ERC-20
Overview
Max Total Supply
1,000,000,000 KFC
Holders
26
Market
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 18 Decimals)
Balance
0.000057848029902855 KFCValue
$0.00Loading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Similar Match Source Code This contract matches the deployed Bytecode of the Source Code for Contract 0x3ED654ED...8c875B4B9 The constructor portion of the code might be different and could alter the actual behaviour of the contract
Contract Name:
EtherfunSale
Compiler Version
v0.8.26+commit.8a97fa7a
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "@openzeppelin/contracts/security/ReentrancyGuard.sol"; import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import { UD60x18, ud } from "@prb/math/src/UD60x18.sol"; // Use UD60x18 type and ud() constructor interface IVistaFactory { function getPair(address tokenA, address tokenB) external view returns (address); } interface IPair { function claimShare() external; function viewShare() external view returns (uint256 share); } interface ILaunchContract { function launch( address token, uint256 amountTokenDesired, uint256 amountETHMin, uint256 amountTokenMin, uint8 buyLpFee, uint8 sellLpFee, uint8 buyProtocolFee, uint8 sellProtocolFee, address protocolAddress ) external payable; } contract EtherfunSale is ReentrancyGuard, ERC20 { //using UD60x18 for uint256; //address public token; address public creator; address public factory; uint256 public totalTokens; uint256 public totalRaised; uint256 public maxContribution; uint8 public creatorshare; bool public launched; bool public status; uint256 public k; // Initial price factor uint256 public alpha; // Steepness factor for bonding curve uint256 public saleGoal; // Sale goal in ETH uint256 public tokensSold; // Track the number of tokens sold, initially 0 mapping(address => uint256) public tokenBalances; // Track user token balances (not actual tokens) address[] public tokenHolders; mapping(address => bool) public isTokenHolder; address public wethAddress = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2; address public vistaFactoryAddress = 0x9a27cb5ae0B2cEe0bb71f9A85C0D60f3920757B4; uint256 public feePercent; address public feeWallet = 0xc07DFf4C8c129aA8FA8b91CC67d74AEd77e4feF1; struct HistoricalData { uint256 timestamp; uint256 totalRaised; } HistoricalData[] public historicalData; event TokensPurchased( address indexed buyer, uint256 ethAmount, uint256 tokenAmount, uint256 timestamp ); event TokensSold( address indexed seller, uint256 tokenAmount, uint256 ethAmount, uint256 timestamp ); modifier onlyFactory() { require(msg.sender == factory, "Only factory"); _; } constructor( string memory name, string memory symbol, address _creator, address _factory, uint256 _totalTokens, uint256 _k, // Initial price factor uint256 _alpha, // Steepness of bonding curve uint256 _saleGoal, // ETH goal for sale uint8 _creatorshare, uint256 _feePercent ) ERC20(name, symbol) { creator = _creator; factory = _factory; totalTokens = _totalTokens; k = _k; alpha = _alpha; saleGoal = _saleGoal; creatorshare = _creatorshare; feePercent = _feePercent; tokensSold = 0; // Initialize tokensSold to 0 _mint(address(this), _totalTokens); //EtherfunToken newToken = new EtherfunToken(name, symbol, _totalTokens, address(this)); //token = address(newToken); } function getEthIn(uint256 tokenAmount) public view returns (uint256) { UD60x18 soldTokensFixed = ud(tokensSold); UD60x18 tokenAmountFixed = ud(tokenAmount); UD60x18 kFixed = ud(k); UD60x18 alphaFixed = ud(alpha); // Calculate ethBefore = k * (exp(alpha * tokensSold) - 1) UD60x18 ethBefore = kFixed.mul(alphaFixed.mul(soldTokensFixed).exp()).sub(kFixed); // Calculate ethAfter = k * (exp(alpha * (tokensSold - tokenAmount)) - 1) UD60x18 ethAfter = kFixed.mul(alphaFixed.mul(soldTokensFixed.sub(tokenAmountFixed)).exp()).sub(kFixed); // Return the difference in Wei (ETH) return ethBefore.sub(ethAfter).unwrap(); } // Function to calculate the