ERC-1155
Overview
Max Total Supply
10
Holders
3
Total Transfers
-
Market
Volume (24H)
N/A
Min Price (24H)
N/A
Max Price (24H)
N/A
Other Info
Token Contract
Loading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Minimal Proxy Contract for 0x2fbecab12cada3f01dfcab0c68ca0c5b08c0a080
Contract Name:
BridgedERC1155
Compiler Version
v0.8.4+commit.c7e474f2
Contract Source Code (Solidity)
/** *Submitted for verification at Etherscan.io on 2021-06-02 */ /* * Crypto stamp Bridge: Bridged ERC-1155 Token * Prototype contract for all ERC-1155 tokens deployed by bridging an original * ERC-1155 token from the other side of the bridge * * Developed by Capacity Blockchain Solutions GmbH <capacity.at> * for Österreichische Post AG <post.at> * * Any usage of or interaction with this set of contracts is subject to the * Terms & Conditions available at https://crypto.post.at/ */ // SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.0; // File: @openzeppelin/contracts/token/ERC20/IERC20.sol /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // File: @openzeppelin/contracts/utils/introspection/IERC165.sol /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // File: @openzeppelin/contracts/token/ERC721/IERC721.sol /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; } // File: @openzeppelin/contracts/token/ERC1155/IERC1155.sol /** * @dev Required interface of an ERC1155 compliant contract, as defined in the * https://eips.ethereum.org/EIPS/eip-1155[EIP]. * * _Available since v3.1._ */ interface IERC1155 is IERC165 { /** * @dev Emitted when `value` tokens of token type `id` are transferred from `from` to `to` by `operator`. */ event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value); /** * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all * transfers. */ event TransferBatch(address indexed operator, address indexed from, address indexed to, uint256[] ids, uint256[] values); /** * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to * `approved`. */ event ApprovalForAll(address indexed account, address indexed operator, bool approved); /** * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI. * * If an {URI} event was emitted for `id`, the standard * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value * returned by {IERC1155MetadataURI-uri}. */ event URI(string value, uint256 indexed id); /** * @dev Returns the amount of tokens of token type `id` owned by `account`. * * Requirements: * * - `account` cannot be the zero address. */ function balanceOf(address account, uint256 id) external view returns (uint256); /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}. * * Requirements: * * - `accounts` and `ids` must have the same length. */ function balanceOfBatch(address[] calldata accounts, uint256[] calldata ids) external view returns (uint256[] memory); /** * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`, * * Emits an {ApprovalForAll} event. * * Requirements: * * - `operator` cannot be the caller. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns true if `operator` is approved to transfer ``account``'s tokens. * * See {setApprovalForAll}. */ function isApprovedForAll(address account, address operator) external view returns (bool); /** * @dev Transfers `amount` tokens of token type `id` from `from` to `to`. * * Emits a {TransferSingle} event. * * Requirements: * * - `to` cannot be the zero address. * - If the caller is not `from`, it must be have been approved to spend ``from``'s tokens via {setApprovalForAll}. * - `from` must have a balance of tokens of type `id` of at least `amount`. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the * acceptance magic value. */ function safeTransferFrom(address from, address to, uint256 id, uint256 amount, bytes calldata data) external; /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}. * * Emits a {TransferBatch} event. * * Requirements: * * - `ids` and `amounts` must have the same length. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the * acceptance magic value. */ function safeBatchTransferFrom(address from, address to, uint256[] calldata ids, uint256[] calldata amounts, bytes calldata data) external; } // File: @openzeppelin/contracts/token/ERC1155/IERC1155Receiver.sol /** * _Available since v3.1._ */ interface IERC1155Receiver is IERC165 { /** @dev Handles the receipt of a single ERC1155 token type. This function is called at the end of a `safeTransferFrom` after the balance has been updated. To accept the transfer, this must return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` (i.e. 0xf23a6e61, or its own function selector). @param operator The address which initiated the transfer (i.e. msg.sender) @param from The address which previously owned the token @param id The ID of the token being transferred @param value The amount of tokens being transferred @param data Additional