ETH Price: $3,174.85 (+2.32%)

Token

State of Sound Vol. 1 (SOUND)
 

Overview

Max Total Supply

6,200 SOUND

Holders

5,976

Market

Volume (24H)

N/A

Min Price (24H)

N/A

Max Price (24H)

N/A
Filtered by Token Holder
digitalmaster.eth
Balance
1 SOUND
0xcabb179ca4f9360e4761121a2363a3af5587b1aa
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
# Exchange Pair Price  24H Volume % Volume

Minimal Proxy Contract for 0xe5feb62fb34adba661b7c8256887a8b9a21c2278

Contract Name:
SoundEditionV1_1

Compiler Version
v0.8.16+commit.07a7930e

Optimization Enabled:
Yes with 1000 runs

Other Settings:
default evmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 23 : SoundEditionV1_1.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.16;

/*
                 ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
               ▒███████████████████████████████████████████████████████████
               ▒███████████████████████████████████████████████████████████
 ▒▓▓▓▓▓▓▓▓▓▓▓▓▓████████████████▓▓▓▓▓▓▓▓▓▓▓▓▓▓██████████████████████████████▓▒▒▒▒▒▒▒▒▒▒▒▒▒
 █████████████████████████████▓              ████████████████████████████████████████████
 █████████████████████████████▓              ████████████████████████████████████████████
 █████████████████████████████▓               ▒▒▒▒▒▒▒▒▒▒▒▒▒██████████████████████████████
 █████████████████████████████▓                            ▒█████████████████████████████
 █████████████████████████████▓                             ▒████████████████████████████
 █████████████████████████████████████████████████████████▓
 ███████████████████████████████████████████████████████████
 ███████████████████████████████████████████████████████████▒
                              ███████████████████████████████████████████████████████████▒
                              ▓██████████████████████████████████████████████████████████▒
                               ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓███████████████████████████████▒
 █████████████████████████████                             ▒█████████████████████████████▒
 ██████████████████████████████                            ▒█████████████████████████████▒
 ██████████████████████████████▓▒▒▒▒▒▒▒▒▒▒▒▒▒              ▒█████████████████████████████▒
 ████████████████████████████████████████████▒             ▒█████████████████████████████▒
 ████████████████████████████████████████████▒             ▒█████████████████████████████▒
 ▒▒▒▒▒▒▒▒▒▒▒▒▒▒███████████████████████████████▓▓▓▓▓▓▓▓▓▓▓▓▓███████████████▓▒▒▒▒▒▒▒▒▒▒▒▒▒▒
               ▓██████████████████████████████████████████████████████████▒
               ▓██████████████████████████████████████████████████████████
*/

import { IERC721AUpgradeable } from "chiru-labs/ERC721A-Upgradeable/IERC721AUpgradeable.sol";
import { ERC721AUpgradeable, ERC721AStorage } from "chiru-labs/ERC721A-Upgradeable/ERC721AUpgradeable.sol";
import { ERC721AQueryableUpgradeable } from "chiru-labs/ERC721A-Upgradeable/extensions/ERC721AQueryableUpgradeable.sol";
import { ERC721ABurnableUpgradeable } from "chiru-labs/ERC721A-Upgradeable/extensions/ERC721ABurnableUpgradeable.sol";
import { IERC20 } from "openzeppelin/token/ERC20/IERC20.sol";
import { IERC2981Upgradeable } from "openzeppelin-upgradeable/interfaces/IERC2981Upgradeable.sol";
import { SafeTransferLib } from "solady/utils/SafeTransferLib.sol";
import { FixedPointMathLib } from "solady/utils/FixedPointMathLib.sol";
import { OwnableRoles } from "solady/auth/OwnableRoles.sol";
import { LibString } from "solady/utils/LibString.sol";
import { OperatorFilterer } from "closedsea/OperatorFilterer.sol";

import { ISoundEditionV1_1, EditionInfo } from "./interfaces/ISoundEditionV1_1.sol";
import { IMetadataModule } from "./interfaces/IMetadataModule.sol";

import { ArweaveURILib } from "./utils/ArweaveURILib.sol";
import { MintRandomnessLib } from "./utils/MintRandomnessLib.sol";

/**
 * @title SoundEditionV1_1
 * @notice The Sound Edition contract - a creator-owned, modifiable implementation of ERC721A.
 */
contract SoundEditionV1_1 is
    ISoundEditionV1_1,
    ERC721AQueryableUpgradeable,
    ERC721ABurnableUpgradeable,
    OwnableRoles,
    OperatorFilterer
{
    using ArweaveURILib for ArweaveURILib.URI;

    // =============================================================
    //                           CONSTANTS
    // =============================================================

    /**
     * @dev A role every minter module must have in order to mint new tokens.
     */
    uint256 public constant MINTER_ROLE = _ROLE_1;

    /**
     * @dev A role the owner can grant for performing admin actions.
     */
    uint256 public constant ADMIN_ROLE = _ROLE_0;

    /**
     * @dev The maximum limit for the mint or airdrop `quantity`.
     *      Prevents the first-time transfer costs for tokens near the end of large mint batches
     *      via ERC721A from becoming too expensive due to the need to scan many storage slots.
     *      See: https://chiru-labs.github.io/ERC721A/#/tips?id=batch-size
     */
    uint256 public constant ADDRESS_BATCH_MINT_LIMIT = 255;

    /**
     * @dev Basis points denominator used in fee calculations.
     */
    uint16 internal constant _MAX_BPS = 10_000;

    /**
     * @dev The interface ID for EIP-2981 (royaltyInfo)
     */
    bytes4 private constant _INTERFACE_ID_ERC2981 = 0x2a55205a;

    /**
     * @dev The interface ID for SoundEdition v1.0.0.
     */
    bytes4 private constant _INTERFACE_ID_SOUND_EDITION_V1 = 0x50899e54;

    /**
     * @dev The boolean flag on whether the metadata is frozen.
     */
    uint8 public constant METADATA_IS_FROZEN_FLAG = 1 << 0;

    /**
     * @dev The boolean flag on whether the `mintRandomness` is enabled.
     */
    uint8 public constant MINT_RANDOMNESS_ENABLED_FLAG = 1 << 1;

    /**
     * @dev The boolean flag on whether OpenSea operator filtering is enabled.
     */
    uint8 public constant OPERATOR_FILTERING_ENABLED_FLAG = 1 << 2;

    // =============================================================
    //                            STORAGE
    // =============================================================

    /**
     * @dev The value for `name` and `symbol` if their combined
     *      length is (32 - 2) bytes. We need 2 bytes for their lengths.
     */
    bytes32 private _shortNameAndSymbol;

    /**
     * @dev The metadata's base URI.
     */
    ArweaveURILib.URI private _baseURIStorage;

    /**
     * @dev The contract base URI.
     */
    ArweaveURILib.URI private _contractURIStorage;

    /**
     * @dev The destination for ETH withdrawals.
     */
    address public fundingRecipient;

    /**
     * @dev The upper bound of the max mintable quantity for the edition.
     */
    uint32 public editionMaxMintableUpper;

    /**
     * @dev The lower bound for the maximum tokens that can be minted for this edition.
     */
    uint32 public editionMaxMintableLower;

    /**
     * @dev The timestamp after which `editionMaxMintable` drops from
     *      `editionMaxMintableUpper` to `max(_totalMinted(), editionMaxMintableLower)`.
     */
    uint32 public editionCutoffTime;

    /**
     * @dev Metadata module used for `tokenURI` and `contractURI` if it is set.
     */
    address public metadataModule;

    /**
     * @dev The randomness based on latest block hash, which is stored upon each mint
     *      unless `randomnessLockedAfterMinted` or `randomnessLockedTimestamp` have been surpassed.
     *      Used for game mechanics like the Sound Golden Egg.
     */
    uint72 private _mintRandomness;

    /**
     * @dev The royalty fee in basis points.
     */
    uint16 public royaltyBPS;

    /**
     * @dev Packed boolean flags.
     */
    uint8 private _flags;

    // =============================================================
    //               PUBLIC / EXTERNAL WRITE FUNCTIONS
    // =============================================================

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function initialize(
        string memory name_,
        string memory symbol_,
        address metadataModule_,
        string memory baseURI_,
        string memory contractURI_,
        address fundingRecipient_,
        uint16 royaltyBPS_,
        uint32 editionMaxMintableLower_,
        uint32 editionMaxMintableUpper_,
        uint32 editionCutoffTime_,
        uint8 flags_
    ) external onlyValidRoyaltyBPS(royaltyBPS_) {
        // Prevent double initialization.
        // We can "cheat" here and avoid the initializer modifer to save a SSTORE,
        // since the `_nextTokenId()` is defined to always return 1.
        if (_nextTokenId() != 0) revert Unauthorized();

        if (fundingRecipient_ == address(0)) revert InvalidFundingRecipient();

        if (editionMaxMintableLower_ > editionMaxMintableUpper_) revert InvalidEditionMaxMintableRange();

        _initializeNameAndSymbol(name_, symbol_);
        ERC721AStorage.layout()._currentIndex = _startTokenId();

        _initializeOwner(msg.sender);

        _baseURIStorage.initialize(baseURI_);
        _contractURIStorage.initialize(contractURI_);

        fundingRecipient = fundingRecipient_;
        editionMaxMintableUpper = editionMaxMintableUpper_;
        editionMaxMintableLower = editionMaxMintableLower_;
        editionCutoffTime = editionCutoffTime_;

        _flags = flags_;

        metadataModule = metadataModule_;
        royaltyBPS = royaltyBPS_;

        emit SoundEditionInitialized(
            address(this),
            name_,
            symbol_,
            metadataModule_,
            baseURI_,
            contractURI_,
            fundingRecipient_,
            royaltyBPS_,
            editionMaxMintableLower_,
            editionMaxMintableUpper_,
            editionCutoffTime_,
            flags_
        );

        if (flags_ & OPERATOR_FILTERING_ENABLED_FLAG != 0) {
            _registerForOperatorFiltering();
        }
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function mint(address to, uint256 quantity)
        external
        payable
        onlyRolesOrOwner(ADMIN_ROLE | MINTER_ROLE)
        requireWithinAddressBatchMintLimit(quantity)
        requireMintable(quantity)
        updatesMintRandomness
        returns (uint256 fromTokenId)
    {
        fromTokenId = _nextTokenId();
        // Mint the tokens. Will revert if `quantity` is zero.
        _mint(to, quantity);

        emit Minted(to, quantity, fromTokenId);
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function airdrop(address[] calldata to, uint256 quantity)
        external
        onlyRolesOrOwner(ADMIN_ROLE)
        requireWithinAddressBatchMintLimit(quantity)
        requireMintable(to.length * quantity)
        updatesMintRandomness
        returns (uint256 fromTokenId)
    {
        if (to.length == 0) revert NoAddressesToAirdrop();

        fromTokenId = _nextTokenId();

        // Won't overflow, as `to.length` is bounded by the block max gas limit.
        unchecked {
            uint256 toLength = to.length;
            // Mint the tokens. Will revert if `quantity` is zero.
            for (uint256 i; i != toLength; ++i) {
                _mint(to[i], quantity);
            }
        }

        emit Airdropped(to, quantity, fromTokenId);
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function withdrawETH() external {
        uint256 amount = address(this).balance;
        SafeTransferLib.safeTransferETH(fundingRecipient, amount);
        emit ETHWithdrawn(fundingRecipient, amount, msg.sender);
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function withdrawERC20(address[] calldata tokens) external {
        unchecked {
            uint256 n = tokens.length;
            uint256[] memory amounts = new uint256[](n);
            for (uint256 i; i != n; ++i) {
                uint256 amount = IERC20(tokens[i]).balanceOf(address(this));
                SafeTransferLib.safeTransfer(tokens[i], fundingRecipient, amount);
                amounts[i] = amount;
            }
            emit ERC20Withdrawn(fundingRecipient, tokens, amounts, msg.sender);
        }
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function setMetadataModule(address metadataModule_) external onlyRolesOrOwner(ADMIN_ROLE) onlyMetadataNotFrozen {
        metadataModule = metadataModule_;

        emit MetadataModuleSet(metadataModule_);
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function setBaseURI(string memory baseURI_) external onlyRolesOrOwner(ADMIN_ROLE) onlyMetadataNotFrozen {
        _baseURIStorage.update(baseURI_);

        emit BaseURISet(baseURI_);
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function setContractURI(string memory contractURI_) external onlyRolesOrOwner(ADMIN_ROLE) onlyMetadataNotFrozen {
        _contractURIStorage.update(contractURI_);

        emit ContractURISet(contractURI_);
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function freezeMetadata() external onlyRolesOrOwner(ADMIN_ROLE) onlyMetadataNotFrozen {
        _flags |= METADATA_IS_FROZEN_FLAG;
        emit MetadataFrozen(metadataModule, baseURI(), contractURI());
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function setFundingRecipient(address fundingRecipient_) external onlyRolesOrOwner(ADMIN_ROLE) {
        if (fundingRecipient_ == address(0)) revert InvalidFundingRecipient();
        fundingRecipient = fundingRecipient_;
        emit FundingRecipientSet(fundingRecipient_);
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function setRoyalty(uint16 royaltyBPS_) external onlyRolesOrOwner(ADMIN_ROLE) onlyValidRoyaltyBPS(royaltyBPS_) {
        royaltyBPS = royaltyBPS_;
        emit RoyaltySet(royaltyBPS_);
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function setEditionMaxMintableRange(uint32 editionMaxMintableLower_, uint32 editionMaxMintableUpper_)
        external
        onlyRolesOrOwner(ADMIN_ROLE)
    {
        if (mintConcluded()) revert MintHasConcluded();

        uint32 currentTotalMinted = uint32(_totalMinted());

        if (currentTotalMinted != 0) {
            editionMaxMintableLower_ = uint32(FixedPointMathLib.max(editionMaxMintableLower_, currentTotalMinted));

            editionMaxMintableUpper_ = uint32(FixedPointMathLib.max(editionMaxMintableUpper_, currentTotalMinted));

            // If the upper bound is larger than the current stored value, revert.
            if (editionMaxMintableUpper_ > editionMaxMintableUpper) revert InvalidEditionMaxMintableRange();
        }

        // If the lower bound is larger than the upper bound, revert.
        if (editionMaxMintableLower_ > editionMaxMintableUpper_) revert InvalidEditionMaxMintableRange();

        editionMaxMintableLower = editionMaxMintableLower_;
        editionMaxMintableUpper = editionMaxMintableUpper_;

        emit EditionMaxMintableRangeSet(editionMaxMintableLower, editionMaxMintableUpper);
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function setEditionCutoffTime(uint32 editionCutoffTime_) external onlyRolesOrOwner(ADMIN_ROLE) {
        if (mintConcluded()) revert MintHasConcluded();

        editionCutoffTime = editionCutoffTime_;

        emit EditionCutoffTimeSet(editionCutoffTime_);
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function setMintRandomnessEnabled(bool mintRandomnessEnabled_) external onlyRolesOrOwner(ADMIN_ROLE) {
        if (_totalMinted() != 0) revert MintsAlreadyExist();

        if (mintRandomnessEnabled() != mintRandomnessEnabled_) {
            _flags ^= MINT_RANDOMNESS_ENABLED_FLAG;
        }

        emit MintRandomnessEnabledSet(mintRandomnessEnabled_);
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function setOperatorFilteringEnabled(bool operatorFilteringEnabled_) external onlyRolesOrOwner(ADMIN_ROLE) {
        if (operatorFilteringEnabled() != operatorFilteringEnabled_) {
            _flags ^= OPERATOR_FILTERING_ENABLED_FLAG;
            if (operatorFilteringEnabled_) {
                _registerForOperatorFiltering();
            }
        }

        emit OperatorFilteringEnablededSet(operatorFilteringEnabled_);
    }

    /**
     * @inheritdoc IERC721AUpgradeable
     */
    function setApprovalForAll(address operator, bool approved)
        public
        override(ERC721AUpgradeable, IERC721AUpgradeable)
        onlyAllowedOperatorApproval(operator)
    {
        super.setApprovalForAll(operator, approved);
    }

    /**
     * @inheritdoc IERC721AUpgradeable
     */
    function approve(address operator, uint256 tokenId)
        public
        payable
        override(ERC721AUpgradeable, IERC721AUpgradeable)
        onlyAllowedOperatorApproval(operator)
    {
        super.approve(operator, tokenId);
    }

    /**
     * @inheritdoc IERC721AUpgradeable
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) public payable override(ERC721AUpgradeable, IERC721AUpgradeable) onlyAllowedOperator(from) {
        super.transferFrom(from, to, tokenId);
    }

    /**
     * @inheritdoc IERC721AUpgradeable
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) public payable override(ERC721AUpgradeable, IERC721AUpgradeable) onlyAllowedOperator(from) {
        super.safeTransferFrom(from, to, tokenId);
    }

    /**
     * @inheritdoc IERC721AUpgradeable
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes memory data
    ) public payable override(ERC721AUpgradeable, IERC721AUpgradeable) onlyAllowedOperator(from) {
        super.safeTransferFrom(from, to, tokenId, data);
    }

    // =============================================================
    //               PUBLIC / EXTERNAL VIEW FUNCTIONS
    // =============================================================

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function editionInfo() external view returns (EditionInfo memory info) {
        info.baseURI = baseURI();
        info.contractURI = contractURI();
        info.name = name();
        info.symbol = symbol();
        info.fundingRecipient = fundingRecipient;
        info.editionMaxMintable = editionMaxMintable();
        info.editionMaxMintableUpper = editionMaxMintableUpper;
        info.editionMaxMintableLower = editionMaxMintableLower;
        info.editionCutoffTime = editionCutoffTime;
        info.metadataModule = metadataModule;
        info.mintRandomness = mintRandomness();
        info.royaltyBPS = royaltyBPS;
        info.mintRandomnessEnabled = mintRandomnessEnabled();
        info.mintConcluded = mintConcluded();
        info.isMetadataFrozen = isMetadataFrozen();
        info.nextTokenId = nextTokenId();
        info.totalMinted = totalMinted();
        info.totalBurned = totalBurned();
        info.totalSupply = totalSupply();
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function mintRandomness() public view returns (uint256) {
        if (mintConcluded() && mintRandomnessEnabled()) {
            return uint256(keccak256(abi.encode(_mintRandomness, address(this))));
        }
        return 0;
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function editionMaxMintable() public view returns (uint32) {
        if (block.timestamp < editionCutoffTime) {
            return editionMaxMintableUpper;
        } else {
            return uint32(FixedPointMathLib.max(editionMaxMintableLower, _totalMinted()));
        }
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function isMetadataFrozen() public view returns (bool) {
        return _flags & METADATA_IS_FROZEN_FLAG != 0;
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function mintRandomnessEnabled() public view returns (bool) {
        return _flags & MINT_RANDOMNESS_ENABLED_FLAG != 0;
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function operatorFilteringEnabled() public view returns (bool) {
        return _operatorFilteringEnabled();
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function mintConcluded() public view returns (bool) {
        return _totalMinted() == editionMaxMintable();
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function nextTokenId() public view returns (uint256) {
        return _nextTokenId();
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function numberMinted(address owner) external view returns (uint256) {
        return _numberMinted(owner);
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function numberBurned(address owner) external view returns (uint256) {
        return _numberBurned(owner);
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function totalMinted() public view returns (uint256) {
        return _totalMinted();
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function totalBurned() public view returns (uint256) {
        return _totalBurned();
    }

    /**
     * @inheritdoc IERC721AUpgradeable
     */
    function tokenURI(uint256 tokenId)
        public
        view
        override(ERC721AUpgradeable, IERC721AUpgradeable)
        returns (string memory)
    {
        if (!_exists(tokenId)) revert URIQueryForNonexistentToken();

        if (metadataModule != address(0)) {
            return IMetadataModule(metadataModule).tokenURI(tokenId);
        }

        string memory baseURI_ = baseURI();
        return bytes(baseURI_).length != 0 ? string.concat(baseURI_, _toString(tokenId)) : "";
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function supportsInterface(bytes4 interfaceId)
        public
        view
        override(ISoundEditionV1_1, ERC721AUpgradeable, IERC721AUpgradeable)
        returns (bool)
    {
        return
            interfaceId == _INTERFACE_ID_SOUND_EDITION_V1 ||
            interfaceId == type(ISoundEditionV1_1).interfaceId ||
            ERC721AUpgradeable.supportsInterface(interfaceId) ||
            interfaceId == _INTERFACE_ID_ERC2981 ||
            interfaceId == this.supportsInterface.selector;
    }

    /**
     * @inheritdoc IERC2981Upgradeable
     */
    function royaltyInfo(
        uint256, // tokenId
        uint256 salePrice
    ) external view override(IERC2981Upgradeable) returns (address fundingRecipient_, uint256 royaltyAmount) {
        fundingRecipient_ = fundingRecipient;
        royaltyAmount = (salePrice * royaltyBPS) / _MAX_BPS;
    }

    /**
     * @inheritdoc IERC721AUpgradeable
     */
    function name() public view override(ERC721AUpgradeable, IERC721AUpgradeable) returns (string memory) {
        (string memory name_, ) = _loadNameAndSymbol();
        return name_;
    }

    /**
     * @inheritdoc IERC721AUpgradeable
     */
    function symbol() public view override(ERC721AUpgradeable, IERC721AUpgradeable) returns (string memory) {
        (, string memory symbol_) = _loadNameAndSymbol();
        return symbol_;
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function baseURI() public view returns (string memory) {
        return _baseURIStorage.load();
    }

    /**
     * @inheritdoc ISoundEditionV1_1
     */
    function contractURI() public view returns (string memory) {
        return _contractURIStorage.load();
    }

    // =============================================================
    //                  INTERNAL / PRIVATE HELPERS
    // =============================================================

    /**
     * @dev For operator filtering to be toggled on / off.
     */
    function _operatorFilteringEnabled() internal view override returns (bool) {
        return _flags & OPERATOR_FILTERING_ENABLED_FLAG != 0;
    }

    /**
     * @dev For skipping the operator check if the operator is the OpenSea Conduit.
     * If somehow, we use a different address in the future, it won't break functionality,
     * only increase the gas used back to what it will be with regular operator filtering.
     */
    function _isPriorityOperator(address operator) internal pure override returns (bool) {
        // OpenSea Seaport Conduit:
        // https://etherscan.io/address/0x1E0049783F008A0085193E00003D00cd54003c71
        // https://goerli.etherscan.io/address/0x1E0049783F008A0085193E00003D00cd54003c71
        return operator == address(0x1E0049783F008A0085193E00003D00cd54003c71);
    }

    /**
     * @inheritdoc ERC721AUpgradeable
     */
    function _startTokenId() internal pure override returns (uint256) {
        return 1;
    }

    /**
     * @dev Ensures the royalty basis points is a valid value.
     * @param bps The royalty BPS.
     */
    modifier onlyValidRoyaltyBPS(uint16 bps) {
        if (bps > _MAX_BPS) revert InvalidRoyaltyBPS();
        _;
    }

    /**
     * @dev Reverts if the metadata is frozen.
     */
    modifier onlyMetadataNotFrozen() {
        // Inlined to save gas.
        if (_flags & METADATA_IS_FROZEN_FLAG != 0) revert MetadataIsFrozen();
        _;
    }

    /**
     * @dev Ensures that `totalQuantity` can be minted.
     * @param totalQuantity The total number of tokens to mint.
     */
    modifier requireMintable(uint256 totalQuantity) {
        unchecked {
            uint256 currentTotalMinted = _totalMinted();
            uint256 currentEditionMaxMintable = editionMaxMintable();
            // Check if there are enough tokens to mint.
            // We use version v4.2+ of ERC721A, which `_mint` will revert with out-of-gas
            // error via a loop if `totalQuantity` is large enough to cause an overflow in uint256.
            if (currentTotalMinted + totalQuantity > currentEditionMaxMintable) {
                // Won't underflow.
                //
                // `currentTotalMinted`, which is `_totalMinted()`,
                // will return either `editionMaxMintableUpper`
                // or `max(editionMaxMintableLower, _totalMinted())`.
                //
                // We have the following invariants:
                // - `editionMaxMintableUpper >= _totalMinted()`
                // - `max(editionMaxMintableLower, _totalMinted()) >= _totalMinted()`
                uint256 available = currentEditionMaxMintable - currentTotalMinted;
                revert ExceedsEditionAvailableSupply(uint32(available));
            }
        }
        _;
    }

    /**
     * @dev Ensures that the `quantity` does not exceed `ADDRESS_BATCH_MINT_LIMIT`.
     * @param quantity The number of tokens minted per address.
     */
    modifier requireWithinAddressBatchMintLimit(uint256 quantity) {
        if (quantity > ADDRESS_BATCH_MINT_LIMIT) revert ExceedsAddressBatchMintLimit();
        _;
    }

    /**
     * @dev Updates the mint randomness.
     */
    modifier updatesMintRandomness() {
        if (mintRandomnessEnabled() && !mintConcluded()) {
            uint256 randomness = _mintRandomness;
            uint256 newRandomness = MintRandomnessLib.nextMintRandomness(
                randomness,
                _totalMinted(),
                editionMaxMintable()
            );
            if (newRandomness != randomness) {
                _mintRandomness = uint72(newRandomness);
            }
        }
        _;
    }

    /**
     * @dev Helper function for initializing the name and symbol,
     *      packing them into a single word if possible.
     * @param name_   Name of the collection.
     * @param symbol_ Symbol of the collection.
     */
    function _initializeNameAndSymbol(string memory name_, string memory symbol_) internal {
        // Overflow impossible since max block gas limit bounds the length of the strings.
        unchecked {
            // Returns `bytes32(0)` if the strings are too long to be packed into a single word.
            bytes32 packed = LibString.packTwo(name_, symbol_);
            // If we cannot pack both strings into a single 32-byte word, store separately.
            // We need 2 bytes to store their lengths.
            if (packed == bytes32(0)) {
                ERC721AStorage.layout()._name = name_;
                ERC721AStorage.layout()._symbol = symbol_;
                return;
            }
            // Otherwise, pack them and store them into a single word.
            _shortNameAndSymbol = packed;
        }
    }