number of tokens for a given ETH amount function getTokenIn(uint256 ethAmount) public view returns (uint256) { UD60x18 totalRaisedFixed = ud(totalRaised); UD60x18 ethAmountFixed = ud(ethAmount); UD60x18 kFixed = ud(k); UD60x18 alphaFixed = ud(alpha); // Calculate tokensBefore = ln((totalRaised / k) + 1) / alpha UD60x18 tokensBefore = totalRaisedFixed.div(kFixed).add(ud(1e18)).ln().div(alphaFixed); // Calculate tokensAfter = ln(((totalRaised + ethAmount) / k) + 1) / alpha UD60x18 tokensAfter = totalRaisedFixed.add(ethAmountFixed).div(kFixed).add(ud(1e18)).ln().div(alphaFixed); // Return the difference in tokens return tokensAfter.sub(tokensBefore).unwrap(); } // Optimized buy function with direct fee distribution function buy(address user, uint256 minTokensOut) external payable onlyFactory nonReentrant returns (uint256, uint256) { require(!launched, "Sale already launched"); require(totalRaised + msg.value <= saleGoal + 0.1 ether, "Sale goal reached"); require(msg.value > 0, "No ETH sent"); require(!status, "bonded"); // Calculate the fee and amount after fee deduction uint256 fee = (msg.value * feePercent) / 100; uint256 amountAfterFee = msg.value - fee; // Calculate tokens to buy with amountAfterFee uint256 tokensToBuy = getTokenIn(amountAfterFee); require(tokensToBuy >= minTokensOut, "Slippage too high, transaction reverted"); tokensSold += tokensToBuy; totalRaised += amountAfterFee; tokenBalances[user] += tokensToBuy; if (!isTokenHolder[user]) { tokenHolders.push(user); isTokenHolder[user] = true; } payable(feeWallet).transfer(fee / 2); payable(0x4C5fbF8D815379379b3695ba77B5D3f898C1230b).transfer(fee / 2); if (totalRaised >= saleGoal) { status = true; } updateHistoricalData(); emit TokensPurchased( user, amountAfterFee, tokensToBuy, block.timestamp ); return (totalRaised, tokenBalances[user]); } // Optimized sell function with direct fee distribution function sell(address user, uint256 tokenAmount, uint256 minEthOut) external onlyFactory nonReentrant returns (uint256, uint256) { require(!launched, "Sale already launched"); require(tokenAmount > 0, "Token amount must be greater than 0"); require(tokenBalances[user] >= tokenAmount, "Insufficient token balance"); require(!status, "bonded"); uint256 ethToReturn = getEthIn(tokenAmount); require(ethToReturn >= minEthOut, "Slippage too high, transaction reverted"); require(ethToReturn <= address(this).balance, "Insufficient contract balance"); // Calculate the fee and amount after fee deduction uint256 fee = (ethToReturn * feePercent) / 100; uint256 ethAfterFee = ethToReturn - fee; tokensSold -= tokenAmount; totalRaised -= ethToReturn; tokenBalances[user] -= tokenAmount; // Transfer ETH after fee to the user payable(user).transfer(ethAfterFee); payable(feeWallet).transfer(fee / 2); payable(0x4C5fbF8D815379379b3695ba77B5D3f898C1230b).transfer(fee / 2); updateHistoricalData(); emit TokensSold( user, tokenAmount, ethAfterFee, block.timestamp ); return (totalRaised, tokenBalances[user]); } function updateHistoricalData() internal { historicalData.push(HistoricalData({ timestamp: block.timestamp, totalRaised: totalRaised })); //emit HistoricalDataUpdated(block.timestamp, totalRaised); } // Launch the sale, users can claim their tokens after launch function launchSale( address _launchContract, uint8 buyLpFee, uint8 sellLpFee, uint8 buyProtocolFee, uint8 sellProtocolFee, address firstBuyer, address saleInitiator ) external onlyFactory nonReentrant { require(!launched, "Sale already launched"); require(totalRaised >= saleGoal, "Sale goal not reached"); require(status, "not bonded"); launched = true; uint256 tokenAmount = (totalTokens - tokensSold); uint256 ethAmount = totalRaised; uint256 launchEthAmount = ((100 - creatorshare) * ethAmount) / 100; _approve(address(this), _launchContract, tokenAmount); ILaunchContract(_launchContract).launch{value: launchEthAmount}( address(this), tokenAmount, 0, 0, buyLpFee, sellLpFee, buyProtocolFee, sellProtocolFee, creator ); uint256 creatorShareAmount = address(this).balance; require(creatorShareAmount > 0, "No balance for creator share"); payable(firstBuyer).transfer(creatorShareAmount/2); payable(saleInitiator).transfer(creatorShareAmount/2); } // Claim tokens after the sale is launched function claimTokens(address user) external onlyFactory nonReentrant { require(launched, "Sale not launched"); uint256 tokenAmount = tokenBalances[user]; require(tokenAmount > 0, "No tokens to claim"); tokenBalances[user] = 0; _transfer(address(this), user, tokenAmount); } function getTokenHoldersCount() external view returns (uint256) { return tokenHolders.length; } function getAllTokenHolders() external view returns (address[] memory) { return tokenHolders; } function getAllHistoricalData() external view returns (HistoricalData[] memory) { return historicalData; } function takeFee(address lockFactoryOwner) external onlyFactory nonReentrant { IVistaFactory vistaFactory = IVistaFactory(vistaFactoryAddress); address pairAddress = vistaFactory.getPair(address(this), wethAddress); require(pairAddress != address(0), "Pair not found"); IPair pair = IPair(pairAddress); pair.claimShare(); uint256 claimedEth = address(this).balance; require(claimedEth > 0, "No ETH claimed"); uint256 fee1 = claimedEth/2; uint256 fee2 = claimedEth-fee1; payable(lockFactoryOwner).transfer(fee1); payable(0x4C5fbF8D815379379b3695ba77B5D3f898C1230b).transfer(fee2); } function getShare() external view returns (uint256) { IVistaFactory vistaFactory = IVistaFactory(vistaFactoryAddress); address pairAddress = vistaFactory.getPair(address(this), wethAddress); return IPair(pairAddress).viewShare(); } receive() external payable {} }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./SaleContract.sol"; import "@openzeppelin/contracts/security/ReentrancyGuard.sol"; interface ISaleContract { function buy(address user, uint256 minTokensOut) external payable returns (uint256, uint256); function sell(address user, uint256 tokenAmount, uint256 minEthOut) external returns (uint256, uint256); function claimTokens(address user) external; function launchSale( address _launchContract, uint8 buyLpFee, uint8 sellLpFee, uint8 buyProtocolFee, uint8 sellProtocolFee, address firstBuyer, address saleInitiator ) external; function takeFee(address lockFactoryOwner) external; function token() external view returns (address); } contract EtherFunFactory is ReentrancyGuard { address public owner; address public launchContractAddress = 0xCEDd366065A146a039B92Db35756ecD7688FCC77; uint256 public saleCounter; uint256 public totalTokens = 1000000000 * 1e18; uint256 public defaultSaleGoal = 1.5 ether; uint8 public creatorshare = 4; uint8 public feepercent = 2; uint256 public defaultK = 222 * 1e15; uint256 public defaultAlpha = 2878 * 1e6; uint8 public buyLpFee = 5; uint8 public sellLpFee = 5; uint8 public buyProtocolFee = 5; uint8 public sellProtocolFee = 5; struct Sale { address creator; string name; string symbol; uint256 totalRaised; uint256 saleGoal; bool launched; uint256 creationNonce; } struct SaleMetadata { string logoUrl; string websiteUrl; string twitterUrl; string telegramUrl; string description; } mapping(address => Sale) public sales; mapping(address => mapping(address => bool)) public hasClaimed; mapping(address => SaleMetadata) public saleMetadata; mapping(address => address[]) public userBoughtTokens; mapping(address => mapping(address => bool)) public userHasBoughtToken; mapping(address => uint256) creationNonce; mapping(address => address) public firstBuyer; mapping(address => address[]) public creatorTokens; event SaleCreated( address indexed tokenAddress, address indexed creator, string name, string symbol, uint256 saleGoal, string logoUrl, string websiteUrl, string twitterUrl, string telegramUrl, string description ); event SaleLaunched(address indexed tokenAddress, address indexed launcher); event Claimed(address indexed tokenAddress, address indexed claimant); event