data with no specified format @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed */ function onERC1155Received( address operator, address from, uint256 id, uint256 value, bytes calldata data ) external returns(bytes4); /** @dev Handles the receipt of a multiple ERC1155 token types. This function is called at the end of a `safeBatchTransferFrom` after the balances have been updated. To accept the transfer(s), this must return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` (i.e. 0xbc197c81, or its own function selector). @param operator The address which initiated the batch transfer (i.e. msg.sender) @param from The address which previously owned the token @param ids An array containing ids of each token being transferred (order and length must match values array) @param values An array containing amounts of each token being transferred (order and length must match ids array) @param data Additional data with no specified format @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed */ function onERC1155BatchReceived( address operator, address from, uint256[] calldata ids, uint256[] calldata values, bytes calldata data ) external returns(bytes4); } // File: @openzeppelin/contracts/token/ERC1155/extensions/IERC1155MetadataURI.sol /** * @dev Interface of the optional ERC1155MetadataExtension interface, as defined * in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[EIP]. * * _Available since v3.1._ */ interface IERC1155MetadataURI is IERC1155 { /** * @dev Returns the URI for token type `id`. * * If the `\{id\}` substring is present in the URI, it must be replaced by * clients with the actual token type ID. */ function uri(uint256 id) external view returns (string memory); } // File: @openzeppelin/contracts/utils/Address.sol /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // File: @openzeppelin/contracts/utils/Context.sol /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // File: @openzeppelin/contracts/utils/introspection/ERC165.sol /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` * * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation. */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC165).interfaceId; } } // File: contracts/OZ_ERC1155.sol /* * This is a 1:1 copy of OpenZeppelin ERC1155.sol from master branch as of 2021-05-03. * This contains a patch that enables us to do signedTransfer without an ugly workaround. * See https://github.com/OpenZeppelin/openzeppelin-contracts/pull/2636 */ /** * @dev Implementation of the basic standard multi-token. * See https://eips.ethereum.org/EIPS/eip-1155 * Originally based on code by Enjin: https://github.com/enjin/erc-1155 * * _Available since v3.1._ */ contract ERC1155 is Context, ERC165, IERC1155, IERC1155MetadataURI { using Address for address; // Mapping from token ID to account balances mapping (uint256 => mapping(address => uint256)) private _balances; // Mapping from account to operator approvals mapping (address => mapping(address => bool)) private _operatorApprovals; // Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json string private _uri; /** * @dev See {_setURI}. */ constructor (string memory uri_) { _setURI(uri_); } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IERC1155).interfaceId || interfaceId == type(IERC1155MetadataURI).interfaceId || super.supportsInterface(interfaceId); } /** * @dev See {IERC1155MetadataURI-uri}. * * This implementation returns the same URI for *all* token types. It relies * on the token type ID substitution mechanism * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP]. * * Clients calling this function must replace the `\{id\}` substring with the * actual token type ID. */ function uri(uint256) public view virtual override returns (string memory) { return _uri; } /** * @dev See {IERC1155-balanceOf}. * * Requirements: * * - `account` cannot be the zero address. */ function balanceOf(address account, uint256 id) public view virtual override returns (uint256) { require(account != address(0), "ERC1155: balance query for the zero address"); return _balances[id][account]; } /** * @dev See {IERC1155-balanceOfBatch}. * * Requirements: * * - `accounts` and `ids` must have the same length. */ function balanceOfBatch( address[] memory accounts, uint256[] memory ids ) public view virtual override returns (uint256[] memory) { require(accounts.length == ids.length, "ERC1155: accounts and ids length mismatch"); uint256[] memory batchBalances = new uint256[](accounts.length); for (uint256 i = 0; i < accounts.length; ++i) { batchBalances[i] = balanceOf(accounts[i], ids[i]); } return batchBalances; } /** * @dev See {IERC1155-setApprovalForAll}. */ function setApprovalForAll(address operator, bool approved) public virtual override { require(_msgSender() != operator, "ERC1155: setting approval status for self"); _operatorApprovals[_msgSender()][operator] = approved; emit