ETH Price: $3,416.38 (-0.65%)
Gas: 2 Gwei

Token

Bitune AI Platform Token (TUNE)
 

Overview

Max Total Supply

100,000,000 TUNE

Holders

306 ( -0.327%)

Market

Price

$0.03 @ 0.000009 ETH (+2.95%)

Onchain Market Cap

$3,135,353.00

Circulating Supply Market Cap

$1,035,632.00

Other Info

Token Contract (WITH 18 Decimals)

Balance
4,114.7919999 TUNE

Value
$129.01 ( ~0.0377621751886065 Eth) [0.0041%]
0x140d0649b6d8302acef38c8d4a0b6f10bd38b565
Loading...
Loading
Loading...
Loading
Loading...
Loading

OVERVIEW

Building Bitcoin infrastructure of tomorrow.

Market

Volume (24H):$131,765.00
Market Capitalization:$1,035,632.00
Circulating Supply:33,194,608.00 TUNE
Market Data Source: Coinmarketcap

# Exchange Pair Price  24H Volume % Volume

Contract Source Code Verified (Exact Match)

Contract Name:
BituneAi

Compiler Version
v0.8.20+commit.a1b79de6

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion, MIT license

Contract Source Code (Solidity Multiple files format)

File 1 of 2: BituneAi.sol
// SPDX-License-Identifier: MIT
pragma solidity =0.8.20;

import "./libraries.sol";

/**
 *  name: Bitune AI Platform Token
 *  symble: TUNE
 *  website: Bitune.ai
 */
contract BituneAi is ERC20Permit {
	using SafeERC20 for IERC20;

    IERC20 public immutable matterToken;
    address constant dead = 0x000000000000000000000000000000000000dEaD;

    event Permutation(address indexed account,uint256 amount);

    constructor(address _token,string memory name, string memory symbol,uint8 decimals, uint256 totalSupply) ERC20Permit(name) ERC20(name,symbol,decimals){
        require(_token != address(0),'token can not be zero addr');
        matterToken = IERC20(_token);
        _mint(address(this), totalSupply);
    }

    function permutation(uint256 _amount) external {
        require(_amount > 0,'amount must gt 0');
        matterToken.safeTransferFrom(msg.sender, dead, _amount);
        _transfer(address(this),msg.sender,_amount);
        emit Permutation(msg.sender,_amount);
    }
}

File 2 of 2: libraries.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity =0.8.20;


/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}


/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}



/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}


/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}



/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}


/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}


// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}


interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}


/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {IERC-5267}.
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}


/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}


/**
 * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}


/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}


/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}


/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}




/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the ERC may not emit
 * these events, as it isn't required by the specification.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    uint8 private _decimals;
    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_,uint8 decimals_) {
        _name = name_;
        _symbol = symbol_;
        _decimals = decimals_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return _decimals;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the ERC. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     * ```
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}


/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract Nonces {
    /**
     * @dev The nonce used for an `account` is not the expected current nonce.
     */
    error InvalidAccountNonce(address account, uint256 currentNonce);

    mapping(address account => uint256) private _nonces;

    /**
     * @dev Returns the next unused nonce for an address.
     */
    function nonces(address owner) public view virtual returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function _useNonce(address owner) internal virtual returns (uint256) {
        // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return _nonces[owner]++;
        }
    }

    /**
     * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
     */
    function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
        uint256 current = _useNonce(owner);
        if (nonce != current) {
            revert InvalidAccountNonce(owner, current);
        }
    }
}


/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError, bytes32) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}


/**
 * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
    bytes32 private constant PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    /**
     * @dev Permit deadline has expired.
     */
    error ERC2612ExpiredSignature(uint256 deadline);

    /**
     * @dev Mismatched signature.
     */
    error ERC2612InvalidSigner(address signer, address owner);

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC-20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @inheritdoc IERC20Permit
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (block.timestamp > deadline) {
            revert ERC2612ExpiredSignature(deadline);
        }

        bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        if (signer != owner) {
            revert ERC2612InvalidSigner(signer, owner);
        }

        _approve(owner, spender, value);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
        return super.nonces(owner);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
        return _domainSeparatorV4();
    }
}


/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}


Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"uint8","name":"decimals","type":"uint8"},{"internalType":"uint256","name":"totalSupply","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"ERC2612ExpiredSignature","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC2612InvalidSigner","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"currentNonce","type":"uint256"}],"name":"InvalidAccountNonce","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Permutation","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"matterToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"permutation","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}]

