ERC-721
Overview
Max Total Supply
488 KEY
Holders
94
Market
Volume (24H)
N/A
Min Price (24H)
N/A
Max Price (24H)
N/A
Other Info
Token Contract
Balance
3 KEYLoading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Contract Name:
KEYS
Compiler Version
v0.8.17+commit.8df45f5f
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.17; //import "hardhat/console.sol"; import "contracts/IClaimer.sol"; import "contracts/lib/Ownable.sol"; import "contracts/lib/IMintableNft.sol"; import "contracts/lib/HasFactories.sol"; import "@openzeppelin/contracts/token/ERC721/ERC721.sol"; import "@openzeppelin/contracts/token/ERC721/extensions/ERC721Enumerable.sol"; import "prb-math/contracts/PRBMathUD60x18.sol"; contract KEYS is ERC721Enumerable, HasFactories, Ownable, IMintableNft { using PRBMathUD60x18 for uint256; using Strings for uint256; IClaimer public claimer; uint256 constant _maxMintCount = 3000; string internal _baseUri = "https://lok76-yqaaa-aaaan-qdpka-cai.raw.icp0.io/"; uint256 _mintedCount; constructor() ERC721("KEYS", "KEY") {} function setBaseUrl(string calldata uri) external onlyOwner { _baseUri = uri; } function setClaimer(address claimerAddress) external onlyOwner { claimer = IClaimer(claimerAddress); } function tokenURI( uint256 tokenId ) public view override returns (string memory) { return string.concat(_baseUri, (tokenId).toString(), ".json"); } function mint(address to) external onlyFactory { require(_mintedCount < _maxMintCount, "No tokens left to mint"); ++_mintedCount; _mint(to, _mintedCount); claimer.registerToken(_mintedCount); } function mintedCount() external view returns (uint256) { return _mintedCount; } function maxMintCount() external pure returns (uint256) { return _maxMintCount; } function canFactoriesChange( address account ) internal view override returns (bool) { return account == _owner; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.2) (token/ERC721/ERC721.sol) pragma solidity ^0.8.0; import "./IERC721.sol"; import "./IERC721Receiver.sol"; import "./extensions/IERC721Metadata.sol"; import "../../utils/Address.sol"; import "../../utils/Context.sol"; import "../../utils/Strings.sol"; import "../../utils/introspection/ERC165.sol"; /** * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including * the Metadata extension, but not including the Enumerable extension, which is available separately as * {ERC721Enumerable}. */ contract ERC721 is Context, ERC165, IERC721, IERC721Metadata { using Address for address; using Strings for uint256; // Token name string private _name; // Token symbol string private _symbol; // Mapping from token ID to owner address mapping(uint256 => address) private _owners; // Mapping owner address to token count mapping(address => uint256) private _balances; // Mapping from token ID to approved address mapping(uint256 => address) private _tokenApprovals; // Mapping from owner to operator approvals mapping(address => mapping(address => bool)) private _operatorApprovals; /** * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IERC721).interfaceId || interfaceId == type(IERC721Metadata).interfaceId || super.supportsInterface(interfaceId); } /** * @dev See {IERC721-balanceOf}. */ function balanceOf(address owner) public view virtual override returns (uint256) { require(owner != address(0), "ERC721: address zero is not a valid owner"); return _balances[owner]; } /** * @dev See {IERC721-ownerOf}. */ function ownerOf(uint256 tokenId) public view virtual override returns (address) { address owner = _ownerOf(tokenId); require(owner != address(0), "ERC721: invalid token ID"); return owner; } /** * @dev See {IERC721Metadata-name}. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev See {IERC721Metadata-symbol}. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev See {IERC721Metadata-tokenURI}. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { _requireMinted(tokenId); string memory baseURI = _baseURI(); return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : ""; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, can be overridden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ""; } /** * @dev See {IERC721-approve}. */ function approve(address to, uint256 tokenId) public virtual override { address owner = ERC721.ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require( _msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not token owner or approved for all" ); _approve(to, tokenId); } /** * @dev See {IERC721-getApproved}. */ function getApproved(uint256 tokenId) public view virtual override returns (address) { _requireMinted(tokenId); return _tokenApprovals[tokenId]; } /** * @dev See {IERC721-setApprovalForAll}. */ function setApprovalForAll(address operator, bool approved) public virtual override { _setApprovalForAll(_msgSender(), operator, approved); } /** * @dev See {IERC721-isApprovedForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev See {IERC721-transferFrom}. */ function transferFrom( address from, address to, uint256 tokenId ) public virtual override { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved"); _transfer(from, to, tokenId); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom( address from, address to, uint256 tokenId ) public virtual override { safeTransferFrom(from, to, tokenId, ""); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes memory data ) public virtual override { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved"); _safeTransfer(from, to, tokenId, data); } /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * `data` is additional data, it has no specified format and it is sent in call to `to`. * * This internal function is equivalent to {safeTransferFrom}, and can be used to e.g. * implement alternative mechanisms to perform token transfer, such as signature-based. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeTransfer( address from, address to, uint256 tokenId, bytes memory data ) internal virtual { _transfer(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist */ function _ownerOf(uint256 tokenId) internal view virtual returns (address) { return _owners[tokenId]; } /** * @dev Returns whether `tokenId` exists. * * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. * * Tokens start existing when they are minted (`_mint`), * and stop existing when they are burned (`_burn`). */ function _exists(uint256 tokenId) internal view virtual returns (bool) { return _ownerOf(tokenId) != address(0); } /** * @dev Returns whether `spender` is allowed to manage `tokenId`. * * Requirements: * * - `tokenId` must exist. */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) { address owner = ERC721.ownerOf(tokenId); return (spender == owner || isApprovedForAll(owner, spender) || getApproved(tokenId) == spender); } /** * @dev Safely mints `tokenId` and transfers it to `to`. * * Requirements: * * - `tokenId` must not exist. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeMint(address to, uint256 tokenId) internal virtual { _safeMint(to, tokenId, ""); } /** * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is * forwarded in {IERC721Receiver-onERC721Received} to contract recipients. */ function _safeMint( address to, uint256 tokenId, bytes memory data ) internal virtual { _mint(to, tokenId); require( _checkOnERC721Received(address(0), to, tokenId, data), "ERC721: transfer to non ERC721Receiver implementer" ); } /** * @dev Mints `tokenId` and transfers it to `to`. * * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible * * Requirements: * * - `tokenId` must not exist. * - `to` cannot be the zero address. * * Emits a {Transfer} event. */ function _mint(address to, uint256 tokenId) internal virtual { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _beforeTokenTransfer(address(0), to, tokenId, 1); // Check that tokenId was not minted by `_beforeTokenTransfer` hook require(!_exists(tokenId), "ERC721: token already minted"); unchecked { // Will not overflow unless all 2**256 token ids are minted to the same owner. // Given that tokens are minted one by one, it is impossible in practice that // this ever happens. Might change if we allow batch minting. // The ERC fails to describe this case. _balances[to] += 1; } _owners[tokenId] = to; emit Transfer(address(0), to, tokenId); _afterTokenTransfer(address(0), to, tokenId, 1); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * This is an internal function that does not check if the sender is authorized to operate on the token. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId) internal virtual { address owner = ERC721.ownerOf(tokenId); _beforeTokenTransfer(owner, address(0), tokenId, 1); // Update ownership in case tokenId was transferred by `_beforeTokenTransfer` hook owner = ERC721.ownerOf(tokenId); // Clear approvals delete _tokenApprovals[tokenId]; unchecked { // Cannot overflow, as that would require more tokens to be burned/transferred // out than the owner initially received through minting and transferring in. _balances[owner] -= 1; } delete _owners[tokenId]; emit Transfer(owner, address(0), tokenId); _afterTokenTransfer(owner, address(0), tokenId, 1); } /** * @dev Transfers `tokenId` from `from` to `to`. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * * Requirements: * * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * * Emits a {Transfer} event. */ function _transfer( address from, address to, uint256 tokenId ) internal virtual { require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner"); require(to != address(0), "ERC721: transfer to the zero address"); _beforeTokenTransfer(from, to, tokenId, 1); // Check that tokenId was not transferred by `_beforeTokenTransfer` hook require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner"); // Clear approvals from the previous owner delete _tokenApprovals[tokenId]; unchecked { // `_balances[from]` cannot overflow for the same reason as described in `_burn`: // `from`'s balance is the number of token held, which is at least one before the current // transfer. // `_balances[to]` could overflow in the conditions described in `_mint`. That would require // all 2**256 token ids to be minted, which in practice is impossible. _balances[from] -= 1; _balances[to] += 1; } _owners[tokenId] = to; emit Transfer(from, to, tokenId); _afterTokenTransfer(from, to, tokenId, 1); } /** * @dev Approve `to` to operate on `tokenId` * * Emits an {Approval} event. */ function _approve(address to, uint256 tokenId) internal virtual { _tokenApprovals[tokenId] = to; emit Approval(ERC721.ownerOf(tokenId), to, tokenId); } /** * @dev Approve `operator` to operate on all of `owner` tokens * * Emits an {ApprovalForAll} event. */ function _setApprovalForAll( address owner, address operator, bool approved ) internal virtual { require(owner != operator, "ERC721: approve to caller"); _operatorApprovals[owner][operator] = approved; emit ApprovalForAll(owner, operator, approved); } /** * @dev Reverts if the `tokenId` has not been minted yet. */ function _requireMinted(uint256 tokenId) internal view virtual { require(_exists(tokenId), "ERC721: invalid token ID"); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received( address from, address to, uint256 tokenId, bytes memory data ) private returns (bool) { if (to.isContract()) { try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) { return retval == IERC721Receiver.onERC721Received.selector; } catch (bytes memory reason) { if (reason.length == 0) { revert("ERC721: transfer to non ERC721Receiver implementer"); } else { /// @solidity memory-safe-assembly assembly { revert(add(32, reason), mload(reason)) } } } } else { return true; } } /** * @dev Hook that is called before any token transfer. This includes minting and burning. If {ERC721Consecutive} is * used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1. * * Calling conditions: * * - When `from` and `to` are both non-zero, ``from``'s tokens will be transferred to `to`. * - When `from` is zero, the tokens will be minted for `to`. * - When `to` is zero, ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * - `batchSize` is non-zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 firstTokenId, uint256 batchSize ) internal virtual {} /** * @dev Hook that is called after any token transfer. This includes minting and burning. If {ERC721Consecutive} is * used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1. * * Calling conditions: * * - When `from` and `to` are both non-zero, ``from``'s tokens were transferred to `to`. * - When `from` is zero, the tokens were minted for `to`. * - When `to` is zero, ``from``'s tokens were burned. * - `from` and `to` are never both zero. * - `batchSize` is non-zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 firstTokenId, uint256 batchSize ) internal virtual {} /** * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override. * * WARNING: Anyone calling this MUST ensure that the balances remain consistent with the ownership. The invariant * being that for any address `a` the value returned by `balanceOf(a)` must be equal to the number of tokens such * that `ownerOf(tokenId)` is `a`. */ // solhint-disable-next-line func-name-mixedcase function __unsafe_increaseBalance(address account, uint256 amount) internal { _balances[account] += amount; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/extensions/ERC721Enumerable.sol) pragma solidity ^0.8.0; import "../ERC721.sol"; import "./IERC721Enumerable.sol"; /** * @dev This implements an optional extension of {ERC721} defined in the EIP that adds * enumerability of all the token ids in the contract as well as all token ids owned by each * account. */ abstract contract ERC721Enumerable is ERC721, IERC721Enumerable { // Mapping from owner to list of owned token IDs mapping(address => mapping(uint256 => uint256)) private _ownedTokens; // Mapping from token ID to index of the owner tokens list mapping(uint256 => uint256) private _ownedTokensIndex; // Array with all token ids, used for enumeration uint256[] private _allTokens; // Mapping from token id to position in the allTokens array mapping(uint256 => uint256) private _allTokensIndex; /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC721) returns (bool) { return interfaceId == type(IERC721Enumerable).interfaceId || super.supportsInterface(interfaceId); } /** * @dev See {IERC721Enumerable-tokenOfOwnerByIndex}. */ function tokenOfOwnerByIndex(address owner, uint256 index) public view virtual override returns (uint256) { require(index < ERC721.balanceOf(owner), "ERC721Enumerable: owner index out of bounds"); return _ownedTokens[owner][index]; } /** * @dev See {IERC721Enumerable-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _allTokens.length; } /** * @dev See {IERC721Enumerable-tokenByIndex}. */ function tokenByIndex(uint256 index) public view virtual override returns (uint256) { require(index < ERC721Enumerable.totalSupply(), "ERC721Enumerable: global index out of bounds"); return _allTokens[index]; } /** * @dev See {ERC721-_beforeTokenTransfer}. */ function _beforeTokenTransfer( address from, address to, uint256 firstTokenId, uint256 batchSize ) internal virtual override { super._beforeTokenTransfer(from, to, firstTokenId, batchSize); if (batchSize > 1) { // Will only trigger during construction. Batch transferring (minting) is not available afterwards. revert("ERC721Enumerable: consecutive transfers not supported"); } uint256 tokenId = firstTokenId; if (from == address(0)) { _addTokenToAllTokensEnumeration(tokenId); } else if (from != to) { _removeTokenFromOwnerEnumeration(from, tokenId); } if (to == address(0)) { _removeTokenFromAllTokensEnumeration(tokenId); } else if (to != from) { _addTokenToOwnerEnumeration(to, tokenId); } } /** * @dev Private function to add a token to this extension's ownership-tracking data structures. * @param to address representing the new owner of the given token ID * @param tokenId uint256 ID of the token to be added to the tokens list of the given address */ function _addTokenToOwnerEnumeration(address to, uint256 tokenId) private { uint256 length = ERC721.balanceOf(to); _ownedTokens[to][length] = tokenId; _ownedTokensIndex[tokenId] = length; } /** * @dev Private function to add a token to this extension's token tracking data structures. * @param tokenId uint256 ID of the token to be added to the tokens list */ function _addTokenToAllTokensEnumeration(uint256 tokenId) private { _allTokensIndex[tokenId] = _allTokens.length; _allTokens.push(tokenId); } /** * @dev Private function to remove a token from this extension's ownership-tracking data structures. Note that * while the token is not assigned a new owner, the `_ownedTokensIndex` mapping is _not_ updated: this allows for * gas optimizations e.g. when performing a transfer operation (avoiding double writes). * This has O(1) time complexity, but alters the order of the _ownedTokens array. * @param from address representing the previous owner of the given token ID * @param tokenId uint256 ID of the token to be removed from the tokens list of the given address */ function _removeTokenFromOwnerEnumeration(address from, uint256 tokenId) private { // To prevent a gap in from's tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = ERC721.balanceOf(from) - 1; uint256 tokenIndex = _ownedTokensIndex[tokenId]; // When the token to delete is the last token, the swap operation is unnecessary if (tokenIndex != lastTokenIndex) { uint256 lastTokenId = _ownedTokens[from][lastTokenIndex]; _ownedTokens[from][tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _ownedTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index } // This also deletes the contents at the last position of the array delete _ownedTokensIndex[tokenId]; delete _ownedTokens[from][lastTokenIndex]; } /** * @dev Private function to remove a token from this extension's token tracking data structures. * This has O(1) time complexity, but alters the order of the _allTokens array. * @param tokenId uint256 ID of the token to be removed from the tokens list */ function _removeTokenFromAllTokensEnumeration(uint256 tokenId) private { // To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = _allTokens.length - 1; uint256 tokenIndex = _allTokensIndex[tokenId]; // When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so // rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding // an 'if' statement (like in _removeTokenFromOwnerEnumeration) uint256 lastTokenId = _allTokens[lastTokenIndex]; _allTokens[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _allTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index // This also deletes the contents at the last position of the array delete _allTokensIndex[tokenId]; _allTokens.pop(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol) pragma solidity ^0.8.0; import "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Enumerable is IERC721 { /** * @dev Returns the total amount of tokens stored by the contract. */ function totalSupply() external view returns (uint256); /** * @dev Returns a token ID owned by `owner` at a given `index` of its token list. * Use along with {balanceOf} to enumerate all of ``owner``'s tokens. */ function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256); /** * @dev Returns a token ID at a given `index` of all the tokens stored by the contract. * Use along with {totalSupply} to enumerate all tokens. */ function tokenByIndex(uint256 index) external view returns (uint256); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol) pragma solidity ^0.8.0; import "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol) pragma solidity ^0.8.0; /** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted. * * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`. */ function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol) pragma solidity ^0.8.0; import "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` * * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation. */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.17; interface IClaimer { function registerToken(uint256 tokenId) external; }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.17; abstract contract HasFactories { mapping(address => bool) _factories; modifier onlyFactory() { require(_factories[msg.sender], "only for factories"); _; } function setFactories( address[] calldata addresses, bool isFactoryValue ) external { require( canFactoriesChange(msg.sender), "account can not set factories" ); for (uint256 i = 0; i < addresses.length; ++i) { _factories[addresses[i]] = isFactoryValue; } } function isFactory(address addr) external view returns (bool) { return _factories[addr]; } function canFactoriesChange( address account ) internal view virtual returns (bool); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.17; import "@openzeppelin/contracts/token/ERC721/IERC721.sol"; interface IMintableNft is IERC721 { function mint(address to) external; function maxMintCount() external pure returns (uint256); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.17; interface IOwnable { function owner() external view returns (address); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); function transferOwnership(address newOwner) external; }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.17; import "./IOwnable.sol"; contract Ownable is IOwnable { address _owner; constructor() { _owner = msg.sender; } modifier onlyOwner() { require(_owner == msg.sender, "caller is not the owner"); _; } function owner() external view virtual returns (address) { return _owner; } function transferOwnership(address newOwner) external onlyOwner { address lastOwner = _owner; _owner = newOwner; emit OwnershipTransferred(lastOwner, newOwner); } function removeOwner() external onlyOwner { address lastOwner = _owner; _owner = address(0); emit OwnershipTransferred(lastOwner, _owner); } }
