bc565b90506000613d8b8a8a848b61340e565b90506000613db58a8a81518110613d9e57fe5b60200260200101518361121a90919063ffffffff16565b90506000805b8b51811015613ddd57613dd38c82815181106136c257fe5b9150600101613dbb565b506000613df0828d8d815181106136f657fe5b90506000613dfd82613e33565b90506000613e0b8583612daa565b90506000613e19868361121a565b905061375661374f83670de0b6b3a76400008e9003612cf8565b6000670de0b6b3a76400008210613e4b5760006106c5565b50670de0b6b3a76400000390565b80356106c581614944565b600082601f830112613e74578081fd5b8135613e87613e8282614924565b6148fd565b818152915060208083019084810181840286018201871015613ea857600080fd5b60005b8481101561287557813584529282019290820190600101613eab565b600082601f830112613ed7578081fd5b8151613ee5613e8282614924565b818152915060208083019084810181840286018201871015613f0657600080fd5b60005b8481101561287557815184529282019290820190600101613f09565b600082601f830112613f35578081fd5b813567ffffffffffffffff811115613f4b578182fd5b613f5e6020601f19601f840116016148fd565b9150808252836020828501011115613f7557600080fd5b8060208401602084013760009082016020015292915050565b8035600281106106c557600080fd5b6000610120808385031215613fb0578182fd5b613fb9816148fd565b915050613fc68383613f8e565b8152613fd58360208401613e59565b6020820152613fe78360408401613e59565b6040820152606082013560608201526080820135608082015260a082013560a08201526140178360c08401613e59565b60c08201526140298360e08401613e59565b60e08201526101008083013567ffffffffffffffff81111561404a57600080fd5b61405685828601613f25565b82840152505092915050565b600060208284031215614073578081fd5b81356111eb81614944565b60008060408385031215614090578081fd5b823561409b81614944565b915060208301356140ab81614944565b809150509250929050565b6000806000606084860312156140ca578081fd5b83356140d581614944565b925060208401356140e581614944565b929592945050506040919091013590565b600080600080600080600060e0888a031215614110578283fd5b873561411b81614944565b9650602088013561412b81614944565b95506040880135945060608801359350608088013561414981614966565b9699959850939692959460a0840135945060c09093013592915050565b60008060408385031215614178578182fd5b823561418381614944565b946020939093013593505050565b6000806000606084860312156141a5578081fd5b835167ffffffffffffffff808211156141bc578283fd5b818601915086601f8301126141cf578283fd5b81516141dd613e8282614924565b80828252602080830192508086018b8283870289010111156141fd578788fd5b8796505b8487101561422857805161421481614944565b845260019690960195928101928101614201565b50890151909750935050508082111561423f578283fd5b5061424c86828701613ec7565b925050604084015190509250925092565b60006020828403121561426e578081fd5b815180151581146111eb578182fd5b600080600080600080600060e0888a031215614297578081fd5b8735965060208801356142a981614944565b955060408801356142b981614944565b9450606088013567ffffffffffffffff808211156142d5578283fd5b6142e18b838c01613e64565b955060808a0135945060a08a0135935060c08a0135915080821115614304578283fd5b506143118a828b01613f25565b91505092959891949750929550565b600060208284031215614331578081fd5b81357fffffffff00000000000000000000000000000000000000000000000000000000811681146111eb578182fd5b600060208284031215614371578081fd5b81516111eb81614944565b6000806040838503121561438e578182fd5b823561439981614944565b9150602083013567ffffffffffffffff8111156143b4578182fd5b6143c085828601613f25565b9150509250929050565b6000602082840312156143db578081fd5b81516111eb81614959565b6000806000606084860312156143fa578081fd5b835161440581614959565b602085015190935067ffffffffffffffff811115614421578182fd5b61424c86828701613ec7565b6000806040838503121561443f578182fd5b825161444a81614959565b6020939093015192949293505050565b60008060006060848603121561446e578081fd5b835161447981614959565b602085015160409095015190969495509392505050565b600080604083850312156144a2578182fd5b82516144ad81614959565b602084015190925067ffffffffffffffff8111156144c9578182fd5b6143c085828601613ec7565b600080600080608085870312156144ea578182fd5b843567ffffffffffffffff80821115614501578384fd5b61450d88838901613f9d565b95506020870135915080821115614522578384fd5b5061452f87828801613e64565b949794965050505060408301359260600135919050565b60008060006060848603121561455a578081fd5b833567ffffffffffffffff811115614570578182fd5b61457c86828701613f9d565b9660208601359650604090950135949350505050565b6000602082840312156145a3578081fd5b5035919050565b600080604083850312156145bc578182fd5b50508035926020909101359150565b600080600080608085870312156145e0578182fd5b845193506020850151925060408501519150606085015161460081614944565b939692955090935050565b60006020828403121561461c578