61018060405234801562000011575f80fd5b506040516200196138038062001961833981016040819052620000349162000469565b6040805180820190915260018152603160f81b60208201528490819081868660046200006184826200059d565b5060056200007083826200059d565b506003805460ff191660ff9290921691909117905550620000959050826006620001be565b61012052620000a6816007620001be565b61014052815160208084019190912060e052815190820120610100524660a0526200013360e05161010051604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201529081019290925260608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b60805250503060c052506001600160a01b038516620001995760405162461bcd60e51b815260206004820152601a60248201527f746f6b656e2063616e206e6f74206265207a65726f206164647200000000000060448201526064015b60405180910390fd5b6001600160a01b03851661016052620001b33082620001f6565b5050505050620006dd565b5f602083511015620001dd57620001d58362000232565b9050620001f0565b81620001ea84826200059d565b5060ff90505b92915050565b6001600160a01b038216620002215760405163ec442f0560e01b81525f600482015260240162000190565b6200022e5f838362000274565b5050565b5f80829050601f815111156200025f578260405163305a27a960e01b815260040162000190919062000665565b80516200026c8262000699565b179392505050565b6001600160a01b038316620002a2578060025f828254620002969190620006bd565b90915550620003149050565b6001600160a01b0383165f9081526020819052604090205481811015620002f65760405163391434e360e21b81526001600160a01b0385166004820152602481018290526044810183905260640162000190565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b038216620003325760028054829003905562000350565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef836040516200039691815260200190565b60405180910390a3505050565b634e487b7160e01b5f52604160045260245ffd5b5f5b83811015620003d3578181015183820152602001620003b9565b50505f910152565b5f82601f830112620003eb575f80fd5b81516001600160401b0380821115620004085762000408620003a3565b604051601f8301601f19908116603f01168101908282118183101715620004335762000433620003a3565b816040528381528660208588010111156200044c575f80fd5b6200045f846020830160208901620003b7565b9695505050505050565b5f805f805f60a086880312156200047e575f80fd5b85516001600160a01b038116811462000495575f80fd5b60208701519095506001600160401b0380821115620004b2575f80fd5b620004c089838a01620003db565b95506040880151915080821115620004d6575f80fd5b50620004e588828901620003db565b935050606086015160ff81168114620004fc575f80fd5b80925050608086015190509295509295909350565b600181811c908216806200052657607f821691505b6020821081036200054557634e487b7160e01b5f52602260045260245ffd5b50919050565b601f82111562000598575f81815260208120601f850160051c81016020861015620005735750805b601f850160051c820191505b8181101562000594578281556001016200057f565b5050505b505050565b81516001600160401b03811115620005b957620005b9620003a3565b620005d181620005ca845462000511565b846200054b565b602080601f83116001811462000607575f8415620005ef5750858301515b5f19600386901b1c1916600185901b17855562000594565b5f85815260208120601f198616915b82811015620006375788860151825594840194600190910190840162000616565b50858210156200065557878501515f19600388901b60f8161c191681555b5050505050600190811b01905550565b602081525f825180602084015262000685816040850160208701620003b7565b601f01601f19169190910160400192915050565b8051602080830151919081101562000545575f1960209190910360031b1b16919050565b80820180821115620001f057634e487b7160e01b5f52601160045260245ffd5b60805160a05160c05160e05161010051610120516101405161016051611221620007405f395f81816101b9015261038401525f61087601525f61084901525f6107f201525f6107ca01525f61072501525f61074f01525f61077901526112215ff3fe608060405234801561000f575f80fd5b50600436106100f0575f3560e01c806370a082311161009357806395d89b411161006357806395d89b4114610221578063a9059cbb14610229578063d505accf1461023c578063dd62ed3e1461024f575f80fd5b806370a082311461018c578063753894f3146101b45780637ecebe00146101f357806384b0196e14610206575f80fd5b80631a50c853116100ce5780631a50c8531461014757806323b872dd1461015c578063313ce5671461016f5780633644e51514610184575f80fd5b806306fdde03146100f4578063095ea7b31461011257806318160ddd14610135575b5f80fd5b6100fc610287565b6040516101099190610f56565b60405180910390f35b610125610120366004610f83565b610317565b6040519015158152602001610109565b6002545b604051908152602001610109565b61015a610155366004610fab565b610330565b005b61012561016a366004610fc2565b6103f1565b60035460405160ff9091168152602001610109565b610139610416565b61013961019a366004610ffb565b6001600160a01b03165f9081526020819052604090205490565b6101db7f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b039091168152602001610109565b610139610201366004610ffb565b610424565b61020e610441565b6040516101099796959493929190611014565b6100fc610483565b610125610237366004610f83565b610492565b61015a61024a3660046110a8565b61049f565b61013961025d366004611115565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b60606004805461029690611146565b80601f01602080910402602001604051908101604052809291908181526020018280546102c290611146565b801561030d5780601f106102e45761010080835404028352916020019161030d565b820191905f5260205f20905b8154815290600101906020018083116102f057829003601f168201915b5050505050905090565b5f336103248185856105d5565b60019150505b92915050565b5f81116103775760405162461bcd60e51b815260206004820152601060248201526f0616d6f756e74206d75737420677420360841b60448201526064015b60405180910390fd5b6103ae6001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000163361dead846105e7565b6103b9303383610647565b60405181815233907f078254c58cf2d358e22654408bbb36a5ec378ef9d8817f8ab81d0b0e0461eb619060200160405180910390a250565b5f336103fe8582856106a4565b610409858585610647565b60019150505b9392505050565b5f61041f610719565b905090565b6001600160a01b0381165f9081526008602052604081205461032a565b5f6060805f805f6060610452610842565b61045a61086f565b604080515f80825260208201909252600f60f81b9b939a50919850469750309650945092509050565b60606005805461029690611146565b5f33610324818585610647565b834211156104c35760405163313c898160e11b81526004810185905260240161036e565b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c988888861050e8c6001600160a01b03165f90815260086020526040902080546001810190915590565b6040805160208101969096526001600160a01b0394851690860152929091166060840152608083015260a082015260c0810186905260e0016040516020818303038152906040528051906020012090505f6105688261089c565b90505f610577828787876108c8565b9050896001600160a01b0316816001600160a01b0316146105be576040516325c0072360e11b81526001600160a01b0380831660048301528b16602482015260440161036e565b6105c98a8a8a6105d5565