    /**
     * @dev Helper function for retrieving the name and symbol,
     *      unpacking them from a single word in storage if previously packed.
     * @return name_   Name of the collection.
     * @return symbol_ Symbol of the collection.
     */
    function _loadNameAndSymbol() internal view returns (string memory name_, string memory symbol_) {
        // Overflow impossible since max block gas limit bounds the length of the strings.
        unchecked {
            bytes32 packed = _shortNameAndSymbol;
            // If the strings have been previously packed.
            if (packed != bytes32(0)) {
                (name_, symbol_) = LibString.unpackTwo(packed);
            } else {
                // Otherwise, load them from their separate variables.
                name_ = ERC721AStorage.layout()._name;
                symbol_ = ERC721AStorage.layout()._symbol;
            }
        }
    }
}

File 2 of 23 : IMetadataModule.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.16;

/**
 * @title IMetadataModule
 * @notice The interface for custom metadata modules.
 */
interface IMetadataModule {
    /**
     * @dev When implemented, SoundEdition's `tokenURI` redirects execution to this `tokenURI`.
     * @param tokenId The token ID to retrieve the token URI for.
     * @return The token URI string.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);
}

File 3 of 23 : ISoundEditionV1_1.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.16;

import { IERC721AUpgradeable } from "chiru-labs/ERC721A-Upgradeable/IERC721AUpgradeable.sol";
import { IERC2981Upgradeable } from "openzeppelin-upgradeable/interfaces/IERC2981Upgradeable.sol";
import { IERC165Upgradeable } from "openzeppelin-upgradeable/utils/introspection/IERC165Upgradeable.sol";

import { IMetadataModule } from "./IMetadataModule.sol";

/**
 * @dev The information pertaining to this edition.
 */
struct EditionInfo {
    // Base URI for the tokenId.
    string baseURI;
    // Contract URI for OpenSea storefront.
    string contractURI;
    // Name of the collection.
    string name;
    // Symbol of the collection.
    string symbol;
    // Address that receives primary and secondary royalties.
    address fundingRecipient;
    // The current max mintable amount;
    uint32 editionMaxMintable;
    // The lower limit of the maximum number of tokens that can be minted.
    uint32 editionMaxMintableUpper;
    // The upper limit of the maximum number of tokens that can be minted.
    uint32 editionMaxMintableLower;
    // The timestamp (in seconds since unix epoch) after which the
    // max amount of tokens mintable will drop from
    // `maxMintableUpper` to `maxMintableLower`.
    uint32 editionCutoffTime;
    // Address of metadata module, address(0x00) if not used.
    address metadataModule;
    // The current mint randomness value.
    uint256 mintRandomness;
    // The royalty BPS (basis points).
    uint16 royaltyBPS;
    // Whether the mint randomness is enabled.
    bool mintRandomnessEnabled;
    // Whether the mint has concluded.
    bool mintConcluded;
    // Whether the metadata has been frozen.
    bool isMetadataFrozen;
    // Next token ID to be minted.
    uint256 nextTokenId;
    // Total number of tokens burned.
    uint256 totalBurned;
    // Total number of tokens minted.
    uint256 totalMinted;
    // Total number of tokens currently in existence.
    uint256 totalSupply;
}

/**
 * @title ISoundEditionV1_1
 * @notice The interface for Sound edition contracts.
 */
interface ISoundEditionV1_1 is IERC721AUpgradeable, IERC2981Upgradeable {
    // =============================================================
    //                            EVENTS
    // =============================================================

    /**
     * @dev Emitted when the metadata module is set.
     * @param metadataModule the address of the metadata module.
     */
    event MetadataModuleSet(address metadataModule);

    /**
     * @dev Emitted when the `baseURI` is set.
     * @param baseURI the base URI of the edition.
     */
    event BaseURISet(string baseURI);

    /**
     * @dev Emitted when the `contractURI` is set.
     * @param contractURI The contract URI of the edition.
     */
    event ContractURISet(string contractURI);

    /**
     * @dev Emitted when the metadata is frozen (e.g.: `baseURI` can no longer be changed).
     * @param metadataModule The address of the metadata module.
     * @param baseURI        The base URI of the edition.
     * @param contractURI    The contract URI of the edition.
     */
    event MetadataFrozen(address metadataModule, string baseURI, string contractURI);

    /**
     * @dev Emitted when the `fundingRecipient` is set.
     * @param fundingRecipient The address of the funding recipient.
     */
    event FundingRecipientSet(address fundingRecipient);

    /**
     * @dev Emitted when the `royaltyBPS` is set.
     * @param bps The new royalty, measured in basis points.
     */
    event RoyaltySet(uint16 bps);

    /**
     * @dev Emitted when the edition's maximum mintable token quantity range is set.
     * @param editionMaxMintableLower_ The lower limit of the maximum number of tokens that can be minted.
     * @param editionMaxMintableUpper_ The upper limit of the maximum number of tokens that can be minted.
     */
    event EditionMaxMintableRangeSet(uint32 editionMaxMintableLower_, uint32 editionMaxMintableUpper_);

    /**
     * @dev Emitted when the edition's cutoff time set.
     * @param editionCutoffTime_ The timestamp.
     */
    event EditionCutoffTimeSet(uint32 editionCutoffTime_);

    /**
     * @dev Emitted when the `mintRandomnessEnabled` is set.
     * @param mintRandomnessEnabled_ The boolean value.
     */
    event MintRandomnessEnabledSet(bool mintRandomnessEnabled_);

    /**
     * @dev Emitted when the `operatorFilteringEnabled` is set.
     * @param operatorFilteringEnabled_ The boolean value.
     */
    event OperatorFilteringEnablededSet(bool operatorFilteringEnabled_);

    /**
     * @dev Emitted upon initialization.
     * @param edition_                 The address of the edition.
     * @param name_                    Name of the collection.
     * @param symbol_                  Symbol of the collection.
     * @param metadataModule_          Address of metadata module, address(0x00) if not used.
     * @param baseURI_                 Base URI.
     * @param contractURI_             Contract URI for OpenSea storefront.
     * @param fundingRecipient_        Address that receives primary and secondary royalties.
     * @param royaltyBPS_              Royalty amount in bps (basis points).
     * @param editionMaxMintableLower_ The lower bound of the max mintable quantity for the edition.
     * @param editionMaxMintableUpper_ The upper bound of the max mintable quantity for the edition.
     * @param editionCutoffTime_       The timestamp after which `editionMaxMintable` drops from
     *                                 `editionMaxMintableUpper` to
     *                                 `max(_totalMinted(), editionMaxMintableLower)`.
     * @param flags_                   The bitwise OR result of the initialization flags.
     *                                 See: {METADATA_IS_FROZEN_FLAG}
     *                                 See: {MINT_RANDOMNESS_ENABLED_FLAG}
     */
    event SoundEditionInitialized(
        address indexed edition_,
        string name_,
        string symbol_,
        address metadataModule_,
        string baseURI_,
        string contractURI_,
        address fundingRecipient_,
        uint16 royaltyBPS_,
        uint32 editionMaxMintableLower_,
        uint32 editionMaxMintableUpper_,
        uint32 editionCutoffTime_,
        uint8 flags_
    );

    /**
     * @dev Emitted upon ETH withdrawal.
     * @param recipient The recipient of the withdrawal.
     * @param amount    The amount withdrawn.
     * @param caller    The account that initiated the withdrawal.
     */
    event ETHWithdrawn(address recipient, uint256 amount, address caller);

    /**
     * @dev Emitted upon ERC20 withdrawal.
     * @param recipient The recipient of the withdrawal.
     * @param tokens    The addresses of the ERC20 tokens.
     * @param amounts   The amount of each token withdrawn.
     * @param caller    The account that initiated the withdrawal.
     */
    event ERC20Withdrawn(address recipient, address[] tokens, uint256[] amounts, address caller);

    /**
     * @dev Emitted upon a mint.
     * @param to          The address to mint to.
     * @param quantity    The number of minted.
     * @param fromTokenId The first token ID minted.
     */
    event Minted(address to, uint256 quantity, uint256 fromTokenId);

    /**
     * @dev Emitted upon an airdrop.
     * @param to          The recipients of the airdrop.
     * @param quantity    The number of tokens airdropped to each address in `to`.
     * @param fromTokenId The first token ID minted to the first address in `to`.
     */
    event Airdropped(address[] to, uint256 quantity, uint256 fromTokenId);

    // =============================================================
    //                            ERRORS
    // =============================================================

    /**
     * @dev The edition's metadata is frozen (e.g.: `baseURI` can no longer be changed).
     */
    error MetadataIsFrozen();

    /**
     * @dev The given `royaltyBPS` is invalid.
     */
    error InvalidRoyaltyBPS();

    /**
     * @dev The given `randomnessLockedAfterMinted` value is invalid.
     */
    error InvalidRandomnessLock();

    /**
     * @dev The requested quantity exceeds the edition's remaining mintable token quantity.
     * @param available The number of tokens remaining available for mint.
     */
    error ExceedsEditionAvailableSupply(uint32 available);

    /**
     * @dev The given amount is invalid.
     */
    error InvalidAmount();

    /**
     * @dev The given `fundingRecipient` address is invalid.
     */
    error InvalidFundingRecipient();

    /**
     * @dev The `editionMaxMintableLower` must not be greater than `editionMaxMintableUpper`.
     */
    error InvalidEditionMaxMintableRange();

    /**
     * @dev The `editionMaxMintable` has already been reached.
     */
    error MaximumHasAlreadyBeenReached();

    /**
     * @dev The mint `quantity` cannot exceed `ADDRESS_BATCH_MINT_LIMIT` tokens.
     */
    error ExceedsAddressBatchMintLimit();

    /**
     * @dev The mint randomness has already been revealed.
     */
    error MintRandomnessAlreadyRevealed();

    /**
     * @dev No addresses to airdrop.
     */
    error NoAddressesToAirdrop();

    /**
     * @dev The mint has already concluded.
     */
    error MintHasConcluded();

    /**
     * @dev Cannot perform the operation after a token has been minted.
     */
    error MintsAlreadyExist();

    // =============================================================
    //               PUBLIC / EXTERNAL WRITE FUNCTIONS
    // =============================================================

    /**
     * @dev Initializes the contract.
     * @param name_                    Name of the collection.
     * @param symbol_                  Symbol of the collection.
     * @param metadataModule_          Address of metadata module, address(0x00) if not used.
     * @param baseURI_                 Base URI.
     * @param contractURI_             Contract URI for OpenSea storefront.
     * @param fundingRecipient_        Address that receives primary and secondary royalties.
     * @param royaltyBPS_              Royalty amount in bps (basis points).
     * @param editionMaxMintableLower_ The lower bound of the max mintable quantity for the edition.
     * @param editionMaxMintableUpper_ The upper bound of the max mintable quantity for the edition.
     * @param editionCutoffTime_       The timestamp after which `editionMaxMintable` drops from
     *                                 `editionMaxMintableUpper` to
     *                                 `max(_totalMinted(), editionMaxMintableLower)`.
     * @param flags_                   The bitwise OR result of the initialization flags.
     *                                 See: {METADATA_IS_FROZEN_FLAG}
     *                                 See: {MINT_RANDOMNESS_ENABLED_FLAG}
     */
    function initialize(
        string memory name_,
        string memory symbol_,
        address metadataModule_,
        string memory baseURI_,
        string memory contractURI_,
        address fundingRecipient_,
        uint16 royaltyBPS_,
        uint32 editionMaxMintableLower_,
        uint32 editionMaxMintableUpper_,
        uint32 editionCutoffTime_,
        uint8 flags_
    ) external;

    /**
     * @dev Mints `quantity` tokens to addrress `to`
     *      Each token will be assigned a token ID that is consecutively increasing.
     *
     * Calling conditions:
     * - The caller must be the owner of the contract, or have either the
     *   `ADMIN_ROLE`, `MINTER_ROLE`, which can be granted via {grantRole}.
     *   Multiple minters, such as different minter contracts,
     *   can be authorized simultaneously.
     *
     * @param to       Address to mint to.
     * @param quantity Number of tokens to mint.
     * @return fromTokenId The first token ID minted.
     */
    function mint(address to, uint256 quantity) external payable returns (uint256 fromTokenId);

    /**
     * @dev Mints `quantity` tokens to each of the addresses in `to`.
     *
     * Calling conditions:
     * - The caller must be the owner of the contract, or have the
     *   `ADMIN_ROLE`, which can be granted via {grantRole}.
     *
     * @param to           Address to mint to.
     * @param quantity     Number of tokens to mint.
     * @return fromTokenId The first token ID minted.
     */
    function airdrop(address[] calldata to, uint256 quantity) external returns (uint256 fromTokenId);

    /**
     * @dev Withdraws collected ETH royalties to the fundingRecipient.
     */
    function withdrawETH() external;

    /**
     * @dev Withdraws collected ERC20 royalties to the fundingRecipient.
     * @param tokens array of ERC20 tokens to withdraw
     */
    function withdrawERC20(address[] calldata tokens) external;

    /**
     * @dev Sets metadata module.
     *
     * Calling conditions:
     * - The caller must be the owner of the contract, or have the `ADMIN_ROLE`.
     *
     * @param metadataModule Address of metadata module.
     */
    function setMetadataModule(address metadataModule) external;

    /**
     * @dev Sets global base URI.
     *
     * Calling conditions:
     * - The caller must be the owner of the contract, or have the `ADMIN_ROLE`.
     *
     * @param baseURI The base URI to be set.
     */
    function setBaseURI(string memory baseURI) external;

    /**
     * @dev Sets contract URI.
     *
     * Calling conditions:
     * - The caller must be the owner of the contract, or have the `ADMIN_ROLE`.
     *
     * @param contractURI The contract URI to be set.
     */
    function setContractURI(string memory contractURI) external;

    /**
     * @dev Freezes metadata by preventing any more changes to base URI.
     *
     * Calling conditions:
     * - The caller must be the owner of the contract, or have the `ADMIN_ROLE`.
     */
    function freezeMetadata() external;

    /**
     * @dev Sets funding recipient address.
     *
     * Calling conditions:
     * - The caller must be the owner of the contract, or have the `ADMIN_ROLE`.
     *
     * @param fundingRecipient Address to be set as the new funding recipient.
     */
    function setFundingRecipient(address fundingRecipient) external;

    /**
     * @dev Sets royalty amount in bps (basis points).
     *
     * Calling conditions:
     * - The caller must be the owner of the contract, or have the `ADMIN_ROLE`.
     *
     * @param bps The new royalty basis points to be set.
     */
    function setRoyalty(uint16 bps) external;

    /**
     * @dev Sets the edition max mintable range.
     *
     * Calling conditions:
     * - The caller must be the owner of the contract, or have the `ADMIN_ROLE`.
     *
     * @param editionMaxMintableLower_ The lower limit of the maximum number of tokens that can be minted.
     * @param editionMaxMintableUpper_ The upper limit of the maximum number of tokens that can be minted.
     */
    function setEditionMaxMintableRange(uint32 editionMaxMintableLower_, uint32 editionMaxMintableUpper_) external;

    /**
     * @dev Sets the timestamp after which, the `editionMaxMintable` drops
     *      from `editionMaxMintableUpper` to `editionMaxMintableLower.
     *
     * Calling conditions:
     * - The caller must be the owner of the contract, or have the `ADMIN_ROLE`.
     *
     * @param editionCutoffTime_ The timestamp.
     */
    function setEditionCutoffTime(uint32 editionCutoffTime_) external;

    /**
     * @dev Sets whether the `mintRandomness` is enabled.
     *
     * Calling conditions:
     * - The caller must be the owner of the contract, or have the `ADMIN_ROLE`.
     *
     * @param mintRandomnessEnabled_ The boolean value.
     */
    function setMintRandomnessEnabled(bool mintRandomnessEnabled_) external;

    /**
     * @dev Sets whether OpenSea operator filtering is enabled.
     *
     * Calling conditions:
     * - The caller must be the owner of the contract, or have the `ADMIN_ROLE`.
     *
     * @param operatorFilteringEnabled_ The boolean value.
     */
    function setOperatorFilteringEnabled(bool operatorFilteringEnabled_) external;

    // =============================================================
    //               PUBLIC / EXTERNAL VIEW FUNCTIONS
    // =============================================================

    /**
     * @dev Returns the edition info.
     * @return editionInfo The latest value.
     */
    function editionInfo() external view returns (EditionInfo memory editionInfo);

    /**
     * @dev Returns the minter role flag.
     * @return The constant value.
     */
    function MINTER_ROLE() external view returns (uint256);

    /**
     * @dev Returns the admin role flag.
     * @return The constant value.
     */
    function ADMIN_ROLE() external view returns (uint256);

    /**
     * @dev Returns the maximum limit for the mint or airdrop `quantity`.
     *      Prevents the first-time transfer costs for tokens near the end of large mint batches
     *      via ERC721A from becoming too expensive due to the need to scan many storage slots.
     *      See: https://chiru-labs.github.io/ERC721A/#/tips?id=batch-size
     * @return The constant value.
     */
    function ADDRESS_BATCH_MINT_LIMIT() external pure returns (uint256);

    /**
     * @dev Returns the bit flag to freeze the metadata on initialization.
     * @return The constant value.
     */
    function METADATA_IS_FROZEN_FLAG() external pure returns (uint8);

    /**
     * @dev Returns the bit flag to enable the mint randomness feature on initialization.
     * @return The constant value.
     */
    function MINT_RANDOMNESS_ENABLED_FLAG() external pure returns (uint8);

    /**
     * @dev Returns the bit flag to enable OpenSea operator filtering.
     * @return The constant value.
     */
    function OPERATOR_FILTERING_ENABLED_FLAG() external pure returns (uint8);

    /**
     * @dev Returns the base token URI for the collection.
     * @return The configured value.
     */
    function baseURI() external view returns (string memory);

    /**
     * @dev Returns the contract URI to be used by Opensea.
     *      See: https://docs.opensea.io/docs/contract-level-metadata
     * @return The configured value.
     */
    function contractURI() external view returns (string memory);

    /**
     * @dev Returns the address of the funding recipient.
     * @return The configured value.
     */
    function fundingRecipient() external view returns (address);

    /**
     * @dev Returns the maximum amount of tokens mintable for this edition.
     * @return The configured value.
     */
    function editionMaxMintable() external view returns (uint32);

    /**
     * @dev Returns the upper bound for the maximum tokens that can be minted for this edition.
     * @return The configured value.
     */
    function editionMaxMintableUpper() external view returns (uint32);

    /**
     * @dev Returns the lower bound for the maximum tokens that can be minted for this edition.
     * @return The configured value.
     */
    function editionMaxMintableLower() external view returns (uint32);

    /**
     * @dev Returns the timestamp after which `editionMaxMintable` drops from
     *      `editionMaxMintableUpper` to `editionMaxMintableLower`.
     * @return The configured value.
     */
    function editionCutoffTime() external view returns (uint32);

    /**
     * @dev Returns the address of the metadata module.
     * @return The configured value.
     */
    function metadataModule() external view returns (address);

    /**
     * @dev Returns the randomness based on latest block hash, which is stored upon each mint.
     *      unless {mintConcluded} is true.
     *      Used for game mechanics like the Sound Golden Egg.
     *      Returns 0 before revealed.
     *      WARNING: This value should NOT be used for any reward of significant monetary
     *      value, due to it being computed via a purely on-chain psuedorandom mechanism.
     * @return The latest value.
     */
    function mintRandomness() external view returns (uint256);

    /**
     * @dev Returns whether the `mintRandomness` has been enabled.
     * @return The configured value.
     */
    function mintRandomnessEnabled() external view returns (bool);

    /**
     * @dev Returns whether the `operatorFilteringEnabled` has been enabled.
     * @return The configured value.
     */
    function operatorFilteringEnabled() external view returns (bool);

    /**
     * @dev Returns whether the mint has been concluded.
     * @return The latest value.
     */
    function mintConcluded() external view returns (bool);

    /**
     * @dev Returns the royalty basis points.
     * @return The configured value.
     */
    function royaltyBPS() external view returns (uint16);

    /**
     * @dev Returns whether the metadata module is frozen.
     * @return The configured value.
     */
    function isMetadataFrozen() external view returns (bool);

    /**
     * @dev Returns the next token ID to be minted.
     * @return The latest value.
     */
    function nextTokenId() external view returns (uint256);

    /**
     * @dev Returns the number of tokens minted by `owner`.
     * @param owner Address to query for number minted.
     * @return The latest value.
     */
    function numberMinted(address owner) external view returns (uint256);

    /**
     * @dev Returns the number of tokens burned by `owner`.
     * @param owner Address to query for number burned.
     * @return The latest value.
     */
    function numberBurned(address owner) external view returns (uint256);

    /**
     * @dev Returns the total amount of tokens minted.
     * @return The latest value.
     */
    function totalMinted() external view returns (uint256);

    /**
     * @dev Returns the total amount of tokens burned.
     * @return The latest value.
     */
    function totalBurned() external view returns (uint256);

    /**
     * @dev Informs other contracts which interfaces this contract supports.
     *      Required by https://eips.ethereum.org/EIPS/eip-165
     * @param interfaceId The interface id to check.
     * @return Whether the `interfaceId` is supported.
     */
    function supportsInterface(bytes4 interfaceId)
        external
        view
        override(IERC721AUpgradeable, IERC165Upgradeable)
        returns (bool);
}

File 4 of 23 : ArweaveURILib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.16;

/*
                 ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
               ▒███████████████████████████████████████████████████████████
               ▒███████████████████████████████████████████████████████████
 ▒▓▓▓▓▓▓▓▓▓▓▓▓▓████████████████▓▓▓▓▓▓▓▓▓▓▓▓▓▓██████████████████████████████▓▒▒▒▒▒▒▒▒▒▒▒▒▒
 █████████████████████████████▓              ████████████████████████████████████████████
 █████████████████████████████▓              ████████████████████████████████████████████
 █████████████████████████████▓               ▒▒▒▒▒▒▒▒▒▒▒▒▒██████████████████████████████
 █████████████████████████████▓                            ▒█████████████████████████████
 █████████████████████████████▓                             ▒████████████████████████████
 █████████████████████████████████████████████████████████▓
 ███████████████████████████████████████████████████████████
 ███████████████████████████████████████████████████████████▒
                              ███████████████████████████████████████████████████████████▒
                              ▓██████████████████████████████████████████████████████████▒
                               ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓███████████████████████████████▒
 █████████████████████████████                             ▒█████████████████████████████▒
 ██████████████████████████████                            ▒█████████████████████████████▒
 ██████████████████████████████▓▒▒▒▒▒▒▒▒▒▒▒▒▒              ▒█████████████████████████████▒
 ████████████████████████████████████████████▒             ▒█████████████████████████████▒
 ████████████████████████████████████████████▒             ▒█████████████████████████████▒
 ▒▒▒▒▒▒▒▒▒▒▒▒▒▒███████████████████████████████▓▓▓▓▓▓▓▓▓▓▓▓▓███████████████▓▒▒▒▒▒▒▒▒▒▒▒▒▒▒
               ▓██████████████████████████████████████████████████████████▒
               ▓██████████████████████████████████████████████████████████
*/

import { Base64 } from "solady/utils/Base64.sol";

library ArweaveURILib {
    // =============================================================
    //                            STRUCTS
    // =============================================================

    struct URI {
        bytes32 arweave;
        string regular;
    }

    // =============================================================
    //                  INTERNAL / PRIVATE HELPERS
    // =============================================================

    /**
     * @dev Helper function for storing a URI that may be an Arweave URI.
     *      Efficiently stores Arweave CIDs by converting them into a single bytes32 word.
     *      The Arweave CID is a base64 encoded sha-256 output (32 bytes when decoded).
     *      See: https://docs.arweave.org/developers/server/http-api
     * @param uri      The URI storage reference.
     * @param value    The string representation of the URI.
     * @param isUpdate Whether this is called in an update.
     */
    function store(
        URI storage uri,
        string memory value,
        bool isUpdate
    ) internal {
        uint256 valueLength;
        bool isArweave;
        assembly {
            // Example: "ar://Hjtz2YLeVyXQkGxKTNcIYfWkKnHioDvfICulzQIAt3E"
            valueLength := mload(value)
            // If the URI is length 48 or 49 (due to a trailing slash).
            if or(eq(valueLength, 48), eq(valueLength, 49)) {
                // If starts with "ar://".
                if eq(and(mload(add(value, 5)), 0xffffffffff), 0x61723a2f2f) {
                    isArweave := 1
                    value := add(value, 5)
                    // Sets the length of the `value` to 43,
                    // such that it only contains the CID.
                    mstore(value, 43)
                }
            }
        }
        if (isArweave) {
            bytes memory decodedCIDBytes = Base64.decode(value);
            bytes32 arweaveCID;
            assembly {
                arweaveCID := mload(add(decodedCIDBytes, 0x20))
                // Restore the "ar://".
                mstore(value, 0x61723a2f2f)
                // Restore the original position of the `value` pointer.
                value := sub(value, 5)
                // Restore the original length.
                mstore(value, valueLength)
            }
            uri.arweave = arweaveCID;
            if (isUpdate) delete uri.regular;
        } else {
            uri.regular = value;
            if (isUpdate) delete uri.arweave;
        }
    }

    /**
     * @dev Equivalent to `store(uri, value, false)`.
     * @param uri      The URI storage reference.
     * @param value    The string representation of the URI.
     */
    function initialize(URI storage uri, string memory value) internal {
        store(uri, value, false);
    }

    /**
     * @dev Equivalent to `store(uri, value, true)`.
     * @param uri      The URI storage reference.
     * @param value    The string representation of the URI.
     */
    function update(URI storage uri, string memory value) internal {
        store(uri, value, true);
    }

    /**
     * @dev Helper function for retrieving a URI stored with {_setURI}.
     * @param uri The URI storage reference.
     */
    function load(URI storage uri) internal view returns (string memory) {
        bytes32 arweaveCID = uri.arweave;
        if (arweaveCID == bytes32(0)) {
            return uri.regular;
        }
        bytes memory decoded;
        assembly {
            // Copy `arweaveCID`.
            // First, grab the free memory pointer.
            decoded := mload(0x40)
            // Allocate 2 slots.
            // 1 slot for the length, 1 slot for the bytes.
            mstore(0x40, add(decoded, 0x40))
            mstore(decoded, 0x20) // Set the length (32 bytes).
            mstore(add(decoded, 0x20), arweaveCID) // Set the bytes.
        }
        return string.concat("ar://", Base64.encode(decoded, true, true), "/");
    }
}