081fd5b81516111eb81614966565b60008060408385031215614639578182fd5b825161444a81614966565b6000815180845260208085019450808401835b8381101561467357815187529582019590820190600101614657565b509495945050505050565b60008151808452815b818110156146a357602081850181015186830182015201614687565b818111156146b45782602083870101525b50601f01601f19169290920160200192915050565b9182527fffffffff0000000000000000000000000000000000000000000000000000000016602082015260240190565b6000828483379101908152919050565b7f190100000000000000000000000000000000000000000000000000000000000081526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b6000602082526111eb6020830184614644565b6000604082526147796040830185614644565b828103602084015261143e8185614644565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b600083825260406020830152611212604083018461467e565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b6000602082526111eb602083018461467e565b6000838252604060208301526112126040830184614644565b9283529015156020830152604082015260600190565b918252602082015260400190565b93845260208401929092526040830152606082015260800190565b60ff91909116815260200190565b60405181810167ffffffffffffffff8111828210171561491c57600080fd5b604052919050565b600067ffffffffffffffff82111561493a578081fd5b5060209081020190565b6001600160a01b038116811461088c57600080fd5b6003811061088c57600080fd5b60ff8116811461088c57600080fdfea26469706673582212200b4ccacd36cf60706a9f9f10be90785ff089fc18314f4312da2aaa6f4a1ddf3264736f6c63430007010033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c80000000000000000000000000000000000000000000000000000000000000120000000000000000000000000000000000000000000000000000000000000016000000000000000000000000000000000000000000000000000000000000001a000000000000000000000000000000000000000000000000000000000000000c800000000000000000000000000000000000000000000000000005af3107a400000000000000000000000000000000000000000000000000000000000006ce2dd0000000000000000000000000000000000000000000000000000000000278d00000000000000000000000000245bd99c7379df6740332d06530da7dedb062d610000000000000000000000000000000000000000000000000000000000000019464941542d555344432d44414920537461626c6520506f6f6c00000000000000000000000000000000000000000000000000000000000000000000000000000346554400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003000000000000000000000000586aa273f262909eef8fa02d90ab65f5015e05160000000000000000000000006b175474e89094c44da98b954eedeac495271d0f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48
-----Decoded View---------------
Arg [0] : vault (address): 0xBA12222222228d8Ba445958a75a0704d566BF2C8
Arg [1] : name (string): FIAT-USDC-DAI Stable Pool
Arg [2] : symbol (string): FUD
Arg [3] : tokens (address[]): 0x586Aa273F262909EEF8fA02d90Ab65F5015e0516,0x6B175474E89094C44Da98b954EedeAC495271d0F,0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48
Arg [4] : amplificationParameter (uint256): 200
Arg [5] : swapFeePercentage (uint256): 100000000000000
Arg [6] : pauseWindowDuration (uint256): 7135965
Arg [7] : bufferPeriodDuration (uint256): 2592000
Arg [8] : owner (address): 0x245bD99C7379df6740332d06530DA7Dedb062D61
-----Encoded View---------------
17 Constructor Arguments found :
Arg [0] : 000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
Arg [1] : 0000000000000000000000000000000000000000000000000000000000000120
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000160
Arg [3] : 00000000000000000000000000000000000000000000000000000000000001a0
Arg [4] : 00000000000000000000000000000000000000000000000000000000000000c8
Arg [5] : 00000000000000000000000000000000000000000000000000005af3107a4000
Arg [6] : 00000000000000000000000000000000000000000000000000000000006ce2dd
Arg [7] : 0000000000000000000000000000000000000000000000000000000000278d00
Arg [8] : 000000000000000000000000245bd99c7379df6740332d06530da7dedb062d61
Arg [9] : 0000000000000000000000000000000000000000000000000000000000000019
Arg [10] : 464941542d555344432d44414920537461626c6520506f6f6c00000000000000
Arg [11] : 0000000000000000000000000000000000000000000000000000000000000003
Arg [12] : 4655440000000000000000000000000000000000000000000000000000000000
Arg [13] : 0000000000000000000000000000000000000000000000000000000000000003
Arg [14] : 000000000000000000000000586aa273f262909eef8fa02d90ab65f5015e0516
Arg [15] : 0000000000000000000000006b175474e89094c44da98b954eedeac495271d0f
Arg [16] : 000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.