ApprovalForAll(_msgSender(), operator, approved); } /** * @dev See {IERC1155-isApprovedForAll}. */ function isApprovedForAll(address account, address operator) public view virtual override returns (bool) { return _operatorApprovals[account][operator]; } /** * @dev See {IERC1155-safeTransferFrom}. */ function safeTransferFrom( address from, address to, uint256 id, uint256 amount, bytes memory data ) public virtual override { require( from == _msgSender() || isApprovedForAll(from, _msgSender()), "ERC1155: caller is not owner nor approved" ); _safeTransferFrom(from, to, id, amount, data); } /** * @dev See {IERC1155-safeBatchTransferFrom}. */ function safeBatchTransferFrom( address from, address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) public virtual override { require( from == _msgSender() || isApprovedForAll(from, _msgSender()), "ERC1155: transfer caller is not owner nor approved" ); _safeBatchTransferFrom(from, to, ids, amounts, data); } /** * @dev Transfers `amount` tokens of token type `id` from `from` to `to`. * * Emits a {TransferSingle} event. * * Requirements: * * - `to` cannot be the zero address. * - `from` must have a balance of tokens of type `id` of at least `amount`. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the * acceptance magic value. */ function _safeTransferFrom( address from, address to, uint256 id, uint256 amount, bytes memory data ) internal virtual { require(to != address(0), "ERC1155: transfer to the zero address"); address operator = _msgSender(); _beforeTokenTransfer(operator, from, to, _asSingletonArray(id), _asSingletonArray(amount), data); uint256 fromBalance = _balances[id][from]; require(fromBalance >= amount, "ERC1155: insufficient balance for transfer"); _balances[id][from] = fromBalance - amount; _balances[id][to] += amount; emit TransferSingle(operator, from, to, id, amount); _doSafeTransferAcceptanceCheck(operator, from, to, id, amount, data); } /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}. * * Emits a {TransferBatch} event. * * Requirements: * * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the * acceptance magic value. */ function _safeBatchTransferFrom( address from, address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) internal virtual { require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch"); require(to != address(0), "ERC1155: transfer to the zero address"); address operator = _msgSender(); _beforeTokenTransfer(operator, from, to, ids, amounts, data); for (uint256 i = 0; i < ids.length; ++i) { uint256 id = ids[i]; uint256 amount = amounts[i]; uint256 fromBalance = _balances[id][from]; require(fromBalance >= amount, "ERC1155: insufficient balance for transfer"); _balances[id][from] = fromBalance - amount; _balances[id][to] += amount; } emit TransferBatch(operator, from, to, ids, amounts); _doSafeBatchTransferAcceptanceCheck(operator, from, to, ids, amounts, data); } /** * @dev Sets a new URI for all token types, by relying on the token type ID * substitution mechanism * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP]. * * By this mechanism, any occurrence of the `\{id\}` substring in either the * URI or any of the amounts in the JSON file at said URI will be replaced by * clients with the token type ID. * * For example, the `https://token-cdn-domain/\{id\}.json` URI would be * interpreted by clients as * `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json` * for token type ID 0x4cce0. * * See {uri}. * * Because these URIs cannot be meaningfully represented by the {URI} event, * this function emits no events. */ function _setURI(string memory newuri) internal virtual { _uri = newuri; } /** * @dev Creates `amount` tokens of token type `id`, and assigns them to `account`. * * Emits a {TransferSingle} event. * * Requirements: * * - `account` cannot be the zero address. * - If `account` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the * acceptance magic value. */ function _mint(address account, uint256 id, uint256 amount, bytes memory data) internal virtual { require(account != address(0), "ERC1155: mint to the zero address"); address operator = _msgSender(); _beforeTokenTransfer(operator, address(0), account, _asSingletonArray(id), _asSingletonArray(amount), data); _balances[id][account] += amount; emit TransferSingle(operator, address(0), account, id, amount); _doSafeTransferAcceptanceCheck(operator, address(0), account, id, amount, data); } /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}. * * Requirements: * * - `ids` and `amounts` must have the same length. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the * acceptance magic value. */ function _mintBatch(address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data) internal virtual { require(to != address(0), "ERC1155: mint to the zero address"); require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch"); address operator = _msgSender(); _beforeTokenTransfer(operator, address(0), to, ids, amounts, data); for (uint i = 0; i < ids.length; i++) { _balances[ids[i]][to] += amounts[i]; } emit TransferBatch(operator, address(0), to, ids, amounts); _doSafeBatchTransferAcceptanceCheck(operator, address(0), to, ids, amounts, data); } /** * @dev Destroys `amount` tokens of token type `id` from `account` * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens of token type `id`. */ function _burn(address account, uint256 id, uint256 amount) internal virtual { require(account != address(0), "ERC1155: burn from the zero address"); address operator = _msgSender(); _beforeTokenTransfer(operator, account, address(0), _asSingletonArray(id), _asSingletonArray(amount), ""); uint256 accountBalance = _balances[id][account]; require(accountBalance >= amount, "ERC1155: burn amount exceeds balance"); _balances[id][account] = accountBalance - amount; emit TransferSingle(operator, account, address(0), id, amount); } /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}. * * Requirements: * * - `ids` and `amounts` must have the same length. */ function _burnBatch(address account, uint256[] memory ids, uint256[] memory amounts) internal virtual { require(account != address(0), "ERC1155: burn from the zero address"); require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch"); address operator = _msgSender(); _beforeTokenTransfer(operator, account, address(0), ids, amounts, ""); for (uint i = 0; i < ids.length; i++) { uint256 id = ids[i]; uint256 amount = amounts[i]; uint256 accountBalance = _balances[id][account]; require(accountBalance >= amount, "ERC1155: burn amount exceeds balance"); _balances[id][account] = accountBalance - amount; } emit TransferBatch(operator, account, address(0), ids, amounts); } /** * @dev Hook that is called before any token transfer. This includes minting * and burning, as well as batched variants. * * The same hook is called on both single and batched variants. For single * transfers, the length of the `id` and `amount` arrays will be 1. * * Calling conditions (for each `id` and `amount` pair): * * - When `from` and `to` are both non-zero, `amount` of ``from``'s tokens * of token type `id` will be transferred to `to`. * - When `from` is zero, `amount` tokens of token type `id` will be minted * for `to`. * - when `to` is zero, `amount` of ``from``'s tokens of token type `id` * will be burned. * - `from` and `to` are never both zero. * - `ids` and `amounts` have the same, non-zero length. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address operator, address from, address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) internal virtual { } function _doSafeTransferAcceptanceCheck( address operator, address from, address to, uint256 id, uint256 amount, bytes memory data ) private { if (to.isContract()) { try IERC1155Receiver(to).onERC1155Received(operator, from, id, amount, data) returns (bytes4 response) { if (response != IERC1155Receiver(to).onERC1155Received.selector) { revert("ERC1155: ERC1155Receiver rejected tokens"); } } catch Error(string memory reason) { revert(reason); } catch { revert("ERC1155: transfer to non ERC1155Receiver implementer"); } } } function _doSafeBatchTransferAcceptanceCheck( address operator, address from, address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) private { if (to.isContract()) { try IERC1155Receiver(to).onERC1155BatchReceived(operator, from, ids, amounts, data) returns (bytes4 response) { if (response != IERC1155Receiver(to).onERC1155BatchReceived.selector) { revert("ERC1155: ERC1155Receiver rejected tokens"); } } catch Error(string memory reason) { revert(reason); } catch { revert("ERC1155: transfer to non ERC1155Receiver implementer"); } } } function _asSingletonArray(uint256 element) private pure returns (uint256[] memory) { uint256[] memory array = new uint256[](1); array[0] = element; return array; } } // File: @openzeppelin/contracts/utils/cryptography/ECDSA.sol /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { // Check the signature length if (signature.length != 65) { revert("ECDSA: invalid signature length"); } // Divide the signature in r, s and v variables bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. // solhint-disable-next-line no-inline-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return recover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. require(uint256(s) <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0, "ECDSA: invalid signature 's' value"); require(v == 27 || v == 28, "ECDSA: invalid signature 'v' value"); // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); require(signer != address(0), "ECDSA: invalid signature"); return signer; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) { // 