File 5 of 23 : MintRandomnessLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.16;

/*
                 ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
               ▒███████████████████████████████████████████████████████████
               ▒███████████████████████████████████████████████████████████
 ▒▓▓▓▓▓▓▓▓▓▓▓▓▓████████████████▓▓▓▓▓▓▓▓▓▓▓▓▓▓██████████████████████████████▓▒▒▒▒▒▒▒▒▒▒▒▒▒
 █████████████████████████████▓              ████████████████████████████████████████████
 █████████████████████████████▓              ████████████████████████████████████████████
 █████████████████████████████▓               ▒▒▒▒▒▒▒▒▒▒▒▒▒██████████████████████████████
 █████████████████████████████▓                            ▒█████████████████████████████
 █████████████████████████████▓                             ▒████████████████████████████
 █████████████████████████████████████████████████████████▓
 ███████████████████████████████████████████████████████████
 ███████████████████████████████████████████████████████████▒
                              ███████████████████████████████████████████████████████████▒
                              ▓██████████████████████████████████████████████████████████▒
                               ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓███████████████████████████████▒
 █████████████████████████████                             ▒█████████████████████████████▒
 ██████████████████████████████                            ▒█████████████████████████████▒
 ██████████████████████████████▓▒▒▒▒▒▒▒▒▒▒▒▒▒              ▒█████████████████████████████▒
 ████████████████████████████████████████████▒             ▒█████████████████████████████▒
 ████████████████████████████████████████████▒             ▒█████████████████████████████▒
 ▒▒▒▒▒▒▒▒▒▒▒▒▒▒███████████████████████████████▓▓▓▓▓▓▓▓▓▓▓▓▓███████████████▓▒▒▒▒▒▒▒▒▒▒▒▒▒▒
               ▓██████████████████████████████████████████████████████████▒
               ▓██████████████████████████████████████████████████████████
*/

library MintRandomnessLib {
    /**
     * @dev Returns the next mint randomness.
     * @param randomness  The current mint randomness.
     * @param totalMinted The total number of tokens minted.
     * @param maxMintable The maximum number of tokens that can be minted.
     * @return newRandomness The next mint randomness.
     */
    function nextMintRandomness(
        uint256 randomness,
        uint256 totalMinted,
        uint256 maxMintable
    ) internal view returns (uint256 newRandomness) {
        assembly {
            newRandomness := randomness
            // Pick any of the last 256 blocks psuedorandomly for the blockhash.
            mstore(0x00, blockhash(sub(number(), add(1, and(0xff, randomness)))))
            // After the merge, if [EIP-4399](https://eips.ethereum.org/EIPS/eip-4399)
            // is implemented, the `difficulty()` will be determined by the beacon chain.
            // We also need to xor with the `totalMinted` to prevent the randomness
            // from being stucked.
            mstore(0x20, xor(xor(randomness, difficulty()), totalMinted))

            let r := keccak256(0x00, 0x40)

            switch randomness
            case 0 {
                // If `randomness` is uninitialized,
                // initialize all bits psuedorandomly.
                newRandomness := r
            }
            default {
                // Decay the chance to update as more are minted.
                if gt(mod(r, add(maxMintable, 1)), totalMinted) {
                    // If `randomness` has already been initialized,
                    // each update can only contribute 1 bit of psuedorandomness.
                    newRandomness := or(shl(1, randomness), shr(255, r))
                }
            }
        }
    }
}

File 6 of 23 : ERC721AStorage.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

library ERC721AStorage {
    // Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364).
    struct TokenApprovalRef {
        address value;
    }

    struct Layout {
        // =============================================================
        //                            STORAGE
        // =============================================================

        // The next token ID to be minted.
        uint256 _currentIndex;
        // The number of tokens burned.
        uint256 _burnCounter;
        // Token name
        string _name;
        // Token symbol
        string _symbol;
        // Mapping from token ID to ownership details
        // An empty struct value does not necessarily mean the token is unowned.
        // See {_packedOwnershipOf} implementation for details.
        //
        // Bits Layout:
        // - [0..159]   `addr`
        // - [160..223] `startTimestamp`
        // - [224]      `burned`
        // - [225]      `nextInitialized`
        // - [232..255] `extraData`
        mapping(uint256 => uint256) _packedOwnerships;
        // Mapping owner address to address data.
        //
        // Bits Layout:
        // - [0..63]    `balance`
        // - [64..127]  `numberMinted`
        // - [128..191] `numberBurned`
        // - [192..255] `aux`
        mapping(address => uint256) _packedAddressData;
        // Mapping from token ID to approved address.
        mapping(uint256 => ERC721AStorage.TokenApprovalRef) _tokenApprovals;
        // Mapping from owner to operator approvals
        mapping(address => mapping(address => bool)) _operatorApprovals;
    }

    bytes32 internal constant STORAGE_SLOT = keccak256('ERC721A.contracts.storage.ERC721A');

    function layout() internal pure returns (Layout storage l) {
        bytes32 slot = STORAGE_SLOT;
        assembly {
            l.slot := slot
        }
    }
}

File 7 of 23 : ERC721AUpgradeable.sol
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs

pragma solidity ^0.8.4;

import './IERC721AUpgradeable.sol';
import {ERC721AStorage} from './ERC721AStorage.sol';
import './ERC721A__Initializable.sol';

/**
 * @dev Interface of ERC721 token receiver.
 */
interface ERC721A__IERC721ReceiverUpgradeable {
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

/**
 * @title ERC721A
 *
 * @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721)
 * Non-Fungible Token Standard, including the Metadata extension.
 * Optimized for lower gas during batch mints.
 *
 * Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...)
 * starting from `_startTokenId()`.
 *
 * Assumptions:
 *
 * - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
 * - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256).
 */
contract ERC721AUpgradeable is ERC721A__Initializable, IERC721AUpgradeable {
    using ERC721AStorage for ERC721AStorage.Layout;

    // =============================================================
    //                           CONSTANTS
    // =============================================================

    // Mask of an entry in packed address data.
    uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1;

    // The bit position of `numberMinted` in packed address data.
    uint256 private constant _BITPOS_NUMBER_MINTED = 64;

    // The bit position of `numberBurned` in packed address data.
    uint256 private constant _BITPOS_NUMBER_BURNED = 128;

    // The bit position of `aux` in packed address data.
    uint256 private constant _BITPOS_AUX = 192;

    // Mask of all 256 bits in packed address data except the 64 bits for `aux`.
    uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1;

    // The bit position of `startTimestamp` in packed ownership.
    uint256 private constant _BITPOS_START_TIMESTAMP = 160;

    // The bit mask of the `burned` bit in packed ownership.
    uint256 private constant _BITMASK_BURNED = 1 << 224;

    // The bit position of the `nextInitialized` bit in packed ownership.
    uint256 private constant _BITPOS_NEXT_INITIALIZED = 225;

    // The bit mask of the `nextInitialized` bit in packed ownership.
    uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225;

    // The bit position of `extraData` in packed ownership.
    uint256 private constant _BITPOS_EXTRA_DATA = 232;

    // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`.
    uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1;

    // The mask of the lower 160 bits for addresses.
    uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;

    // The maximum `quantity` that can be minted with {_mintERC2309}.
    // This limit is to prevent overflows on the address data entries.
    // For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309}
    // is required to cause an overflow, which is unrealistic.
    uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000;

    // The `Transfer` event signature is given by:
    // `keccak256(bytes("Transfer(address,address,uint256)"))`.
    bytes32 private constant _TRANSFER_EVENT_SIGNATURE =
        0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;

    // =============================================================
    //                          CONSTRUCTOR
    // =============================================================

    function __ERC721A_init(string memory name_, string memory symbol_) internal onlyInitializingERC721A {
        __ERC721A_init_unchained(name_, symbol_);
    }

    function __ERC721A_init_unchained(string memory name_, string memory symbol_) internal onlyInitializingERC721A {
        ERC721AStorage.layout()._name = name_;
        ERC721AStorage.layout()._symbol = symbol_;
        ERC721AStorage.layout()._currentIndex = _startTokenId();
    }

    // =============================================================
    //                   TOKEN COUNTING OPERATIONS
    // =============================================================

    /**
     * @dev Returns the starting token ID.
     * To change the starting token ID, please override this function.
     */
    function _startTokenId() internal view virtual returns (uint256) {
        return 0;
    }

    /**
     * @dev Returns the next token ID to be minted.
     */
    function _nextTokenId() internal view virtual returns (uint256) {
        return ERC721AStorage.layout()._currentIndex;
    }

    /**
     * @dev Returns the total number of tokens in existence.
     * Burned tokens will reduce the count.
     * To get the total number of tokens minted, please see {_totalMinted}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        // Counter underflow is impossible as _burnCounter cannot be incremented
        // more than `_currentIndex - _startTokenId()` times.
        unchecked {
            return ERC721AStorage.layout()._currentIndex - ERC721AStorage.layout()._burnCounter - _startTokenId();
        }
    }

    /**
     * @dev Returns the total amount of tokens minted in the contract.
     */
    function _totalMinted() internal view virtual returns (uint256) {
        // Counter underflow is impossible as `_currentIndex` does not decrement,
        // and it is initialized to `_startTokenId()`.
        unchecked {
            return ERC721AStorage.layout()._currentIndex - _startTokenId();
        }
    }

    /**
     * @dev Returns the total number of tokens burned.
     */
    function _totalBurned() internal view virtual returns (uint256) {
        return ERC721AStorage.layout()._burnCounter;
    }

    // =============================================================
    //                    ADDRESS DATA OPERATIONS
    // =============================================================

    /**
     * @dev Returns the number of tokens in `owner`'s account.
     */
    function balanceOf(address owner) public view virtual override returns (uint256) {
        if (owner == address(0)) revert BalanceQueryForZeroAddress();
        return ERC721AStorage.layout()._packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY;
    }

    /**
     * Returns the number of tokens minted by `owner`.
     */
    function _numberMinted(address owner) internal view returns (uint256) {
        return
            (ERC721AStorage.layout()._packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY;
    }

    /**
     * Returns the number of tokens burned by or on behalf of `owner`.
     */
    function _numberBurned(address owner) internal view returns (uint256) {
        return
            (ERC721AStorage.layout()._packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY;
    }

    /**
     * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
     */
    function _getAux(address owner) internal view returns (uint64) {
        return uint64(ERC721AStorage.layout()._packedAddressData[owner] >> _BITPOS_AUX);
    }

    /**
     * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
     * If there are multiple variables, please pack them into a uint64.
     */
    function _setAux(address owner, uint64 aux) internal virtual {
        uint256 packed = ERC721AStorage.layout()._packedAddressData[owner];
        uint256 auxCasted;
        // Cast `aux` with assembly to avoid redundant masking.
        assembly {
            auxCasted := aux
        }
        packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX);
        ERC721AStorage.layout()._packedAddressData[owner] = packed;
    }

    // =============================================================
    //                            IERC165
    // =============================================================

    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30000 gas.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        // The interface IDs are constants representing the first 4 bytes
        // of the XOR of all function selectors in the interface.
        // See: [ERC165](https://eips.ethereum.org/EIPS/eip-165)
        // (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`)
        return
            interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165.
            interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721.
            interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata.
    }

    // =============================================================
    //                        IERC721Metadata
    // =============================================================

    /**
     * @dev Returns the token collection name.
     */
    function name() public view virtual override returns (string memory) {
        return ERC721AStorage.layout()._name;
    }

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() public view virtual override returns (string memory) {
        return ERC721AStorage.layout()._symbol;
    }

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
        if (!_exists(tokenId)) revert URIQueryForNonexistentToken();

        string memory baseURI = _baseURI();
        return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : '';
    }

    /**
     * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
     * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
     * by default, it can be overridden in child contracts.
     */
    function _baseURI() internal view virtual returns (string memory) {
        return '';
    }

    // =============================================================
    //                     OWNERSHIPS OPERATIONS
    // =============================================================

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) public view virtual override returns (address) {
        return address(uint160(_packedOwnershipOf(tokenId)));
    }

    /**
     * @dev Gas spent here starts off proportional to the maximum mint batch size.
     * It gradually moves to O(1) as tokens get transferred around over time.
     */
    function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) {
        return _unpackedOwnership(_packedOwnershipOf(tokenId));
    }

    /**
     * @dev Returns the unpacked `TokenOwnership` struct at `index`.
     */
    function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) {
        return _unpackedOwnership(ERC721AStorage.layout()._packedOwnerships[index]);
    }

    /**
     * @dev Initializes the ownership slot minted at `index` for efficiency purposes.
     */
    function _initializeOwnershipAt(uint256 index) internal virtual {
        if (ERC721AStorage.layout()._packedOwnerships[index] == 0) {
            ERC721AStorage.layout()._packedOwnerships[index] = _packedOwnershipOf(index);
        }
    }

    /**
     * Returns the packed ownership data of `tokenId`.
     */
    function _packedOwnershipOf(uint256 tokenId) private view returns (uint256 packed) {
        if (_startTokenId() <= tokenId) {
            packed = ERC721AStorage.layout()._packedOwnerships[tokenId];
            // If not burned.
            if (packed & _BITMASK_BURNED == 0) {
                // If the data at the starting slot does not exist, start the scan.
                if (packed == 0) {
                    if (tokenId >= ERC721AStorage.layout()._currentIndex) revert OwnerQueryForNonexistentToken();
                    // Invariant:
                    // There will always be an initialized ownership slot
                    // (i.e. `ownership.addr != address(0) && ownership.burned == false`)
                    // before an unintialized ownership slot
                    // (i.e. `ownership.addr == address(0) && ownership.burned == false`)
                    // Hence, `tokenId` will not underflow.
                    //
                    // We can directly compare the packed value.
                    // If the address is zero, packed will be zero.
                    for (;;) {
                        unchecked {
                            packed = ERC721AStorage.layout()._packedOwnerships[--tokenId];
                        }
                        if (packed == 0) continue;
                        return packed;
                    }
                }
                // Otherwise, the data exists and is not burned. We can skip the scan.
                // This is possible because we have already achieved the target condition.
                // This saves 2143 gas on transfers of initialized tokens.
                return packed;
            }
        }
        revert OwnerQueryForNonexistentToken();
    }

    /**
     * @dev Returns the unpacked `TokenOwnership` struct from `packed`.
     */
    function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) {
        ownership.addr = address(uint160(packed));
        ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP);
        ownership.burned = packed & _BITMASK_BURNED != 0;
        ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA);
    }

    /**
     * @dev Packs ownership data into a single uint256.
     */
    function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) {
        assembly {
            // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
            owner := and(owner, _BITMASK_ADDRESS)
            // `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`.
            result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags))
        }
    }

    /**
     * @dev Returns the `nextInitialized` flag set if `quantity` equals 1.
     */
    function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) {
        // For branchless setting of the `nextInitialized` flag.
        assembly {
            // `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`.
            result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1))
        }
    }

    // =============================================================
    //                      APPROVAL OPERATIONS
    // =============================================================

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account. See {ERC721A-_approve}.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     */
    function approve(address to, uint256 tokenId) public payable virtual override {
        _approve(to, tokenId, true);
    }

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) public view virtual override returns (address) {
        if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken();

        return ERC721AStorage.layout()._tokenApprovals[tokenId].value;
    }

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom}
     * for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) public virtual override {
        ERC721AStorage.layout()._operatorApprovals[_msgSenderERC721A()][operator] = approved;
        emit ApprovalForAll(_msgSenderERC721A(), operator, approved);
    }

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}.
     */
    function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
        return ERC721AStorage.layout()._operatorApprovals[owner][operator];
    }

    /**
     * @dev Returns whether `tokenId` exists.
     *
     * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
     *
     * Tokens start existing when they are minted. See {_mint}.
     */
    function _exists(uint256 tokenId) internal view virtual returns (bool) {
        return
            _startTokenId() <= tokenId &&
            tokenId < ERC721AStorage.layout()._currentIndex && // If within bounds,
            ERC721AStorage.layout()._packedOwnerships[tokenId] & _BITMASK_BURNED == 0; // and not burned.
    }

    /**
     * @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`.
     */
    function _isSenderApprovedOrOwner(
        address approvedAddress,
        address owner,
        address msgSender
    ) private pure returns (bool result) {
        assembly {
            // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
            owner := and(owner, _BITMASK_ADDRESS)
            // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean.
            msgSender := and(msgSender, _BITMASK_ADDRESS)
            // `msgSender == owner || msgSender == approvedAddress`.
            result := or(eq(msgSender, owner), eq(msgSender, approvedAddress))
        }
    }

    /**
     * @dev Returns the storage slot and value for the approved address of `tokenId`.
     */
    function _getApprovedSlotAndAddress(uint256 tokenId)
        private
        view
        returns (uint256 approvedAddressSlot, address approvedAddress)
    {
        ERC721AStorage.TokenApprovalRef storage tokenApproval = ERC721AStorage.layout()._tokenApprovals[tokenId];
        // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`.
        assembly {
            approvedAddressSlot := tokenApproval.slot
            approvedAddress := sload(approvedAddressSlot)
        }
    }

    // =============================================================
    //                      TRANSFER OPERATIONS
    // =============================================================

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token
     * by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) public payable virtual override {
        uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);

        if (address(uint160(prevOwnershipPacked)) != from) revert TransferFromIncorrectOwner();

        (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);

        // The nested ifs save around 20+ gas over a compound boolean condition.
        if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
            if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();

        if (to == address(0)) revert TransferToZeroAddress();

        _beforeTokenTransfers(from, to, tokenId, 1);

        // Clear approvals from the previous owner.
        assembly {
            if approvedAddress {
                // This is equivalent to `delete _tokenApprovals[tokenId]`.
                sstore(approvedAddressSlot, 0)
            }
        }

        // Underflow of the sender's balance is impossible because we check for
        // ownership above and the recipient's balance can't realistically overflow.
        // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
        unchecked {
            // We can directly increment and decrement the balances.
            --ERC721AStorage.layout()._packedAddressData[from]; // Updates: `balance -= 1`.
            ++ERC721AStorage.layout()._packedAddressData[to]; // Updates: `balance += 1`.

            // Updates:
            // - `address` to the next owner.
            // - `startTimestamp` to the timestamp of transfering.
            // - `burned` to `false`.
            // - `nextInitialized` to `true`.
            ERC721AStorage.layout()._packedOwnerships[tokenId] = _packOwnershipData(
                to,
                _BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked)
            );

            // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
            if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
                uint256 nextTokenId = tokenId + 1;
                // If the next slot's address is zero and not burned (i.e. packed value is zero).
                if (ERC721AStorage.layout()._packedOwnerships[nextTokenId] == 0) {
                    // If the next slot is within bounds.
                    if (nextTokenId != ERC721AStorage.layout()._currentIndex) {
                        // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                        ERC721AStorage.layout()._packedOwnerships[nextTokenId] = prevOwnershipPacked;
                    }
                }
            }
        }

        emit Transfer(from, to, tokenId);
        _afterTokenTransfers(from, to, tokenId, 1);
    }

    /**
     * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) public payable virtual override {
        safeTransferFrom(from, to, tokenId, '');
    }

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token
     * by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement
     * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes memory _data
    ) public payable virtual override {
        transferFrom(from, to, tokenId);
        if (to.code.length != 0)
            if (!_checkContractOnERC721Received(from, to, tokenId, _data)) {
                revert TransferToNonERC721ReceiverImplementer();
            }
    }

    /**
     * @dev Hook that is called before a set of serially-ordered token IDs
     * are about to be transferred. This includes minting.
     * And also called before burning one token.
     *
     * `startTokenId` - the first token ID to be transferred.
     * `quantity` - the amount to be transferred.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
     * transferred to `to`.
     * - When `from` is zero, `tokenId` will be minted for `to`.
     * - When `to` is zero, `tokenId` will be burned by `from`.
     * - `from` and `to` are never both zero.
     */
    function _beforeTokenTransfers(
        address from,
        address to,
        uint256 startTokenId,
        uint256 quantity
    ) internal virtual {}

    /**
     * @dev Hook that is called after a set of serially-ordered token IDs
     * have been transferred. This includes minting.
     * And also called after one token has been burned.
     *
     * `startTokenId` - the first token ID to be transferred.
     * `quantity` - the amount to be transferred.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
     * transferred to `to`.
     * - When `from` is zero, `tokenId` has been minted for `to`.
     * - When `to` is zero, `tokenId` has been burned by `from`.
     * - `from` and `to` are never both zero.
     */
    function _afterTokenTransfers(
        address from,
        address to,
        uint256 startTokenId,
        uint256 quantity
    ) internal virtual {}

    /**
     * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract.
     *
     * `from` - Previous owner of the given token ID.
     * `to` - Target address that will receive the token.
     * `tokenId` - Token ID to be transferred.
     * `_data` - Optional data to send along with the call.
     *
     * Returns whether the call correctly returned the expected magic value.
     */
    function _checkContractOnERC721Received(
        address from,
        address to,
        uint256 tokenId,
        bytes memory _data
    ) private returns (bool) {
        try
            ERC721A__IERC721ReceiverUpgradeable(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data)
        returns (bytes4 retval) {
            return retval == ERC721A__IERC721ReceiverUpgradeable(to).onERC721Received.selector;
        } catch (bytes memory reason) {
            if (reason.length == 0) {
                revert TransferToNonERC721ReceiverImplementer();
            } else {
                assembly {
                    revert(add(32, reason), mload(reason))
                }
            }
        }
    }

    // =============================================================
    //                        MINT OPERATIONS
    // =============================================================

    /**
     * @dev Mints `quantity` tokens and transfers them to `to`.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `quantity` must be greater than 0.
     *
     * Emits a {Transfer} event for each mint.
     */
    function _mint(address to, uint256 quantity) internal virtual {
        uint256 startTokenId = ERC721AStorage.layout()._currentIndex;
        if (quantity == 0) revert MintZeroQuantity();

        _beforeTokenTransfers(address(0), to, startTokenId, quantity);

        // Overflows are incredibly unrealistic.
        // `balance` and `numberMinted` have a maximum limit of 2**64.
        // `tokenId` has a maximum limit of 2**256.
        unchecked {
            // Updates:
            // - `balance += quantity`.
            // - `numberMinted += quantity`.
            //
            // We can directly add to the `balance` and `numberMinted`.
            ERC721AStorage.layout()._packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);

            // Updates:
            // - `address` to the owner.
            // - `startTimestamp` to the timestamp of minting.
            // - `burned` to `false`.
            // - `nextInitialized` to `quantity == 1`.
            ERC721AStorage.layout()._packedOwnerships[startTokenId] = _packOwnershipData(
                to,
                _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
            );

            uint256 toMasked;
            uint256 end = startTokenId + quantity;

            // Use assembly to loop and emit the `Transfer` event for gas savings.
            // The duplicated `log4` removes an extra check and reduces stack juggling.
            // The assembly, together with the surrounding Solidity code, have been
            // delicately arranged to nudge the compiler into producing optimized opcodes.
            assembly {
                // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
                toMasked := and(to, _BITMASK_ADDRESS)
                // Emit the `Transfer` event.
                log4(
                    0, // Start of data (0, since no data).
                    0, // End of data (0, since no data).
                    _TRANSFER_EVENT_SIGNATURE, // Signature.
                    0, // `address(0)`.
                    toMasked, // `to`.
                    startTokenId // `tokenId`.
                )

                // The `iszero(eq(,))` check ensures that large values of `quantity`
                // that overflows uint256 will make the loop run out of gas.
                // The compiler will optimize the `iszero` away for performance.
                for {
                    let tokenId := add(startTokenId, 1)
                } iszero(eq(tokenId, end)) {
                    tokenId := add(tokenId, 1)
                } {
                    // Emit the `Transfer` event. Similar to above.
                    log4(0, 0, _TRANSFER_EVENT_SIGNATURE, 0, toMasked, tokenId)
                }
            }
            if (toMasked == 0) revert MintToZeroAddress();

            ERC721AStorage.layout()._currentIndex = end;
        }
        _afterTokenTransfers(address(0), to, startTokenId, quantity);
    }

    /**
     * @dev Mints `quantity` tokens and transfers them to `to`.
     *
     * This function is intended for efficient minting only during contract creation.
     *
     * It emits only one {ConsecutiveTransfer} as defined in
     * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309),
     * instead of a sequence of {Transfer} event(s).
     *
     * Calling this function outside of contract creation WILL make your contract
     * non-compliant with the ERC721 standard.
     * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309
     * {ConsecutiveTransfer} event is only permissible during contract creation.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `quantity` must be greater than 0.
     *
     * Emits a {ConsecutiveTransfer} event.
     */
    function _mintERC2309(address to, uint256 quantity) internal virtual {
        uint256 startTokenId = ERC721AStorage.layout()._currentIndex;
        if (to == address(0)) revert MintToZeroAddress();
        if (quantity == 0) revert MintZeroQuantity();
        if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) revert MintERC2309QuantityExceedsLimit();

        _beforeTokenTransfers(address(0), to, startTokenId, quantity);

        // Overflows are unrealistic due to the above check for `quantity` to be below the limit.
        unchecked {
            // Updates:
            // - `balance += quantity`.
            // - `numberMinted += quantity`.
            //
            // We can directly add to the `balance` and `numberMinted`.
            ERC721AStorage.layout()._packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);

            // Updates:
            // - `address` to the owner.
            // - `startTimestamp` to the timestamp of minting.
            // - `burned` to `false`.
            // - `nextInitialized` to `quantity == 1`.
            ERC721AStorage.layout()._packedOwnerships[startTokenId] = _packOwnershipData(
                to,
                _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
            );

            emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to);

            ERC721AStorage.layout()._currentIndex = startTokenId + quantity;
        }
        _afterTokenTransfers(address(0), to, startTokenId, quantity);
    }