MetaUpdated(address indexed tokenAddress, string logoUrl, string websiteUrl, string twitterUrl, string telegramUrl, string description); event TokensBought(address indexed tokenAddress, address indexed buyer, uint256 totalRaised, uint256 tokenBalance); event TokensSold(address indexed tokenAddress, address indexed seller, uint256 totalRaised, uint256 tokenBalance); modifier onlyOwner() { require(msg.sender == owner, "Not the owner"); _; } modifier onlySaleCreator(address tokenAddress) { require(msg.sender == sales[tokenAddress].creator, "Not creator"); _; } constructor() { owner = msg.sender; } function createSale( string memory name, string memory symbol, string memory logoUrl, string memory websiteUrl, string memory twitterUrl, string memory telegramUrl, string memory description ) external payable nonReentrant { creationNonce[msg.sender]++; uint256 currentNonce = creationNonce[msg.sender]; address tokenAddress = predictTokenAddress(msg.sender, name, symbol, currentNonce); sales[tokenAddress] = Sale({ creator: msg.sender, name: name, symbol: symbol, totalRaised: 0, saleGoal: defaultSaleGoal, launched: false, creationNonce: currentNonce }); saleMetadata[tokenAddress] = SaleMetadata({ logoUrl: logoUrl, websiteUrl: websiteUrl, twitterUrl: twitterUrl, telegramUrl: telegramUrl, description: description }); creatorTokens[msg.sender].push(tokenAddress); saleCounter++; emit SaleCreated( tokenAddress, msg.sender, name, symbol, defaultSaleGoal, logoUrl, websiteUrl, twitterUrl, telegramUrl, description ); if (msg.value > 0) { require(msg.value < 0.2 ether, "Too many tokens bought"); bytes32 salt = keccak256(abi.encodePacked(msg.sender, currentNonce)); bytes memory bytecode = abi.encodePacked( type(EtherfunSale).creationCode, abi.encode( name, symbol, msg.sender, address(this), totalTokens, defaultK, defaultAlpha, defaultSaleGoal, creatorshare, feepercent ) ); assembly { tokenAddress := create2(0, add(bytecode, 32), mload(bytecode), salt) if iszero(extcodesize(tokenAddress)) { revert(0, 0) } } firstBuyer[tokenAddress] = msg.sender; uint256 minTokensOut = 0; (uint256 totalRaised, uint256 tokenBalance) = ISaleContract(tokenAddress).buy{value: msg.value}(msg.sender, minTokensOut); sales[tokenAddress].totalRaised = totalRaised; userBoughtTokens[msg.sender].push(tokenAddress); userHasBoughtToken[msg.sender][tokenAddress] = true; emit TokensBought(tokenAddress, msg.sender, totalRaised, tokenBalance); } } function buyToken(address tokenAddress, uint256 minTokensOut) external payable nonReentrant { Sale storage sale = sales[tokenAddress]; require(!sale.launched, "Sale already launched"); if (firstBuyer[tokenAddress] == address(0)) { bytes32 salt = keccak256(abi.encodePacked(sale.creator, sale.creationNonce)); bytes memory bytecode = abi.encodePacked( type(EtherfunSale).creationCode, abi.encode( sale.name, sale.symbol, sale.creator, address(this), totalTokens, defaultK, defaultAlpha, defaultSaleGoal, creatorshare, feepercent ) ); assembly { tokenAddress := create2(0, add(bytecode, 32), mload(bytecode), salt) if iszero(extcodesize(tokenAddress)) { revert(0, 0) } } firstBuyer[tokenAddress] = msg.sender; } (uint256 totalRaised, uint256 tokenBalance) = ISaleContract(tokenAddress).buy{value: msg.value}(msg.sender, minTokensOut); sale.totalRaised = totalRaised; if (!userHasBoughtToken[msg.sender][tokenAddress]) { userBoughtTokens[msg.sender].push(tokenAddress); userHasBoughtToken[msg.sender][tokenAddress] = true; } if (totalRaised >= sale.saleGoal) { sale.launched = true; emit SaleLaunched(tokenAddress, msg.sender); ISaleContract(tokenAddress).launchSale( launchContractAddress, buyLpFee, sellLpFee, buyProtocolFee, sellProtocolFee, firstBuyer[tokenAddress], msg.sender ); } emit TokensBought(tokenAddress, msg.sender, totalRaised, tokenBalance); } function sellToken(address tokenAddress, uint256 tokenAmount, uint256 minEthOut) external nonReentrant { Sale storage sale = sales[tokenAddress]; require(!sale.launched, "Sale