32 is the length in bytes of hash, // enforced by the type signature above return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash)); } } // File: @openzeppelin/contracts/utils/Strings.sol /** * @dev String operations. */ library Strings { bytes16 private constant alphabet = "0123456789abcdef"; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { // Inspired by OraclizeAPI's implementation - MIT licence // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol if (value == 0) { return "0"; } uint256 temp = value; uint256 digits; while (temp != 0) { digits++; temp /= 10; } bytes memory buffer = new bytes(digits); while (value != 0) { digits -= 1; buffer[digits] = bytes1(uint8(48 + uint256(value % 10))); value /= 10; } return string(buffer); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { if (value == 0) { return "0x00"; } uint256 temp = value; uint256 length = 0; while (temp != 0) { length++; temp >>= 8; } return toHexString(value, length); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = alphabet[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } } // File: contracts/ENSReverseRegistrarI.sol /* * Interfaces for ENS Reverse Registrar * See https://github.com/ensdomains/ens/blob/master/contracts/ReverseRegistrar.sol for full impl * Also see https://github.com/wealdtech/wealdtech-solidity/blob/master/contracts/ens/ENSReverseRegister.sol * * Use this as follows (registryAddress is the address of the ENS registry to use): * ----- * // This hex value is caclulated by namehash('addr.reverse') * bytes32 public constant ENS_ADDR_REVERSE_NODE = 0x91d1777781884d03a6757a803996e38de2a42967fb37eeaca72729271025a9e2; * function registerReverseENS(address registryAddress, string memory calldata) external { * require(registryAddress != address(0), "need a valid registry"); * address reverseRegistrarAddress = ENSRegistryOwnerI(registryAddress).owner(ENS_ADDR_REVERSE_NODE) * require(reverseRegistrarAddress != address(0), "need a valid reverse registrar"); * ENSReverseRegistrarI(reverseRegistrarAddress).setName(name); * } * ----- * or * ----- * function registerReverseENS(address reverseRegistrarAddress, string memory calldata) external { * require(reverseRegistrarAddress != address(0), "need a valid reverse registrar"); * ENSReverseRegistrarI(reverseRegistrarAddress).setName(name); * } * ----- * ENS deployments can be found at https://docs.ens.domains/ens-deployments * E.g. Etherscan can be used to look up that owner on those contracts. * namehash.hash("addr.reverse") == "0x91d1777781884d03a6757a803996e38de2a42967fb37eeaca72729271025a9e2" * Ropsten: ens.owner(namehash.hash("addr.reverse")) == "0x6F628b68b30Dc3c17f345c9dbBb1E483c2b7aE5c" * Mainnet: ens.owner(namehash.hash("addr.reverse")) == "0x084b1c3C81545d370f3634392De611CaaBFf8148" */ interface ENSRegistryOwnerI { function owner(bytes32 node) external view returns (address); } interface ENSReverseRegistrarI { event NameChanged(bytes32 indexed node, string name); /** * @dev Sets the `name()` record for the reverse ENS record associated with * the calling account. * @param name The name to set for this address. * @return The ENS node hash of the reverse record. */ function setName(string calldata name) external returns (bytes32); } // File: contracts/BridgeDataI.sol /* * Interface for data storage of the bridge. */ interface BridgeDataI { event AddressChanged(string name, address previousAddress, address newAddress); event ConnectedChainChanged(string previousConnectedChainName, string newConnectedChainName); event TokenURIBaseChanged(string previousTokenURIBase, string newTokenURIBase); event TokenSunsetAnnounced(uint256 indexed timestamp); /** * @dev The name of the chain connected to / on the other side of this bridge head. */ function connectedChainName() external view returns (string memory); /** * @dev The name of our own chain, used in token URIs handed to deployed tokens. */ function ownChainName() external view returns (string memory); /** * @dev The base of ALL token URIs, e.g. https://example.com/ */ function tokenURIBase() external view returns (string memory); /** * @dev The sunset timestamp for all deployed tokens. * If 0, no sunset is in place. Otherwise, if older than block timestamp, * all transfers of the tokens are frozen. */ function tokenSunsetTimestamp() external view returns (uint256); /** * @dev Set a token sunset timestamp. */ function setTokenSunsetTimestamp(uint256 _timestamp) external; /** * @dev Set an address for a name. */ function setAddress(string memory name, address newAddress) external; /** * @dev Get an address for a name. */ function getAddress(string memory name) external view returns (address); } // File: contracts/ERC1155MintableI.sol /* * Interfaces for mintable ERC721 compliant contracts. */ /** * @dev ERC1155 compliant contract with mint() and mintBatch() functions. */ interface ERC1155MintableI is IERC1155 { /** * @dev Creates `amount` tokens of token type `id`, and assigns them to `account`. * * Emits a {TransferSingle} event. * * Requirements: * * - `account` cannot be the zero address. * - If `account` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the * acceptance magic value. */ function mint(address account, uint256 id, uint256 amount) external; /** * @dev Batched version of {_mint}. * * Requirements: * * - `ids` and `amounts` must have the same length. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the * acceptance magic value. */ function mintBatch(address to, uint256[] memory ids, uint256[] memory amounts) external; } // File: contracts/BridgedERC1155I.sol /* * Interface for a Bridged ERC721 token. */ interface BridgedERC1155I is IERC1155MetadataURI, ERC1155MintableI { event SignedBatchTransfer(address operator, address indexed from, address indexed to, uint256[] ids, uint256[] amounts, uint256 signedTransferNonce); /** * @dev True if this is the prototype, false if this is an active (clone/proxy) token contract. */ function isPrototype() external view returns (bool); /** * @dev The address of the bridge data contract storing all addresses and chain info for this bridge */ function bridgeData() external view returns (BridgeDataI); /** * @dev Do initial registration of a clone. Should be called in the same * transaction as the actual cloning. Can only be called once. */ function initialRegister(address _bridgeDataAddress, string memory _orginalChainName, address _originalChainAddress) external; /** * @dev The name of the original chain this token is bridged from. */ function originalChainName() external view returns (string memory); /** * @dev The address of this token on the original chain this is bridged from. */ function originalChainAddress() external view returns (address); /** * @dev The signed transfer nonce for an account. */ function signedTransferNonce(address account) external view returns (uint256); /** * @dev True if transfers are possible at this time. */ function transferEnabled() external view returns (bool); /** * @dev Outward-facing function for signed transfer: assembles the expected data and then calls the internal function to do the rest. * Can called by anyone knowing about the right signature, but can only transfer to the given specific target. */ function signedBatchTransfer(address from, address to, uint256[] memory ids, uint256[] memory amounts, bytes memory signature) external; /** * @dev Outward-facing function for operator-driven signed transfer: assembles the expected data and then calls the internal function to do the rest. * Can transfer to any target, but only be called by the trusted operator contained in the signature. */ function signedBatchTransferWithOperator(address from, address to, uint256[] memory ids, uint256[] memory amounts, bytes memory signature) external; } // File: contracts/BridgedERC1155.sol /* * A generic bridged semi-fungible token, to be deployed by the bridge when a * token from the other side is exiting on this side of the bridge. * Implements ERC 1155 token standard: https://eips.ethereum.org/EIPS/eip-1155 */ contract BridgedERC1155 is ERC1155, BridgedERC1155I { using Strings for uint256; bool public override isPrototype; BridgeDataI public override bridgeData; string public override originalChainName; address public override originalChainAddress; mapping(address => uint256) public override signedTransferNonce; event BridgeDataChanged(address indexed previousBridgeData, address indexed newBridgeData); constructor(address _bridgeDataAddress) ERC1155("") { bridgeData = BridgeDataI(_bridgeDataAddress); // The initially deployed contract is just a prototype and code holder. // Clones will proxy their commends to this one and actually work. isPrototype = true; } modifier requireActive { require(!isPrototype, "Needs an active contract, not the prototype."); _; } modifier onlyBridgeControl() { require(msg.sender == bridgeData.getAddress("bridgeControl"), "bridgeControl key required for this function."); _; } modifier onlyBridge() { require(msg.sender == bridgeData.getAddress("bridgeControl") || msg.sender == bridgeData.getAddress("bridgeHead"), "bridgeControl key or bridge head required for this function."); _; } modifier onlyTokenAssignmentControl() { require(msg.sender == bridgeData.getAddress("tokenAssignmentControl"), "tokenAssignmentControl key required for this function."); _; } modifier requireTransferEnabled() { require(transferEnabled() == true, "This call only works when transfers are enabled."); _; } /*** Initialize the basic variables ***/ function initialRegister(address _bridgeDataAddress, string memory _originalChainName, address _originalChainAddress) external override requireActive { // Make sure that this function has not been called on this