// SPDX-License-Identifier: Unlicense pragma solidity >=0.8.4; /// @notice Emitted when the result overflows uint256. error PRBMath__MulDivFixedPointOverflow(uint256 prod1); /// @notice Emitted when the result overflows uint256. error PRBMath__MulDivOverflow(uint256 prod1, uint256 denominator); /// @notice Emitted when one of the inputs is type(int256).min. error PRBMath__MulDivSignedInputTooSmall(); /// @notice Emitted when the intermediary absolute result overflows int256. error PRBMath__MulDivSignedOverflow(uint256 rAbs); /// @notice Emitted when the input is MIN_SD59x18. error PRBMathSD59x18__AbsInputTooSmall(); /// @notice Emitted when ceiling a number overflows SD59x18. error PRBMathSD59x18__CeilOverflow(int256 x); /// @notice Emitted when one of the inputs is MIN_SD59x18. error PRBMathSD59x18__DivInputTooSmall(); /// @notice Emitted when one of the intermediary unsigned results overflows SD59x18. error PRBMathSD59x18__DivOverflow(uint256 rAbs); /// @notice Emitted when the input is greater than 133.084258667509499441. error PRBMathSD59x18__ExpInputTooBig(int256 x); /// @notice Emitted when the input is greater than 192. error PRBMathSD59x18__Exp2InputTooBig(int256 x); /// @notice Emitted when flooring a number underflows SD59x18. error PRBMathSD59x18__FloorUnderflow(int256 x); /// @notice Emitted when converting a basic integer to the fixed-point format overflows SD59x18. error PRBMathSD59x18__FromIntOverflow(int256 x); /// @notice Emitted when converting a basic integer to the fixed-point format underflows SD59x18. error PRBMathSD59x18__FromIntUnderflow(int256 x); /// @notice Emitted when the product of the inputs is negative. error PRBMathSD59x18__GmNegativeProduct(int256 x, int256 y); /// @notice Emitted when multiplying the inputs overflows SD59x18. error PRBMathSD59x18__GmOverflow(int256 x, int256 y); /// @notice Emitted when the input is less than or equal to zero. error PRBMathSD59x18__LogInputTooSmall(int256 x); /// @notice Emitted when one of the inputs is MIN_SD59x18. error PRBMathSD59x18__MulInputTooSmall(); /// @notice Emitted when the intermediary absolute result overflows SD59x18. error PRBMathSD59x18__MulOverflow(uint256 rAbs); /// @notice Emitted when the intermediary absolute result overflows SD59x18. error PRBMathSD59x18__PowuOverflow(uint256 rAbs); /// @notice Emitted when the input is negative. error PRBMathSD59x18__SqrtNegativeInput(int256 x); /// @notice Emitted when the calculating the square root overflows SD59x18. error PRBMathSD59x18__SqrtOverflow(int256 x); /// @notice Emitted when addition overflows UD60x18. error PRBMathUD60x18__AddOverflow(uint256 x, uint256 y); /// @notice Emitted when ceiling a number overflows UD60x18. error PRBMathUD60x18__CeilOverflow(uint256 x); /// @notice Emitted when the input is greater than 133.084258667509499441. error PRBMathUD60x18__ExpInputTooBig(uint256 x); /// @notice Emitted when the input is greater than 192. error PRBMathUD60x18__Exp2InputTooBig(uint256 x); /// @notice Emitted when converting a basic integer to the fixed-point format format overflows UD60x18. error PRBMathUD60x18__FromUintOverflow(uint256 x); /// @notice Emitted when multiplying the inputs overflows UD60x18. error PRBMathUD60x18__GmOverflow(uint256 x, uint256 y); /// @notice Emitted when the input is less than 1. error PRBMathUD60x18__LogInputTooSmall(uint256 x); /// @notice Emitted when the calculating the square root overflows UD60x18. error PRBMathUD60x18__SqrtOverflow(uint256 x); /// @notice Emitted when subtraction underflows UD60x18. error PRBMathUD60x18__SubUnderflow(uint256 x, uint256 y); /// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library /// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point /// representation. When it does not, it is explicitly mentioned in the NatSpec documentation. library PRBMath { /// STRUCTS /// struct SD59x18 { int256 value; } struct UD60x18 { uint256 value; } /// STORAGE /// /// @dev How many trailing decimals can be represented. uint256 internal constant SCALE = 1e18; /// @dev Largest power of two divisor of SCALE. uint256 internal constant SCALE_LPOTD = 262144; /// @dev SCALE inverted mod 2^256. uint256 internal constant SCALE_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281; /// FUNCTIONS /// /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Has to use 192.64-bit fixed-point numbers. /// See https://ethereum.stackexchange.com/a/96594/24693. /// @param x The exponent as an unsigned 192.64-bit fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp2(uint256 x) internal pure returns (uint256 result) { unchecked { // Start from 0.5 in the 192.64-bit fixed-point format. result = 0x800000000000000000000000000000000000000000000000; // Multiply the result by root(2, 2^-i) when the bit at position i is 1. None of the intermediary results overflows // because the initial result is 2^191 and all magic factors are less than 2^65. if (x & 0x8000000000000000 > 0) { result = (result * 0x16A09E667F3BCC909) >> 64; } if (x & 0x4000000000000000 > 0) { result = (result * 0x1306FE0A31B7152DF) >> 64; } if (x & 0x2000000000000000 > 0) { result = (result * 0x1172B83C7D517ADCE) >> 64; } if (x & 0x1000000000000000 > 0) { result = (result * 0x10B5586CF9890F62A) >> 64; } if (x & 0x800000000000000 > 0) { result = (result * 0x1059B0D31585743AE) >> 64; } if (x & 0x400000000000000 > 0) { result = (result * 0x102C9A3E778060EE7) >> 64; } if (x & 0x200000000000000 > 0) { result = (result * 0x10163DA9FB33356D8) >> 64; } if (x & 0x100000000000000 > 0) { result = (result * 0x100B1AFA5ABCBED61) >> 64; } if (x & 0x80000000000000 > 0) { result = (result * 0x10058C86DA1C09EA2) >> 64; } if (x & 0x40000000000000 > 0) { result = (result * 0x1002C605E2E8CEC50) >> 64; } if (x & 0x20000000000000 > 0) { result = (result * 0x100162F3904051FA1) >> 64; } if (x & 0x10000000000000 > 0) { result = (result * 0x1000B175EFFDC76BA) >> 64; } if (x & 0x8000000000000 > 0) { result = (result * 0x100058BA01FB9F96D) >> 64; } if (x & 0x4000000000000 > 0) { result = (result * 0x10002C5CC37DA9492) >> 64; } if (x & 0x2000000000000 > 0) { result = (result * 0x1000162E525EE0547) >> 64; } if (x & 0x1000000000000 > 0) { result = (result * 0x10000B17255775C04) >> 64; } if (x & 0x800000000000 > 0) { result = (result * 0x1000058B91B5BC9AE) >> 64; } if (x & 0x400000000000 > 0) { result = (result * 0x100002C5C89D5EC6D) >> 64; } if (x & 0x200000000000 > 0) { result = (result * 0x10000162E43F4F831) >> 64; } if (x & 0x100000000000 > 0) { result = (result * 0x100000B1721BCFC9A) >> 64; } if (x & 0x80000000000 > 0) { result = (result * 0x10000058B90CF1E6E) >> 64; } if (x & 0x40000000000 > 0) { result = (result * 0x1000002C5C863B73F) >> 64; } if (x & 0x20000000000 > 0) { result = (result * 0x100000162E430E5A2) >> 64; } if (x & 0x10000000000 > 0) { result = (result * 0x1000000B172183551) >> 64; } if (x & 0x8000000000 > 0) { result = (result * 0x100000058B90C0B49) >> 64; } if (x & 0x4000000000 > 0) { result = (result * 0x10000002C5C8601CC) >> 64; } if (x & 0x2000000000 > 0) { result = (result * 0x1000000162E42FFF0) >> 64; } if (x & 0x1000000000 > 0) { result = (result * 0x10000000B17217FBB) >> 64; } if (x & 0x800000000 > 0) { result = (result * 0x1000000058B90BFCE) >> 64; } if (x & 0x400000000 > 0) { result = (result * 0x100000002C5C85FE3) >> 64; } if (x & 0x200000000 > 0) { result = (result * 0x10000000162E42FF1) >> 64; } if (x & 0x100000000 > 0) { result = (result * 0x100000000B17217F8) >> 64; } if (x & 0x80000000 > 0) { result = (result * 0x10000000058B90BFC) >> 64; } if (x & 0x40000000 > 0) { result = (result * 0x1000000002C5C85FE) >> 64; } if (x & 0x20000000 > 0) { result = (result * 0x100000000162E42FF) >> 64; } if (x & 0x10000000 > 0) { result = (result * 0x1000000000B17217F) >> 64; } if (x & 0x8000000 > 0) { result = (result * 0x100000000058B90C0) >> 64; } if (x & 0x4000000 > 0) { result = (result * 0x10000000002C5C860) >> 64; } if (x & 0x2000000 > 0) { result = (result * 0x1000000000162E430) >> 64; } if (x & 0x1000000 > 0) { result = (result * 0x10000000000B17218) >> 64; } if (x & 0x800000 > 0) { result = (result * 0x1000000000058B90C) >> 64; } if (x & 0x400000 > 0) { result = (result * 0x100000000002C5C86) >> 64; } if (x & 0x200000 > 0) { result = (result * 0x10000000000162E43) >> 64; } if (x & 0x100000 > 0) { result = (result * 0x100000000000B1721) >> 64; } if (x & 0x80000 > 0) { result = (result * 0x10000000000058B91) >> 64; } if (x & 0x40000 > 0) { result = (result * 0x1000000000002C5C8) >> 64; } if (x & 0x20000 > 0) { result = (result * 0x100000000000162E4) >> 64; } if (x & 0x10000 > 0) { result = (result * 0x1000000000000B172) >> 64; } if (x & 0x8000 > 0) { result = (result * 0x100000000000058B9) >> 64; } if (x & 0x4000 > 0) { result = (result * 0x10000000000002C5D) >> 64; } if (x & 0x2000 > 0) { result = (result * 0x1000000000000162E) >> 64; } if (x & 0x1000 > 0) { result = (result * 0x10000000000000B17) >> 64; } if (x & 0x800 > 0) { result = (result * 0x1000000000000058C) >> 64; } if (x & 0x400 > 0) { result = (result * 0x100000000000002C6) >> 64; } if (x & 0x200 > 0) { result = (result * 0x10000000000000163) >> 64; } if (x & 0x100 > 0) { result = (result * 0x100000000000000B1) >> 64; } if (x & 0x80 > 0) { result = (result * 0x10000000000000059) >> 64; } if (x & 0x40 > 0) { result = (result * 0x1000000000000002C) >> 64; } if (x & 0x20 > 0) { result = (result * 0x10000000000000016) >> 64; } if (x & 0x10 > 0) { result = (result * 0x1000000000000000B) >> 64; } if (x & 0x8 > 0) { result = (result * 0x10000000000000006) >> 64; } if (x & 0x4 > 0) { result = (result * 0x10000000000000003) >> 64; } if (x & 0x2 > 0) { result = (result * 0x10000000000000001) >> 64; } if (x & 0x1 > 0) { result = (result * 0x10000000000000001) >> 64; } // We're doing two things at the same time: // // 1. Multiply the result by 2^n + 1, where "2^n" is the integer part and the one is added to account for // the fact that we initially set the result to 0.5. This is accomplished by subtracting from 191 // rather than 192. // 2. Convert the result to the unsigned 60.18-decimal fixed-point format. // // This works because 2^(191-ip) = 2^ip / 2^191, where "ip" is the integer part "2^n". result *= SCALE; result >>= (191 - (x >> 64)); } } /// @notice Finds the zero-based index of the first one in the binary representation of x. /// @dev See the note on msb in the "Find First Set" Wikipedia article https://en.wikipedia.org/wiki/Find_first_set /// @param x The uint256 number for which to find the index of the most significant bit. /// @return msb The index of the most significant bit as an uint256. function mostSignificantBit(uint256 x) internal pure returns (uint256 msb) { if (x >= 2**128) { x >>= 128; msb += 128; } if (x >= 2**64) { x >>= 64; msb += 64; } if (x >= 2**32) { x >>= 32; msb += 32; } if (x >= 2**16) { x >>= 16; msb += 16; } if (x >= 2**8) { x >>= 8; msb += 8; } if (x >= 2**4) { x >>= 4; msb += 4; } if (x >= 2**2) { x >>= 2; msb += 2; } if (x >= 2**1) { // No need to shift x any more. msb += 1; } } /// @notice Calculates floor(x*y÷denominator) with full precision. /// /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Requirements: /// - The denominator cannot be zero. /// - The result must fit within uint256. /// /// Caveats: /// - This function does not work with fixed-point numbers. /// /// @param x The multiplicand as an uint256. /// @param y The multiplier as an uint256. /// @param denominator The divisor as an uint256. /// @return result The result as an uint256. function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { unchecked { result = prod0 / denominator; } return result; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (prod1 >= denominator) { revert PRBMath__MulDivOverflow(prod1, denominator); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. unchecked { // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 lpotdod = denominator & (~denominator + 1); assembly { // Divide denominator by lpotdod. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Flip lpotdod such that it is 2^256 / lpotdod. If lpotdod is zero, then it becomes one. lpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * lpotdod; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /// @notice Calculates floor(x*y÷1e18) with full precision. /// /// @dev Variant of "mulDiv" with constant folding, i.e. in which the denominator is always 1e18. Before returning the /// final result, we add 1 if (x * y) % SCALE >= HALF_SCALE. Without this, 6.6e-19 would be truncated to 0 instead of /// being rounded to 1e-18. See "Listing 6" and text above it at https://accu.org/index.php/journals/1717. /// /// Requirements: /// - The result must fit within uint256. /// /// Caveats: /// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works. /// - It is assumed that the result can never be type(uint256).max when x and y solve the following two equations: /// 1. x * y = type(uint256).max * SCALE /// 2. (x * y) % SCALE >= SCALE / 2 /// /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function mulDivFixedPoint(uint256 x, uint256 y) internal pure returns (uint256 result) { uint256 prod0; uint256 prod1; assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 >= SCALE) { revert PRBMath__MulDivFixedPointOverflow(prod1); } uint256 remainder; uint256 roundUpUnit; assembly { remainder := mulmod(x, y, SCALE) roundUpUnit := gt(remainder, 499999999999999999) } if (prod1 == 0) { unchecked { result = (prod0 / SCALE) + roundUpUnit; return result; } } assembly { result := add( mul( or( div(sub(prod0, remainder), SCALE_LPOTD), mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, SCALE_LPOTD), SCALE_LPOTD), 1)) ), SCALE_INVERSE ), roundUpUnit ) } } /// @notice Calculates floor(x*y÷denominator) with full precision. /// /// @dev An extension of "mulDiv" for signed numbers. Works by computing the signs and the absolute values separately. /// /// Requirements: /// - None of the inputs can be type(int256).min. /// - The result must fit within int256. /// /// @param x The multiplicand as an int256. /// @param y The multiplier as an int256. /// @param denominator The divisor as an int256. /// @return result The result as an int256. function mulDivSigned( int256 x, int256 y, int256 denominator ) internal pure returns (int256 result) { if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) { revert PRBMath__MulDivSignedInputTooSmall(); } // Get hold of the absolute values of x, y and the denominator. uint256 ax; uint256 ay; uint256 ad; unchecked { ax = x < 0 ? uint256(-x) : uint256(x); ay = y < 0 ? uint256(-y) : uint256(y); ad = denominator < 0 ? uint256(-denominator) : uint256(denominator); } // Compute the absolute value of (x*y)÷denominator. The result must fit within int256. uint256 rAbs = mulDiv(ax, ay, ad); if (rAbs > uint256(type(int256).max)) { revert PRBMath__MulDivSignedOverflow(rAbs); } // Get the signs of x, y and the denominator. uint256 sx; uint256 sy; uint256 sd; assembly { sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) sd := sgt(denominator, sub(0, 1)) } // XOR over sx, sy and sd. This is checking whether there are one or three negative signs in the inputs. // If yes, the result should be negative. result = sx ^ sy ^ sd == 0 ? -int256(rAbs) : int256(rAbs); } /// @notice Calculates the square root of x, rounding down. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Caveats: /// - This function does not work with fixed-point numbers. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as an uint256. function sqrt(uint256 x) internal pure returns (uint256 result) { if (x == 0) { return 0; } // Set the initial guess to the least power of two that is greater than or equal to sqrt(x). uint256 xAux = uint256(x); result = 1; if (xAux >= 0x100000000000000000000000000000000) { xAux >>= 128; result <<= 64; } if (xAux >= 0x10000000000000000) { xAux >>= 64; result <<= 32; } if (xAux >= 0x100000000) { xAux >>= 32; result <<= 16; } if (xAux >= 0x10000) { xAux >>= 16; result <<= 8; } if (xAux >= 0x100) { xAux >>= 8; result <<= 4; } if (xAux >= 0x10) { xAux >>= 4; result <<= 2; } if (xAux >= 0x8) { result <<= 1; } // The operations can never overflow because the result is max 2^127 when it enters this block. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // Seven iterations should be enough uint256 roundedDownResult = x / result; return result >= roundedDownResult ? roundedDownResult : result; } } }
// SPDX-License-Identifier: Unlicense pragma solidity >=0.8.4; import "./PRBMath.sol"; /// @title PRBMathUD60x18 /// @author Paul Razvan Berg /// @notice Smart contract library for advanced fixed-point math that works with uint256 numbers considered to have 18 /// trailing decimals. We call this number representation unsigned 60.18-decimal fixed-point, since there can be up to 60 /// digits in the integer part and up to 18 decimals in the fractional part. The numbers are bound by the minimum and the /// maximum values permitted by the Solidity type uint256. library PRBMathUD60x18 { /// @dev Half the SCALE number. uint256 internal constant HALF_SCALE = 5e17; /// @dev log2(e) as an unsigned 60.18-decimal fixed-point number. uint256 internal constant LOG2_E = 1_442695040888963407; /// @dev The maximum value an unsigned 60.18-decimal fixed-point number can have. uint256 internal constant MAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935; /// @dev The maximum whole value an unsigned 60.18-decimal fixed-point number can have. uint256 internal constant MAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000; /// @dev How many trailing decimals can be represented. uint256 internal constant SCALE = 1e18; /// @notice Calculates the arithmetic average of x and y, rounding down. /// @param x The first operand as an unsigned 60.18-decimal fixed-point number. /// @param y The second operand as an unsigned 60.18-decimal fixed-point number. /// @return result The arithmetic average as an unsigned 60.18-decimal fixed-point number. function avg(uint256 x, uint256 y) internal pure returns (uint256 result) { // The operations can never overflow. unchecked { // The last operand checks if both x and y are odd and if that is the case, we add 1 to the result. We need // to do this because if both numbers are odd, the 0.5 remainder gets truncated twice. result = (x >> 1) + (y >> 1) + (x & y & 1); } } /// @notice Yields the least unsigned 60.18 decimal fixed-point number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to MAX_WHOLE_UD60x18. /// /// @param x The unsigned 60.18-decimal fixed-point number to ceil. /// @param result The least integer greater than or equal to x, as an unsigned 60.18-decimal fixed-point number. function ceil(uint256 x) internal pure returns (uint256 result) { if (x > MAX_WHOLE_UD60x18) { revert PRBMathUD60x18__CeilOverflow(x); } assembly { // Equivalent to "x % SCALE" but faster. let remainder := mod(x, SCALE) // Equivalent to "SCALE - remainder" but faster. let delta := sub(SCALE, remainder) // Equivalent to "x + delta * (remainder > 0 ? 1 : 0)" but faster. result := add(x, mul(delta, gt(remainder, 0))) } } /// @notice Divides two unsigned 60.18-decimal fixed-point numbers, returning a new unsigned 60.18-decimal fixed-point number. /// /// @dev Uses mulDiv to enable overflow-safe multiplication and division. /// /// Requirements: /// - The denominator cannot be zero. /// /// @param x The numerator as an unsigned 60.18-decimal fixed-point number. /// @param y The denominator as an unsigned 60.18-decimal fixed-point number. /// @param result The quotient as an unsigned 60.18-decimal fixed-point number. function div(uint256 x, uint256 y) internal pure returns (uint256 result) { result = PRBMath.mulDiv(x, SCALE, y); } /// @notice Returns Euler's number as an unsigned 60.18-decimal fixed-point number. /// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant). function e() internal pure returns (uint256 result) { result = 2_718281828459045235; } /// @notice Calculates the natural exponent of x. /// /// @dev Based on the insight that e^x = 2^(x * log2(e)). /// /// Requirements: /// - All from "log2". /// - x must be less than 133.084258667509499441. /// /// @param x The exponent as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp(uint256 x) internal pure returns (uint256 result) { // Without this check, the value passed to "exp2" would be greater than 192. if (x >= 133_084258667509499441) { revert PRBMathUD60x18__ExpInputTooBig(x); } // Do the fixed-point multiplication inline to save gas. unchecked { uint256 doubleScaleProduct = x * LOG2_E; result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Requirements: /// - x must be 192 or less. /// - The result must fit within MAX_UD60x18. /// /// @param x The exponent as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp2(uint256 x) internal pure returns (uint256 result) { // 2^192 doesn't fit within the 192.64-bit format used internally in this function. if (x >= 192e18) { revert PRBMathUD60x18__Exp2InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x192x64 = (x << 64) / SCALE; // Pass x to the PRBMath.exp2 function, which uses the 192.64-bit fixed-point number representation. result = PRBMath.exp2(x192x64); } } /// @notice Yields the greatest unsigned 60.18 decimal fixed-point number less than or equal to x. /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// @param x The unsigned 60.18-decimal fixed-point number to floor. /// @param result The greatest integer less than or equal to x, as an unsigned 60.18-decimal fixed-point number. function floor(uint256 x) internal pure returns (uint256 result) { assembly { // Equivalent to "x % SCALE" but faster. let remainder := mod(x, SCALE) // Equivalent to "x - remainder * (remainder > 0 ? 