b50505050505050505050565b6105e283838360016108f4565b505050565b604080516001600160a01b0385811660248301528416604482015260648082018490528251808303909101815260849091019091526020810180516001600160e01b03166323b872dd60e01b1790526106419085906109c6565b50505050565b6001600160a01b03831661067057604051634b637e8f60e11b81525f600482015260240161036e565b6001600160a01b0382166106995760405163ec442f0560e01b81525f600482015260240161036e565b6105e2838383610a27565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f198114610641578181101561070b57604051637dc7a0d960e11b81526001600160a01b0384166004820152602481018290526044810183905260640161036e565b61064184848484035f6108f4565b5f306001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614801561077157507f000000000000000000000000000000000000000000000000000000000000000046145b1561079b57507f000000000000000000000000000000000000000000000000000000000000000090565b61041f604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f0000000000000000000000000000000000000000000000000000000000000000918101919091527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b606061041f7f00000000000000000000000000000000000000000000000000000000000000006006610b4d565b606061041f7f00000000000000000000000000000000000000000000000000000000000000006007610b4d565b5f61032a6108a8610719565b8360405161190160f01b8152600281019290925260228201526042902090565b5f805f806108d888888888610bf6565b9250925092506108e88282610cbe565b50909695505050505050565b6001600160a01b03841661091d5760405163e602df0560e01b81525f600482015260240161036e565b6001600160a01b03831661094657604051634a1406b160e11b81525f600482015260240161036e565b6001600160a01b038085165f908152600160209081526040808320938716835292905220829055801561064157826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925846040516109b891815260200190565b60405180910390a350505050565b5f6109da6001600160a01b03841683610d7a565b905080515f141580156109fe5750808060200190518101906109fc919061117e565b155b156105e257604051635274afe760e01b81526001600160a01b038416600482015260240161036e565b6001600160a01b038316610a51578060025f828254610a46919061119d565b90915550610ac19050565b6001600160a01b0383165f9081526020819052604090205481811015610aa35760405163391434e360e21b81526001600160a01b0385166004820152602481018290526044810183905260640161036e565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b038216610add57600280548290039055610afb565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051610b4091815260200190565b60405180910390a3505050565b606060ff8314610b6757610b6083610d87565b905061032a565b818054610b7390611146565b80601f0160208091040260200160405190810160405280929190818152602001828054610b9f90611146565b8015610bea5780601f10610bc157610100808354040283529160200191610bea565b820191905f5260205f20905b815481529060010190602001808311610bcd57829003601f168201915b5050505050905061032a565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841115610c2f57505f91506003905082610cb4565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015610c80573d5f803e3d5ffd5b5050604051601f1901519150506001600160a01b038116610cab57505f925060019150829050610cb4565b92505f91508190505b9450945094915050565b5f826003811115610cd157610cd16111bc565b03610cda575050565b6001826003811115610cee57610cee6111bc565b03610d0c5760405163f645eedf60e01b815260040160405180910390fd5b6002826003811115610d2057610d206111bc565b03610d415760405163fce698f760e01b81526004810182905260240161036e565b6003826003811115610d5557610d556111bc565b03610d76576040516335e2f38360e21b81526004810182905260240161036e565b5050565b606061040f83835f610dc4565b60605f610d9383610e5d565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b606081471015610de95760405163cd78605960e01b815230600482015260240161036e565b5f80856001600160a01b03168486604051610e0491906111d0565b5f6040518083038185875af1925050503d805f8114610e3e576040519150601f19603f3d011682016040523d82523d5f602084013e610e43565b606091505b5091509150610e53868383610e84565b9695505050505050565b5f60ff8216601f81111561032a57604051632cd44ac360e21b815260040160405180910390fd5b606082610e9957610e9482610ee0565b61040f565b8151158015610eb057506001600160a01b0384163b155b15610ed957604051639996b31560e01b81526001600160a01b038516600482015260240161036e565b508061040f565b805115610ef05780518082602001fd5b604051630a12f52160e11b815260040160405180910390fd5b5f5b83811015610f23578181015183820152602001610f0b565b50505f910152565b5f8151808452610f42816020860160208601610f09565b601f01601f19169290920160200192915050565b602081525f61040f6020830184610f2b565b80356001600160a01b0381168114610f7e575f80fd5b919050565b5f8060408385031215610f94575f80fd5b610f9d83610f68565b946020939093013593505050565b5f60208284031215610fbb575f80fd5b5035919050565b5f805f60608486031215610fd4575f80fd5b610fdd84610f68565b9250610feb60208501610f68565b9150604084013590509250925092565b5f6020828403121561100b575f80fd5b61040f82610f68565b60ff60f81b881681525f602060e08184015261103360e084018a610f2b565b8381036040850152611045818a610f2b565b606085018990526001600160a01b038816608086015260a0850187905284810360c086015285518082528387019250908301905f5b818110156110965783518352928401929184019160010161107a565b50909c9b505050505050505050505050565b5f805f805f805f60e0888a0312156110be575f80fd5b6110c788610f68565b96506110d560208901610f68565b95506040880135945060608801359350608088013560ff811681146110f8575f80fd5b9699959850939692959460a0840135945060c09093013592915050565b5f8060408385031215611126575f80fd5b61112f83610f68565b915061113d60208401610f68565b90509250929050565b600181811c9082168061115a57607f821691505b60208210810361117857634e487b7160e01b5f52602260045260245ffd5b50919050565b5f6020828403121561118e575f80fd5b8151801515811461040f575f80fd5b8082018082111561032a57634e487b7160e01b5f52601160045260245ffd5b634e487b7160e01b5f52602160045260245ffd5b5f82516111e1818460208701610f09565b919091019291505056fea2646970667358221220adc571df8e93a80f96e835668504531758401dd113c63ff5d67117b347f4077664736f6c634300081400330000000000000000000000009b99cca871be05119b2012fd4474731dd653febe00000000000000000000000000000000000000000000000000000000000000a000000000000000000000000000000000000000000000000000000000000000e0000000000000000000000000000000000000000000000000000000000000001200000000000000000000000000000000000000000052b7d2dcc80cd2e40000000000000000000000000000000000000000000000000000000000000000000018426974756e6520414920506c6174666f726d20546f6b656e0000000000000000000000000000000000000000000000000000000000000000000000000000000454554e4500000000000000000000000000000000000000000000000000000000