contract yet. require(address(bridgeData) == address(0), "Cannot be initialized twice."); bridgeData = BridgeDataI(_bridgeDataAddress); originalChainName = _originalChainName; originalChainAddress = _originalChainAddress; } /*** Enable adjusting variables after deployment ***/ function setBridgeData(BridgeDataI _newBridgeData) external onlyBridgeControl { require(address(_newBridgeData) != address(0x0), "You need to provide an actual bridge data contract."); emit BridgeDataChanged(address(bridgeData), address(_newBridgeData)); bridgeData = _newBridgeData; } // Return true if transfers are possible. // This can have additional conditions to just the sunset variable. function transferEnabled() public view override requireActive returns (bool) { uint256 tokenSunsetTimestamp = bridgeData.tokenSunsetTimestamp(); // solhint-disable-next-line not-rely-on-time return (tokenSunsetTimestamp == 0 || tokenSunsetTimestamp > block.timestamp); } function uri(uint256 _tokenId) public view override(ERC1155, IERC1155MetadataURI) returns (string memory) { return string(abi.encodePacked(bridgeData.tokenURIBase(), uint256(uint160(address(this))).toHexString(20), "/meta/", _tokenId.toString())); } /*** Implement mintable and exists interfaces ***/ // Mint a token. Calls onERC1155Received() on the `_to` address if it's a contract. function mint(address _account, uint256 _id, uint256 _amount) public override requireTransferEnabled onlyBridge { _mint(_account, _id, _amount, ""); } // Mint a batch of tokens. Calls onERC1155Received() on the `_to` address if it's a contract. function mintBatch(address _to, uint256[] memory _ids, uint256[] memory _amounts) public override requireTransferEnabled onlyBridge { _mintBatch(_to, _ids, _amounts, ""); } // Burn a batch of NFTs. function burnBatch(address _account, uint256[] memory _ids, uint256[] memory _amounts) public requireTransferEnabled onlyBridge { _burnBatch(_account, _ids, _amounts); } /*** Override internal functionality for special rules on approvals and transfers ***/ // When the bridge is sunset, all token actions will be blocked. function _beforeTokenTransfer(address _operator, address _from, address _to, uint256[] memory _ids, uint256[] memory _amounts, bytes memory _data) internal override requireTransferEnabled { super._beforeTokenTransfer(_operator, _from, _to, _ids, _amounts, _data); } /*** Allows any user to initiate a transfer with the signature of the current stamp owner ***/ // Outward-facing function for signed transfer: assembles the expected data and then calls the internal function to do the rest. // Can called by anyone knowing about the right signature, but can only transfer to the given specific target. function signedBatchTransfer(address _from, address _to, uint256[] memory _ids, uint256[] memory _amounts, bytes memory _signature) public override requireTransferEnabled { // The signed data contains the token IDs, amounts, the transfer source and target as well as a nonce. bytes32 data = keccak256(abi.encodePacked(address(this), this.signedBatchTransfer.selector, _from, _to, _ids, _amounts, signedTransferNonce[_from])); _signedBatchTransferInternal(_from, _to, _ids, _amounts, data, _signature); } // Outward-facing function for operator-driven signed transfer: assembles the expected data and then calls the internal function to do the rest. // Can transfer to any target, but only be called by the trusted operator contained in the signature. function signedBatchTransferWithOperator(address _from, address _to, uint256[] memory _ids, uint256[] memory _amounts, bytes memory _signature) public override requireTransferEnabled { // The signed data contains the operator, the token IDs, amounts, and a nonce. Note that we use the selector of the external function here! bytes32 data = keccak256(abi.encodePacked(address(this), this.signedBatchTransferWithOperator.selector, msg.sender, _from, _ids, _amounts, signedTransferNonce[_from])); _signedBatchTransferInternal(_from, _to, _ids, _amounts, data, _signature); } // Actually check the signature and perform a signed transfer. function _signedBatchTransferInternal(address _from, address _to, uint256[] memory _ids, uint256[] memory _amounts, bytes32 _data, bytes memory _signature) internal { bytes32 hash = ECDSA.toEthSignedMessageHash(_data); address signer = ECDSA.recover(hash, _signature); require(signer == _from, "Signature needs to match parameters, nonce, and current owner."); // Now that we checked that the signature is correct, do the actual transfer and increase the nonce. emit SignedBatchTransfer(msg.sender, _from, _to, _ids, _amounts, signedTransferNonce[_from]); signedTransferNonce[_from]++; _safeBatchTransferFrom(_from, _to, _ids, _amounts, ""); } /*** Enable reverse ENS registration ***/ // Call this with the address of the reverse registrar for the respective network and the