1 : 0)" but faster. result := sub(x, mul(remainder, gt(remainder, 0))) } } /// @notice Yields the excess beyond the floor of x. /// @dev Based on the odd function definition https://en.wikipedia.org/wiki/Fractional_part. /// @param x The unsigned 60.18-decimal fixed-point number to get the fractional part of. /// @param result The fractional part of x as an unsigned 60.18-decimal fixed-point number. function frac(uint256 x) internal pure returns (uint256 result) { assembly { result := mod(x, SCALE) } } /// @notice Converts a number from basic integer form to unsigned 60.18-decimal fixed-point representation. /// /// @dev Requirements: /// - x must be less than or equal to MAX_UD60x18 divided by SCALE. /// /// @param x The basic integer to convert. /// @param result The same number in unsigned 60.18-decimal fixed-point representation. function fromUint(uint256 x) internal pure returns (uint256 result) { unchecked { if (x > MAX_UD60x18 / SCALE) { revert PRBMathUD60x18__FromUintOverflow(x); } result = x * SCALE; } } /// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down. /// /// @dev Requirements: /// - x * y must fit within MAX_UD60x18, lest it overflows. /// /// @param x The first operand as an unsigned 60.18-decimal fixed-point number. /// @param y The second operand as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function gm(uint256 x, uint256 y) internal pure returns (uint256 result) { if (x == 0) { return 0; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. uint256 xy = x * y; if (xy / x != y) { revert PRBMathUD60x18__GmOverflow(x, y); } // We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE // during multiplication. See the comments within the "sqrt" function. result = PRBMath.sqrt(xy); } } /// @notice Calculates 1 / x, rounding toward zero. /// /// @dev Requirements: /// - x cannot be zero. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the inverse. /// @return result The inverse as an unsigned 60.18-decimal fixed-point number. function inv(uint256 x) internal pure returns (uint256 result) { unchecked { // 1e36 is SCALE * SCALE. result = 1e36 / x; } } /// @notice Calculates the natural logarithm of x. /// /// @dev Based on the insight that ln(x) = log2(x) / log2(e). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// - This doesn't return exactly 1 for 2.718281828459045235, for that we would need more fine-grained precision. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the natural logarithm. /// @return result The natural logarithm as an unsigned 60.18-decimal fixed-point number. function ln(uint256 x) internal pure returns (uint256 result) { // Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x) // can return is 196205294292027477728. unchecked { result = (log2(x) * SCALE) / LOG2_E; } } /// @notice Calculates the common logarithm of x. /// /// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common /// logarithm based on the insight that log10(x) = log2(x) / log2(10). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the common logarithm. /// @return result The common logarithm as an unsigned 60.18-decimal fixed-point number. function log10(uint256 x) internal pure returns (uint256 result) { if (x < SCALE) { revert PRBMathUD60x18__LogInputTooSmall(x); } // Note that the "mul" in this block is the assembly multiplication operation, not the "mul" function defined // in this contract. // prettier-ignore assembly { switch x case 1 { result := mul(SCALE, sub(0, 18)) } case 10 { result := mul(SCALE, sub(1, 18)) } case 100 { result := mul(SCALE, sub(2, 18)) } case 1000 { result := mul(SCALE, sub(3, 18)) } case 10000 { result := mul(SCALE, sub(4, 18)) } case 100000 { result := mul(SCALE, sub(5, 18)) } case 1000000 { result := mul(SCALE, sub(6, 18)) } case 10000000 { result := mul(SCALE, sub(7, 18)) } case 100000000 { result := mul(SCALE, sub(8, 18)) } case 1000000000 { result := mul(SCALE, sub(9, 18)) } case 10000000000 { result := mul(SCALE, sub(10, 18)) } case 100000000000 { result := mul(SCALE, sub(11, 18)) } case 1000000000000 { result := mul(SCALE, sub(12, 18)) } case 10000000000000 { result := mul(SCALE, sub(13, 18)) } case 100000000000000 { result := mul(SCALE, sub(14, 18)) } case 1000000000000000 { result := mul(SCALE, sub(15, 18)) } case 10000000000000000 { result := mul(SCALE, sub(16, 18)) } case 100000000000000000 { result := mul(SCALE, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := SCALE } case 100000000000000000000 { result := mul(SCALE, 2) } case 1000000000000000000000 { result := mul(SCALE, 3) } case 10000000000000000000000 { result := mul(SCALE, 4) } case 100000000000000000000000 { result := mul(SCALE, 5) } case 1000000000000000000000000 { result := mul(SCALE, 6) } case 10000000000000000000000000 { result := mul(SCALE, 7) } case 100000000000000000000000000 { result := mul(SCALE, 8) } case 1000000000000000000000000000 { result := mul(SCALE, 9) } case 10000000000000000000000000000 { result := mul(SCALE, 10) } case 100000000000000000000000000000 { result := mul(SCALE, 11) } case 1000000000000000000000000000000 { result := mul(SCALE, 12) } case 10000000000000000000000000000000 { result := mul(SCALE, 13) } case 100000000000000000000000000000000 { result := mul(SCALE, 14) } case 1000000000000000000000000000000000 { result := mul(SCALE, 15) } case 10000000000000000000000000000000000 { result := mul(SCALE, 16) } case 100000000000000000000000000000000000 { result := mul(SCALE, 17) } case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) } case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) } case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) } case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) } case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) } case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) } case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) } case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) } case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) } case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 59) } default { result := MAX_UD60x18 } } if (result == MAX_UD60x18) { // Do the fixed-point division inline to save gas. The denominator is log2(10). unchecked { result = (log2(x) * SCALE) / 3_321928094887362347; } } } /// @notice Calculates the binary logarithm of x. /// /// @dev Based on the iterative approximation algorithm. /// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Requirements: /// - x must be greater than or equal to SCALE, otherwise the result would be negative. /// /// Caveats: /// - The results are nor perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the binary logarithm. /// @return result The binary logarithm as an unsigned 60.18-decimal fixed-point number. function log2(uint256 x) internal pure returns (uint256 result) { if (x < SCALE) { revert PRBMathUD60x18__LogInputTooSmall(x); } unchecked { // Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n). uint256 n = PRBMath.mostSignificantBit(x / SCALE); // The integer part of the logarithm as an unsigned 60.18-decimal fixed-point number. The operation can't overflow // because n is maximum 255 and SCALE is 1e18. result = n * SCALE; // This is y = x * 2^(-n). uint256 y = x >> n; // If y = 1, the fractional part is zero. if (y == SCALE) { return result; } // Calculate the fractional part via the iterative approximation. // The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster. for (uint256 delta = HALF_SCALE; delta > 0; delta >>= 1) { y = (y * y) / SCALE; // Is y^2 > 2 and so in the range [2,4)? if (y >= 2 * SCALE) { // Add the 2^(-m) factor to the logarithm. result += delta; // Corresponds to z/2 on Wikipedia. y >>= 1; } } } } /// @notice Multiplies two unsigned 60.18-decimal fixed-point numbers together, returning a new unsigned 60.18-decimal /// fixed-point number. /// @dev See the documentation for the "PRBMath.mulDivFixedPoint" function. /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The product as an unsigned 60.18-decimal fixed-point number. function mul(uint256 x, uint256 y) internal pure returns (uint256 result) { result = PRBMath.mulDivFixedPoint(x, y); } /// @notice Returns PI as an unsigned 60.18-decimal fixed-point number. function pi() internal pure returns (uint256 result) { result = 3_141592653589793238; } /// @notice Raises x to the power of y. /// /// @dev Based on the insight that x^y = 2^(log2(x) * y). /// /// Requirements: /// - All from "exp2", "log2" and "mul". /// /// Caveats: /// - All from "exp2", "log2" and "mul". /// - Assumes 0^0 is 1. /// /// @param x Number to raise to given power y, as an unsigned 60.18-decimal fixed-point number. /// @param y Exponent to raise x to, as an unsigned 60.18-decimal fixed-point number. /// @return result x raised to power y, as an unsigned 60.18-decimal fixed-point number. function pow(uint256 x, uint256 y) internal pure returns (uint256 result) { if (x == 0) { result = y == 0 ? SCALE : uint256(0); } else { result = exp2(mul(log2(x), y)); } } /// @notice Raises x (unsigned 60.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the /// famous algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring /// /// Requirements: /// - The result must fit within MAX_UD60x18. /// /// Caveats: /// - All from "mul". /// - Assumes 0^0 is 1. /// /// @param x The base as an unsigned 60.18-decimal fixed-point number. /// @param y The exponent as an uint256. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function powu(uint256 x, uint256 y) internal pure returns (uint256 result) { // Calculate the first iteration of the loop in advance. result = y & 1 > 0 ? x : SCALE; // Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster. for (y >>= 1; y > 0; y >>= 1) { x = PRBMath.mulDivFixedPoint(x, x); // Equivalent to "y % 2 == 1" but faster. if (y & 1 > 0) { result = PRBMath.mulDivFixedPoint(result, x); } } } /// @notice Returns 1 as an unsigned 60.18-decimal fixed-point number. function scale() internal pure returns (uint256 result) { result = SCALE; } /// @notice Calculates the square root of x, rounding down. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Requirements: /// - x must be less than MAX_UD60x18 / SCALE. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the square root. /// @return result The result as an unsigned 60.18-decimal fixed-point . function sqrt(uint256 x) internal pure returns (uint256 result) { unchecked { if (x > MAX_UD60x18 / SCALE) { revert PRBMathUD60x18__SqrtOverflow(x); } // Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two unsigned // 60.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root). result = PRBMath.sqrt(x * SCALE); } } /// @notice Converts a unsigned 60.18-decimal fixed-point number to basic integer form, rounding down in the process. /// @param x The unsigned 60.18-decimal fixed-point number to convert. /// @return result The same number in basic integer form. function toUint(uint256 x) internal pure returns (uint256 result) { unchecked { result = x / SCALE; } } }