Deployed Bytecode

0x608060405234801561000f575f80fd5b50600436106100f0575f3560e01c806370a082311161009357806395d89b411161006357806395d89b4114610221578063a9059cbb14610229578063d505accf1461023c578063dd62ed3e1461024f575f80fd5b806370a082311461018c578063753894f3146101b45780637ecebe00146101f357806384b0196e14610206575f80fd5b80631a50c853116100ce5780631a50c8531461014757806323b872dd1461015c578063313ce5671461016f5780633644e51514610184575f80fd5b806306fdde03146100f4578063095ea7b31461011257806318160ddd14610135575b5f80fd5b6100fc610287565b6040516101099190610f56565b60405180910390f35b610125610120366004610f83565b610317565b6040519015158152602001610109565b6002545b604051908152602001610109565b61015a610155366004610fab565b610330565b005b61012561016a366004610fc2565b6103f1565b60035460405160ff9091168152602001610109565b610139610416565b61013961019a366004610ffb565b6001600160a01b03165f9081526020819052604090205490565b6101db7f0000000000000000000000009b99cca871be05119b2012fd4474731dd653febe81565b6040516001600160a01b039091168152602001610109565b610139610201366004610ffb565b610424565b61020e610441565b6040516101099796959493929190611014565b6100fc610483565b610125610237366004610f83565b610492565b61015a61024a3660046110a8565b61049f565b61013961025d366004611115565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b60606004805461029690611146565b80601f01602080910402602001604051908101604052809291908181526020018280546102c290611146565b801561030d5780601f106102e45761010080835404028352916020019161030d565b820191905f5260205f20905b8154815290600101906020018083116102f057829003601f168201915b5050505050905090565b5f336103248185856105d5565b60019150505b92915050565b5f81116103775760405162461bcd60e51b815260206004820152601060248201526f0616d6f756e74206d75737420677420360841b60448201526064015b60405180910390fd5b6103ae6001600160a01b037f0000000000000000000000009b99cca871be05119b2012fd4474731dd653febe163361dead846105e7565b6103b9303383610647565b60405181815233907f078254c58cf2d358e22654408bbb36a5ec378ef9d8817f8ab81d0b0e0461eb619060200160405180910390a250565b5f336103fe8582856106a4565b610409858585610647565b60019150505b9392505050565b5f61041f610719565b905090565b6001600160a01b0381165f9081526008602052604081205461032a565b5f6060805f805f6060610452610842565b61045a61086f565b604080515f80825260208201909252600f60f81b9b939a50919850469750309650945092509050565b60606005805461029690611146565b5f33610324818585610647565b834211156104c35760405163313c898160e11b81526004810185905260240161036e565b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c988888861050e8c6001600160a01b03165f90815260086020526040902080546001810190915590565b6040805160208101969096526001600160a01b0394851690860152929091166060840152608083015260a082015260c0810186905260e0016040516020818303038152906040528051906020012090505f6105688261089c565b90505f610577828787876108c8565b9050896001600160a01b0316816001600160a01b0316146105be576040516325c0072360e11b81526001600160a01b0380831660048301528b16602482015260440161036e565b6105c98a8a8a6105d5565b50505050505050505050565b6105e283838360016108f4565b505050565b604080516001600160a01b0385811660248301528416604482015260648082018490528251808303909101815260849091019091526020810180516001600160e01b03166323b872dd60e01b1790526106419085906109c6565b50505050565b6001600160a01b03831661067057604051634b637e8f60e11b81525f600482015260240161036e565b6001600160a01b0382166106995760405163ec442f0560e01b81525f600482015260240161036e565b6105e2838383610a27565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f198114610641578181101561070b57604051637dc7a0d960e11b81526001600160a01b0384166004820152602481018290526044810183905260640161036e565b61064184848484035f6108f4565b5f306001600160a01b037f0000000000000000000000001fac00ccee478eced6a120a50ed2ab28ee7fe32b1614801561077157507f000000000000000000000000000000000000000000000000000000000000000146145b1561079b57507f50a3a9a8964412fc656c33550d13d74f292f728ad31bf8f4f7e31fc8691c415090565b61041f604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527fcbefa581d8b7286dab73c95ccda2ecdd8e180f4404585dc4c2b112d596092d37918101919091527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b606061041f7f426974756e6520414920506c6174666f726d20546f6b656e00000000000000186006610b4d565b606061041f7f31000000000000000000000000000000000000000000000000000000000000016007610b4d565b5f61032a6108a8610719565b8360405161190160f01b8152600281019290925260228201526042902090565b5f805f806108d888888888610bf6565b9250925092506108e88282610cbe565b50909695505050505050565b6001600160a01b03841661091d5760405163e602df0560e01b81525f600482015260240161036e565b6001600160a01b03831661094657604051634a1406b160e11b81525f600482015260240161036e565b6001600160a01b038085165f908152600160209081526040808320938716835292905220829055801561064157826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925846040516109b891815260200190565b60405180910390a350505050565b5f6109da6001600160a01b03841683610d7a565b905080515f141580156109fe5750808060200190518101906109fc919061117e565b155b156105e257604051635274afe760e01b81526001600160a01b038416600482015260240161036e565b6001600160a01b038316610a51578060025f828254610a46919061119d565b90915550610ac19050565b6001600160a01b0383165f9081526020819052604090205481811015610aa35760405163391434e360e21b81526001600160a01b0385166004820152602481018290526044810183905260640161036e565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b038216610add57600280548290039055610afb565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051610b4091815260200190565b60405180910390a3505050565b606060ff8314610b6757610b6083610d87565b905061032a565b818054610b7390611146565b80601f0160208091040260200160405190810160405280929190818152602001828054610b9f90611146565b8015610bea5780601f10610bc157610100808354040283529160200191610bea565b820191905f5260205f20905b815481529060010190602001808311610bcd57829003601f168201915b5050505050905061032a565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841115610c2f57505f91506003905082610cb4565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015610c80573d5f803e3d5ffd5b5050604051601f1901519150506001600160a01b038116610cab57505f925060019150829050610cb4565b92505f91508190505b9450945094915050565b5f826003811115610cd157610cd16111bc565b03610cda575050565b6001826003811115610cee57610cee6111bc565b03610d0c5760405163f645eedf60e01b815260040160405180910390fd5b6002826003811115610d2057610d206111bc565b03610d415760405163fce698f760e01b81526004810182905260240161036e565b6003826003811115610d5557610d556111bc565b03610d76576040516335e2f38360e21b81526004810182905260240161036e565b5050565b606061040f83835f610dc4565b60605f610d9383610e5d565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b606081471015610de95760405163cd78605960e01b815230600482015260240161036e565b5f80856001600160a01b03168486604051610e0491906111d0565b5f6040518083038185875af1925050503d805f8114610e3e576040519150601f19603f3d011682016040523d82523d5f602084013e610e43565b606091505b5091509150610e53868383610e84565b9695505050505050565b5f60ff8216601f81111561032a57604051632cd44ac360e21b815260040160405180910390fd5b606082610e9957610e9482610ee0565b61040f565b8151158015610eb057506001600160a01b0384163b155b15610ed957604051639996b31560e01b81526001600160a01b038516600482015260240161036e565b508061040f565b805115610ef05780518082602001fd5b604051630a12f52160e11b815260040160405180910390fd5b5f5b83811015610f23578181015183820152602001610f0b565b50505f910152565b5f8151808452610f42816020860160208601610f09565b601f01601f19169290920160200192915050565b602081525f61040f6020830184610f2b565b80356001600160a01b0381168114610f7e575f80fd5b919050565b5f8060408385031215610f94575f80fd5b610f9d83610f68565b946020939093013593505050565b5f60208284031215610fbb575f80fd5b5035919050565b5f805f60608486031215610fd4575f80fd5b610fdd84610f68565b9250610feb60208501610f68565b9150604084013590509250925092565b5f6020828403121561100b575f80fd5b61040f82610f68565b60ff60f81b881681525f602060e08184015261103360e084018a610f2b565b8381036040850152611045818a610f2b565b606085018990526001600160a01b038816608086015260a0850187905284810360c086015285518082528387019250908301905f5b818110156110965783518352928401929184019160010161107a565b50909c9b505050505050505050505050565b5f805f805f805f60e0888a0312156110be575f80fd5b6110c788610f68565b96506110d560208901610f68565b95506040880135945060608801359350608088013560ff811681146110f8575f80fd5b9699959850939692959460a0840135945060c09093013592915050565b5f8060408385031215611126575f80fd5b61112f83610f68565b915061113d60208401610f68565b90509250929050565b600181811c9082168061115a57607f821691505b60208210810361117857634e487b7160e01b5f52602260045260245ffd5b50919050565b5f6020828403121561118e575f80fd5b8151801515811461040f575f80fd5b8082018082111561032a57634e487b7160e01b5f52601160045260245ffd5b634e487b7160e01b5f52602160045260245ffd5b5f82516111e1818460208701610f09565b919091019291505056fea2646970667358221220adc571df8e93a80f96e835668504531758401dd113c63ff5d67117b347f4077664736f6c63430008140033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000009b99cca871be05119b2012fd4474731dd653febe00000000000000000000000000000000000000000000000000000000000000a000000000000000000000000000000000000000000000000000000000000000e0000000000000000000000000000000000000000000000000000000000000001200000000000000000000000000000000000000000052b7d2dcc80cd2e40000000000000000000000000000000000000000000000000000000000000000000018426974756e6520414920506c6174666f726d20546f6b656e0000000000000000000000000000000000000000000000000000000000000000000000000000000454554e4500000000000000000000000000000000000000000000000000000000