    /**
     * @dev Safely mints `quantity` tokens and transfers them to `to`.
     *
     * Requirements:
     *
     * - If `to` refers to a smart contract, it must implement
     * {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
     * - `quantity` must be greater than 0.
     *
     * See {_mint}.
     *
     * Emits a {Transfer} event for each mint.
     */
    function _safeMint(
        address to,
        uint256 quantity,
        bytes memory _data
    ) internal virtual {
        _mint(to, quantity);

        unchecked {
            if (to.code.length != 0) {
                uint256 end = ERC721AStorage.layout()._currentIndex;
                uint256 index = end - quantity;
                do {
                    if (!_checkContractOnERC721Received(address(0), to, index++, _data)) {
                        revert TransferToNonERC721ReceiverImplementer();
                    }
                } while (index < end);
                // Reentrancy protection.
                if (ERC721AStorage.layout()._currentIndex != end) revert();
            }
        }
    }

    /**
     * @dev Equivalent to `_safeMint(to, quantity, '')`.
     */
    function _safeMint(address to, uint256 quantity) internal virtual {
        _safeMint(to, quantity, '');
    }

    // =============================================================
    //                       APPROVAL OPERATIONS
    // =============================================================

    /**
     * @dev Equivalent to `_approve(to, tokenId, false)`.
     */
    function _approve(address to, uint256 tokenId) internal virtual {
        _approve(to, tokenId, false);
    }

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the
     * zero address clears previous approvals.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function _approve(
        address to,
        uint256 tokenId,
        bool approvalCheck
    ) internal virtual {
        address owner = ownerOf(tokenId);

        if (approvalCheck)
            if (_msgSenderERC721A() != owner)
                if (!isApprovedForAll(owner, _msgSenderERC721A())) {
                    revert ApprovalCallerNotOwnerNorApproved();
                }

        ERC721AStorage.layout()._tokenApprovals[tokenId].value = to;
        emit Approval(owner, to, tokenId);
    }

    // =============================================================
    //                        BURN OPERATIONS
    // =============================================================

    /**
     * @dev Equivalent to `_burn(tokenId, false)`.
     */
    function _burn(uint256 tokenId) internal virtual {
        _burn(tokenId, false);
    }

    /**
     * @dev Destroys `tokenId`.
     * The approval is cleared when the token is burned.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     *
     * Emits a {Transfer} event.
     */
    function _burn(uint256 tokenId, bool approvalCheck) internal virtual {
        uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);

        address from = address(uint160(prevOwnershipPacked));

        (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);

        if (approvalCheck) {
            // The nested ifs save around 20+ gas over a compound boolean condition.
            if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
                if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
        }

        _beforeTokenTransfers(from, address(0), tokenId, 1);

        // Clear approvals from the previous owner.
        assembly {
            if approvedAddress {
                // This is equivalent to `delete _tokenApprovals[tokenId]`.
                sstore(approvedAddressSlot, 0)
            }
        }

        // Underflow of the sender's balance is impossible because we check for
        // ownership above and the recipient's balance can't realistically overflow.
        // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
        unchecked {
            // Updates:
            // - `balance -= 1`.
            // - `numberBurned += 1`.
            //
            // We can directly decrement the balance, and increment the number burned.
            // This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`.
            ERC721AStorage.layout()._packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1;

            // Updates:
            // - `address` to the last owner.
            // - `startTimestamp` to the timestamp of burning.
            // - `burned` to `true`.
            // - `nextInitialized` to `true`.
            ERC721AStorage.layout()._packedOwnerships[tokenId] = _packOwnershipData(
                from,
                (_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked)
            );

            // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
            if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
                uint256 nextTokenId = tokenId + 1;
                // If the next slot's address is zero and not burned (i.e. packed value is zero).
                if (ERC721AStorage.layout()._packedOwnerships[nextTokenId] == 0) {
                    // If the next slot is within bounds.
                    if (nextTokenId != ERC721AStorage.layout()._currentIndex) {
                        // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                        ERC721AStorage.layout()._packedOwnerships[nextTokenId] = prevOwnershipPacked;
                    }
                }
            }
        }

        emit Transfer(from, address(0), tokenId);
        _afterTokenTransfers(from, address(0), tokenId, 1);

        // Overflow not possible, as _burnCounter cannot be exceed _currentIndex times.
        unchecked {
            ERC721AStorage.layout()._burnCounter++;
        }
    }

    // =============================================================
    //                     EXTRA DATA OPERATIONS
    // =============================================================

    /**
     * @dev Directly sets the extra data for the ownership data `index`.
     */
    function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual {
        uint256 packed = ERC721AStorage.layout()._packedOwnerships[index];
        if (packed == 0) revert OwnershipNotInitializedForExtraData();
        uint256 extraDataCasted;
        // Cast `extraData` with assembly to avoid redundant masking.
        assembly {
            extraDataCasted := extraData
        }
        packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA);
        ERC721AStorage.layout()._packedOwnerships[index] = packed;
    }

    /**
     * @dev Called during each token transfer to set the 24bit `extraData` field.
     * Intended to be overridden by the cosumer contract.
     *
     * `previousExtraData` - the value of `extraData` before transfer.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
     * transferred to `to`.
     * - When `from` is zero, `tokenId` will be minted for `to`.
     * - When `to` is zero, `tokenId` will be burned by `from`.
     * - `from` and `to` are never both zero.
     */
    function _extraData(
        address from,
        address to,
        uint24 previousExtraData
    ) internal view virtual returns (uint24) {}

    /**
     * @dev Returns the next extra data for the packed ownership data.
     * The returned result is shifted into position.
     */
    function _nextExtraData(
        address from,
        address to,
        uint256 prevOwnershipPacked
    ) private view returns (uint256) {
        uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA);
        return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA;
    }

    // =============================================================
    //                       OTHER OPERATIONS
    // =============================================================

    /**
     * @dev Returns the message sender (defaults to `msg.sender`).
     *
     * If you are writing GSN compatible contracts, you need to override this function.
     */
    function _msgSenderERC721A() internal view virtual returns (address) {
        return msg.sender;
    }

    /**
     * @dev Converts a uint256 to its ASCII string decimal representation.
     */
    function _toString(uint256 value) internal pure virtual returns (string memory str) {
        assembly {
            // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
            // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
            // We will need 1 word for the trailing zeros padding, 1 word for the length,
            // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0.
            let m := add(mload(0x40), 0xa0)
            // Update the free memory pointer to allocate.
            mstore(0x40, m)
            // Assign the `str` to the end.
            str := sub(m, 0x20)
            // Zeroize the slot after the string.
            mstore(str, 0)

            // Cache the end of the memory to calculate the length later.
            let end := str

            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            // prettier-ignore
            for { let temp := value } 1 {} {
                str := sub(str, 1)
                // Write the character to the pointer.
                // The ASCII index of the '0' character is 48.
                mstore8(str, add(48, mod(temp, 10)))
                // Keep dividing `temp` until zero.
                temp := div(temp, 10)
                // prettier-ignore
                if iszero(temp) { break }
            }

            let length := sub(end, str)
            // Move the pointer 32 bytes leftwards to make room for the length.
            str := sub(str, 0x20)
            // Store the length.
            mstore(str, length)
        }
    }
}

File 8 of 23 : ERC721A__Initializable.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/**
 * @dev This is a base contract to aid in writing upgradeable diamond facet contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 */

import {ERC721A__InitializableStorage} from './ERC721A__InitializableStorage.sol';

abstract contract ERC721A__Initializable {
    using ERC721A__InitializableStorage for ERC721A__InitializableStorage.Layout;

    /**
     * @dev Modifier to protect an initializer function from being invoked twice.
     */
    modifier initializerERC721A() {
        // If the contract is initializing we ignore whether _initialized is set in order to support multiple
        // inheritance patterns, but we only do this in the context of a constructor, because in other contexts the
        // contract may have been reentered.
        require(
            ERC721A__InitializableStorage.layout()._initializing
                ? _isConstructor()
                : !ERC721A__InitializableStorage.layout()._initialized,
            'ERC721A__Initializable: contract is already initialized'
        );

        bool isTopLevelCall = !ERC721A__InitializableStorage.layout()._initializing;
        if (isTopLevelCall) {
            ERC721A__InitializableStorage.layout()._initializing = true;
            ERC721A__InitializableStorage.layout()._initialized = true;
        }

        _;

        if (isTopLevelCall) {
            ERC721A__InitializableStorage.layout()._initializing = false;
        }
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} modifier, directly or indirectly.
     */
    modifier onlyInitializingERC721A() {
        require(
            ERC721A__InitializableStorage.layout()._initializing,
            'ERC721A__Initializable: contract is not initializing'
        );
        _;
    }

    /// @dev Returns true if and only if the function is running in the constructor
    function _isConstructor() private view returns (bool) {
        // extcodesize checks the size of the code stored in an address, and
        // address returns the current address. Since the code is still not
        // deployed when running a constructor, any checks on its code size will
        // yield zero, making it an effective way to detect if a contract is
        // under construction or not.
        address self = address(this);
        uint256 cs;
        assembly {
            cs := extcodesize(self)
        }
        return cs == 0;
    }
}

File 9 of 23 : ERC721A__InitializableStorage.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @dev This is a base storage for the  initialization function for upgradeable diamond facet contracts
 **/

library ERC721A__InitializableStorage {
    struct Layout {
        /*
         * Indicates that the contract has been initialized.
         */
        bool _initialized;
        /*
         * Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    bytes32 internal constant STORAGE_SLOT = keccak256('ERC721A.contracts.storage.initializable.facet');

    function layout() internal pure returns (Layout storage l) {
        bytes32 slot = STORAGE_SLOT;
        assembly {
            l.slot := slot
        }
    }
}

File 10 of 23 : IERC721AUpgradeable.sol
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs

pragma solidity ^0.8.4;

/**
 * @dev Interface of ERC721A.
 */
interface IERC721AUpgradeable {
    /**
     * The caller must own the token or be an approved operator.
     */
    error ApprovalCallerNotOwnerNorApproved();

    /**
     * The token does not exist.
     */
    error ApprovalQueryForNonexistentToken();

    /**
     * Cannot query the balance for the zero address.
     */
    error BalanceQueryForZeroAddress();

    /**
     * Cannot mint to the zero address.
     */
    error MintToZeroAddress();

    /**
     * The quantity of tokens minted must be more than zero.
     */
    error MintZeroQuantity();

    /**
     * The token does not exist.
     */
    error OwnerQueryForNonexistentToken();

    /**
     * The caller must own the token or be an approved operator.
     */
    error TransferCallerNotOwnerNorApproved();

    /**
     * The token must be owned by `from`.
     */
    error TransferFromIncorrectOwner();

    /**
     * Cannot safely transfer to a contract that does not implement the
     * ERC721Receiver interface.
     */
    error TransferToNonERC721ReceiverImplementer();

    /**
     * Cannot transfer to the zero address.
     */
    error TransferToZeroAddress();

    /**
     * The token does not exist.
     */
    error URIQueryForNonexistentToken();

    /**
     * The `quantity` minted with ERC2309 exceeds the safety limit.
     */
    error MintERC2309QuantityExceedsLimit();

    /**
     * The `extraData` cannot be set on an unintialized ownership slot.
     */
    error OwnershipNotInitializedForExtraData();

    // =============================================================
    //                            STRUCTS
    // =============================================================

    struct TokenOwnership {
        // The address of the owner.
        address addr;
        // Stores the start time of ownership with minimal overhead for tokenomics.
        uint64 startTimestamp;
        // Whether the token has been burned.
        bool burned;
        // Arbitrary data similar to `startTimestamp` that can be set via {_extraData}.
        uint24 extraData;
    }

    // =============================================================
    //                         TOKEN COUNTERS
    // =============================================================

    /**
     * @dev Returns the total number of tokens in existence.
     * Burned tokens will reduce the count.
     * To get the total number of tokens minted, please see {_totalMinted}.
     */
    function totalSupply() external view returns (uint256);

    // =============================================================
    //                            IERC165
    // =============================================================

    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);

    // =============================================================
    //                            IERC721
    // =============================================================

    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables
     * (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in `owner`'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`,
     * checking first that contract recipients are aware of the ERC721 protocol
     * to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be have been allowed to move
     * this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement
     * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes calldata data
    ) external payable;

    /**
     * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external payable;

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {safeTransferFrom}
     * whenever possible.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token
     * by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external payable;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the
     * zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external payable;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom}
     * for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool _approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}.
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);

    // =============================================================
    //                        IERC721Metadata
    // =============================================================

    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);

    // =============================================================
    //                           IERC2309
    // =============================================================

    /**
     * @dev Emitted when tokens in `fromTokenId` to `toTokenId`
     * (inclusive) is transferred from `from` to `to`, as defined in the
     * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard.
     *
     * See {_mintERC2309} for more details.
     */
    event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to);
}

File 11 of 23 : ERC721ABurnableUpgradeable.sol
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs

pragma solidity ^0.8.4;

import './IERC721ABurnableUpgradeable.sol';
import '../ERC721AUpgradeable.sol';
import '../ERC721A__Initializable.sol';

/**
 * @title ERC721ABurnable.
 *
 * @dev ERC721A token that can be irreversibly burned (destroyed).
 */
abstract contract ERC721ABurnableUpgradeable is
    ERC721A__Initializable,
    ERC721AUpgradeable,
    IERC721ABurnableUpgradeable
{
    function __ERC721ABurnable_init() internal onlyInitializingERC721A {
        __ERC721ABurnable_init_unchained();
    }

    function __ERC721ABurnable_init_unchained() internal onlyInitializingERC721A {}

    /**
     * @dev Burns `tokenId`. See {ERC721A-_burn}.
     *
     * Requirements:
     *
     * - The caller must own `tokenId` or be an approved operator.
     */
    function burn(uint256 tokenId) public virtual override {
        _burn(tokenId, true);
    }
}

File 12 of 23 : ERC721AQueryableUpgradeable.sol
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs

pragma solidity ^0.8.4;

import './IERC721AQueryableUpgradeable.sol';
import '../ERC721AUpgradeable.sol';
import '../ERC721A__Initializable.sol';

/**
 * @title ERC721AQueryable.
 *
 * @dev ERC721A subclass with convenience query functions.
 */
abstract contract ERC721AQueryableUpgradeable is
    ERC721A__Initializable,
    ERC721AUpgradeable,
    IERC721AQueryableUpgradeable
{
    function __ERC721AQueryable_init() internal onlyInitializingERC721A {
        __ERC721AQueryable_init_unchained();
    }

    function __ERC721AQueryable_init_unchained() internal onlyInitializingERC721A {}

    /**
     * @dev Returns the `TokenOwnership` struct at `tokenId` without reverting.
     *
     * If the `tokenId` is out of bounds:
     *
     * - `addr = address(0)`
     * - `startTimestamp = 0`
     * - `burned = false`
     * - `extraData = 0`
     *
     * If the `tokenId` is burned:
     *
     * - `addr = <Address of owner before token was burned>`
     * - `startTimestamp = <Timestamp when token was burned>`
     * - `burned = true`
     * - `extraData = <Extra data when token was burned>`
     *
     * Otherwise:
     *
     * - `addr = <Address of owner>`
     * - `startTimestamp = <Timestamp of start of ownership>`
     * - `burned = false`
     * - `extraData = <Extra data at start of ownership>`
     */
    function explicitOwnershipOf(uint256 tokenId) public view virtual override returns (TokenOwnership memory) {
        TokenOwnership memory ownership;
        if (tokenId < _startTokenId() || tokenId >= _nextTokenId()) {
            return ownership;
        }
        ownership = _ownershipAt(tokenId);
        if (ownership.burned) {
            return ownership;
        }
        return _ownershipOf(tokenId);
    }

    /**
     * @dev Returns an array of `TokenOwnership` structs at `tokenIds` in order.
     * See {ERC721AQueryable-explicitOwnershipOf}
     */
    function explicitOwnershipsOf(uint256[] calldata tokenIds)
        external
        view
        virtual
        override
        returns (TokenOwnership[] memory)
    {
        unchecked {
            uint256 tokenIdsLength = tokenIds.length;
            TokenOwnership[] memory ownerships = new TokenOwnership[](tokenIdsLength);
            for (uint256 i; i != tokenIdsLength; ++i) {
                ownerships[i] = explicitOwnershipOf(tokenIds[i]);
            }
            return ownerships;
        }
    }

    /**
     * @dev Returns an array of token IDs owned by `owner`,
     * in the range [`start`, `stop`)
     * (i.e. `start <= tokenId < stop`).
     *
     * This function allows for tokens to be queried if the collection
     * grows too big for a single call of {ERC721AQueryable-tokensOfOwner}.
     *
     * Requirements:
     *
     * - `start < stop`
     */
    function tokensOfOwnerIn(
        address owner,
        uint256 start,
        uint256 stop
    ) external view virtual override returns (uint256[] memory) {
        unchecked {
            if (start >= stop) revert InvalidQueryRange();
            uint256 tokenIdsIdx;
            uint256 stopLimit = _nextTokenId();
            // Set `start = max(start, _startTokenId())`.
            if (start < _startTokenId()) {
                start = _startTokenId();
            }
            // Set `stop = min(stop, stopLimit)`.
            if (stop > stopLimit) {
                stop = stopLimit;
            }
            uint256 tokenIdsMaxLength = balanceOf(owner);
            // Set `tokenIdsMaxLength = min(balanceOf(owner), stop - start)`,
            // to cater for cases where `balanceOf(owner)` is too big.
            if (start < stop) {
                uint256 rangeLength = stop - start;
                if (rangeLength < tokenIdsMaxLength) {
                    tokenIdsMaxLength = rangeLength;
                }
            } else {
                tokenIdsMaxLength = 0;
            }
            uint256[] memory tokenIds = new uint256[](tokenIdsMaxLength);
            if (tokenIdsMaxLength == 0) {
                return tokenIds;
            }
            // We need to call `explicitOwnershipOf(start)`,
            // because the slot at `start` may not be initialized.
            TokenOwnership memory ownership = explicitOwnershipOf(start);
            address currOwnershipAddr;
            // If the starting slot exists (i.e. not burned), initialize `currOwnershipAddr`.
            // `ownership.address` will not be zero, as `start` is clamped to the valid token ID range.
            if (!ownership.burned) {
                currOwnershipAddr = ownership.addr;
            }
            for (uint256 i = start; i != stop && tokenIdsIdx != tokenIdsMaxLength; ++i) {
                ownership = _ownershipAt(i);
                if (ownership.burned) {
                    continue;
                }
                if (ownership.addr != address(0)) {
                    currOwnershipAddr = ownership.addr;
                }
                if (currOwnershipAddr == owner) {
                    tokenIds[tokenIdsIdx++] = i;
                }
            }
            // Downsize the array to fit.
            assembly {
                mstore(tokenIds, tokenIdsIdx)
            }
            return tokenIds;
        }
    }

    /**
     * @dev Returns an array of token IDs owned by `owner`.
     *
     * This function scans the ownership mapping and is O(`totalSupply`) in complexity.
     * It is meant to be called off-chain.
     *
     * See {ERC721AQueryable-tokensOfOwnerIn} for splitting the scan into
     * multiple smaller scans if the collection is large enough to cause
     * an out-of-gas error (10K collections should be fine).
     */
    function tokensOfOwner(address owner) external view virtual override returns (uint256[] memory) {
        unchecked {
            uint256 tokenIdsIdx;
            address currOwnershipAddr;
            uint256 tokenIdsLength = balanceOf(owner);
            uint256[] memory tokenIds = new uint256[](tokenIdsLength);
            TokenOwnership memory ownership;
            for (uint256 i = _startTokenId(); tokenIdsIdx != tokenIdsLength; ++i) {
                ownership = _ownershipAt(i);
                if (ownership.burned) {
                    continue;
                }
                if (ownership.addr != address(0)) {
                    currOwnershipAddr = ownership.addr;
                }
                if (currOwnershipAddr == owner) {
                    tokenIds[tokenIdsIdx++] = i;
                }
            }
            return tokenIds;
        }
    }
}

File 13 of 23 : IERC721ABurnableUpgradeable.sol
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs

pragma solidity ^0.8.4;

import '../IERC721AUpgradeable.sol';

/**
 * @dev Interface of ERC721ABurnable.
 */
interface IERC721ABurnableUpgradeable is IERC721AUpgradeable {
    /**
     * @dev Burns `tokenId`. See {ERC721A-_burn}.
     *
     * Requirements:
     *
     * - The caller must own `tokenId` or be an approved operator.
     */
    function burn(uint256 tokenId) external;
}

File 14 of 23 : IERC721AQueryableUpgradeable.sol
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs

pragma solidity ^0.8.4;

import '../IERC721AUpgradeable.sol';

/**
 * @dev Interface of ERC721AQueryable.
 */
interface IERC721AQueryableUpgradeable is IERC721AUpgradeable {
    /**
     * Invalid query range (`start` >= `stop`).
     */
    error InvalidQueryRange();

    /**
     * @dev Returns the `TokenOwnership` struct at `tokenId` without reverting.
     *
     * If the `tokenId` is out of bounds:
     *
     * - `addr = address(0)`
     * - `startTimestamp = 0`
     * - `burned = false`
     * - `extraData = 0`
     *
     * If the `tokenId` is burned:
     *
     * - `addr = <Address of owner before token was burned>`
     * - `startTimestamp = <Timestamp when token was burned>`
     * - `burned = true`
     * - `extraData = <Extra data when token was burned>`
     *
     * Otherwise:
     *
     * - `addr = <Address of owner>`
     * - `startTimestamp = <Timestamp of start of ownership>`
     * - `burned = false`
     * - `extraData = <Extra data at start of ownership>`
     */
    function explicitOwnershipOf(uint256 tokenId) external view returns (TokenOwnership memory);

    /**
     * @dev Returns an array of `TokenOwnership` structs at `tokenIds` in order.
     * See {ERC721AQueryable-explicitOwnershipOf}
     */
    function explicitOwnershipsOf(uint256[] memory tokenIds) external view returns (TokenOwnership[] memory);

    /**
     * @dev Returns an array of token IDs owned by `owner`,
     * in the range [`start`, `stop`)
     * (i.e. `start <= tokenId < stop`).
     *
     * This function allows for tokens to be queried if the collection
     * grows too big for a single call of {ERC721AQueryable-tokensOfOwner}.
     *
     * Requirements:
     *
     * - `start < stop`
     */
    function tokensOfOwnerIn(
        address owner,
        uint256 start,
        uint256 stop
    ) external view returns (uint256[] memory);

    /**
     * @dev Returns an array of token IDs owned by `owner`.
     *
     * This function scans the ownership mapping and is O(`totalSupply`) in complexity.
     * It is meant to be called off-chain.
     *
     * See {ERC721AQueryable-tokensOfOwnerIn} for splitting the scan into
     * multiple smaller scans if the collection is large enough to cause
     * an out-of-gas error (10K collections should be fine).
     */
    function tokensOfOwner(address owner) external view returns (uint256[] memory);
}

File 15 of 23 : OperatorFilterer.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Optimized and flexible operator filterer to abide to OpenSea's
/// mandatory on-chain royalty enforcement in order for new collections to
/// receive royalties.
/// For more information, see:
/// See: https://github.com/ProjectOpenSea/operator-filter-registry
abstract contract OperatorFilterer {
    /// @dev The default OpenSea operator blocklist subscription.
    address internal constant _DEFAULT_SUBSCRIPTION = 0x3cc6CddA760b79bAfa08dF41ECFA224f810dCeB6;

    /// @dev The OpenSea operator filter registry.
    address internal constant _OPERATOR_FILTER_REGISTRY = 0x000000000000AAeB6D7670E522A718067333cd4E;

    /// @dev Registers the current contract to OpenSea's operator filter,
    /// and subscribe to the default OpenSea operator blocklist.
    /// Note: Will not revert nor update existing settings for repeated registration.
    function _registerForOperatorFiltering() internal virtual {
        _registerForOperatorFiltering(_DEFAULT_SUBSCRIPTION, true);
    }

    /// @dev Registers the current contract to OpenSea's operator filter.
    /// Note: Will not revert nor update existing settings for repeated registration.
    function _registerForOperatorFiltering(address subscriptionOrRegistrantToCopy, bool subscribe)
        internal
        virtual
    {
        /// @solidity memory-safe-assembly
        assembly {
            let functionSelector := 0x7d3e3dbe // `registerAndSubscribe(address,address)`.

            // Clean the upper 96 bits of `subscriptionOrRegistrantToCopy` in case they are dirty.
            subscriptionOrRegistrantToCopy := shr(96, shl(96, subscriptionOrRegistrantToCopy))

            for {} iszero(subscribe) {} {
                if iszero(subscriptionOrRegistrantToCopy) {
                    functionSelector := 0x4420e486 // `register(address)`.
                    break
                }
                functionSelector := 0xa0af2903 // `registerAndCopyEntries(address,address)`.
                break
            }
            // Store the function selector.
            mstore(0x00, shl(224, functionSelector))
            // Store the `address(this)`.
            mstore(0x04, address())
            // Store the `subscriptionOrRegistrantToCopy`.
            mstore(0x24, subscriptionOrRegistrantToCopy)
            // Register into the registry.
            pop(call(gas(), _OPERATOR_FILTER_REGISTRY, 0, 0x00, 0x44, 0x00, 0x00))
            // Restore the part of the free memory pointer that was overwritten,
            // which is guaranteed to be zero, because of Solidity's memory size limits.
            mstore(0x24, 0)
        }
    }

    /// @dev Modifier to guard a function and revert if the caller is a blocked operator.
    modifier onlyAllowedOperator(address from) virtual {
        if (from != msg.sender) {
            if (!_isPriorityOperator(msg.sender)) {
                if (_operatorFilteringEnabled()) _revertIfBlocked(msg.sender);
            }
        }
        _;
    }

    /// @dev Modifier to guard a function from approving a blocked operator..
    modifier onlyAllowedOperatorApproval(address operator) virtual {
        if (!_isPriorityOperator(operator)) {
            if (_operatorFilteringEnabled()) _revertIfBlocked(operator);
        }
        _;
    }

    /// @dev Helper function that reverts if the `operator` is blocked by the registry.
    function _revertIfBlocked(address operator) private view {
        /// @solidity memory-safe-assembly
        assembly {
            // Store the function selector of `isOperatorAllowed(address,address)`,
            // shifted left by 6 bytes, which is enough for 8tb of memory.
            // We waste 6-3 = 3 bytes to save on 6 runtime gas (PUSH1 0x224 SHL).
            mstore(0x00, 0xc6171134001122334455)
            // Store the `address(this)`.
            mstore(0x1a, address())
            // Store the `operator`.
            mstore(0x3a, operator)

            // `isOperatorAllowed` always returns true if it does not revert.
            if iszero(staticcall(gas(), _OPERATOR_FILTER_REGISTRY, 0x16, 0x44, 0x00, 0x00)) {
                // Bubble up the revert if the staticcall reverts.
                returndatacopy(0x00, 0x00, returndatasize())
                revert(0x00, returndatasize())
            }

            // We'll skip checking if `from` is inside the blacklist.
            // Even though that can block transferring out of wrapper contracts,
            // we don't want tokens to be stuck.