{ "optimizer": { "enabled": true, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimer","outputs":[{"internalType":"contract IClaimer","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"addr","type":"address"}],"name":"isFactory","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxMintCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"mintedCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"removeOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"uri","type":"string"}],"name":"setBaseUrl","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"claimerAddress","type":"address"}],"name":"setClaimer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"addresses","type":"address[]"},{"internalType":"bool","name":"isFactoryValue","type":"bool"}],"name":"setFactories","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"tokenByIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"tokenOfOwnerByIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
60e06040526030608081815290620020da60a039600d906200002290826200014a565b503480156200003057600080fd5b50604051806040016040528060048152602001634b45595360e01b815250604051806040016040528060038152602001624b455960e81b81525081600090816200007b91906200014a565b5060016200008a82826200014a565b5050600b80546001600160a01b031916331790555062000216565b634e487b7160e01b600052604160045260246000fd5b600181811c90821680620000d057607f821691505b602082108103620000f157634e487b7160e01b600052602260045260246000fd5b50919050565b601f8211156200014557600081815260208120601f850160051c81016020861015620001205750805b601f850160051c820191505b8181101562000141578281556001016200012c565b5050505b505050565b81516001600160401b03811115620001665762000166620000a5565b6200017e81620001778454620000bb565b84620000f7565b602080601f831160018114620001b657600084156200019d5750858301515b600019600386901b1c1916600185901b17855562000141565b600085815260208120601f198616915b82811015620001e757888601518255948401946001909101908401620001c6565b5085821015620002065787850151600019600388901b60f8161c191681555b5050505050600190811b01905550565b611eb480620002266000396000f3fe608060405234801561001057600080fd5b50600436106101a95760003560e01c80636352211e116100f9578063c7c3268b11610097578063cf721b1511610071578063cf721b1514610389578063d379be2314610391578063e985e9c5146103a4578063f2fde38b146103e057600080fd5b8063c7c3268b14610350578063c87b56dd14610363578063cdfb58321461037657600080fd5b80638da5cb5b116100d35780638da5cb5b1461031157806395d89b4114610322578063a22cb4651461032a578063b88d4fde1461033d57600080fd5b80636352211e146102d85780636a627842146102eb57806370a08231146102fe57600080fd5b806318160ddd116101665780632f745c59116101405780632f745c591461029757806332c60eef146102aa57806342842e0e146102b25780634f6ccce7146102c557600080fd5b806318160ddd1461026a57806323b872dd1461027c578063246f8b961461028f57600080fd5b806301ffc9a7146101ae57806306fdde03146101d6578063081812fc146101eb57806308a8ce1f14610216578063095ea7b31461022b5780630f04ba671461023e575b600080fd5b6101c16101bc36600461172a565b6103f3565b60405190151581526020015b60405180910390f35b6101de61041e565b6040516101cd919061179e565b6101fe6101f93660046117b1565b6104b0565b6040516001600160a01b0390911681526020016101cd565b6102296102243660046117df565b6104d7565b005b61022961023936600461187a565b6105ab565b6101c161024c3660046118a4565b6001600160a01b03166000908152600a602052604090205460ff1690565b6008545b6040519081526020016101cd565b61022961028a3660046118bf565b6106c0565b6102296106f1565b61026e6102a536600461187a565b610769565b610bb861026e565b6102296102c03660046118bf565b6107ff565b61026e6102d33660046117b1565b61081a565b6101fe6102e63660046117b1565b6108ad565b6102296102f93660046118a4565b61090d565b61026e61030c3660046118a4565b610a38565b600b546001600160a01b03166101fe565b6101de610abe565b6102296103383660046118fb565b610acd565b61022961034b366004611944565b610adc565b61022961035e366004611a20565b610b0e565b6101de6103713660046117b1565b610b45565b6102296103843660046118a4565b610b79565b600e5461026e565b600c546101fe906001600160a01b031681565b6101c16103b2366004611a92565b6001600160a01b03918216600090815260056020908152604080832093909416825291909152205460ff1690565b6102296103ee3660046118a4565b610bc5565b60006001600160e01b0319821663780e9d6360e01b1480610418575061041882610c41565b92915050565b60606000805461042d90611abc565b80601f016020809104026020016040519081016040528092919081815260200182805461045990611abc565b80156104a65780601f1061047b576101008083540402835291602001916104a6565b820191906000526020600020905b81548152906001019060200180831161048957829003601f168201915b5050505050905090565b60006104bb82610c91565b506000908152600460205260409020546001600160a01b031690565b600b546001600160a01b031633146105365760405162461bcd60e51b815260206004820152601d60248201527f6163636f756e742063616e206e6f742073657420666163746f7269657300000060448201526064015b60405180910390fd5b60005b828110156105a55781600a600086868581811061055857610558611af6565b905060200201602081019061056d91906118a4565b6001600160a01b031681526020810191909152604001600020805460ff191691151591909117905561059e81611b22565b9050610539565b50505050565b60006105b6826108ad565b9050806001600160a01b0316836001600160a01b0316036106235760405162461bcd60e51b815260206004820152602160248201527f4552433732313a20617070726f76616c20746f2063757272656e74206f776e656044820152603960f91b606482015260840161052d565b336001600160a01b038216148061063f575061063f81336103b2565b6106b15760405162461bcd60e51b815260206004820152603d60248201527f4552433732313a20617070726f76652063616c6c6572206973206e6f7420746f60448201527f6b656e206f776e6572206f7220617070726f76656420666f7220616c6c000000606482015260840161052d565b6106bb8383610cf3565b505050565b6106ca3382610d61565b6106e65760405162461bcd60e51b815260040161052d90611b3b565b6106bb838383610de0565b600b546001600160a01b0316331461071b5760405162461bcd60e51b815260040161052d90611b88565b600b80546001600160a01b031981169091556040516001600160a01b039091169060009082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0908390a350565b600061077483610a38565b82106107d65760405162461bcd60e51b815260206004820152602b60248201527f455243373231456e756d657261626c653a206f776e657220696e646578206f7560448201526a74206f6620626f756e647360a81b606482015260840161052d565b506001600160a01b03919091166000908152600660209081526040808320938352929052205490565b6106bb83838360405180602001604052806000815250610adc565b600061082560085490565b82106108885760405162461bcd60e51b815260206004820152602c60248201527f455243373231456e756d657261626c653a20676c6f62616c20696e646578206f60448201526b7574206f6620626f756e647360a01b606482015260840161052d565b6008828154811061089b5761089b611af6565b90600052602060002001549050919050565b6000818152600260205260408120546001600160a01b0316806104185760405162461bcd60e51b8152602060048201526018602482015277115490cdcc8c4e881a5b9d985b1a59081d1bdad95b88125160421b604482015260640161052d565b336000908152600a602052604090205460ff166109615760405162461bcd60e51b81526020600482015260126024820152716f6e6c7920666f7220666163746f7269657360701b604482015260640161052d565b610bb8600e54106109ad5760405162461bcd60e51b8152602060048201526016602482015275139bc81d1bdad95b9cc81b19599d081d1bc81b5a5b9d60521b604482015260640161052d565b600e600081546109bc90611b22565b90915550600e546109ce908290610f51565b600c54600e5460405163052f44a360e31b81526001600160a01b039092169163297a251891610a039160040190815260200190565b600060405180830381600087803b158015610a1d57600080fd5b505af1158015610a31573d6000803e3d6000fd5b5050505050565b60006001600160a01b038216610aa25760405162461bcd60e51b815260206004820152602960248201527f4552433732313a2061646472657373207a65726f206973206e6f7420612076616044820152683634b21037bbb732b960b91b606482015260840161052d565b506001600160a01b031660009081526003602052604090205490565b60606001805461042d90611abc565b610ad83383836110ea565b5050565b610ae63383610d61565b610b025760405162461bcd60e51b815260040161052d90611b3b565b6105a5848484846111b8565b600b546001600160a01b03163314610b385760405162461bcd60e51b815260040161052d90611b88565b600d6106bb828483611c0d565b6060600d610b52836111eb565b604051602001610b63929190611ccd565b6040516020818303038152906040529050919050565b600b546001600160a01b03163314610ba35760405162461bcd60e51b815260040161052d90611b88565b600c80546001600160a01b0319166001600160a01b0392909216919091179055565b600b546001600160a01b03163314610bef5760405162461bcd60e51b815260040161052d90611b88565b600b80546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b60006001600160e01b031982166380ac58cd60e01b1480610c7257506001600160e01b03198216635b5e139f60e01b145b8061041857506301ffc9a760e01b6001600160e01b0319831614610418565b6000818152600260205260409020546001600160a01b0316610cf05760405162461bcd60e51b8152602060048201526018602482015277115490cdcc8c4e881a5b9d985b1a59081d1bdad95b88125160421b604482015260640161052d565b50565b600081815260046020526040902080546001600160a01b0319166001600160a01b0384169081179091558190610d28826108ad565b6001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560405160405180910390a45050565b600080610d6d836108ad565b9050806001600160a01b0316846001600160a01b03161480610db457506001600160a01b0380821660009081526005602090815260408083209388168352929052205460ff165b80610dd85750836001600160a01b0316610dcd846104b0565b6001600160a01b0316145b949350505050565b826001600160a01b0316610df3826108ad565b6001600160a01b031614610e195760405162461bcd60e51b815260040161052d90611d64565b6001600160a01b038216610e7b5760405162461bcd60e51b8152602060048201526024808201527f4552433732313a207472616e7366657220746f20746865207a65726f206164646044820152637265737360e01b606482015260840161052d565b610e88838383600161127e565b826001600160a01b0316610e9b826108ad565b6001600160a01b031614610ec15760405162461bcd60e51b815260040161052d90611d64565b600081815260046020908152604080832080546001600160a01b03199081169091556001600160a01b0387811680865260038552838620805460001901905590871680865283862080546001019055868652600290945282852080549092168417909155905184937fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef91a4505050565b6001600160a01b038216610fa75760405162461bcd60e51b815260206004820181905260248201527f4552433732313a206d696e7420746f20746865207a65726f2061646472657373604482015260640161052d565b6000818152600260205260409020546001600160a01b03161561100c5760405162461bcd60e51b815260206004820152601c60248201527f4552433732313a20746f6b656e20616c7265616479206d696e74656400000000604482015260640161052d565b61101a60008383600161127e565b6000818152600260205260409020546001600160a01b03161561107f5760405162461bcd60e51b815260206004820152601c60248201527f4552433732313a20746f6b656e20616c7265616479206d696e74656400000000604482015260640161052d565b6001600160a01b038216600081815260036020908152604080832080546001019055848352600290915280822080546001600160a01b0319168417905551839291907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef908290a45050565b816001600160a01b0316836001600160a01b03160361114b5760405162461bcd60e51b815260206004820152601960248201527f4552433732313a20617070726f766520746f2063616c6c657200000000000000604482015260640161052d565b6001600160a01b03838116600081815260056020908152604080832094871680845294825291829020805460ff191686151590811790915591519182527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a3505050565b6111c3848484610de0565b6111cf848484846113ab565b6105a55760405162461bcd60e51b815260040161052d90611da9565b606060006111f8836114ac565b600101905060008167ffffffffffffffff8111156112185761121861192e565b6040519080825280601f01601f191660200182016040528015611242576020820181803683370190505b5090508181016020015b600019016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a850494508461