-----Decoded View---------------
Arg [0] : _token (address): 0x9B99CcA871Be05119B2012fd4474731dd653FEBe
Arg [1] : name (string): Bitune AI Platform Token
Arg [2] : symbol (string): TUNE
Arg [3] : decimals (uint8): 18
Arg [4] : totalSupply (uint256): 100000000000000000000000000

-----Encoded View---------------
9 Constructor Arguments found :
Arg [0] : 0000000000000000000000009b99cca871be05119b2012fd4474731dd653febe
Arg [1] : 00000000000000000000000000000000000000000000000000000000000000a0
Arg [2] : 00000000000000000000000000000000000000000000000000000000000000e0
Arg [3] : 0000000000000000000000000000000000000000000000000000000000000012
Arg [4] : 00000000000000000000000000000000000000000052b7d2dcc80cd2e4000000
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000018
Arg [6] : 426974756e6520414920506c6174666f726d20546f6b656e0000000000000000
Arg [7] : 0000000000000000000000000000000000000000000000000000000000000004
Arg [8] : 54554e4500000000000000000000000000000000000000000000000000000000


Deployed Bytecode Sourcemap

168:828:0:-:0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;55345:89:1;;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;57571:186;;;;;;:::i;:::-;;:::i;:::-;;;1372:14:2;;1365:22;1347:41;;1335:2;1320:18;57571:186:1;1207:187:2;56422:97:1;56500:12;;56422:97;;;1545:25:2;;;1533:2;1518:18;56422:97:1;1399:177:2;727:267:0;;;;;;:::i;:::-;;:::i;:::-;;58317:244:1;;;;;;:::i;:::-;;:::i;56273:89::-;56346:9;;56273:89;;56346:9;;;;2241:36:2;;2229:2;2214:18;56273:89:1;2099:184:2;75636:112:1;;;:::i;56577:116::-;;;;;;:::i;:::-;-1:-1:-1;;;;;56668:18:1;56642:7;56668:18;;;;;;;;;;;;56577:116;237:35:0;;;;;;;;-1:-1:-1;;;;;2840:32:2;;;2822:51;;2810:2;2795:18;237:35:0;2661:218:2;75386:143:1;;;;;;:::i;:::-;;:::i;42623:557::-;;;:::i;:::-;;;;;;;;;;;;;:::i;55547:93::-;;;:::i;56888:178::-;;;;;;:::i;:::-;;:::i;74660:672::-;;;;;;:::i;:::-;;:::i;57124:140::-;;;;;;:::i;:::-;-1:-1:-1;;;;;57230:18:1;;;57204:7;57230:18;;;:11;:18;;;;;;;;:27;;;;;;;;;;;;;57124:140;55345:89;55390:13;55422:5;55415:12;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;55345:89;:::o;57571:186::-;57644:4;44700:10;57698:31;44700:10;57714:7;57723:5;57698:8;:31::i;:::-;57746:4;57739:11;;;57571:186;;;;;:::o;727:267:0:-;802:1;792:7;:11;784:39;;;;-1:-1:-1;;;784:39:0;;5698:2:2;784:39:0;;;5680:21:2;5737:2;5717:18;;;5710:30;-1:-1:-1;;;5756:18:2;;;5749:46;5812:18;;784:39:0;;;;;;;;;833:55;-1:-1:-1;;;;;833:11:0;:28;862:10;302:42;880:7;833:28;:55::i;:::-;898:43;916:4;922:10;933:7;898:9;:43::i;:::-;956:31;;1545:25:2;;;968:10:0;;956:31;;1533:2:2;1518:18;956:31:0;;;;;;;727:267;:::o;58317:244:1:-;58404:4;44700:10;58460:37;58476:4;44700:10;58491:5;58460:15;:37::i;:::-;58507:26;58517:4;58523:2;58527:5;58507:9;:26::i;:::-;58550:4;58543:11;;;58317:244;;;;;;:::o;75636:112::-;75695:7;75721:20;:18;:20::i;:::-;75714:27;;75636:112;:::o;75386:143::-;-1:-1:-1;;;;;64922:14:1;;75477:7;64922:14;;;:7;:14;;;;;;75503:19;64836:107;42623:557;42721:13;42748:18;42780:21;42815:15;42844:25;42883:12;42909:27;43012:13;:11;:13::i;:::-;43039:16;:14;:16::i;:::-;43147;;;43131:1;43147:16;;;;;;;;;-1:-1:-1;;;42961:212:1;;;-1:-1:-1;42961:212:1;;-1:-1:-1;43069:13:1;;-1:-1:-1;43104:4:1;;-1:-1:-1;43131:1:1;-1:-1:-1;43147:16:1;-1:-1:-1;42961:212:1;-1:-1:-1;42623:557:1:o;55547:93::-;55594:13;55626:7;55619:14;;;;;:::i;56888:178::-;56957:4;44700:10;57011:27;44700:10;57028:2;57032:5;57011:9;:27::i;74660:672::-;74881:8;74863:15;:26;74859:97;;;74912:33;;-1:-1:-1;;;74912:33:1;;;;;1545:25:2;;;1518:18;;74912:33:1;1399