            // Restore the part of the free memory pointer that was overwritten,
            // which is guaranteed to be zero, if less than 8tb of memory is used.
            mstore(0x3a, 0)
        }
    }

    /// @dev For deriving contracts to override, so that operator filtering
    /// can be turned on / off.
    /// Returns true by default.
    function _operatorFilteringEnabled() internal view virtual returns (bool) {
        return true;
    }

    /// @dev For deriving contracts to override, so that preferred marketplaces can
    /// skip operator filtering, helping users save gas.
    /// Returns false for all inputs by default.
    function _isPriorityOperator(address) internal view virtual returns (bool) {
        return false;
    }
}

File 16 of 23 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

File 17 of 23 : IERC2981Upgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (interfaces/IERC2981.sol)

pragma solidity ^0.8.0;

import "../utils/introspection/IERC165Upgradeable.sol";

/**
 * @dev Interface for the NFT Royalty Standard.
 *
 * A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal
 * support for royalty payments across all NFT marketplaces and ecosystem participants.
 *
 * _Available since v4.5._
 */
interface IERC2981Upgradeable is IERC165Upgradeable {
    /**
     * @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of
     * exchange. The royalty amount is denominated and should be paid in that same unit of exchange.
     */
    function royaltyInfo(uint256 tokenId, uint256 salePrice)
        external
        view
        returns (address receiver, uint256 royaltyAmount);
}

File 18 of 23 : IERC165Upgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165Upgradeable {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 19 of 23 : OwnableRoles.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Simple single owner and multiroles authorization mixin.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/OwnableRoles.sol)
/// @dev While the ownable portion follows [EIP-173](https://eips.ethereum.org/EIPS/eip-173)
/// for compatibility, the nomenclature for the 2-step ownership handover and roles
/// may be unique to this codebase.
abstract contract OwnableRoles {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The caller is not authorized to call the function.
    error Unauthorized();

    /// @dev The `newOwner` cannot be the zero address.
    error NewOwnerIsZeroAddress();

    /// @dev The `pendingOwner` does not have a valid handover request.
    error NoHandoverRequest();

    /// @dev `bytes4(keccak256(bytes("Unauthorized()")))`.
    uint256 private constant _UNAUTHORIZED_ERROR_SELECTOR = 0x82b42900;

    /// @dev `bytes4(keccak256(bytes("NewOwnerIsZeroAddress()")))`.
    uint256 private constant _NEW_OWNER_IS_ZERO_ADDRESS_ERROR_SELECTOR = 0x7448fbae;

    /// @dev `bytes4(keccak256(bytes("NoHandoverRequest()")))`.
    uint256 private constant _NO_HANDOVER_REQUEST_ERROR_SELECTOR = 0x6f5e8818;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           EVENTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The ownership is transferred from `oldOwner` to `newOwner`.
    /// This event is intentionally kept the same as OpenZeppelin's Ownable to be
    /// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173),
    /// despite it not being as lightweight as a single argument event.
    event OwnershipTransferred(address indexed oldOwner, address indexed newOwner);

    /// @dev An ownership handover to `pendingOwner` has been requested.
    event OwnershipHandoverRequested(address indexed pendingOwner);

    /// @dev The ownership handover to `pendingOwner` has been canceled.
    event OwnershipHandoverCanceled(address indexed pendingOwner);

    /// @dev The `user`'s roles is updated to `roles`.
    /// Each bit of `roles` represents whether the role is set.
    event RolesUpdated(address indexed user, uint256 indexed roles);

    /// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`.
    uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE =
        0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0;

    /// @dev `keccak256(bytes("OwnershipHandoverRequested(address)"))`.
    uint256 private constant _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE =
        0xdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d;

    /// @dev `keccak256(bytes("OwnershipHandoverCanceled(address)"))`.
    uint256 private constant _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE =
        0xfa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c92;

    /// @dev `keccak256(bytes("RolesUpdated(address,uint256)"))`.
    uint256 private constant _ROLES_UPDATED_EVENT_SIGNATURE =
        0x715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe26;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STORAGE                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The owner slot is given by: `not(_OWNER_SLOT_NOT)`.
    /// It is intentionally choosen to be a high value
    /// to avoid collision with lower slots.
    /// The choice of manual storage layout is to enable compatibility
    /// with both regular and upgradeable contracts.
    ///
    /// The role slot of `user` is given by:
    /// ```
    ///     mstore(0x00, or(shl(96, user), _OWNER_SLOT_NOT))
    ///     let roleSlot := keccak256(0x00, 0x20)
    /// ```
    /// This automatically ignores the upper bits of the `user` in case
    /// they are not clean, as well as keep the `keccak256` under 32-bytes.
    uint256 private constant _OWNER_SLOT_NOT = 0x8b78c6d8;

    /// The ownership handover slot of `newOwner` is given by:
    /// ```
    ///     mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED))
    ///     let handoverSlot := keccak256(0x00, 0x20)
    /// ```
    /// It stores the expiry timestamp of the two-step ownership handover.
    uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     INTERNAL FUNCTIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Initializes the owner directly without authorization guard.
    /// This function must be called upon initialization,
    /// regardless of whether the contract is upgradeable or not.
    /// This is to enable generalization to both regular and upgradeable contracts,
    /// and to save gas in case the initial owner is not the caller.
    /// For performance reasons, this function will not check if there
    /// is an existing owner.
    function _initializeOwner(address newOwner) internal virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // Clean the upper 96 bits.
            newOwner := shr(96, shl(96, newOwner))
            // Store the new value.
            sstore(not(_OWNER_SLOT_NOT), newOwner)
            // Emit the {OwnershipTransferred} event.
            log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
        }
    }

    /// @dev Sets the owner directly without authorization guard.
    function _setOwner(address newOwner) internal virtual {
        /// @solidity memory-safe-assembly
        assembly {
            let ownerSlot := not(_OWNER_SLOT_NOT)
            // Clean the upper 96 bits.
            newOwner := shr(96, shl(96, newOwner))
            // Emit the {OwnershipTransferred} event.
            log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
            // Store the new value.
            sstore(ownerSlot, newOwner)
        }
    }

    /// @dev Grants the roles directly without authorization guard.
    /// Each bit of `roles` represents the role to turn on.
    function _grantRoles(address user, uint256 roles) internal virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the role slot.
            mstore(0x00, or(shl(96, user), _OWNER_SLOT_NOT))
            let roleSlot := keccak256(0x00, 0x20)
            // Load the current value and `or` it with `roles`.
            let newRoles := or(sload(roleSlot), roles)
            // Store the new value.
            sstore(roleSlot, newRoles)
            // Emit the {RolesUpdated} event.
            log3(0, 0, _ROLES_UPDATED_EVENT_SIGNATURE, shr(96, shl(96, user)), newRoles)
        }
    }

    /// @dev Removes the roles directly without authorization guard.
    /// Each bit of `roles` represents the role to turn off.
    function _removeRoles(address user, uint256 roles) internal virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the role slot.
            mstore(0x00, or(shl(96, user), _OWNER_SLOT_NOT))
            let roleSlot := keccak256(0x00, 0x20)
            // Load the current value.
            let currentRoles := sload(roleSlot)
            // Use `and` to compute the intersection of `currentRoles` and `roles`,
            // `xor` it with `currentRoles` to flip the bits in the intersection.
            let newRoles := xor(currentRoles, and(currentRoles, roles))
            // Then, store the new value.
            sstore(roleSlot, newRoles)
            // Emit the {RolesUpdated} event.
            log3(0, 0, _ROLES_UPDATED_EVENT_SIGNATURE, shr(96, shl(96, user)), newRoles)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  PUBLIC UPDATE FUNCTIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Allows the owner to transfer the ownership to `newOwner`.
    function transferOwnership(address newOwner) public payable virtual onlyOwner {
        /// @solidity memory-safe-assembly
        assembly {
            // Clean the upper 96 bits.
            newOwner := shr(96, shl(96, newOwner))
            // Reverts if the `newOwner` is the zero address.
            if iszero(newOwner) {
                mstore(0x00, _NEW_OWNER_IS_ZERO_ADDRESS_ERROR_SELECTOR)
                revert(0x1c, 0x04)
            }
            // Emit the {OwnershipTransferred} event.
            log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, caller(), newOwner)
            // Store the new value.
            sstore(not(_OWNER_SLOT_NOT), newOwner)
        }
    }

    /// @dev Allows the owner to renounce their ownership.
    function renounceOwnership() public payable virtual onlyOwner {
        /// @solidity memory-safe-assembly
        assembly {
            // Emit the {OwnershipTransferred} event.
            log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, caller(), 0)
            // Store the new value.
            sstore(not(_OWNER_SLOT_NOT), 0)
        }
    }

    /// @dev Request a two-step ownership handover to the caller.
    /// The request will be automatically expire in 48 hours (172800 seconds) by default.
    function requestOwnershipHandover() public payable virtual {
        unchecked {
            uint256 expires = block.timestamp + ownershipHandoverValidFor();
            /// @solidity memory-safe-assembly
            assembly {
                // Compute and set the handover slot to 1.
                mstore(0x00, or(shl(96, caller()), _HANDOVER_SLOT_SEED))
                sstore(keccak256(0x00, 0x20), expires)
                // Emit the {OwnershipHandoverRequested} event.
                log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller())
            }
        }
    }

    /// @dev Cancels the two-step ownership handover to the caller, if any.
    function cancelOwnershipHandover() public payable virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute and set the handover slot to 0.
            mstore(0x00, or(shl(96, caller()), _HANDOVER_SLOT_SEED))
            sstore(keccak256(0x00, 0x20), 0)
            // Emit the {OwnershipHandoverCanceled} event.
            log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller())
        }
    }

    /// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`.
    /// Reverts if there is no existing ownership handover requested by `pendingOwner`.
    function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner {
        /// @solidity memory-safe-assembly
        assembly {
            // Clean the upper 96 bits.
            pendingOwner := shr(96, shl(96, pendingOwner))
            // Compute and set the handover slot to 0.
            mstore(0x00, or(shl(96, pendingOwner), _HANDOVER_SLOT_SEED))
            let handoverSlot := keccak256(0x00, 0x20)
            // If the handover does not exist, or has expired.
            if gt(timestamp(), sload(handoverSlot)) {
                mstore(0x00, _NO_HANDOVER_REQUEST_ERROR_SELECTOR)
                revert(0x1c, 0x04)
            }
            // Set the handover slot to 0.
            sstore(handoverSlot, 0)
            // Emit the {OwnershipTransferred} event.
            log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, caller(), pendingOwner)
            // Store the new value.
            sstore(not(_OWNER_SLOT_NOT), pendingOwner)
        }
    }

    /// @dev Allows the owner to grant `user` `roles`.
    /// If the `user` already has a role, then it will be an no-op for the role.
    function grantRoles(address user, uint256 roles) public payable virtual onlyOwner {
        _grantRoles(user, roles);
    }

    /// @dev Allows the owner to remove `user` `roles`.
    /// If the `user` does not have a role, then it will be an no-op for the role.
    function revokeRoles(address user, uint256 roles) public payable virtual onlyOwner {
        _removeRoles(user, roles);
    }

    /// @dev Allow the caller to remove their own roles.
    /// If the caller does not have a role, then it will be an no-op for the role.
    function renounceRoles(uint256 roles) public payable virtual {
        _removeRoles(msg.sender, roles);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   PUBLIC READ FUNCTIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the owner of the contract.
    function owner() public view virtual returns (address result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := sload(not(_OWNER_SLOT_NOT))
        }
    }

    /// @dev Returns the expiry timestamp for the two-step ownership handover to `pendingOwner`.
    function ownershipHandoverExpiresAt(address pendingOwner)
        public
        view
        virtual
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the handover slot.
            mstore(0x00, or(shl(96, pendingOwner), _HANDOVER_SLOT_SEED))
            // Load the handover slot.
            result := sload(keccak256(0x00, 0x20))
        }
    }

    /// @dev Returns how long a two-step ownership handover is valid for in seconds.
    function ownershipHandoverValidFor() public view virtual returns (uint64) {
        return 48 * 3600;
    }

    /// @dev Returns whether `user` has any of `roles`.
    function hasAnyRole(address user, uint256 roles) public view virtual returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the role slot.
            mstore(0x00, or(shl(96, user), _OWNER_SLOT_NOT))
            // Load the stored value, and set the result to whether the
            // `and` intersection of the value and `roles` is not zero.
            result := iszero(iszero(and(sload(keccak256(0x00, 0x20)), roles)))
        }
    }

    /// @dev Returns whether `user` has all of `roles`.
    function hasAllRoles(address user, uint256 roles) public view virtual returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the role slot.
            mstore(0x00, or(shl(96, user), _OWNER_SLOT_NOT))
            // Whether the stored value is contains all the set bits in `roles`.
            result := eq(and(sload(keccak256(0x00, 0x20)), roles), roles)
        }
    }

    /// @dev Returns the roles of `user`.
    function rolesOf(address user) public view virtual returns (uint256 roles) {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the role slot.
            mstore(0x00, or(shl(96, user), _OWNER_SLOT_NOT))
            // Load the stored value.
            roles := sload(keccak256(0x00, 0x20))
        }
    }

    /// @dev Convenience function to return a `roles` bitmap from an array of `ordinals`.
    /// This is meant for frontends like Etherscan, and is therefore not fully optimized.
    /// Not recommended to be called on-chain.
    function rolesFromOrdinals(uint8[] memory ordinals) public pure returns (uint256 roles) {
        /// @solidity memory-safe-assembly
        assembly {
            // Skip the length slot.
            let o := add(ordinals, 0x20)
            // `shl` 5 is equivalent to multiplying by 0x20.
            let end := add(o, shl(5, mload(ordinals)))

            for {} iszero(eq(o, end)) { o := add(o, 0x20) } {
                roles := or(roles, shl(and(mload(o), 0xff), 1))
            }
        }
    }

    /// @dev Convenience function to return an array of `ordinals` from the `roles` bitmap.
    /// This is meant for frontends like Etherscan, and is therefore not fully optimized.
    /// Not recommended to be called on-chain.
    function ordinalsFromRoles(uint256 roles) public pure returns (uint8[] memory ordinals) {
        /// @solidity memory-safe-assembly
        assembly {
            // Grab the pointer to the free memory.
            let ptr := add(mload(0x40), 0x20)
            // The absence of lookup tables, De Bruijn, etc., here is intentional for
            // smaller bytecode, as this function is not meant to be called on-chain.
            for { let i := 0 } 1 { i := add(i, 1) } {
                mstore(ptr, i)
                // `shr` 5 is equivalent to multiplying by 0x20.
                // Push back into the ordinals array if the bit is set.
                ptr := add(ptr, shl(5, and(roles, 1)))
                roles := shr(1, roles)
                if iszero(roles) { break }
            }
            // Set `ordinals` to the start of the free memory.
            ordinals := mload(0x40)
            // Allocate the memory.
            mstore(0x40, ptr)
            // Store the length of `ordinals`.
            mstore(ordinals, shr(5, sub(ptr, add(ordinals, 0x20))))
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         MODIFIERS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Marks a function as only callable by the owner.
    modifier onlyOwner() virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // If the caller is not the stored owner, revert.
            if iszero(eq(caller(), sload(not(_OWNER_SLOT_NOT)))) {
                mstore(0x00, _UNAUTHORIZED_ERROR_SELECTOR)
                revert(0x1c, 0x04)
            }
        }
        _;
    }

    /// @dev Marks a function as only callable by an account with `roles`.
    modifier onlyRoles(uint256 roles) virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the role slot.
            mstore(0x00, or(shl(96, caller()), _OWNER_SLOT_NOT))
            // Load the stored value, and if the `and` intersection
            // of the value and `roles` is zero, revert.
            if iszero(and(sload(keccak256(0x00, 0x20)), roles)) {
                mstore(0x00, _UNAUTHORIZED_ERROR_SELECTOR)
                revert(0x1c, 0x04)
            }
        }
        _;
    }

    /// @dev Marks a function as only callable by the owner or by an account
    /// with `roles`. Checks for ownership first, then lazily checks for roles.
    modifier onlyOwnerOrRoles(uint256 roles) virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // If the caller is not the stored owner.
            if iszero(eq(caller(), sload(not(_OWNER_SLOT_NOT)))) {
                // Compute the role slot.
                mstore(0x00, or(shl(96, caller()), _OWNER_SLOT_NOT))
                // Load the stored value, and if the `and` intersection
                // of the value and `roles` is zero, revert.
                if iszero(and(sload(keccak256(0x00, 0x20)), roles)) {
                    mstore(0x00, _UNAUTHORIZED_ERROR_SELECTOR)
                    revert(0x1c, 0x04)
                }
            }
        }
        _;
    }

    /// @dev Marks a function as only callable by an account with `roles`
    /// or the owner. Checks for roles first, then lazily checks for ownership.
    modifier onlyRolesOrOwner(uint256 roles) virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the role slot.
            mstore(0x00, or(shl(96, caller()), _OWNER_SLOT_NOT))
            // Load the stored value, and if the `and` intersection
            // of the value and `roles` is zero, revert.
            if iszero(and(sload(keccak256(0x00, 0x20)), roles)) {
                // If the caller is not the stored owner.
                if iszero(eq(caller(), sload(not(_OWNER_SLOT_NOT)))) {
                    mstore(0x00, _UNAUTHORIZED_ERROR_SELECTOR)
                    revert(0x1c, 0x04)
                }
            }
        }
        _;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       ROLE CONSTANTS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // IYKYK