124c57509392505050565b60018111156112ed5760405162461bcd60e51b815260206004820152603560248201527f455243373231456e756d657261626c653a20636f6e7365637574697665207472604482015274185b9cd9995c9cc81b9bdd081cdd5c1c1bdc9d1959605a1b606482015260840161052d565b816001600160a01b0385166113495761134481600880546000838152600960205260408120829055600182018355919091527ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee30155565b61136c565b836001600160a01b0316856001600160a01b03161461136c5761136c8582611584565b6001600160a01b0384166113885761138381611621565b610a31565b846001600160a01b0316846001600160a01b031614610a3157610a3184826116d0565b60006001600160a01b0384163b156114a157604051630a85bd0160e11b81526001600160a01b0385169063150b7a02906113ef903390899088908890600401611dfb565b6020604051808303816000875af192505050801561142a575060408051601f3d908101601f1916820190925261142791810190611e38565b60015b611487573d808015611458576040519150601f19603f3d011682016040523d82523d6000602084013e61145d565b606091505b50805160000361147f5760405162461bcd60e51b815260040161052d90611da9565b805181602001fd5b6001600160e01b031916630a85bd0160e11b149050610dd8565b506001949350505050565b60008072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b83106114eb5772184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b830492506040015b6d04ee2d6d415b85acef81000000008310611517576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc10000831061153557662386f26fc10000830492506010015b6305f5e100831061154d576305f5e100830492506008015b612710831061156157612710830492506004015b60648310611573576064830492506002015b600a83106104185760010192915050565b6000600161159184610a38565b61159b9190611e55565b6000838152600760205260409020549091508082146115ee576001600160a01b03841660009081526006602090815260408083208584528252808320548484528184208190558352600790915290208190555b5060009182526007602090815260408084208490556001600160a01b039094168352600681528383209183525290812055565b60085460009061163390600190611e55565b6000838152600960205260408120546008805493945090928490811061165b5761165b611af6565b90600052602060002001549050806008838154811061167c5761167c611af6565b60009182526020808320909101929092558281526009909152604080822084905585825281205560088054806116b4576116b4611e68565b6001900381819060005260206000200160009055905550505050565b60006116db83610a38565b6001600160a01b039093166000908152600660209081526040808320868452825280832085905593825260079052919091209190915550565b6001600160e01b031981168114610cf057600080fd5b60006020828403121561173c57600080fd5b813561174781611714565b9392505050565b60005b83811015611769578181015183820152602001611751565b50506000910152565b6000815180845261178a81602086016020860161174e565b601f01601f19169290920160200192915050565b6020815260006117476020830184611772565b6000602082840312156117c357600080fd5b5035919050565b803580151581146117da57600080fd5b919050565b6000806000604084860312156117f457600080fd5b833567ffffffffffffffff8082111561180c57600080fd5b818601915086601f83011261182057600080fd5b81358181111561182f57600080fd5b8760208260051b850101111561184457600080fd5b60209283019550935061185a91860190506117ca565b90509250925092565b80356001600160a01b03811681146117da57600080fd5b6000806040838503121561188d57600080fd5b61189683611863565b946020939093013593505050565b6000602082840312156118b657600080fd5b61174782611863565b6000806000606084860312156118d457600080fd5b6118dd84611863565b92506118eb60208501611863565b9150604084013590509250925092565b6000806040838503121561190e57600080fd5b61191783611863565b9150611925602084016117ca565b90509250929050565b634e487b7160e01b600052604160045260246000fd5b6000806000806080858703121561195a57600080fd5b61196385611863565b935061197160208601611863565b925060408501359150606085013567ffffffffffffffff8082111561199557600080fd5b818701915087601f8301126119a957600080fd5b8135818111156119bb576119bb61192e565b604051601f8201601f19908116603f011681019083821181831017156119e3576119e361192e565b816040528281528a60208487010111156119fc57600080fd5b82602086016020830137600060208483010152809550505050505092959194509250565b60008060208385031215611a3357600080fd5b823567ffffffffffffffff80821115611a4b57600080fd5b818501915085601f830112611a5f57600080fd5b813581811115611a6e57600080fd5b866020828501011115611a8057600080fd5b60209290920196919550909350505050565b60008060408385031215611aa557600080fd5b611aae83611863565b915061192560208401611863565b600181811c90821680611ad057607f821691505b602082108103611af057634e487b7160e01b600052602260045260246000fd5b50919050565b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052601160045260246000fd5b600060018201611b3457611b34611b0c565b5060010190565b6020808252602d908201527f4552433732313a2063616c6c6572206973206e6f7420746f6b656e206f776e6560408201526c1c881bdc88185c1c1c9bdd9959609a1b606082015260800190565b60208082526017908201527f63616c6c6572206973206e6f7420746865206f776e6572000000000000000000604082015260600190565b601f8211156106bb57600081815260208120601f850160051c81016020861015611be65750805b601f850160051c820191505b81811015611c0557828155600101611bf2565b505050505050565b67ffffffffffffffff831115611c2557611c2561192e565b611c3983611c338354611abc565b83611bbf565b6000601f841160018114611c6d5760008515611c555750838201355b600019600387901b1c1916600186901b178355610a31565b600083815260209020601f19861690835b82811015611c9e5786850135825560209485019460019092019101611c7e565b5086821015611cbb5760001960f88860031b161c19848701351681555b505060018560011b0183555050505050565b6000808454611cdb81611abc565b60018281168015611cf35760018114611d0857611d37565b60ff1984168752821515830287019450611d37565b8860005260208060002060005b85811015611d2e5781548a820152908401908201611d15565b50505082870194505b505050508351611d4b81836020880161174e565b64173539b7b760d91b9101908152600501949350505050565b60208082526025908201527f4552433732313a207472616e736665722066726f6d20696e636f72726563742060408201526437bbb732b960d91b606082015260800190565b60208082526032908201527f4552433732313a207472616e7366657220746f206e6f6e20455243373231526560408201527131b2b4bb32b91034b6b83632b6b2b73a32b960711b606082015260800190565b6001600160a01b0385811682528416602082015260408101839052608060608201819052600090611e2e90830184611772565b9695505050505050565b600060208284031215611e4a57600080fd5b815161174781611714565b8181038181111561041857610418611b0c565b634e487b7160e01b600052603160045260246000fdfea2646970667358221220d8e3c2acdff0d10c8f8af0a4ad54a7b74076da21546525db626fd91d34bc88b264736f6c6343000811003368747470733a2f2f6c6f6b37362d79716161612d616161616e2d7164706b612d6361692e7261772e696370302e696f2f
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106101a95760003560e01c80636352211e116100f9578063c7c3268b11610097578063cf721b1511610071578063cf721b1514610389578063d379be2314610391578063e985e9c5146103a4578063f2fde38b146103e057600080fd5b8063c7c3268b14610350578063c87b56dd14610363578063cdfb58321461037657600080fd5b80638da5cb5b116100d35780638da5cb5b1461031157806395d89b4114610322578063a22cb4651461032a578063b88d4fde1461033d57600080fd5b80636352211e146102d85780636a627842146102eb57806370a08231146102fe57600080fd5b806318160ddd116101665780632f745c59116101405780632f745c591461029757806332c60eef146102aa57806342842e0e146102b25780634f6ccce7146102c557600080fd5b806318160ddd1461026a57806323b872dd1461027c578063246f8b961461028f57600080fd5b806301ffc9a7146101ae57806306fdde03146101d6578063081812fc146101eb57806308a8ce1f14610216578063095ea7b31461022b5780630f04ba671461023e575b600080fd5b6101c16101bc36600461172a565b6103f3565b60405190151581526020015b60405180910390f35b6101de61041e565b6040516101cd919061179e565b6101fe6101f93660046117b1565b6104b0565b6040516001600160a01b0390911681526020016101cd565b6102296102243660046117df565b6104d7565b005b61022961023936600461187a565b6105ab565b6101c161024c3660046118a4565b6001600160a01b03166000908152600a602052604090205460ff1690565b6008545b6040519081526020016101cd565b61022961028a3660046118bf565b6106c0565b6102296106f1565b61026e6102a536600461187a565b610769565b610bb861026e565b6102296102c03660046118bf565b6107ff565b61026e6102d33660046117b1565b61081a565b6101fe6102e63660046117b1565b6108ad565b6102296102f93660046118a4565b61090d565b61026e61030c3660046118a4565b610a38565b600b546001600160a01b03166101fe565b6101de610abe565b6102296103383660046118fb565b610acd565b61022961034b366004611944565b610adc565b61022961035e366004611a20565b610b0e565b6101de6103713660046117b1565b610b45565b6102296103843660046118a4565b610b79565b600e5461026e565b600c546101fe906001600160a01b031681565b6101c16103b2366004611a92565b6001600160a01b03918216600090815260056020908152604080832093909416825291909152205460ff1690565b6102296103ee3660046118a4565b610bc5565b60006001600160e01b0319821663780e9d6360e01b1480610418575061041882610c41565b92915050565b60606000805461042d90611abc565b80601f016020809104026020016040519081016040528092919081815260200182805461045990611abc565b80156104a65780601f1061047b576101008083540402835291602001916104a6565b820191906000526020600020905b81548152906001019060200180831161048957829003601f168201915b5050505050905090565b60006104bb82610c91565b506000908152600460205260409020546001600160a01b031690565b600b546001600160a01b031633146105365760405162461bcd60e51b815260206004820152601d60248201527f6163636f756e742063616e206e6f742073657420666163746f7269657300000060448201526064015b60405180910390fd5b60005b828110156105a55781600a600086868581811061055857610558611af6565b905060200201602081019061056d91906118a4565b6001600160a01b031681526020810191909152604001600020805460ff191691151591909117905561059e81611b22565b9050610539565b50505050565b60006105b6826108ad565b9050806001600160a01b0316836001600160a01b0316036106235760405162461bcd60e51b815260206004820152602160248201527f4552433732313a20617070726f76616c20746f2063757272656e74206f776e656044820152603960f91b606482015260840161052d565b336001600160a01b038216148061063f575061063f81336103b2565b6106b15760405162461bcd60e51b815260206004820152603d60248201527f4552433732313a20617070726f76652063616c6c6572206973206e6f7420746f60448201527f6b656e206f776e6572206f7220617070726f76656420666f7220616c6c000000606482015260840161052d565b6106bb8383610cf3565b505050565b6106ca3382610d61565b6106e65760405162461bcd60e51b815260040161052d90611b3b565b6106bb838383610de0565b600b546001600160a01b0316331461071b5760405162461bcd60e51b815260040161052d90611b88565b600b80546001600160a01b031981169091556040516001600160a01b039091169060009082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0908390a350565b600061077483610a38565b82106107d65760405162461bcd60e51b815260206004820152602b60248201527f455243373231456e756d657261626c653a206f776e657220696e646578206f7560448201526a74206f6620626f756e647360a81b606482015260840161052d565b506001600160a01b03919091166000908152600660209081526040808320938352929052205490565b6106bb83838360405180602001604052806000815250610adc565b600061082560085490565b82106108885760405162461bcd60e51b815260206004820152602c60248201527f455243373231456e756d657261626c653a20676c6f62616c20696e646578206f60448201526b7574206f6620626f756e647360a01b606482015260840161052d565b6008828154811061089b5761089b611af6565b90600052602060002001549050919050565b6000818152600260205260408120546001600160a01b0316806104185760405162461bcd60e51b8152602060048201526018602482015277115490cdcc8c4e881a5b9d985b1a59081d1bdad95b88125160421b604482