ENS name to register. // The reverse registrar can be found as the owner of 'addr.reverse' in the ENS system. // For Mainnet, the address needed is 0x9062c0a6dbd6108336bcbe4593a3d1ce05512069 function registerReverseENS(address _reverseRegistrarAddress, string calldata _name) external onlyTokenAssignmentControl { require(_reverseRegistrarAddress != address(0), "need a valid reverse registrar"); ENSReverseRegistrarI(_reverseRegistrarAddress).setName(_name); } /*** Make sure currency or NFT doesn't get stranded in this contract ***/ // If this contract gets a balance in some ERC20 contract after it's finished, then we can rescue it. function rescueToken(address _foreignToken, address _to) external onlyTokenAssignmentControl { IERC20 erc20Token = IERC20(_foreignToken); erc20Token.transfer(_to, erc20Token.balanceOf(address(this))); } // If this contract gets a balance in some ERC721 contract after it's finished, then we can rescue it. function approveNFTrescue(IERC721 _foreignNFT, address _to) external onlyTokenAssignmentControl { _foreignNFT.setApprovalForAll(_to, true); } }
[{"inputs":[{"internalType":"address","name":"_bridgeDataAddress","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousBridgeData","type":"address"},{"indexed":true,"internalType":"address","name":"newBridgeData","type":"address"}],"name":"BridgeDataChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"amounts","type":"uint256[]"},{"indexed":false,"internalType":"uint256","name":"signedTransferNonce","type":"uint256"}],"name":"SignedBatchTransfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"values","type":"uint256[]"}],"name":"TransferBatch","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"TransferSingle","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"value","type":"string"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"URI","type":"event"},{"inputs":[{"internalType":"contract IERC721","name":"_foreignNFT","type":"address"},{"internalType":"address","name":"_to","type":"address"}],"name":"approveNFTrescue","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"accounts","type":"address[]"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"}],"name":"balanceOfBatch","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"bridgeData","outputs":[{"internalType":"contract BridgeDataI","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_account","type":"address"},{"internalType":"uint256[]","name":"_ids","type":"uint256[]"},{"internalType":"uint256[]","name":"_amounts","type":"uint256[]"}],"name":"burnBatch","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_bridgeDataAddress","type":"address"},{"internalType":"string","name":"_originalChainName","type":"string"},{"internalType":"address","name":"_originalChainAddress","type":"address"}],"name":"initialRegister","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isPrototype","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_account","type":"address"},{"internalType":"uint256","name":"_id","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256[]","name":"_ids","type":"uint256[]"},{"internalType":"uint256[]","name":"_amounts","type":"uint256[]"}],"name":"mintBatch","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"originalChainAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"originalChainName","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_reverseRegistrarAddress","type":"address"},{"internalType":"string","name":"_name","type":"string"}],"name":"registerReverseENS","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_foreignToken","type":"address"},{"internalType":"address","name":"_to","type":"address"}],"name":"rescueToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeBatchTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract BridgeDataI","name":"_newBridgeData","type":"address"}],"name":"setBridgeData","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_from","type":"address"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256[]","name":"_ids","type":"uint256[]"},{"internalType":"uint256[]","name":"_amounts","type":"uint256[]"},{"internalType":"bytes","name":"_signature","type":"bytes"}],"name":"signedBatchTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_from","type":"address"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256[]","name":"_ids","type":"uint256[]"},{"internalType":"uint256[]","name":"_amounts","type":"uint256[]"},{"internalType":"bytes","name":"_signature","type":"bytes"}],"name":"signedBatchTransferWithOperator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"signedTransferNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"transferEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenId","type":"uint256"}],"name":"uri","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}]
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.