    uint256 internal constant _ROLE_0 = 1 << 0;
    uint256 internal constant _ROLE_1 = 1 << 1;
    uint256 internal constant _ROLE_2 = 1 << 2;
    uint256 internal constant _ROLE_3 = 1 << 3;
    uint256 internal constant _ROLE_4 = 1 << 4;
    uint256 internal constant _ROLE_5 = 1 << 5;
    uint256 internal constant _ROLE_6 = 1 << 6;
    uint256 internal constant _ROLE_7 = 1 << 7;
    uint256 internal constant _ROLE_8 = 1 << 8;
    uint256 internal constant _ROLE_9 = 1 << 9;
    uint256 internal constant _ROLE_10 = 1 << 10;
    uint256 internal constant _ROLE_11 = 1 << 11;
    uint256 internal constant _ROLE_12 = 1 << 12;
    uint256 internal constant _ROLE_13 = 1 << 13;
    uint256 internal constant _ROLE_14 = 1 << 14;
    uint256 internal constant _ROLE_15 = 1 << 15;
    uint256 internal constant _ROLE_16 = 1 << 16;
    uint256 internal constant _ROLE_17 = 1 << 17;
    uint256 internal constant _ROLE_18 = 1 << 18;
    uint256 internal constant _ROLE_19 = 1 << 19;
    uint256 internal constant _ROLE_20 = 1 << 20;
    uint256 internal constant _ROLE_21 = 1 << 21;
    uint256 internal constant _ROLE_22 = 1 << 22;
    uint256 internal constant _ROLE_23 = 1 << 23;
    uint256 internal constant _ROLE_24 = 1 << 24;
    uint256 internal constant _ROLE_25 = 1 << 25;
    uint256 internal constant _ROLE_26 = 1 << 26;
    uint256 internal constant _ROLE_27 = 1 << 27;
    uint256 internal constant _ROLE_28 = 1 << 28;
    uint256 internal constant _ROLE_29 = 1 << 29;
    uint256 internal constant _ROLE_30 = 1 << 30;
    uint256 internal constant _ROLE_31 = 1 << 31;
    uint256 internal constant _ROLE_32 = 1 << 32;
    uint256 internal constant _ROLE_33 = 1 << 33;
    uint256 internal constant _ROLE_34 = 1 << 34;
    uint256 internal constant _ROLE_35 = 1 << 35;
    uint256 internal constant _ROLE_36 = 1 << 36;
    uint256 internal constant _ROLE_37 = 1 << 37;
    uint256 internal constant _ROLE_38 = 1 << 38;
    uint256 internal constant _ROLE_39 = 1 << 39;
    uint256 internal constant _ROLE_40 = 1 << 40;
    uint256 internal constant _ROLE_41 = 1 << 41;
    uint256 internal constant _ROLE_42 = 1 << 42;
    uint256 internal constant _ROLE_43 = 1 << 43;
    uint256 internal constant _ROLE_44 = 1 << 44;
    uint256 internal constant _ROLE_45 = 1 << 45;
    uint256 internal constant _ROLE_46 = 1 << 46;
    uint256 internal constant _ROLE_47 = 1 << 47;
    uint256 internal constant _ROLE_48 = 1 << 48;
    uint256 internal constant _ROLE_49 = 1 << 49;
    uint256 internal constant _ROLE_50 = 1 << 50;
    uint256 internal constant _ROLE_51 = 1 << 51;
    uint256 internal constant _ROLE_52 = 1 << 52;
    uint256 internal constant _ROLE_53 = 1 << 53;
    uint256 internal constant _ROLE_54 = 1 << 54;
    uint256 internal constant _ROLE_55 = 1 << 55;
    uint256 internal constant _ROLE_56 = 1 << 56;
    uint256 internal constant _ROLE_57 = 1 << 57;
    uint256 internal constant _ROLE_58 = 1 << 58;
    uint256 internal constant _ROLE_59 = 1 << 59;
    uint256 internal constant _ROLE_60 = 1 << 60;
    uint256 internal constant _ROLE_61 = 1 << 61;
    uint256 internal constant _ROLE_62 = 1 << 62;
    uint256 internal constant _ROLE_63 = 1 << 63;
    uint256 internal constant _ROLE_64 = 1 << 64;
    uint256 internal constant _ROLE_65 = 1 << 65;
    uint256 internal constant _ROLE_66 = 1 << 66;
    uint256 internal constant _ROLE_67 = 1 << 67;
    uint256 internal constant _ROLE_68 = 1 << 68;
    uint256 internal constant _ROLE_69 = 1 << 69;
    uint256 internal constant _ROLE_70 = 1 << 70;
    uint256 internal constant _ROLE_71 = 1 << 71;
    uint256 internal constant _ROLE_72 = 1 << 72;
    uint256 internal constant _ROLE_73 = 1 << 73;
    uint256 internal constant _ROLE_74 = 1 << 74;
    uint256 internal constant _ROLE_75 = 1 << 75;
    uint256 internal constant _ROLE_76 = 1 << 76;
    uint256 internal constant _ROLE_77 = 1 << 77;
    uint256 internal constant _ROLE_78 = 1 << 78;
    uint256 internal constant _ROLE_79 = 1 << 79;
    uint256 internal constant _ROLE_80 = 1 << 80;
    uint256 internal constant _ROLE_81 = 1 << 81;
    uint256 internal constant _ROLE_82 = 1 << 82;
    uint256 internal constant _ROLE_83 = 1 << 83;
    uint256 internal constant _ROLE_84 = 1 << 84;
    uint256 internal constant _ROLE_85 = 1 << 85;
    uint256 internal constant _ROLE_86 = 1 << 86;
    uint256 internal constant _ROLE_87 = 1 << 87;
    uint256 internal constant _ROLE_88 = 1 << 88;
    uint256 internal constant _ROLE_89 = 1 << 89;
    uint256 internal constant _ROLE_90 = 1 << 90;
    uint256 internal constant _ROLE_91 = 1 << 91;
    uint256 internal constant _ROLE_92 = 1 << 92;
    uint256 internal constant _ROLE_93 = 1 << 93;
    uint256 internal constant _ROLE_94 = 1 << 94;
    uint256 internal constant _ROLE_95 = 1 << 95;
    uint256 internal constant _ROLE_96 = 1 << 96;
    uint256 internal constant _ROLE_97 = 1 << 97;
    uint256 internal constant _ROLE_98 = 1 << 98;
    uint256 internal constant _ROLE_99 = 1 << 99;
    uint256 internal constant _ROLE_100 = 1 << 100;
    uint256 internal constant _ROLE_101 = 1 << 101;
    uint256 internal constant _ROLE_102 = 1 << 102;
    uint256 internal constant _ROLE_103 = 1 << 103;
    uint256 internal constant _ROLE_104 = 1 << 104;
    uint256 internal constant _ROLE_105 = 1 << 105;
    uint256 internal constant _ROLE_106 = 1 << 106;
    uint256 internal constant _ROLE_107 = 1 << 107;
    uint256 internal constant _ROLE_108 = 1 << 108;
    uint256 internal constant _ROLE_109 = 1 << 109;
    uint256 internal constant _ROLE_110 = 1 << 110;
    uint256 internal constant _ROLE_111 = 1 << 111;
    uint256 internal constant _ROLE_112 = 1 << 112;
    uint256 internal constant _ROLE_113 = 1 << 113;
    uint256 internal constant _ROLE_114 = 1 << 114;
    uint256 internal constant _ROLE_115 = 1 << 115;
    uint256 internal constant _ROLE_116 = 1 << 116;
    uint256 internal constant _ROLE_117 = 1 << 117;
    uint256 internal constant _ROLE_118 = 1 << 118;
    uint256 internal constant _ROLE_119 = 1 << 119;
    uint256 internal constant _ROLE_120 = 1 << 120;
    uint256 internal constant _ROLE_121 = 1 << 121;
    uint256 internal constant _ROLE_122 = 1 << 122;
    uint256 internal constant _ROLE_123 = 1 << 123;
    uint256 internal constant _ROLE_124 = 1 << 124;
    uint256 internal constant _ROLE_125 = 1 << 125;
    uint256 internal constant _ROLE_126 = 1 << 126;
    uint256 internal constant _ROLE_127 = 1 << 127;
    uint256 internal constant _ROLE_128 = 1 << 128;
    uint256 internal constant _ROLE_129 = 1 << 129;
    uint256 internal constant _ROLE_130 = 1 << 130;
    uint256 internal constant _ROLE_131 = 1 << 131;
    uint256 internal constant _ROLE_132 = 1 << 132;
    uint256 internal constant _ROLE_133 = 1 << 133;
    uint256 internal constant _ROLE_134 = 1 << 134;
    uint256 internal constant _ROLE_135 = 1 << 135;
    uint256 internal constant _ROLE_136 = 1 << 136;
    uint256 internal constant _ROLE_137 = 1 << 137;
    uint256 internal constant _ROLE_138 = 1 << 138;
    uint256 internal constant _ROLE_139 = 1 << 139;
    uint256 internal constant _ROLE_140 = 1 << 140;
    uint256 internal constant _ROLE_141 = 1 << 141;
    uint256 internal constant _ROLE_142 = 1 << 142;
    uint256 internal constant _ROLE_143 = 1 << 143;
    uint256 internal constant _ROLE_144 = 1 << 144;
    uint256 internal constant _ROLE_145 = 1 << 145;
    uint256 internal constant _ROLE_146 = 1 << 146;
    uint256 internal constant _ROLE_147 = 1 << 147;
    uint256 internal constant _ROLE_148 = 1 << 148;
    uint256 internal constant _ROLE_149 = 1 << 149;
    uint256 internal constant _ROLE_150 = 1 << 150;
    uint256 internal constant _ROLE_151 = 1 << 151;
    uint256 internal constant _ROLE_152 = 1 << 152;
    uint256 internal constant _ROLE_153 = 1 << 153;
    uint256 internal constant _ROLE_154 = 1 << 154;
    uint256 internal constant _ROLE_155 = 1 << 155;
    uint256 internal constant _ROLE_156 = 1 << 156;
    uint256 internal constant _ROLE_157 = 1 << 157;
    uint256 internal constant _ROLE_158 = 1 << 158;
    uint256 internal constant _ROLE_159 = 1 << 159;
    uint256 internal constant _ROLE_160 = 1 << 160;
    uint256 internal constant _ROLE_161 = 1 << 161;
    uint256 internal constant _ROLE_162 = 1 << 162;
    uint256 internal constant _ROLE_163 = 1 << 163;
    uint256 internal constant _ROLE_164 = 1 << 164;
    uint256 internal constant _ROLE_165 = 1 << 165;
    uint256 internal constant _ROLE_166 = 1 << 166;
    uint256 internal constant _ROLE_167 = 1 << 167;
    uint256 internal constant _ROLE_168 = 1 << 168;
    uint256 internal constant _ROLE_169 = 1 << 169;
    uint256 internal constant _ROLE_170 = 1 << 170;
    uint256 internal constant _ROLE_171 = 1 << 171;
    uint256 internal constant _ROLE_172 = 1 << 172;
    uint256 internal constant _ROLE_173 = 1 << 173;
    uint256 internal constant _ROLE_174 = 1 << 174;
    uint256 internal constant _ROLE_175 = 1 << 175;
    uint256 internal constant _ROLE_176 = 1 << 176;
    uint256 internal constant _ROLE_177 = 1 << 177;
    uint256 internal constant _ROLE_178 = 1 << 178;
    uint256 internal constant _ROLE_179 = 1 << 179;
    uint256 internal constant _ROLE_180 = 1 << 180;
    uint256 internal constant _ROLE_181 = 1 << 181;
    uint256 internal constant _ROLE_182 = 1 << 182;
    uint256 internal constant _ROLE_183 = 1 << 183;
    uint256 internal constant _ROLE_184 = 1 << 184;
    uint256 internal constant _ROLE_185 = 1 << 185;
    uint256 internal constant _ROLE_186 = 1 << 186;
    uint256 internal constant _ROLE_187 = 1 << 187;
    uint256 internal constant _ROLE_188 = 1 << 188;
    uint256 internal constant _ROLE_189 = 1 << 189;
    uint256 internal constant _ROLE_190 = 1 << 190;
    uint256 internal constant _ROLE_191 = 1 << 191;
    uint256 internal constant _ROLE_192 = 1 << 192;
    uint256 internal constant _ROLE_193 = 1 << 193;
    uint256 internal constant _ROLE_194 = 1 << 194;
    uint256 internal constant _ROLE_195 = 1 << 195;
    uint256 internal constant _ROLE_196 = 1 << 196;
    uint256 internal constant _ROLE_197 = 1 << 197;
    uint256 internal constant _ROLE_198 = 1 << 198;
    uint256 internal constant _ROLE_199 = 1 << 199;
    uint256 internal constant _ROLE_200 = 1 << 200;
    uint256 internal constant _ROLE_201 = 1 << 201;
    uint256 internal constant _ROLE_202 = 1 << 202;
    uint256 internal constant _ROLE_203 = 1 << 203;
    uint256 internal constant _ROLE_204 = 1 << 204;
    uint256 internal constant _ROLE_205 = 1 << 205;
    uint256 internal constant _ROLE_206 = 1 << 206;
    uint256 internal constant _ROLE_207 = 1 << 207;
    uint256 internal constant _ROLE_208 = 1 << 208;
    uint256 internal constant _ROLE_209 = 1 << 209;
    uint256 internal constant _ROLE_210 = 1 << 210;
    uint256 internal constant _ROLE_211 = 1 << 211;
    uint256 internal constant _ROLE_212 = 1 << 212;
    uint256 internal constant _ROLE_213 = 1 << 213;
    uint256 internal constant _ROLE_214 = 1 << 214;
    uint256 internal constant _ROLE_215 = 1 << 215;
    uint256 internal constant _ROLE_216 = 1 << 216;
    uint256 internal constant _ROLE_217 = 1 << 217;
    uint256 internal constant _ROLE_218 = 1 << 218;
    uint256 internal constant _ROLE_219 = 1 << 219;
    uint256 internal constant _ROLE_220 = 1 << 220;
    uint256 internal constant _ROLE_221 = 1 << 221;
    uint256 internal constant _ROLE_222 = 1 << 222;
    uint256 internal constant _ROLE_223 = 1 << 223;
    uint256 internal constant _ROLE_224 = 1 << 224;
    uint256 internal constant _ROLE_225 = 1 << 225;
    uint256 internal constant _ROLE_226 = 1 << 226;
    uint256 internal constant _ROLE_227 = 1 << 227;
    uint256 internal constant _ROLE_228 = 1 << 228;
    uint256 internal constant _ROLE_229 = 1 << 229;
    uint256 internal constant _ROLE_230 = 1 << 230;
    uint256 internal constant _ROLE_231 = 1 << 231;
    uint256 internal constant _ROLE_232 = 1 << 232;
    uint256 internal constant _ROLE_233 = 1 << 233;
    uint256 internal constant _ROLE_234 = 1 << 234;
    uint256 internal constant _ROLE_235 = 1 << 235;
    uint256 internal constant _ROLE_236 = 1 << 236;
    uint256 internal constant _ROLE_237 = 1 << 237;
    uint256 internal constant _ROLE_238 = 1 << 238;
    uint256 internal constant _ROLE_239 = 1 << 239;
    uint256 internal constant _ROLE_240 = 1 << 240;
    uint256 internal constant _ROLE_241 = 1 << 241;
    uint256 internal constant _ROLE_242 = 1 << 242;
    uint256 internal constant _ROLE_243 = 1 << 243;
    uint256 internal constant _ROLE_244 = 1 << 244;
    uint256 internal constant _ROLE_245 = 1 << 245;
    uint256 internal constant _ROLE_246 = 1 << 246;
    uint256 internal constant _ROLE_247 = 1 << 247;
    uint256 internal constant _ROLE_248 = 1 << 248;
    uint256 internal constant _ROLE_249 = 1 << 249;
    uint256 internal constant _ROLE_250 = 1 << 250;
    uint256 internal constant _ROLE_251 = 1 << 251;
    uint256 internal constant _ROLE_252 = 1 << 252;
    uint256 internal constant _ROLE_253 = 1 << 253;
    uint256 internal constant _ROLE_254 = 1 << 254;
    uint256 internal constant _ROLE_255 = 1 << 255;
}

File 20 of 23 : Base64.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Library to encode strings in Base64.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/Base64.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/Base64.sol)
/// @author Modified from (https://github.com/Brechtpd/base64/blob/main/base64.sol) by Brecht Devos - <[email protected]>.
library Base64 {
    /// @dev Encodes `data` using the base64 encoding described in RFC 4648.
    /// See: https://datatracker.ietf.org/doc/html/rfc4648
    /// @param fileSafe  Whether to replace '+' with '-' and '/' with '_'.
    /// @param noPadding Whether to strip away the padding.
    function encode(bytes memory data, bool fileSafe, bool noPadding)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let dataLength := mload(data)

            if dataLength {
                // Multiply by 4/3 rounded up.
                // The `shl(2, ...)` is equivalent to multiplying by 4.
                let encodedLength := shl(2, div(add(dataLength, 2), 3))

                // Set `result` to point to the start of the free memory.
                result := mload(0x40)

                // Store the table into the scratch space.
                // Offsetted by -1 byte so that the `mload` will load the character.
                // We will rewrite the free memory pointer at `0x40` later with
                // the allocated size.
                // The magic constant 0x0230 will translate "-_" + "+/".
                mstore(0x1f, "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef")
                mstore(0x3f, sub("ghijklmnopqrstuvwxyz0123456789-_", mul(iszero(fileSafe), 0x0230)))

                // Skip the first slot, which stores the length.
                let ptr := add(result, 0x20)
                let end := add(ptr, encodedLength)

                // Run over the input, 3 bytes at a time.
                for {} 1 {} {
                    data := add(data, 3) // Advance 3 bytes.
                    let input := mload(data)

                    // Write 4 bytes. Optimized for fewer stack operations.
                    mstore8(ptr, mload(and(shr(18, input), 0x3F)))
                    mstore8(add(ptr, 1), mload(and(shr(12, input), 0x3F)))
                    mstore8(add(ptr, 2), mload(and(shr(6, input), 0x3F)))
                    mstore8(add(ptr, 3), mload(and(input, 0x3F)))

                    ptr := add(ptr, 4) // Advance 4 bytes.

                    if iszero(lt(ptr, end)) { break }
                }

                let r := mod(dataLength, 3)

                switch noPadding
                case 0 {
                    // Offset `ptr` and pad with '='. We can simply write over the end.
                    mstore8(sub(ptr, iszero(iszero(r))), 0x3d) // Pad at `ptr - 1` if `r > 0`.
                    mstore8(sub(ptr, shl(1, eq(r, 1))), 0x3d) // Pad at `ptr - 2` if `r == 1`.
                    // Write the length of the string.
                    mstore(result, encodedLength)
                }
                default {
                    // Write the length of the string.
                    mstore(result, sub(encodedLength, add(iszero(iszero(r)), eq(r, 1))))
                }

                // Allocate the memory for the string.
                // Add 31 and mask with `not(31)` to round the
                // free memory pointer up the next multiple of 32.
                mstore(0x40, and(add(end, 31), not(31)))
            }
        }
    }

    /// @dev Encodes `data` using the base64 encoding described in RFC 4648.
    /// Equivalent to `encode(data, false, false)`.
    function encode(bytes memory data) internal pure returns (string memory result) {
        result = encode(data, false, false);
    }

    /// @dev Encodes `data` using the base64 encoding described in RFC 4648.
    /// Equivalent to `encode(data, fileSafe, false)`.
    function encode(bytes memory data, bool fileSafe)
        internal
        pure
        returns (string memory result)
    {
        result = encode(data, fileSafe, false);
    }

    /// @dev Encodes base64 encoded `data`.
    ///
    /// Supports:
    /// - RFC 4648 (both standard and file-safe mode).
    /// - RFC 3501 (63: ',').
    ///
    /// Does not support:
    /// - Line breaks.
    ///
    /// Note: For performance reasons,
    /// this function will NOT revert on invalid `data` inputs.
    /// Outputs for invalid inputs will simply be undefined behaviour.
    /// It is the user's responsibility to ensure that the `data`
    /// is a valid base64 encoded string.
    function decode(string memory data) internal pure returns (bytes memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            let dataLength := mload(data)

            if dataLength {
                let end := add(data, dataLength)
                let decodedLength := mul(shr(2, dataLength), 3)

                switch and(dataLength, 3)
                case 0 {
                    // If padded.
                    // forgefmt: disable-next-item
                    decodedLength := sub(
                        decodedLength,
                        add(eq(and(mload(end), 0xFF), 0x3d), eq(and(mload(end), 0xFFFF), 0x3d3d))
                    )
                }
                default {
                    // If non-padded.
                    decodedLength := add(decodedLength, sub(and(dataLength, 3), 1))
                }

                result := mload(0x40)

                // Write the length of the string.
                mstore(result, decodedLength)

                // Skip the first slot, which stores the length.
                let ptr := add(result, 0x20)

                // Load the table into the scratch space.
                // Constants are optimized for smaller bytecode with zero gas overhead.
                // `m` also doubles as the mask of the upper 6 bits.
                let m := 0xfc000000fc00686c7074787c8084888c9094989ca0a4a8acb0b4b8bcc0c4c8cc
                mstore(0x5b, m)
                mstore(0x3b, 0x04080c1014181c2024282c3034383c4044484c5054585c6064)
                mstore(0x1a, 0xf8fcf800fcd0d4d8dce0e4e8ecf0f4)

                for {} 1 {} {
                    // Read 4 bytes.
                    data := add(data, 4)
                    let input := mload(data)

                    // Write 3 bytes.
                    // forgefmt: disable-next-item
                    mstore(ptr, or(
                        and(m, mload(byte(28, input))),
                        shr(6, or(
                            and(m, mload(byte(29, input))),
                            shr(6, or(
                                and(m, mload(byte(30, input))),
                                shr(6, mload(byte(31, input)))
                            ))
                        ))
                    ))

                    ptr := add(ptr, 3)

                    if iszero(lt(data, end)) { break }
                }

                // Allocate the memory for the string.
                // Add 32 + 31 and mask with `not(31)` to round the
                // free memory pointer up the next multiple of 32.
                mstore(0x40, and(add(add(result, decodedLength), 63), not(31)))

                // Restore the zero slot.
                mstore(0x60, 0)
            }
        }
    }
}

File 21 of 23 : FixedPointMathLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error ExpOverflow();

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error FactorialOverflow();

    /// @dev The operation failed, due to an multiplication overflow.
    error MulWadFailed();

    /// @dev The operation failed, either due to a
    /// multiplication overflow, or a division by a zero.
    error DivWadFailed();

    /// @dev The multiply-divide operation failed, either due to a
    /// multiplication overflow, or a division by a zero.
    error MulDivFailed();

    /// @dev The division failed, as the denominator is zero.
    error DivFailed();

    /// @dev The full precision multiply-divide operation failed, either due
    /// to the result being larger than 256 bits, or a division by a zero.
    error FullMulDivFailed();

    /// @dev The output is undefined, as the input is less-than-or-equal to zero.
    error LnWadUndefined();

    /// @dev The output is undefined, as the input is zero.
    error Log2Undefined();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The scalar of ETH and most ERC20s.
    uint256 internal constant WAD = 1e18;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*              SIMPLIFIED FIXED POINT OPERATIONS             */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if mul(y, gt(x, div(not(0), y))) {
                // Store the function selector of `MulWadFailed()`.
                mstore(0x00, 0xbac65e5b)
                // Revert with (offset, size).
                revert(0x1c, 0x04)
            }
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up.
    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if mul(y, gt(x, div(not(0), y))) {
                // Store the function selector of `MulWadFailed()`.
                mstore(0x00, 0xbac65e5b)
                // Revert with (offset, size).
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`.
            if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) {
                // Store the function selector of `DivWadFailed()`.
                mstore(0x00, 0x7c5f487d)
                // Revert with (offset, size).
                revert(0x1c, 0x04)
            }
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up.
    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`.
            if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) {
                // Store the function selector of `DivWadFailed()`.
                mstore(0x00, 0x7c5f487d)
                // Revert with (offset, size).
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `x` to the power of `y`.
    /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Using `ln(x)` means `x` must be greater than 0.
        return expWad((lnWad(x) * y) / int256(WAD));
    }

    /// @dev Returns `exp(x)`, denominated in `WAD`.
    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is < 0.5 we return zero. This happens when
            // x <= floor(log(0.5e18) * 1e18) ~ -42e18
            if (x <= -42139678854452767551) return 0;

            // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
            // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
            if (x >= 135305999368893231589) revert ExpOverflow();

            // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5 ** 18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // k is in the range [-61, 195].

            // Evaluate using a (6, 7)-term rational approximation.
            // p is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            /// @solidity memory-safe-assembly
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already 2**96 too large.
                r := sdiv(p, q)
            }

            // r should be in the range (0.09, 0.25) * 2**96.

            // We now need to multiply r by:
            // * the scale factor s = ~6.031367120.
            // * the 2**k factor from the range reduction.
            // * the 1e18 / 2**96 factor for base conversion.
            // We do this all at once, with an intermediate result in 2**213
            // basis, so the final right shift is always by a positive amount.
            r = int256(
                (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
            );
        }
    }

    /// @dev Returns `ln(x)`, denominated in `WAD`.
    function lnWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            if (x <= 0) revert LnWadUndefined();

            // We want to convert x from 10**18 fixed point to 2**96 fixed point.
            // We do this by multiplying by 2**96 / 10**18. But since
            // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
            // and add ln(2**96 / 10**18) at the end.

            // Compute k = log2(x) - 96.
            int256 k;
            /// @solidity memory-safe-assembly
            assembly {
                let v := x
                k := shl(7, lt(0xffffffffffffffffffffffffffffffff, v))
                k := or(k, shl(6, lt(0xffffffffffffffff, shr(k, v))))
                k := or(k, shl(5, lt(0xffffffff, shr(k, v))))

                // For the remaining 32 bits, use a De Bruijn lookup.
                // See: https://graphics.stanford.edu/~seander/bithacks.html
                v := shr(k, v)
                v := or(v, shr(1, v))
                v := or(v, shr(2, v))
                v := or(v, shr(4, v))
                v := or(v, shr(8, v))
                v := or(v, shr(16, v))

                // forgefmt: disable-next-item
                k := sub(or(k, byte(shr(251, mul(v, shl(224, 0x07c4acdd))),
                    0x0009010a0d15021d0b0e10121619031e080c141c0f111807131b17061a05041f)), 96)
            }

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            x <<= uint256(159 - k);
            x = int256(uint256(x) >> 159);

            // Evaluate using a (8, 8)-term rational approximation.
            // p is made monic, we will multiply by a scale factor later.
            int256 p = x + 3273285459638523848632254066296;
            p = ((p * x) >> 96) + 24828157081833163892658089445524;
            p = ((p * x) >> 96) + 43456485725739037958740375743393;
            p = ((p * x) >> 96) - 11111509109440967052023855526967;
            p = ((p * x) >> 96) - 45023709667254063763336534515857;
            p = ((p * x) >> 96) - 14706773417378608786704636184526;
            p = p * x - (795164235651350426258249787498 << 96);

            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
            // q is monic by convention.
            int256 q = x + 5573035233440673466300451813936;
            q = ((q * x) >> 96) + 71694874799317883764090561454958;
            q = ((q * x) >> 96) + 283447036172924575727196451306956;
            q = ((q * x) >> 96) + 401686690394027663651624208769553;
            q = ((q * x) >> 96) + 204048457590392012362485061816622;
            q = ((q * x) >> 96) + 31853899698501571402653359427138;
            q = ((q * x) >> 96) + 909429971244387300277376558375;
            /// @solidity memory-safe-assembly
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial is known not to have zeros in the domain.
                // No scaling required because p is already 2**96 too large.
                r := sdiv(p, q)
            }

            // r is in the range (0, 0.125) * 2**96

            // Finalization, we need to:
            // * multiply by the scale factor s = 5.549…
            // * add ln(2**96 / 10**18)
            // * add k * ln(2)
            // * multiply by 10**18 / 2**96 = 5**18 >> 78

            // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
            r *= 1677202110996718588342820967067443963516166;
            // add ln(2) * k * 5e18 * 2**192
            r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
            // add ln(2**96 / 10**18) * 5e18 * 2**192
            r += 600920179829731861736702779321621459595472258049074101567377883020018308;
            // base conversion: mul 2**18 / 2**192
            r >>= 174;
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  GENERAL NUMBER UTILITIES                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Calculates floor(a × b ÷ denominator) with full precision.
    /// Throws if result overflows a uint256 or when the denominator is zero.
    /// Credit to Remco Bloemen under MIT license: https://xn--2-umb.com/21/muldiv
    function fullMulDiv(uint256 a, uint256 b, uint256 denominator)
        internal
        pure
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // forgefmt: disable-next-item
            for {} 1 {} {
                // 512-bit multiply [prod1 prod0] = a * b
                // Compute the product mod 2**256 and mod 2**256 - 1
                // then use the Chinese Remainder Theorem to reconstruct
                // the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2**256 + prod0

                // Least significant 256 bits of the product
                let prod0 := mul(a, b)
                let mm := mulmod(a, b, not(0))
                // Most significant 256 bits of the product
                let prod1 := sub(sub(mm, prod0), lt(mm, prod0))

                // Handle non-overflow cases, 256 by 256 division.
                if iszero(prod1) {
                    if iszero(denominator) {
                        // Store the function selector of `FullMulDivFailed()`.
                        mstore(0x00, 0xae47f702)
                        // Revert with (offset, size).
                        revert(0x1c, 0x04)
                    }
                    result := div(prod0, denominator)
                    break       
                }

                // Make sure the result is less than 2**256.
                // Also prevents `denominator == 0`.
                if iszero(gt(denominator, prod1)) {
                    // Store the function selector of `FullMulDivFailed()`.
                    mstore(0x00, 0xae47f702)
                    // Revert with (offset, size).
                    revert(0x1c, 0x04)
                }

                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////

                // Make division exact by subtracting the remainder from [prod1 prod0].
                // Compute remainder using mulmod.
                let remainder := mulmod(a, b, denominator)
                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
                // Factor powers of two out of denominator.
                // Compute largest power of two divisor of denominator.
                // Always >= 1.
                let twos := and(denominator, sub(0, denominator))
                // Divide denominator by power of two
                denominator := div(denominator, twos)
                // Divide [prod1 prod0] by the factors of two
                prod0 := div(prod0, twos)
                // Shift in bits from prod1 into prod0. For this we need
                // to flip `twos` such that it is 2**256 / twos.
                // If `twos` is zero, then it becomes one.
                prod0 := or(prod0, mul(prod1, add(div(sub(0, twos), twos), 1)))
                // Invert denominator mod 2**256
                // Now that denominator is an odd number, it has an inverse
                // modulo 2**256 such that denominator * inv = 1 mod 2**256.
                // Compute the inverse by starting with a seed that is correct
                // correct for four bits. That is, denominator * inv = 1 mod 2**4
                let inv := xor(mul(3, denominator), 2)
                // Now use Newton-Raphson iteration to improve the precision.
                // Thanks to Hensel's lifting lemma, this also works in modular
                // arithmetic, doubling the correct bits in each step.
                inv := mul(inv, sub(2, mul(denominator, inv))) // inverse mod 2**8
                inv := mul(inv, sub(2, mul(denominator, inv))) // inverse mod 2**16
                inv := mul(inv, sub(2, mul(denominator, inv))) // inverse mod 2**32
                inv := mul(inv, sub(2, mul(denominator, inv))) // inverse mod 2**64
                inv := mul(inv, sub(2, mul(denominator, inv))) // inverse mod 2**128
                result := mul(prod0, mul(inv, sub(2, mul(denominator, inv)))) // inverse mod 2**256
                break
            }
        }
    }

    /// @dev Calculates floor(a × b ÷ denominator) with full precision, rounded up.
    /// Throws if result overflows a uint256 or when the denominator is zero.
    /// Credit to Uniswap-v3-core under MIT license:
    /// https://github.com/Uniswap/v3-core/blob/contracts/libraries/FullMath.sol
    function fullMulDivUp(uint256 a, uint256 b, uint256 denominator)
        internal
        pure
        returns (uint256 result)
    {
        result = fullMulDiv(a, b, denominator);
        /// @solidity memory-safe-assembly
        assembly {
            if mulmod(a, b, denominator) {
                if iszero(add(result, 1)) {
                    // Store the function selector of `FullMulDivFailed()`.
                    mstore(0x00, 0xae47f702)
                    // Revert with (offset, size).
                    revert(0x1c, 0x04)
                }
                result := add(result, 1)
            }
        }
    }

    /// @dev Returns `floor(x * y / denominator)`.
    /// Reverts if `x * y` overflows, or `denominator` is zero.
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
            if iszero(mul(denominator, iszero(mul(y, gt(x, div(not(0), y)))))) {
                // Store the function selector of `MulDivFailed()`.
                mstore(0x00, 0xad251c27)
                // Revert with (offset, size).
                revert(0x1c, 0x04)
            }
            z := div(mul(x, y), denominator)
        }
    }

    /// @dev Returns `ceil(x * y / denominator)`.
    /// Reverts if `x * y` overflows, or `denominator` is zero.
    function mulDivUp(uint256 x, uint256 y, uint256 denominator)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
            if iszero(mul(denominator, iszero(mul(y, gt(x, div(not(0), y)))))) {
                // Store the function selector of `MulDivFailed()`.
                mstore(0x00, 0xad251c27)
                // Revert with (offset, size).
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, y), denominator))), div(mul(x, y), denominator))
        }
    }

    /// @dev Returns `ceil(x / denominator)`.
    /// Reverts if `denominator` is zero.
    function divUp(uint256 x, uint256 denominator) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(denominator) {
                // Store the function selector of `DivFailed()`.
                mstore(0x00, 0x65244e4e)
                // Revert with (offset, size).
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(x, denominator))), div(x, denominator))
        }
    }

    /// @dev Returns `max(0, x - y)`.
    function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns the square root of `x`.
    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // Let `y = x / 2**r`.
            // We check `y >= 2**(k + 8)` but shift right by `k` bits
            // each branch to ensure that if `x >= 256`, then `y >= 256`.
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffffff, shr(r, x))))
            z := shl(shr(1, r), z)

            // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
            // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
            // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
            // That's not possible if `x < 256` but we can just verify those cases exhaustively.

            // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
            // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
            // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.

            // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
            // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
            // with largest error when `s = 1` and when `s = 256` or `1/256`.

            // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
            // Then we can estimate `sqrt(y)` using
            // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.

            // There is no overflow risk here since `y < 2**136` after the first branch above.
            z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If `x+1` is a perfect square, the Babylonian method cycles between
            // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
            // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
            z := sub(z, lt(div(x, z), z))
        }
    }

    /// @dev Returns the factorial of `x`.
    function factorial(uint256 x) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            for {} 1 {} {
                if iszero(lt(10, x)) {
                    // forgefmt: disable-next-item
                    result := and(
                        shr(mul(22, x), 0x375f0016260009d80004ec0002d00001e0000180000180000200000400001),
                        0x3fffff
                    )
                    break
                }
                if iszero(lt(57, x)) {
                    let end := 31
                    result := 8222838654177922817725562880000000
                    if iszero(lt(end, x)) {
                        end := 10
                        result := 3628800
                    }
                    for { let w := not(0) } 1 {} {
                        result := mul(result, x)
                        x := add(x, w)
                        if eq(x, end) { break }
                    }
                    break
                }
                // Store the function selector of `FactorialOverflow()`.
                mstore(0x00, 0xaba0f2a2)
                // Revert with (offset, size).
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Returns the log2 of `x`.
    /// Equivalent to computing the index of the most significant bit (MSB) of `x`.
    function log2(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(x) {
                // Store the function selector of `Log2Undefined()`.
                mstore(0x00, 0x5be3aa5c)
                // Revert with (offset, size).
                revert(0x1c, 0x04)
            }

            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))

            // For the remaining 32 bits, use a De Bruijn lookup.
            // See: https://graphics.stanford.edu/~seander/bithacks.html
            x := shr(r, x)
            x := or(x, shr(1, x))
            x := or(x, shr(2, x))
            x := or(x, shr(4, x))
            x := or(x, shr(8, x))
            x := or(x, shr(16, x))

            // forgefmt: disable-next-item
            r := or(r, byte(shr(251, mul(x, shl(224, 0x07c4acdd))),
                0x0009010a0d15021d0b0e10121619031e080c141c0f111807131b17061a05041f))
        }
    }

    /// @dev Returns the log2 of `x`, rounded up.
    function log2Up(uint256 x) internal pure returns (uint256 r) {
        unchecked {
            uint256 isNotPo2;
            assembly {
                isNotPo2 := iszero(iszero(and(x, sub(x, 1))))
            }
            return log2(x) + isNotPo2;
        }
    }

    /// @dev Returns the averege of `x` and `y`.
    function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(and(x, y), shr(1, xor(x, y)))
        }
    }

    /// @dev Returns the absolute value of `x`.
    function abs(int256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let mask := mul(shr(255, x), not(0))
            z := xor(mask, add(mask, x))
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(int256 x, int256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let a := sub(y, x)
            z := xor(a, mul(xor(a, sub(x, y)), sgt(x, y)))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), gt(y, x)))
        }
    }

    /// @dev Returns gcd of `x` and `y`.
    function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // forgefmt: disable-next-item
            for { z := x } y {} {
                let t := y
                y := mod(z, y)
                z := t
            }
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(uint256 x, uint256 minValue, uint256 maxValue)
        internal
        pure
        returns (uint256 z)
    {
        return min(max(x, minValue), maxValue);
    }
}

File 22 of 23 : LibString.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Library for converting numbers into strings and other string operations.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)
library LibString {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                        CUSTOM ERRORS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The `length` of the output is too small to contain all the hex digits.
    error HexLengthInsufficient();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The constant returned when the `search` is not found in the string.
    uint256 internal constant NOT_FOUND = type(uint256).max;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     DECIMAL OPERATIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the base 10 decimal representation of `value`.
    function toString(uint256 value) internal pure returns (string memory str) {
        /// @solidity memory-safe-assembly
        assembly {
            // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
            // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
            // We will need 1 word for the trailing zeros padding, 1 word for the length,
            // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0.
            let m := add(mload(0x40), 0xa0)
            // Update the free memory pointer to allocate.
            mstore(0x40, m)
            // Assign the `str` to the end.
            str := sub(m, 0x20)
            // Zeroize the slot after the string.
            mstore(str, 0)

            // Cache the end of the memory to calculate the length later.
            let end := str

            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for { let temp := value } 1 {} {
                str := sub(str, 1)
                // Write the character to the pointer.
                // The ASCII index of the '0' character is 48.
                mstore8(str, add(48, mod(temp, 10)))
                // Keep dividing `temp` until zero.
                temp := div(temp, 10)
                if iszero(temp) { break }
            }

            let length := sub(end, str)
            // Move the pointer 32 bytes leftwards to make room for the length.
            str := sub(str, 0x20)
            // Store the length.
            mstore(str, length)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   HEXADECIMAL OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the hexadecimal representation of `value`,
    /// left-padded to an input length of `length` bytes.
    /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
    /// giving a total length of `length * 2 + 2` bytes.
    /// Reverts if `length` is too small for the output to contain all the digits.
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value, length);
        /// @solidity memory-safe-assembly
        assembly {
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(str, 0x3078) // Write the "0x" prefix.
            str := sub(str, 2) // Move the pointer.
            mstore(str, strLength) // Write the length.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`,
    /// left-padded to an input length of `length` bytes.
    /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
    /// giving a total length of `length * 2` bytes.
    /// Reverts if `length` is too small for the output to contain all the digits.
    function toHexStringNoPrefix(uint256 value, uint256 length)
        internal
        pure
        returns (string memory str)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let start := mload(0x40)
            // We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes
            // for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length.
            // We add 0x20 to the total and round down to a multiple of 0x20.
            // (0x20 + 0x20 + 0x02 + 0x20) = 0x62.
            let m := add(start, and(add(shl(1, length), 0x62), not(0x1f)))
            // Allocate the memory.
            mstore(0x40, m)
            // Assign the `str` to the end.
            str := sub(m, 0x20)
            // Zeroize the slot after the string.
            mstore(str, 0)

            // Cache the end to calculate the length later.
            let end := str
            // Store "0123456789abcdef" in scratch space.
            mstore(0x0f, 0x30313233343536373839616263646566)

            let temp := value
            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for {} 1 {} {
                str := sub(str, 2)
                mstore8(add(str, 1), mload(and(temp, 15)))
                mstore8(str, mload(and(shr(4, temp), 15)))
                temp := shr(8, temp)
                length := sub(length, 1)
                if iszero(length) { break }
            }

            if temp {
                // Store the function selector of `HexLengthInsufficient()`.
                mstore(0x00, 0x2194895a)
                // Revert with (offset, size).
                revert(0x1c, 0x04)
            }

            // Compute the string's length.
            let strLength := sub(end, str)
            // Move the pointer and write the length.
            str := sub(str, 0x20)
            mstore(str, strLength)
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
    /// As address are 20 bytes long, the output will left-padded to have
    /// a length of `20 * 2 + 2` bytes.
    function toHexString(uint256 value) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(str, 0x3078) // Write the "0x" prefix.
            str := sub(str, 2) // Move the pointer.
            mstore(str, strLength) // Write the length.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is encoded using 2 hexadecimal digits per byte.
    /// As address are 20 bytes long, the output will left-padded to have
    /// a length of `20 * 2` bytes.
    function toHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
        /// @solidity memory-safe-assembly
        assembly {
            let start := mload(0x40)
            // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
            // 0x02 bytes for the prefix, and 0x40 bytes for the digits.
            // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0.
            let m := add(start, 0xa0)
            // Allocate the memory.
            mstore(0x40, m)
            // Assign the `str` to the end.
            str := sub(m, 0x20)
            // Zeroize the slot after the string.
            mstore(str, 0)

            // Cache the end to calculate the length later.
            let end := str
            // Store "0123456789abcdef" in scratch space.
            mstore(0x0f, 0x30313233343536373839616263646566)

            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for { let temp := value } 1 {} {
                str := sub(str, 2)
                mstore8(add(str, 1), mload(and(temp, 15)))
                mstore8(str, mload(and(shr(4, temp), 15)))
                temp := shr(8, temp)
                if iszero(temp) { break }
            }

            // Compute the string's length.
            let strLength := sub(end, str)
            // Move the pointer and write the length.
            str := sub(str, 0x20)
            mstore(str, strLength)
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte,
    /// and the alphabets are capitalized conditionally according to
    /// https://eips.ethereum.org/EIPS/eip-55
    function toHexStringChecksumed(address value) internal pure returns (string memory str) {
        str = toHexString(value);
        /// @solidity memory-safe-assembly
        assembly {
            let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...`
            let o := add(str, 0x22)
            let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... `
            let t := shl(240, 136) // `0b10001000 << 240`
            for { let i := 0 } 1 {} {
                mstore(add(i, i), mul(t, byte(i, hashed)))
                i := add(i, 1)
                if eq(i, 20) { break }
            }
            mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask)))))
            o := add(o, 0x20)
            mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask)))))
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
    function toHexString(address value) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(str, 0x3078) // Write the "0x" prefix.
            str := sub(str, 2) // Move the pointer.
            mstore(str, strLength) // Write the length.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is encoded using 2 hexadecimal digits per byte.
    function toHexStringNoPrefix(address value) internal pure returns (string memory str) {
        /// @solidity memory-safe-assembly
        assembly {
            str := mload(0x40)

            // Allocate the memory.
            // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
            // 0x02 bytes for the prefix, and 0x28 bytes for the digits.
            // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80.
            mstore(0x40, add(str, 0x80))

            // Store "0123456789abcdef" in scratch space.
            mstore(0x0f, 0x30313233343536373839616263646566)

            str := add(str, 2)
            mstore(str, 40)

            let o := add(str, 0x20)
            mstore(add(o, 40), 0)

            value := shl(96, value)

            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for { let i := 0 } 1 {} {
                let p := add(o, add(i, i))
                let temp := byte(i, value)
                mstore8(add(p, 1), mload(and(temp, 15)))
                mstore8(p, mload(shr(4, temp)))
                i := add(i, 1)
                if eq(i, 20) { break }
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   RUNE STRING OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the number of UTF characters in the string.
    function runeCount(string memory s) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            if mload(s) {
                mstore(0x00, div(not(0), 255))
                mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506)
                let o := add(s, 0x20)
                let end := add(o, mload(s))
                for { result := 1 } 1 { result := add(result, 1) } {
                    o := add(o, byte(0, mload(shr(250, mload(o)))))
                    if iszero(lt(o, end)) { break }
                }
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   BYTE STRING OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // For performance and bytecode compactness, all indices of the following operations
    // are byte (ASCII) offsets, not UTF character offsets.

    /// @dev Returns `subject` all occurrences of `search` replaced with `replacement`.
    function replace(string memory subject, string memory search, string memory replacement)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            let searchLength := mload(search)
            let replacementLength := mload(replacement)

            subject := add(subject, 0x20)
            search := add(search, 0x20)
            replacement := add(replacement, 0x20)
            result := add(mload(0x40), 0x20)

            let subjectEnd := add(subject, subjectLength)
            if iszero(gt(searchLength, subjectLength)) {
                let subjectSearchEnd := add(sub(subjectEnd, searchLength), 1)
                let h := 0
                if iszero(lt(searchLength, 32)) { h := keccak256(search, searchLength) }
                let m := shl(3, sub(32, and(searchLength, 31)))
                let s := mload(search)
                for {} 1 {} {
                    let t := mload(subject)
                    // Whether the first `searchLength % 32` bytes of
                    // `subject` and `search` matches.
                    if iszero(shr(m, xor(t, s))) {
                        if h {
                            if iszero(eq(keccak256(subject, searchLength), h)) {
                                mstore(result, t)
                                result := add(result, 1)
                                subject := add(subject, 1)
                                if iszero(lt(subject, subjectSearchEnd)) { break }
                                continue
                            }
                        }
                        // Copy the `replacement` one word at a time.
                        for { let o := 0 } 1 {} {
                            mstore(add(result, o), mload(add(replacement, o)))
                            o := add(o, 0x20)
                            if iszero(lt(o, replacementLength)) { break }
                        }
                        result := add(result, replacementLength)
                        subject := add(subject, searchLength)
                        if searchLength {
                            if iszero(lt(subject, subjectSearchEnd)) { break }
                            continue
                        }
                    }
                    mstore(result, t)
                    result := add(result, 1)
                    subject := add(subject, 1)
                    if iszero(lt(subject, subjectSearchEnd)) { break }
                }
            }

            let resultRemainder := result
            result := add(mload(0x40), 0x20)
            let k := add(sub(resultRemainder, result), sub(subjectEnd, subject))
            // Copy the rest of the string one word at a time.
            for {} lt(subject, subjectEnd) {} {
                mstore(resultRemainder, mload(subject))
                resultRemainder := add(resultRemainder, 0x20)
                subject := add(subject, 0x20)
            }
            result := sub(result, 0x20)
            // Zeroize the slot after the string.
            let last := add(add(result, 0x20), k)
            mstore(last, 0)
            // Allocate memory for the length and the bytes,
            // rounded up to a multiple of 32.
            mstore(0x40, and(add(last, 31), not(31)))
            // Store the length of the result.
            mstore(result, k)
        }
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from left to right, starting from `from`.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function indexOf(string memory subject, string memory search, uint256 from)
        internal
        pure
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            for { let subjectLength := mload(subject) } 1 {} {
                if iszero(mload(search)) {
                    // `result = min(from, subjectLength)`.
                    result := xor(from, mul(xor(from, subjectLength), lt(subjectLength, from)))
                    break
                }
                let searchLength := mload(search)
                let subjectStart := add(subject, 0x20)

                result := not(0) // Initialize to `NOT_FOUND`.

                subject := add(subjectStart, from)
                let subjectSearchEnd := add(sub(add(subjectStart, subjectLength), searchLength), 1)

                let m := shl(3, sub(32, and(searchLength, 31)))
                let s := mload(add(search, 0x20))

                if iszero(lt(subject, subjectSearchEnd)) { break }

                if iszero(lt(searchLength, 32)) {
                    for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                        if iszero(shr(m, xor(mload(subject), s))) {
                            if eq(keccak256(subject, searchLength), h) {
                                result := sub(subject, subjectStart)
                                break
                            }
                        }
                        subject := add(subject, 1)
                        if iszero(lt(subject, subjectSearchEnd)) { break }
                    }
                    break
                }
                for {} 1 {} {
                    if iszero(shr(m, xor(mload(subject), s))) {
                        result := sub(subject, subjectStart)
                        break
                    }
                    subject := add(subject, 1)
                    if iszero(lt(subject, subjectSearchEnd)) { break }
                }
                break
            }
        }
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from left to right.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function indexOf(string memory subject, string memory search)
        internal
        pure
        returns (uint256 result)
    {
        result = indexOf(subject, search, 0);
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from right to left, starting from `from`.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function lastIndexOf(string memory subject, string memory search, uint256 from)
        internal
        pure
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            for {} 1 {} {
                let searchLength := mload(search)
                let fromMax := sub(mload(subject), searchLength)
                if iszero(gt(fromMax, from)) { from := fromMax }
                if iszero(mload(search)) {
                    result := from
                    break
                }
                result := not(0) // Initialize to `NOT_FOUND`.

                let subjectSearchEnd := sub(add(subject, 0x20), 1)

                subject := add(add(subject, 0x20), from)
                if iszero(gt(subject, subjectSearchEnd)) { break }
                // As this function is not too often used,
                // we shall simply use keccak256 for smaller bytecode size.
                for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                    if eq(keccak256(subject, searchLength), h) {
                        result := sub(subject, add(subjectSearchEnd, 1))
                        break
                    }
                    subject := sub(subject, 1)
                    if iszero(gt(subject, subjectSearchEnd)) { break }
                }
                break
            }
        }
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from right to left.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function lastIndexOf(string memory subject, string memory search)
        internal
        pure
        returns (uint256 result)
    {
        result = lastIndexOf(subject, search, uint256(int256(-1)));
    }

    /// @dev Returns whether `subject` starts with `search`.
    function startsWith(string memory subject, string memory search)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let searchLength := mload(search)
            // Just using keccak256 directly is actually cheaper.
            // forgefmt: disable-next-item
            result := and(
                iszero(gt(searchLength, mload(subject))),
                eq(
                    keccak256(add(subject, 0x20), searchLength),
                    keccak256(add(search, 0x20), searchLength)
                )
            )
        }
    }

    /// @dev Returns whether `subject` ends with `search`.
    function endsWith(string memory subject, string memory search)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let searchLength := mload(search)
            let subjectLength := mload(subject)
            // Whether `search` is not longer than `subject`.
            let withinRange := iszero(gt(searchLength, subjectLength))
            // Just using keccak256 directly is actually cheaper.
            // forgefmt: disable-next-item
            result := and(
                withinRange,
                eq(
                    keccak256(
                        // `subject + 0x20 + max(subjectLength - searchLength, 0)`.
                        add(add(subject, 0x20), mul(withinRange, sub(subjectLength, searchLength))),
                        searchLength
                    ),
                    keccak256(add(search, 0x20), searchLength)
                )
            )
        }
    }

    /// @dev Returns `subject` repeated `times`.
    function repeat(string memory subject, uint256 times)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            if iszero(or(iszero(times), iszero(subjectLength))) {
                subject := add(subject, 0x20)
                result := mload(0x40)
                let output := add(result, 0x20)
                for {} 1 {} {
                    // Copy the `subject` one word at a time.
                    for { let o := 0 } 1 {} {
                        mstore(add(output, o), mload(add(subject, o)))
                        o := add(o, 0x20)
                        if iszero(lt(o, subjectLength)) { break }
                    }
                    output := add(output, subjectLength)
                    times := sub(times, 1)
                    if iszero(times) { break }
                }
                // Zeroize the slot after the string.
                mstore(output, 0)
                // Store the length.
                let resultLength := sub(output, add(result, 0x20))
                mstore(result, resultLength)
                // Allocate memory for the length and the bytes,
                // rounded up to a multiple of 32.
                mstore(0x40, add(result, and(add(resultLength, 63), not(31))))
            }
        }
    }

    /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
    /// `start` and `end` are byte offsets.
    function slice(string memory subject, uint256 start, uint256 end)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            if iszero(gt(subjectLength, end)) { end := subjectLength }
            if iszero(gt(subjectLength, start)) { start := subjectLength }
            if lt(start, end) {
                result := mload(0x40)
                let resultLength := sub(end, start)
                mstore(result, resultLength)
                subject := add(subject, start)
                let w := not(31)
                // Copy the `subject` one word at a time, backwards.
                for { let o := and(add(resultLength, 31), w) } 1 {} {
                    mstore(add(result, o), mload(add(subject, o)))
                    o := add(o, w) // `sub(o, 0x20)`.
                    if iszero(o) { break }
                }
                // Zeroize the slot after the string.
                mstore(add(add(result, 0x20), resultLength), 0)
                // Allocate memory for the length and the bytes,
                // rounded up to a multiple of 32.
                mstore(0x40, add(result, and(add(resultLength, 63), w)))
            }
        }
    }

    /// @dev Returns a copy of `subject` sliced from `start` to the end of the string.
    /// `start` is a byte offset.
    function slice(string memory subject, uint256 start)
        internal
        pure
        returns (string memory result)
    {
        result = slice(subject, start, uint256(int256(-1)));
    }

    /// @dev Returns all the indices of `search` in `subject`.
    /// The indices are byte offsets.
    function indicesOf(string memory subject, string memory search)
        internal
        pure
        returns (uint256[] memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            let searchLength := mload(search)

            if iszero(gt(searchLength, subjectLength)) {
                subject := add(subject, 0x20)
                search := add(search, 0x20)
                result := add(mload(0x40), 0x20)

                let subjectStart := subject
                let subjectSearchEnd := add(sub(add(subject, subjectLength), searchLength), 1)
                let h := 0
                if iszero(lt(searchLength, 32)) { h := keccak256(search, searchLength) }
                let m := shl(3, sub(32, and(searchLength, 31)))
                let s := mload(search)
                for {} 1 {} {
                    let t := mload(subject)
                    // Whether the first `searchLength % 32` bytes of
                    // `subject` and `search` matches.
                    if iszero(shr(m, xor(t, s))) {
                        if h {
                            if iszero(eq(keccak256(subject, searchLength), h)) {
                                subject := add(subject, 1)
                                if iszero(lt(subject, subjectSearchEnd)) { break }
                                continue
                            }
                        }
                        // Append to `result`.
                        mstore(result, sub(subject, subjectStart))
                        result := add(result, 0x20)
                        // Advance `subject` by `searchLength`.
                        subject := add(subject, searchLength)
                        if searchLength {
                            if iszero(lt(subject, subjectSearchEnd)) { break }
                            continue
                        }
                    }
                    subject := add(subject, 1)
                    if iszero(lt(subject, subjectSearchEnd)) { break }
                }
                let resultEnd := result
                // Assign `result` to the free memory pointer.
                result := mload(0x40)
                // Store the length of `result`.
                mstore(result, shr(5, sub(resultEnd, add(result, 0x20))))
                // Allocate memory for result.
                // We allocate one more word, so this array can be recycled for {split}.
                mstore(0x40, add(resultEnd, 0x20))
            }
        }
    }

    /// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string.
    function split(string memory subject, string memory delimiter)
        internal
        pure
        returns (string[] memory result)
    {
        uint256[] memory indices = indicesOf(subject, delimiter);
        /// @solidity memory-safe-assembly
        assembly {
            let w := not(31)
            let indexPtr := add(indices, 0x20)
            let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1)))
            mstore(add(indicesEnd, w), mload(subject))
            mstore(indices, add(mload(indices), 1))
            let prevIndex := 0
            for {} 1 {} {
                let index := mload(indexPtr)
                mstore(indexPtr, 0x60)
                if iszero(eq(index, prevIndex)) {
                    let element := mload(0x40)
                    let elementLength := sub(index, prevIndex)
                    mstore(element, elementLength)
                    // Copy the `subject` one word at a time, backwards.
                    for { let o := and(add(elementLength, 31), w) } 1 {} {
                        mstore(add(element, o), mload(add(add(subject, prevIndex), o)))
                        o := add(o, w) // `sub(o, 0x20)`.
                        if iszero(o) { break }
                    }
                    // Zeroize the slot after the string.
                    mstore(add(add(element, 0x20), elementLength), 0)
                    // Allocate memory for the length and the bytes,
                    // rounded up to a multiple of 32.
                    mstore(0x40, add(element, and(add(elementLength, 63), w)))
                    // Store the `element` into the array.
                    mstore(indexPtr, element)
                }
                prevIndex := add(index, mload(delimiter))
                indexPtr := add(indexPtr, 0x20)
                if iszero(lt(indexPtr, indicesEnd)) { break }
            }
            result := indices
            if iszero(mload(delimiter)) {
                result := add(indices, 0x20)
                mstore(result, sub(mload(indices), 2))
            }
        }
    }

    /// @dev Returns a concatenated string of `a` and `b`.
    /// Cheaper than `string.concat()` and does not de-align the free memory pointer.
    function concat(string memory a, string memory b)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let w := not(31)
            result := mload(0x40)
            let aLength := mload(a)
            // Copy `a` one word at a time, backwards.
            for { let o := and(add(mload(a), 32), w) } 1 {} {
                mstore(add(result, o), mload(add(a, o)))
                o := add(o, w) // `sub(o, 0x20)`.
                if iszero(o) { break }
            }
            let bLength := mload(b)
            let output := add(result, mload(a))
            // Copy `b` one word at a time, backwards.
            for { let o := and(add(bLength, 32), w) } 1 {} {
                mstore(add(output, o), mload(add(b, o)))
                o := add(o, w) // `sub(o, 0x20)`.
                if iszero(o) { break }
            }
            let totalLength := add(aLength, bLength)
            let last := add(add(result, 0x20), totalLength)
            // Zeroize the slot after the string.
            mstore(last, 0)
            // Stores the length.
            mstore(result, totalLength)
            // Allocate memory for the length and the bytes,
            // rounded up to a multiple of 32.
            mstore(0x40, and(add(last, 31), w))
        }
    }

    /// @dev Returns a copy of the string in either lowercase or UPPERCASE.
    function toCase(string memory subject, bool toUpper)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let length := mload(subject)
            if length {
                result := add(mload(0x40), 0x20)
                subject := add(subject, 1)
                let flags := shl(add(70, shl(5, toUpper)), 67108863)
                let w := not(0)
                for { let o := length } 1 {} {
                    o := add(o, w)
                    let b := and(0xff, mload(add(subject, o)))
                    mstore8(add(result, o), xor(b, and(shr(b, flags), 0x20)))
                    if iszero(o) { break }
                }
                // Restore the result.
                result := mload(0x40)
                // Stores the string length.
                mstore(result, length)
                // Zeroize the slot after the string.
                let last := add(add(result, 0x20), length)
                mstore(last, 0)
                // Allocate memory for the length and the bytes,
                // rounded up to a multiple of 32.
                mstore(0x40, and(add(last, 31), not(31)))
            }
        }
    }

    /// @dev Returns a lowercased copy of the string.
    function lower(string memory subject) internal pure returns (string memory result) {
        result = toCase(subject, false);
    }

    /// @dev Returns an UPPERCASED copy of the string.
    function upper(string memory subject) internal pure returns (string memory result) {
        result = toCase(subject, true);
    }