015260640161052d565b336000908152600a602052604090205460ff166109615760405162461bcd60e51b81526020600482015260126024820152716f6e6c7920666f7220666163746f7269657360701b604482015260640161052d565b610bb8600e54106109ad5760405162461bcd60e51b8152602060048201526016602482015275139bc81d1bdad95b9cc81b19599d081d1bc81b5a5b9d60521b604482015260640161052d565b600e600081546109bc90611b22565b90915550600e546109ce908290610f51565b600c54600e5460405163052f44a360e31b81526001600160a01b039092169163297a251891610a039160040190815260200190565b600060405180830381600087803b158015610a1d57600080fd5b505af1158015610a31573d6000803e3d6000fd5b5050505050565b60006001600160a01b038216610aa25760405162461bcd60e51b815260206004820152602960248201527f4552433732313a2061646472657373207a65726f206973206e6f7420612076616044820152683634b21037bbb732b960b91b606482015260840161052d565b506001600160a01b031660009081526003602052604090205490565b60606001805461042d90611abc565b610ad83383836110ea565b5050565b610ae63383610d61565b610b025760405162461bcd60e51b815260040161052d90611b3b565b6105a5848484846111b8565b600b546001600160a01b03163314610b385760405162461bcd60e51b815260040161052d90611b88565b600d6106bb828483611c0d565b6060600d610b52836111eb565b604051602001610b63929190611ccd565b6040516020818303038152906040529050919050565b600b546001600160a01b03163314610ba35760405162461bcd60e51b815260040161052d90611b88565b600c80546001600160a01b0319166001600160a01b0392909216919091179055565b600b546001600160a01b03163314610bef5760405162461bcd60e51b815260040161052d90611b88565b600b80546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b60006001600160e01b031982166380ac58cd60e01b1480610c7257506001600160e01b03198216635b5e139f60e01b145b8061041857506301ffc9a760e01b6001600160e01b0319831614610418565b6000818152600260205260409020546001600160a01b0316610cf05760405162461bcd60e51b8152602060048201526018602482015277115490cdcc8c4e881a5b9d985b1a59081d1bdad95b88125160421b604482015260640161052d565b50565b600081815260046020526040902080546001600160a01b0319166001600160a01b0384169081179091558190610d28826108ad565b6001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560405160405180910390a45050565b600080610d6d836108ad565b9050806001600160a01b0316846001600160a01b03161480610db457506001600160a01b0380821660009081526005602090815260408083209388168352929052205460ff165b80610dd85750836001600160a01b0316610dcd846104b0565b6001600160a01b0316145b949350505050565b826001600160a01b0316610df3826108ad565b6001600160a01b031614610e195760405162461bcd60e51b815260040161052d90611d64565b6001600160a01b038216610e7b5760405162461bcd60e51b8152602060048201526024808201527f4552433732313a207472616e7366657220746f20746865207a65726f206164646044820152637265737360e01b606482015260840161052d565b610e88838383600161127e565b826001600160a01b0316610e9b826108ad565b6001600160a01b031614610ec15760405162461bcd60e51b815260040161052d90611d64565b600081815260046020908152604080832080546001600160a01b03199081169091556001600160a01b0387811680865260038552838620805460001901905590871680865283862080546001019055868652600290945282852080549092168417909155905184937fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef91a4505050565b6001600160a01b038216610fa75760405162461bcd60e51b815260206004820181905260248201527f4552433732313a206d696e7420746f20746865207a65726f2061646472657373604482015260640161052d565b6000818152600260205260409020546001600160a01b03161561100c5760405162461bcd60e51b815260206004820152601c60248201527f4552433732313a20746f6b656e20616c7265616479206d696e74656400000000604482015260640161052d565b61101a60008383600161127e565b6000818152600260205260409020546001600160a01b03161561107f5760405162461bcd60e51b815260206004820152601c60248201527f4552433732313a20746f6b656e20616c7265616479206d696e74656400000000604482015260640161052d565b6001600160a01b038216600081815260036020908152604080832080546001019055848352600290915280822080546001600160a01b0319168417905551839291907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef908290a45050565b816001600160a01b0316836001600160a01b03160361114b5760405162461bcd60e51b815260206004820152601960248201527f4552433732313a20617070726f766520746f2063616c6c657200000000000000604482015260640161052d565b6001600160a01b03838116600081815260056020908152604080832094871680845294825291829020805460ff191686151590811790915591519182527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a3505050565b6111c3848484610de0565b6111cf848484846113ab565b6105a55760405162461bcd60e51b815260040161052d90611da9565b606060006111f8836114ac565b600101905060008167ffffffffffffffff8111156112185761121861192e565b6040519080825280601f01601f191660200182016040528015611242576020820181803683370190505b5090508181016020015b600019016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a850494508461124c57509392505050565b60018111156112ed5760405162461bcd60e51b815260206004820152603560248201527f455243373231456e756d657261626c653a20636f6e7365637574697665207472604482015274185b9cd9995c9cc81b9bdd081cdd5c1c1bdc9d1959605a1b606482015260840161052d565b816001600160a01b0385166113495761134481600880546000838152600960205260408120829055600182018355919091527ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee30155565b61136c565b836001600160a01b0316856001600160a01b03161461136c5761136c8582611584565b6001600160a01b0384166113885761138381611621565b610a31565b846001600160a01b0316846001600160a01b031614610a3157610a3184826116d0565b60006001600160a01b0384163b156114a157604051630a85bd0160e11b81526001600160a01b0385169063150b7a02906113ef903390899088908890600401611dfb565b6020604051808303816000875af192505050801561142a575060408051601f3d908101601f1916820190925261142791810190611e38565b60015b611487573d808015611458576040519150601f19603f3d011682016040523d82523d6000602084013e61145d565b606091505b50805160000361147f5760405162461bcd60e51b815260040161052d90611da9565b805181602001fd5b6001600160e01b031916630a85bd0160e11b149050610dd8565b506001949350505050565b60008072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b83106114eb5772184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b830492506040015b6d04ee2d6d415b85acef81000000008310611517576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc10000831061153557662386f26fc10000830492506010015b6305f5e100831061154d576305f5e100830492506008015b612710831061156157612710830492506004015b60648310611573576064830492506002015b600a83106104185760010192915050565b6000600161159184610a38565b61159b9190611e55565b6000838152600760205260409020549091508082146115ee576001600160a01b03841660009081526006602090815260408083208584528252808320548484528184208190558352600790915290208190555b5060009182526007602090815260408084208490556001600160a01b039094168352600681528383209183525290812055565b60085460009061163390600190611e55565b6000838152600960205260408120546008805493945090928490811061165b5761165b611af6565b90600052602060002001549050806008838154811061167c5761167c611af6565b60009182526020808320909101929092558281526009909152604080822084905585825281205560088054806116b4576116b4611e68565b6001900381819060005260206000200160009055905550505050565b60006116db83610a38565b6001600160a01b039093166000908152600660209081526040808320868452825280832085905593825260079052919091209190915550565b6001600160e01b031981168114610cf057600080fd5b60006020828403121561173c57600080fd5b813561174781611714565b9392505050565b60005b83811015611769578181015183820152602001611751565b50506000910152565b6000815180845261178a81602086016020860161174e565b601f01601f19169290920160200192915050565b6020815260006117476020830184611772565b6000602082840312156117c357600080fd5b5035919050565b803580151581146117da57600080fd5b919050565b6000806000604084860312156117f457600080fd5b833567ffffffffffffffff8082111561180c57600080fd5b818601915086601f83011261182057600080fd5b81358181111561182f57600080fd5b8760208260051b850101111561184457600080fd5b60209283019550935061185a91860190506117ca565b90509250925092565b80356001600160a01b03811681146117da57600080fd5b6000806040838503121561188d57600080fd5b61189683611863565b946020939093013593505050565b6000602082840312156118b657600080fd5b61174782611863565b6000806000606084860312156118d457600080fd5b6118dd84611863565b92506118eb60208501611863565b9150604084013590509250925092565b6000806040838503121561190e57600080fd5b61191783611863565b9150611925602084016117ca565b90509250929050565b634e487b7160e01b600052604160045260246000fd5b6000806000806080858703121561195a57600080fd5b61196385611863565b935061197160208601611863565b925060408501359150606085013567ffffffffffffffff8082111561199557600080fd5b818701915087601f8301126119a957600080fd5b8135818111156119bb576119bb61192e565b604051601f8201601f19908116603f011681019083821181831017156119e3576119e361192e565b816040528281528a60208487010111156119fc57600080fd5b82602086016020830137600060208483010152809550505050505092959194509250565b60008060208385031215611a3357600080fd5b823567ffffffffffffffff80821115611a4b57600080fd5b818501915085601f830112611a5f57600080fd5b813581811115611a6e57600080fd5b866020828501011115611a8057600080fd5b60209290920196919550909350505050565b60008060408385031215611aa557600080fd5b611aae83611863565b915061192560208401611863565b600181811c90821680611ad057607f821691505b602082108103611af057634e487b7160e01b600052602260045260246000fd5b50919050565b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052601160045260246000fd5b600060018201611b3457611b34611b0c565b5060010190565b6020808252602d908201527f4552433732313a2063616c6c6572206973206e6f7420746f6b656e206f776e6560408201526c1c881bdc88185c1c1c9bdd9959609a1b606082015260800190565b60208082526017908201527f63616c6c6572206973206e6f7420746865206f776e6572000000000000000000604082015260600190565b601f8211156106bb57600081815260208120601f850160051c81016020861015611be65750805b601f850160051c820191505b81811015611c0557828155600101611bf2565b505050505050565b67ffffffffffffffff831115611c2557611c2561192e565b611c3983611c338354611abc565b83611bbf565b6000601f841160018114611c6d5760008515611c555750838201355b600019600387901b1c1916600186901b178355610a31565b600083815260209020601f19861690835b82811015611c9e5786850135825560209485019460019092019101611c7e565b5086821015611cbb5760001960f88860031b161c19848701351681555b505060018560011b0183555050505050565b6000808454611cdb81611abc565b60018281168015611cf35760018114611d0857611d37565b60ff1984168752821515830287019450611d37565b8860005260208060002060005b85811015611d2e5781548a820152908401908201611d15565b50505082870194505b505050508351611d4b81836020880161174e565b64173539b7b760d91b9101908152600501949350505050565b60208082526025908201527f4552433732313a207472616e736665722066726f6d20696e636f72726563742060408201526437bbb732b960d91b606082015260800190565b60208082526032908201527f4552433732313a207472616e7366657220746f206e6f6e20455243373231526560408201527131b2b4bb32b91034b6b83632b6b2b73a32b960711b606082015260800190565b6001600160a01b0385811682528416602082015260408101839052608060608201819052600090611e2e90830184611772565b9695505050505050565b600060208284031215611e4a57600080fd5b815161174781611714565b8181038181111561041857610418611b0c565b634e487b7160e01b600052603160045260246000fdfea2646970667358221220d8e3c2acdff0d10c8f8af0a4ad54a7b74076da21546525db626fd91d34bc88b264736f6c63430008110033
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.