:177:2;74859:97:1;74966:18;74001:95;75025:5;75032:7;75041:5;75048:16;75058:5;-1:-1:-1;;;;;65419:14:1;65117:7;65419:14;;;:7;:14;;;;;:16;;;;;;;;;65057:395;75048:16;74997:78;;;;;;6260:25:2;;;;-1:-1:-1;;;;;6359:15:2;;;6339:18;;;6332:43;6411:15;;;;6391:18;;;6384:43;6443:18;;;6436:34;6486:19;;;6479:35;6530:19;;;6523:35;;;6232:19;;74997:78:1;;;;;;;;;;;;74987:89;;;;;;74966:110;;75087:12;75102:28;75119:10;75102:16;:28::i;:::-;75087:43;;75141:14;75158:28;75172:4;75178:1;75181;75184;75158:13;:28::i;:::-;75141:45;;75210:5;-1:-1:-1;;;;;75200:15:1;:6;-1:-1:-1;;;;;75200:15:1;;75196:88;;75238:35;;-1:-1:-1;;;75238:35:1;;-1:-1:-1;;;;;6799:15:2;;;75238:35:1;;;6781:34:2;6851:15;;6831:18;;;6824:43;6716:18;;75238:35:1;6569:304:2;75196:88:1;75294:31;75303:5;75310:7;75319:5;75294:8;:31::i;:::-;74849:483;;;74660:672;;;;;;;:::o;62267:128::-;62351:37;62360:5;62367:7;62376:5;62383:4;62351:8;:37::i;:::-;62267:128;;;:::o;77164:188::-;77291:53;;;-1:-1:-1;;;;;7136:15:2;;;77291:53:1;;;7118:34:2;7188:15;;7168:18;;;7161:43;7220:18;;;;7213:34;;;77291:53:1;;;;;;;;;;7053:18:2;;;;77291:53:1;;;;;;;;-1:-1:-1;;;;;77291:53:1;-1:-1:-1;;;77291:53:1;;;77264:81;;77284:5;;77264:19;:81::i;:::-;77164:188;;;;:::o;58934:300::-;-1:-1:-1;;;;;59017:18:1;;59013:86;;59058:30;;-1:-1:-1;;;59058:30:1;;59085:1;59058:30;;;2822:51:2;2795:18;;59058:30:1;2661:218:2;59013:86:1;-1:-1:-1;;;;;59112:16:1;;59108:86;;59151:32;;-1:-1:-1;;;59151:32:1;;59180:1;59151:32;;;2822:51:2;2795:18;;59151:32:1;2661:218:2;59108:86:1;59203:24;59211:4;59217:2;59221:5;59203:7;:24::i;63941:477::-;-1:-1:-1;;;;;57230:18:1;;;64040:24;57230:18;;;:11;:18;;;;;;;;:27;;;;;;;;;;-1:-1:-1;;64106:37:1;;64102:310;;64182:5;64163:16;:24;64159:130;;;64214:60;;-1:-1:-1;;;64214:60:1;;-1:-1:-1;;;;;7686:32:2;;64214:60:1;;;7668:51:2;7735:18;;;7728:34;;;7778:18;;;7771:34;;;7641:18;;64214:60:1;7466:345:2;64159:130:1;64330:57;64339:5;64346:7;64374:5;64355:16;:24;64381:5;64330:8;:57::i;41324:262::-;41377:7;41408:4;-1:-1:-1;;;;;41417:11:1;41400:28;;:63;;;;;41449:14;41432:13;:31;41400:63;41396:184;;;-1:-1:-1;41486:22:1;;41324:262::o;41396:184::-;41546:23;41683:80;;;39558:95;41683:80;;;8584:25:2;41705:11:1;8625:18:2;;;8618:34;;;;41718:14:1;8668:18:2;;;8661:34;41734:13:1;8711:18:2;;;8704:34;41757:4:1;8754:19:2;;;8747:61;41647:7:1;;8556:19:2;;41683:80:1;;;;;;;;;;;;41673:91;;;;;;41666:98;;41592:179;;43500:126;43546:13;43578:41;:5;43605:13;43578:26;:41::i;43952:135::-;44001:13;44033:47;:8;44063:16;44033:29;:47::i;42396:176::-;42473:7;42499:66;42532:20;:18;:20::i;:::-;42554:10;29137:4;29131:11;-1:-1:-1;;;29155:23:1;;29207:4;29198:14;;29191:39;;;;29259:4;29250:14;;29243:34;29315:4;29300:20;;;28935:401;72455:260;72540:7;72560:17;72579:18;72599:16;72619:25;72630:4;72636:1;72639;72642;72619:10;:25::i;:::-;72559:85;;;;;;72654:28;72666:5;72673:8;72654:11;:28::i;:::-;-1:-1:-1;72699:9:1;;72455:260;-1:-1:-1;;;;;;72455:260:1:o;63227:432::-;-1:-1:-1;;;;;63339:19:1;;63335:89;;63381:32;;-1:-1:-1;;;63381:32:1;;63410:1;63381:32;;;2822:51:2;2795:18;;63381:32:1;2661:218:2;63335:89:1;-1:-1:-1;;;;;63437:21:1;;63433:90;;63481:31;;-1:-1:-1;;;63481:31:1;;63509:1;63481:31;;;2822:51:2;2795:18;;63481:31:1;2661:218:2;63433:90:1;-1:-1:-1;;;;;63532:18:1;;;;;;;:11;:18;;;;;;;;:27;;;;;;;;;:35;;;63577:76;;;;63627:7;-1:-1:-1;;;;;63611:31:1;63620:5;-1:-1:-1;;;;;63611:31:1;;63636:5;63611:31;;;;1545:25:2;;1533:2;1518:18;;1399:177;63611:31:1;;;;;;;;63227:432;;;;:::o;79521:629::-;79940:23;79966:33;-1:-1:-1;;;;;79966:27:1;;79994:4;79966:27;:33::i;:::-;79940:59;;80013:10;:17;80034