    /// @dev Escapes the string to be used within HTML tags.
    function escapeHTML(string memory s) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            for {
                let end := add(s, mload(s))
                result := add(mload(0x40), 0x20)
                // Store the bytes of the packed offsets and strides into the scratch space.
                // `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6.
                mstore(0x1f, 0x900094)
                mstore(0x08, 0xc0000000a6ab)
                // Store "&quot;&amp;&#39;&lt;&gt;" into the scratch space.
                mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b))
            } iszero(eq(s, end)) {} {
                s := add(s, 1)
                let c := and(mload(s), 0xff)
                // Not in `["\"","'","&","<",">"]`.
                if iszero(and(shl(c, 1), 0x500000c400000000)) {
                    mstore8(result, c)
                    result := add(result, 1)
                    continue
                }
                let t := shr(248, mload(c))
                mstore(result, mload(and(t, 31)))
                result := add(result, shr(5, t))
            }
            let last := result
            // Zeroize the slot after the string.
            mstore(last, 0)
            // Restore the result to the start of the free memory.
            result := mload(0x40)
            // Store the length of the result.
            mstore(result, sub(last, add(result, 0x20)))
            // Allocate memory for the length and the bytes,
            // rounded up to a multiple of 32.
            mstore(0x40, and(add(last, 31), not(31)))
        }
    }

    /// @dev Escapes the string to be used within double-quotes in a JSON.
    function escapeJSON(string memory s) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            for {
                let end := add(s, mload(s))
                result := add(mload(0x40), 0x20)
                // Store "\\u0000" in scratch space.
                // Store "0123456789abcdef" in scratch space.
                // Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`.
                // into the scratch space.
                mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672)
                // Bitmask for detecting `["\"","\\"]`.
                let e := or(shl(0x22, 1), shl(0x5c, 1))
            } iszero(eq(s, end)) {} {
                s := add(s, 1)
                let c := and(mload(s), 0xff)
                if iszero(lt(c, 0x20)) {
                    if iszero(and(shl(c, 1), e)) {
                        // Not in `["\"","\\"]`.
                        mstore8(result, c)
                        result := add(result, 1)
                        continue
                    }
                    mstore8(result, 0x5c) // "\\".
                    mstore8(add(result, 1), c)
                    result := add(result, 2)
                    continue
                }
                if iszero(and(shl(c, 1), 0x3700)) {
                    // Not in `["\b","\t","\n","\f","\d"]`.
                    mstore8(0x1d, mload(shr(4, c))) // Hex value.
                    mstore8(0x1e, mload(and(c, 15))) // Hex value.
                    mstore(result, mload(0x19)) // "\\u00XX".
                    result := add(result, 6)
                    continue
                }
                mstore8(result, 0x5c) // "\\".
                mstore8(add(result, 1), mload(add(c, 8)))
                result := add(result, 2)
            }
            let last := result
            // Zeroize the slot after the string.
            mstore(last, 0)
            // Restore the result to the start of the free memory.
            result := mload(0x40)
            // Store the length of the result.
            mstore(result, sub(last, add(result, 0x20)))
            // Allocate memory for the length and the bytes,
            // rounded up to a multiple of 32.
            mstore(0x40, and(add(last, 31), not(31)))
        }
    }

    /// @dev Returns whether `a` equals `b`.
    function eq(string memory a, string memory b) internal pure returns (bool result) {
        assembly {
            result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b)))
        }
    }

    /// @dev Packs a single string with its length into a single word.
    /// Returns `bytes32(0)` if the length is zero or greater than 31.
    function packOne(string memory a) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            // We don't need to zero right pad the string,
            // since this is our own custom non-standard packing scheme.
            result :=
                mul(
                    // Load the length and the bytes.
                    mload(add(a, 0x1f)),
                    // `length != 0 && length < 32`. Abuses underflow.
                    // Assumes that the length is valid and within the block gas limit.
                    lt(sub(mload(a), 1), 0x1f)
                )
        }
    }

    /// @dev Unpacks a string packed using {packOne}.
    /// Returns the empty string if `packed` is `bytes32(0)`.
    /// If `packed` is not an output of {packOne}, the output behaviour is undefined.
    function unpackOne(bytes32 packed) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            // Grab the free memory pointer.
            result := mload(0x40)
            // Allocate 2 words (1 for the length, 1 for the bytes).
            mstore(0x40, add(result, 0x40))
            // Zeroize the length slot.
            mstore(result, 0)
            // Store the length and bytes.
            mstore(add(result, 0x1f), packed)
            // Right pad with zeroes.
            mstore(add(add(result, 0x20), mload(result)), 0)
        }
    }

    /// @dev Packs two strings with their lengths into a single word.
    /// Returns `bytes32(0)` if combined length is zero or greater than 30.
    function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let aLength := mload(a)
            // We don't need to zero right pad the strings,
            // since this is our own custom non-standard packing scheme.
            result :=
                mul(
                    // Load the length and the bytes of `a` and `b`.
                    or(
                        shl(shl(3, sub(0x1f, aLength)), mload(add(a, aLength))),
                        mload(sub(add(b, 0x1e), aLength))
                    ),
                    // `totalLength != 0 && totalLength < 31`. Abuses underflow.
                    // Assumes that the lengths are valid and within the block gas limit.
                    lt(sub(add(aLength, mload(b)), 1), 0x1e)
                )
        }
    }

    /// @dev Unpacks strings packed using {packTwo}.
    /// Returns the empty strings if `packed` is `bytes32(0)`.
    /// If `packed` is not an output of {packTwo}, the output behaviour is undefined.
    function unpackTwo(bytes32 packed)
        internal
        pure
        returns (string memory resultA, string memory resultB)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Grab the free memory pointer.
            resultA := mload(0x40)
            resultB := add(resultA, 0x40)
            // Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words.
            mstore(0x40, add(resultB, 0x40))
            // Zeroize the length slots.
            mstore(resultA, 0)
            mstore(resultB, 0)
            // Store the lengths and bytes.
            mstore(add(resultA, 0x1f), packed)
            mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA))))
            // Right pad with zeroes.
            mstore(add(add(resultA, 0x20), mload(resultA)), 0)
            mstore(add(add(resultB, 0x20), mload(resultB)), 0)
        }
    }

    /// @dev Directly returns `a` without copying.
    function directReturn(string memory a) internal pure {
        assembly {
            // Assumes that the string does not start from the scratch space.
            let retStart := sub(a, 0x20)
            let retSize := add(mload(a), 0x40)
            // Right pad with zeroes. Just in case the string is produced
            // by a method that doesn't zero right pad.
            mstore(add(retStart, retSize), 0)
            // Store the return offset.
            mstore(retStart, 0x20)
            // End the transaction, returning the string.
            return(retStart, retSize)
        }
    }
}

File 23 of 23 : SafeTransferLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeTransferLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @dev Caution! This library won't check that a token has code, responsibility is delegated to the caller.
library SafeTransferLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The ETH transfer has failed.
    error ETHTransferFailed();

    /// @dev The ERC20 `transferFrom` has failed.
    error TransferFromFailed();

    /// @dev The ERC20 `transfer` has failed.
    error TransferFailed();

    /// @dev The ERC20 `approve` has failed.
    error ApproveFailed();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Suggested gas stipend for contract receiving ETH
    /// that disallows any storage writes.
    uint256 internal constant _GAS_STIPEND_NO_STORAGE_WRITES = 2300;

    /// @dev Suggested gas stipend for contract receiving ETH to perform a few
    /// storage reads and writes, but low enough to prevent griefing.
    /// Multiply by a small constant (e.g. 2), if needed.
    uint256 internal constant _GAS_STIPEND_NO_GRIEF = 100000;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       ETH OPERATIONS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Sends `amount` (in wei) ETH to `to`.
    /// Reverts upon failure.
    function safeTransferETH(address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            // Transfer the ETH and check if it succeeded or not.
            if iszero(call(gas(), to, amount, 0, 0, 0, 0)) {
                // Store the function selector of `ETHTransferFailed()`.
                mstore(0x00, 0xb12d13eb)
                // Revert with (offset, size).
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Force sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
    /// The `gasStipend` can be set to a low enough value to prevent
    /// storage writes or gas griefing.
    ///
    /// If sending via the normal procedure fails, force sends the ETH by
    /// creating a temporary contract which uses `SELFDESTRUCT` to force send the ETH.
    ///
    /// Reverts if the current contract has insufficient balance.
    function forceSafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal {
        /// @solidity memory-safe-assembly
        assembly {
            // If insufficient balance, revert.
            if lt(selfbalance(), amount) {
                // Store the function selector of `ETHTransferFailed()`.
                mstore(0x00, 0xb12d13eb)
                // Revert with (offset, size).
                revert(0x1c, 0x04)
            }
            // Transfer the ETH and check if it succeeded or not.
            if iszero(call(gasStipend, to, amount, 0, 0, 0, 0)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                // We can directly use `SELFDESTRUCT` in the contract creation.
                // We don't check and revert upon failure here, just in case
                // `SELFDESTRUCT`'s behavior is changed some day in the future.
                // (If that ever happens, we will riot, and port the code to use WETH).
                pop(create(amount, 0x0b, 0x16))
            }
        }
    }

    /// @dev Force sends `amount` (in wei) ETH to `to`, with a gas stipend
    /// equal to `_GAS_STIPEND_NO_GRIEF`. This gas stipend is a reasonable default
    /// for 99% of cases and can be overriden with the three-argument version of this
    /// function if necessary.
    ///
    /// If sending via the normal procedure fails, force sends the ETH by
    /// creating a temporary contract which uses `SELFDESTRUCT` to force send the ETH.
    ///
    /// Reverts if the current contract has insufficient balance.
    function forceSafeTransferETH(address to, uint256 amount) internal {
        // Manually inlined because the compiler doesn't inline functions with branches.
        /// @solidity memory-safe-assembly
        assembly {
            // If insufficient balance, revert.
            if lt(selfbalance(), amount) {
                // Store the function selector of `ETHTransferFailed()`.
                mstore(0x00, 0xb12d13eb)
                // Revert with (offset, size).
                revert(0x1c, 0x04)
            }
            // Transfer the ETH and check if it succeeded or not.
            if iszero(call(_GAS_STIPEND_NO_GRIEF, to, amount, 0, 0, 0, 0)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                // We can directly use `SELFDESTRUCT` in the contract creation.
                // We don't check and revert upon failure here, just in case
                // `SELFDESTRUCT`'s behavior is changed some day in the future.
                // (If that ever happens, we will riot, and port the code to use WETH).
                pop(create(amount, 0x0b, 0x16))
            }
        }
    }

    /// @dev Sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
    /// The `gasStipend` can be set to a low enough value to prevent
    /// storage writes or gas griefing.
    ///
    /// Simply use `gasleft()` for `gasStipend` if you don't need a gas stipend.
    ///
    /// Note: Does NOT revert upon failure.
    /// Returns whether the transfer of ETH is successful instead.
    function trySafeTransferETH(address to, uint256 amount, uint256 gasStipend)
        internal
        returns (bool success)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Transfer the ETH and check if it succeeded or not.
            success := call(gasStipend, to, amount, 0, 0, 0, 0)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      ERC20 OPERATIONS                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
    /// Reverts upon failure.
    ///
    /// The `from` account must have at least `amount` approved for
    /// the current contract to manage.
    function safeTransferFrom(address token, address from, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            // We'll write our calldata to this slot below, but restore it later.
            let memPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(0x00, 0x23b872dd)
            mstore(0x20, from) // Append the "from" argument.
            mstore(0x40, to) // Append the "to" argument.
            mstore(0x60, amount) // Append the "amount" argument.

            if iszero(
                and(
                    // Set success to whether the call reverted, if not we check it either
                    // returned exactly 1 (can't just be non-zero data), or had no return data.
                    or(eq(mload(0x00), 1), iszero(returndatasize())),
                    // We use 0x64 because that's the total length of our calldata (0x04 + 0x20 * 3)
                    // Counterintuitively, this call() must be positioned after the or() in the
                    // surrounding and() because and() evaluates its arguments from right to left.
                    call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
                )
            ) {
                // Store the function selector of `TransferFromFailed()`.
                mstore(0x00, 0x7939f424)
                // Revert with (offset, size).
                revert(0x1c, 0x04)
            }

            mstore(0x60, 0) // Restore the zero slot to zero.
            mstore(0x40, memPointer) // Restore the memPointer.
        }
    }

    /// @dev Sends `amount` of ERC20 `token` from the current contract to `to`.
    /// Reverts upon failure.
    function safeTransfer(address token, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            // We'll write our calldata to this slot below, but restore it later.
            let memPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(0x00, 0xa9059cbb)
            mstore(0x20, to) // Append the "to" argument.
            mstore(0x40, amount) // Append the "amount" argument.

            if iszero(
                and(
                    // Set success to whether the call reverted, if not we check it either
                    // returned exactly 1 (can't just be non-zero data), or had no return data.
                    or(eq(mload(0x00), 1), iszero(returndatasize())),
                    // We use 0x44 because that's the total length of our calldata (0x04 + 0x20 * 2)
                    // Counterintuitively, this call() must be positioned after the or() in the
                    // surrounding and() because and() evaluates its arguments from right to left.
                    call(gas(), token, 0, 0x1c, 0x44, 0x00, 0x20)
                )
            ) {
                // Store the function selector of `TransferFailed()`.
                mstore(0x00, 0x90b8ec18)
                // Revert with (offset, size).
                revert(0x1c, 0x04)
            }

            mstore(0x40, memPointer) // Restore the memPointer.
        }
    }

    /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
    /// Reverts upon failure.
    function safeApprove(address token, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            // We'll write our calldata to this slot below, but restore it later.
            let memPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(0x00, 0x095ea7b3)
            mstore(0x20, to) // Append the "to" argument.
            mstore(0x40, amount) // Append the "amount" argument.

            if iszero(
                and(
                    // Set success to whether the call reverted, if not we check it either
                    // returned exactly 1 (can't just be non-zero data), or had no return data.
                    or(eq(mload(0x00), 1), iszero(returndatasize())),
                    // We use 0x44 because that's the total length of our calldata (0x04 + 0x20 * 2)
                    // Counterintuitively, this call() must be positioned after the or() in the
                    // surrounding and() because and() evaluates its arguments from right to left.
                    call(gas(), token, 0, 0x1c, 0x44, 0x00, 0x20)
                )
            ) {
                // Store the function selector of `ApproveFailed()`.
                mstore(0x00, 0x3e3f8f73)
                // Revert with (offset, size).
                revert(0x1c, 0x04)
            }

            mstore(0x40, memPointer) // Restore the memPointer.
        }
    }
}

Settings
{
  "remappings": [
    "@core/=contracts/core/",
    "@modules/=contracts/modules/",
    "ERC721A-Upgradeable/=lib/ERC721A-Upgradeable/contracts/",
    "chiru-labs/ERC721A-Upgradeable/=lib/ERC721A-Upgradeable/contracts/",
    "closedsea/=lib/closedsea/src/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/closedsea/lib/openzeppelin-contracts/lib/erc4626-tests/",
    "erc721a-upgradeable/=lib/closedsea/lib/erc721a-upgradeable/contracts/",
    "erc721a/=lib/closedsea/lib/erc721a/contracts/",
    "forge-std/=lib/forge-std/src/",
    "murky/=lib/murky/src/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "openzeppelin-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "openzeppelin/=lib/openzeppelin-contracts/contracts/",
    "operator-filter-registry/=lib/closedsea/lib/operator-filter-registry/src/",
    "solady/=lib/solady/src/",
    "solmate/=lib/solady/lib/solmate/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 1000
  },
  "metadata": {
    "bytecodeHash": "ipfs"
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "london",
  "libraries": {}
}

Contract ABI

[{"inputs":[],"name":"ApprovalCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"ApprovalQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"BalanceQueryForZeroAddress","type":"error"},{"inputs":[],"name":"ExceedsAddressBatchMintLimit","type":"error"},{"inputs":[{"internalType":"uint32","name":"available","type":"uint32"}],"name":"ExceedsEditionAvailableSupply","type":"error"},{"inputs":[],"name":"InvalidAmount","type":"error"},{"inputs":[],"name":"InvalidEditionMaxMintableRange","type":"error"},{"inputs":[],"name":"InvalidFundingRecipient","type":"error"},{"inputs":[],"name":"InvalidQueryRange","type":"error"},{"inputs":[],"name":"InvalidRandomnessLock","type":"error"},{"inputs":[],"name":"InvalidRoyaltyBPS","type":"error"},{"inputs":[],"name":"MaximumHasAlreadyBeenReached","type":"error"},{"inputs":[],"name":"MetadataIsFrozen","type":"error"},{"inputs":[],"name":"MintERC2309QuantityExceedsLimit","type":"error"},{"inputs":[],"name":"MintHasConcluded","type":"error"},{"inputs":[],"name":"MintRandomnessAlreadyRevealed","type":"error"},{"inputs":[],"name":"MintToZeroAddress","type":"error"},{"inputs":[],"name":"MintZeroQuantity","type":"error"},{"inputs":[],"name":"MintsAlreadyExist","type":"error"},{"inputs":[],"name":"NewOwnerIsZeroAddress","type":"error"},{"inputs":[],"name":"NoAddressesToAirdrop","type":"error"},{"inputs":[],"name":"NoHandoverRequest","type":"error"},{"inputs":[],"name":"OwnerQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"OwnershipNotInitializedForExtraData","type":"error"},{"inputs":[],"name":"TransferCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"TransferFromIncorrectOwner","type":"error"},{"inputs":[],"name":"TransferToNonERC721ReceiverImplementer","type":"error"},{"inputs":[],"name":"TransferToZeroAddress","type":"error"},{"inputs":[],"name":"URIQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"Unauthorized","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address[]","name":"to","type":"address[]"},{"indexed":false,"internalType":"uint256","name":"quantity","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"fromTokenId","type":"uint256"}],"name":"Airdropped","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"baseURI","type":"string"}],"name":"BaseURISet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"fromTokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"toTokenId","type":"uint256"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"ConsecutiveTransfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"contractURI","type":"string"}],"name":"ContractURISet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"address[]","name":"tokens","type":"address[]"},{"indexed":false,"internalType":"uint256[]","name":"amounts","type":"uint256[]"},{"indexed":false,"internalType":"address","name":"caller","type":"address"}],"name":"ERC20Withdrawn","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"address","name":"caller","type":"address"}],"name":"ETHWithdrawn","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint32","name":"editionCutoffTime_","type":"uint32"}],"name":"EditionCutoffTimeSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint32","name":"editionMaxMintableLower_","type":"uint32"},{"indexed":false,"internalType":"uint32","name":"editionMaxMintableUpper_","type":"uint32"}],"name":"EditionMaxMintableRangeSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"fundingRecipient","type":"address"}],"name":"FundingRecipientSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"metadataModule","type":"address"},{"indexed":false,"internalType":"string","name":"baseURI","type":"string"},{"indexed":false,"internalType":"string","name":"contractURI","type":"string"}],"name":"MetadataFrozen","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"metadataModule","type":"address"}],"name":"MetadataModuleSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"mintRandomnessEnabled_","type":"bool"}],"name":"MintRandomnessEnabledSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"quantity","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"fromTokenId","type":"uint256"}],"name":"Minted","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"operatorFilteringEnabled_","type":"bool"}],"name":"OperatorFilteringEnablededSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverCanceled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverRequested","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"roles","type":"uint256"}],"name":"RolesUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint16","name":"bps","type":"uint16"}],"name":"RoyaltySet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"edition_","type":"address"},{"indexed":false,"internalType":"string","name":"name_","type":"string"},{"indexed":false,"internalType":"string","name":"symbol_","type":"string"},{"indexed":false,"internalType":"address","name":"metadataModule_","type":"address"},{"indexed":false,"internalType":"string","name":"baseURI_","type":"string"},{"indexed":false,"internalType":"string","name":"contractURI_","type":"string"},{"indexed":false,"internalType":"address","name":"fundingRecipient_","type":"address"},{"indexed":false,"internalType":"uint16","name":"royaltyBPS_","type":"uint16"},{"indexed":false,"internalType":"uint32","name":"editionMaxMintableLower_","type":"uint32"},{"indexed":false,"internalType":"uint32","name":"editionMaxMintableUpper_","type":"uint32"},{"indexed":false,"internalType":"uint32","name":"editionCutoffTime_","type":"uint32"},{"indexed":false,"internalType":"uint8","name":"flags_","type":"uint8"}],"name":"SoundEditionInitialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"ADDRESS_BATCH_MINT_LIMIT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ADMIN_ROLE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"METADATA_IS_FROZEN_FLAG","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MINTER_ROLE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MINT_RANDOMNESS_ENABLED_FLAG","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OPERATOR_FILTERING_ENABLED_FLAG","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"to","type":"address[]"},{"internalType":"uint256","name":"quantity","type":"uint256"}],"name":"airdrop","outputs":[{"internalType":"uint256","name":"fromTokenId","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"cancelOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"completeOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"contractURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"editionCutoffTime","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"editionInfo","outputs":[{"components":[{"internalType":"string","name":"baseURI","type":"string"},{"internalType":"string","name":"contractURI","type":"string"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"address","name":"fundingRecipient","type":"address"},{"internalType":"uint32","name":"editionMaxMintable","type":"uint32"},{"internalType":"uint32","name":"editionMaxMintableUpper","type":"uint32"},{"internalType":"uint32","name":"editionMaxMintableLower","type":"uint32"},{"internalType":"uint32","name":"editionCutoffTime","type":"uint32"},{"internalType":"address","name":"metadataModule","type":"address"},{"internalType":"uint256","name":"mintRandomness","type":"uint256"},{"internalType":"uint16","name":"royaltyBPS","type":"uint16"},{"internalType":"bool","name":"mintRandomnessEnabled","type":"bool"},{"internalType":"bool","name":"mintConcluded","type":"bool"},{"internalType":"bool","name":"isMetadataFrozen","type":"bool"},{"internalType":"uint256","name":"nextTokenId","type":"uint256"},{"internalType":"uint256","name":"totalBurned","type":"uint256"},{"internalType":"uint256","name":"totalMinted","type":"uint256"},{"internalType":"uint256","name":"totalSupply","type":"uint256"}],"internalType":"struct EditionInfo","name":"info","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"editionMaxMintable","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"editionMaxMintableLower","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"editionMaxMintableUpper","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"explicitOwnershipOf","outputs":[{"components":[{"internalType":"address","name":"addr","type":"address"},{"internalType":"uint64","name":"startTimestamp","type":"uint64"},{"internalType":"bool","name":"burned","type":"bool"},{"internalType":"uint24","name":"extraData","type":"uint24"}],"internalType":"struct IERC721AUpgradeable.TokenOwnership","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"}],"name":"explicitOwnershipsOf","outputs":[{"components":[{"internalType":"address","name":"addr","type":"address"},{"internalType":"uint64","name":"startTimestamp","type":"uint64"},{"internalType":"bool","name":"burned","type":"bool"},{"internalType":"uint24","name":"extraData","type":"uint24"}],"internalType":"struct IERC721AUpgradeable.TokenOwnership[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"freezeMetadata","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"fundingRecipient","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"grantRoles","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"hasAllRoles","outputs":[{"internalType":"bool","name":"result","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"hasAnyRole","outputs":[{"internalType":"bool","name":"result","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"name_","type":"string"},{"internalType":"string","name":"symbol_","type":"string"},{"internalType":"address","name":"metadataModule_","type":"address"},{"internalType":"string","name":"baseURI_","type":"string"},{"internalType":"string","name":"contractURI_","type":"string"},{"internalType":"address","name":"fundingRecipient_","type":"address"},{"internalType":"uint16","name":"royaltyBPS_","type":"uint16"},{"internalType":"uint32","name":"editionMaxMintableLower_","type":"uint32"},{"internalType":"uint32","name":"editionMaxMintableUpper_","type":"uint32"},{"internalType":"uint32","name":"editionCutoffTime_","type":"uint32"},{"internalType":"uint8","name":"flags_","type":"uint8"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isMetadataFrozen","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"metadataModule","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"quantity","type":"uint256"}],"name":"mint","outputs":[{"internalType":"uint256","name":"fromTokenId","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"mintConcluded","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mintRandomness","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mintRandomnessEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nextTokenId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"numberBurned","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"numberMinted","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"operatorFilteringEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"ordinalsFromRoles","outputs":[{"internalType":"uint8[]","name":"ordinals","type":"uint8[]"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"result","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"ownershipHandoverExpiresAt","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ownershipHandoverValidFor","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"renounceRoles","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"requestOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"revokeRoles","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint8[]","name":"ordinals","type":"uint8[]"}],"name":"rolesFromOrdinals","outputs":[{"internalType":"uint256","name":"roles","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"rolesOf","outputs":[{"internalType":"uint256","name":"roles","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"royaltyBPS","outputs":[{"internalType":"uint16","name":"","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"salePrice","type":"uint256"}],"name":"royaltyInfo","outputs":[{"internalType":"address","name":"fundingRecipient_","type":"address"},{"internalType":"uint256","name":"royaltyAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"baseURI_","type":"string"}],"name":"setBaseURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"contractURI_","type":"string"}],"name":"setContractURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"editionCutoffTime_","type":"uint32"}],"name":"setEditionCutoffTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"editionMaxMintableLower_","type":"uint32"},{"internalType":"uint32","name":"editionMaxMintableUpper_","type":"uint32"}],"name":"setEditionMaxMintableRange","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"fundingRecipient_","type":"address"}],"name":"setFundingRecipient","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"metadataModule_","type":"address"}],"name":"setMetadataModule","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"mintRandomnessEnabled_","type":"bool"}],"name":"setMintRandomnessEnabled","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"operatorFilteringEnabled_","type":"bool"}],"name":"setOperatorFilteringEnabled","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint16","name":"royaltyBPS_","type":"uint16"}],"name":"setRoyalty","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"tokensOfOwner","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"start","type":"uint256"},{"internalType":"uint256","name":"stop","type":"uint256"}],"name":"tokensOfOwnerIn","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalBurned","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalMinted","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address[]","name":"tokens","type":"address[]"}],"name":"withdrawERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawETH","outputs":[],"stateMutability":"nonpayable","type":"function"}]

Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.