:1;80013:22;;:57;;;;;80051:10;80040:30;;;;;;;;;;;;:::i;:::-;80039:31;80013:57;80009:135;;;80093:40;;-1:-1:-1;;;80093:40:1;;-1:-1:-1;;;;;2840:32:2;;80093:40:1;;;2822:51:2;2795:18;;80093:40:1;2661:218:2;59549:1107:1;-1:-1:-1;;;;;59638:18:1;;59634:540;;59790:5;59774:12;;:21;;;;;;;:::i;:::-;;;;-1:-1:-1;59634:540:1;;-1:-1:-1;59634:540:1;;-1:-1:-1;;;;;59848:15:1;;59826:19;59848:15;;;;;;;;;;;59881:19;;;59877:115;;;59927:50;;-1:-1:-1;;;59927:50:1;;-1:-1:-1;;;;;7686:32:2;;59927:50:1;;;7668:51:2;7735:18;;;7728:34;;;7778:18;;;7771:34;;;7641:18;;59927:50:1;7466:345:2;59877:115:1;-1:-1:-1;;;;;60112:15:1;;:9;:15;;;;;;;;;;60130:19;;;;60112:37;;59634:540;-1:-1:-1;;;;;60188:16:1;;60184:425;;60351:12;:21;;;;;;;60184:425;;;-1:-1:-1;;;;;60562:13:1;;:9;:13;;;;;;;;;;:22;;;;;;60184:425;60639:2;-1:-1:-1;;;;;60624:25:1;60633:4;-1:-1:-1;;;;;60624:25:1;;60643:5;60624:25;;;;1545::2;;1533:2;1518:18;;1399:177;60624:25:1;;;;;;;;59549:1107;;;:::o;36261:267::-;36355:13;34266:66;36384:46;;36380:142;;36453:15;36462:5;36453:8;:15::i;:::-;36446:22;;;;36380:142;36506:5;36499:12;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;70792:1530;70918:7;;;71851:66;71838:79;;71834:164;;;-1:-1:-1;71949:1:1;;-1:-1:-1;71953:30:1;;-1:-1:-1;71985:1:1;71933:54;;71834:164;72109:24;;;72092:14;72109:24;;;;;;;;;9046:25:2;;;9119:4;9107:17;;9087:18;;;9080:45;;;;9141:18;;;9134:34;;;9184:18;;;9177:34;;;72109:24:1;;9018:19:2;;72109:24:1;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;72109:24:1;;-1:-1:-1;;72109:24:1;;;-1:-1:-1;;;;;;;72147:20:1;;72143:113;;-1:-1:-1;72199:1:1;;-1:-1:-1;72203:29:1;;-1:-1:-1;72199:1:1;;-1:-1:-1;72183:62:1;;72143:113;72274:6;-1:-1:-1;72282:20:1;;-1:-1:-1;72282:20:1;;-1:-1:-1;70792:1530:1;;;;;;;;;:::o;72848:532::-;72943:20;72934:5;:29;;;;;;;;:::i;:::-;;72930:444;;72848:532;;:::o;72930:444::-;73039:29;73030:5;:38;;;;;;;;:::i;:::-;;73026:348;;73091:23;;-1:-1:-1;;;73091:23:1;;;;;;;;;;;73026:348;73144:35;73135:5;:44;;;;;;;;:::i;:::-;;73131:243;;73202:46;;-1:-1:-1;;;73202:46:1;;;;;1545:25:2;;;1518:18;;73202:46:1;1399:177:2;73131:243:1;73278:30;73269:5;:39;;;;;;;;:::i;:::-;;73265:109;;73331:32;;-1:-1:-1;;;73331:32:1;;;;;1545:25:2;;;1518:18;;73331:32:1;1399:177:2;73265:109:1;72848:532;;:::o;2728:151::-;2803:12;2834:38;2856:6;2864:4;2870:1;2834:21;:38::i;34954:405::-;35013:13;35038:11;35052:16;35063:4;35052:10;:16::i;:::-;35176:14;;;35187:2;35176:14;;;;;;;;;35038:30;;-1:-1:-1;35156:17:1;;35176:14;;;;;;;;;-1:-1:-1;;;35266:16:1;;;-1:-1:-1;35311:4:1;35302:14;;35295:28;;;;-1:-1:-1;35266:16:1;34954:405::o;3203:392::-;3302:12;3354:5;3330:21;:29;3326:108;;;3382:41;;-1:-1:-1;;;3382:41:1;;3417:4;3382:41;;;2822:51:2;2795:18;;3382:41:1;2661:218:2;3326:108:1;3444:12;3458:23;3485:6;-1:-1:-1;;;;;3485:11:1;3504:5;3511:4;3485:31;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;3443:73;;;;3533:55;3560:6;3568:7;3577:10;3533:26;:55::i;:::-;3526:62;3203:392;-1:-1:-1;;;;;;3203:392:1:o;35431:245::-;35492:7;35564:4;35528:40;;35591:2;35582:11;;35578:69;;;35616:20;;-1:-1:-1;;;35616:20:1;;;;;;;;;;;4648:582;4792:12;4821:7;4816:408;;4844:19;4852:10;4844:7;:19::i;:::-;4816:408;;;5068:17;;:22;:49;;;;-1:-1:-1;;;;;;5094:18:1;;;:23;5068:49;5064:119;;;5144:24;;-1:-1:-1;;;5144:24:1;;-1:-1:-1;;;;;2840:32:2;;5144:24:1;;;2822:51:2;2795:18;;5144:24:1;2661:218:2;5064:119:1;-1:-1:-1;5203:10:1;5196:17;;5766:516;5897:17;;:21;5893:383;;6125:10;6119:17;6181:15;6168:10;6164:2;6160:19;6153:44;5893:383;6248:17;;-1:-1:-1;;;6248:17:1;;;;;;;;;;;14:250:2;99:1;109:113;123:6;120:1;117:13;109:113;;;199:11;;;193:18;180:11;;;173:39;145:2;138:10;109:113;;;-1:-1:-1;;256:1:2;238:16;;231:27;14:250::o;269:271::-;311:3;349:5;343:12;376:6;371:3;364:19;392:76;461:6;454:4;449:3;445:14;438:4;431:5;427:16;392:76;:::i;:::-;522:2;501:15;-1:-1:-1;;497:29:2;488:39;;;;529:4;484:50;;269:271;-1:-1:-1;;269:271:2:o;545:220::-;694:2;683:9;676:21;657:4;714:45;755:2;744:9;740:18;732:6;714:45;:::i;770:173::-;838:20;;-1:-1:-1;;;;;887:31:2;;877:42;;867:70;;933:1;930;923:12;867:70;770:173;;;:::o;948:254::-;1016:6;1024;1077:2;1065:9;1056:7;1052:23;1048:32;1045:52;;;1093:1;1090;1083:12;1045:52;1116:29;1135:9;1116:29;:::i;:::-;1106:39;1192:2;1177:18;;;;1164:32;;-1:-1:-1;;;948:254:2:o;1581:180::-;1640:6;1693:2;1681:9;1672:7;1668:23;1664:32;1661:52;;;1709:1;1706;1699:12;1661:52;-1:-1:-1;1732:23:2;;1581:180;-1:-1:-1;1581:180:2:o;1766:328::-;1843:6;1851;1859;1912:2;1900:9;1891:7;1887:23;1883:32;1880:52;;;1928:1;1925;1918:12;1880:52;1951:29;1970:9;1951:29;:::i;:::-;1941:39;;1999:38;2033:2;2022:9;2018:18;1999:38;:::i;:::-;1989:48;;2084:2;2073:9;2069:18;2056:32;2046:42;;1766:328;;;;;:::o;2470:186::-;2529:6;2582:2;2570:9;2561:7;2557:23;2553:32;2550:52;;;2598:1;2595;2588:12;2550:52;2621:29;2640:9;2621:29;:::i;2884:1259::-;3290:3;3285;3281:13;3273:6;3269:26;3258:9;3251:45;3232:4;3315:2;3353:3;3348:2;3337:9;3333:18;3326:31;3380:46;3421:3;3410:9;3406:19;3398:6;3380:46;:::i;:::-;3474:9;3466:6;3462:22;3457:2;3446:9;3442:18;3435:50;3508:33;3534:6;3526;3508:33;:::i;:::-;3572:2;3557:18;;3550:34;;;-1:-1:-1;;;;;3621:32:2;;3615:3;3600:19;;3593:61;3641:3;3670:19;;3663:35;;;3735:22;;;3729:3;3714:19;;3707:51;3807:13;;3829:22;;;3905:15;;;;-1:-1:-1;3867:15:2;;;;-1:-1:-1;3948:169:2;3962:6;3959:1;3956:13;3948:169;;;4023:13;;4011:26;;4092:15;;;;4057:12;;;;3984:1;3977:9;3948:169;;;-1:-1:-1;4134:3:2;;2884:1259;-1:-1:-1;;;;;;;;;;;;2884:1259:2:o;4148:693::-;4259:6;4267;4275;4283;4291;4299;4307;4360:3;4348:9;4339:7;4335:23;4331:33;4328:53;;;4377:1;4374;4367:12;4328:53;4400:29;4419:9;4400:29;:::i;:::-;4390:39;;4448:38;4482:2;4471:9;4467:18;4448:38;:::i;:::-;4438:48;;4533:2;4522:9;4518:18;4505:32;4495:42;;4584:2;4573:9;4569:18;4556:32;4546:42;;4638:3;4627:9;4623:19;4610:33;4683:4;4676:5;4672:16;4665:5;4662:27;4652:55;;4703:1;4700;4693:12;4652:55;4148:693;;;;-1:-1:-1;4148:693:2;;;;4726:5;4778:3;4763:19;;4750:33;;-1:-1:-1;4830:3:2;4815:19;;;4802:33;;4148:693;-1:-1:-1;;4148:693:2:o;4846:260::-;4914:6;4922;4975:2;4963:9;4954:7;4950:23;4946:32;4943:52;;;4991:1;4988;4981:12;4943:52;5014:29;5033:9;5014:29;:::i;:::-;5004:39;;5062:38;5096:2;5085:9;5081:18;5062:38;:::i;:::-;5052:48;;4846:260;;;;;:::o;5111:380::-;5190:1;5186:12;;;;5233;;;5254:61;;5308:4;5300:6;5296:17;5286:27;;5254:61;5361:2;5353:6;5350:14;5330:18;5327:38;5324:161;;5407:10;5402:3;5398:20;5395:1;5388:31;5442:4;5439:1;5432:15;5470:4;5467:1;5460:15;5324:161;;5111:380;;;:::o;7816:277::-;7883:6;7936:2;7924:9;7915:7;7911:23;7907:32;7904:52;;;7952:1;7949;7942:12;7904:52;7984:9;7978:16;8037:5;8030:13;8023:21;8016:5;8013:32;8003:60;;8059:1;8056;8049:12;8098:222;8163:9;;;8184:10;;;8181:133;;;8236:10;8231:3;8227:20;8224:1;8217:31;8271:4;8268:1;8261:15;8299:4;8296:1;8289:15;9222:127;9283:10;9278:3;9274:20;9271:1;9264:31;9314:4;9311:1;9304:15;9338:4;9335:1;9328:15;9354:287;9483:3;9521:6;9515:13;9537:66;9596:6;9591:3;9584:4;9576:6;9572:17;9537:66;:::i;:::-;9619:16;;;;;9354:287;-1:-1:-1;;9354:287:2:o

Swarm Source

ipfs://adc571df8e93a80f96e835668504531758401dd113c63ff5d67117b347f40776
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.