already launched"); (uint256 totalRaised, uint256 tokenBalance) = ISaleContract(tokenAddress).sell(msg.sender, tokenAmount, minEthOut); sale.totalRaised = totalRaised; emit TokensSold(tokenAddress, msg.sender, totalRaised, tokenBalance); } function claim(address tokenAddress) external nonReentrant { Sale storage sale = sales[tokenAddress]; require(sale.launched, "Sale not launched"); require(!hasClaimed[tokenAddress][msg.sender], "Already claimed"); hasClaimed[tokenAddress][msg.sender] = true; emit Claimed(tokenAddress, msg.sender); ISaleContract(tokenAddress).claimTokens(msg.sender); } function setSaleMetadata( address tokenAddress, string memory logoUrl, string memory websiteUrl, string memory twitterUrl, string memory telegramUrl, string memory description // New parameter for description ) external onlySaleCreator(tokenAddress) { SaleMetadata storage metadata = saleMetadata[tokenAddress]; metadata.logoUrl = logoUrl; metadata.websiteUrl = websiteUrl; metadata.twitterUrl = twitterUrl; metadata.telegramUrl = telegramUrl; metadata.description = description; // Update the description emit MetaUpdated(tokenAddress, logoUrl, websiteUrl, twitterUrl, telegramUrl, description); } function getUserBoughtTokens(address user) external view returns (address[] memory) { return userBoughtTokens[user]; } function getUserBoughtTokensLength(address user) external view returns (uint256) { return userBoughtTokens[user].length; } function getCurrentNonce(address user) public view returns (uint256) { return creationNonce[user]; } function getCreatorTokens(address creator) external view returns (address[] memory) { return creatorTokens[creator]; } function predictTokenAddress( address creator, string memory name, string memory symbol, uint256 nonce ) public view returns (address) { bytes32 salt = keccak256(abi.encodePacked(creator, nonce)); bytes32 initCodeHash = keccak256(abi.encodePacked( type(EtherfunSale).creationCode, abi.encode( name, symbol, creator, address(this), totalTokens, defaultK, defaultAlpha, defaultSaleGoal, creatorshare, feepercent ) )); return address(uint160(uint256(keccak256(abi.encodePacked( bytes1(0xff), address(this), salt, initCodeHash ))))); } //OWNER FUNCTIONS function takeFeeFrom(address tokenAddress) external nonReentrant { Sale storage sale = sales[tokenAddress]; require(sale.launched, "Sale not launched"); ISaleContract(tokenAddress).takeFee(owner); } function updateParameters( uint256 _defaultSaleGoal, uint256 _defaultK, uint256 _defaultAlpha, address _launchContractAddress, uint8 _buyLpFee, uint8 _sellLpFee, uint8 _buyProtocolFee, uint8 _sellProtocolFee ) external onlyOwner { require(_defaultSaleGoal > 0, "Invalid sale goal"); require(_defaultK > 0, "Invalid K value"); require(_defaultAlpha > 0, "Invalid alpha value"); require(_launchContractAddress != address(0), "Invalid launch contract"); defaultSaleGoal = _defaultSaleGoal; defaultK = _defaultK; defaultAlpha = _defaultAlpha; launchContractAddress = _launchContractAddress; buyLpFee = _buyLpFee; sellLpFee = _sellLpFee; buyProtocolFee = _buyProtocolFee; sellProtocolFee = _sellProtocolFee; } function updateFeeShares( uint8 _creatorShare, uint8 _feePercent ) external onlyOwner { require(_creatorShare > 0 && _creatorShare <= 100, "Invalid creator share"); require(_feePercent > 0 && _feePercent <= 100, "Invalid fee share"); creatorshare = _creatorShare; feepercent = _feePercent; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == _ENTERED; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; /* ██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗ ██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║ ██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║ ██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║ ██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║ ╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ██╗ ██╗██████╗ ██████╗ ██████╗ ██╗ ██╗ ██╗ █████╗ ██║ ██║██╔══██╗██╔════╝ ██╔═████╗╚██╗██╔╝███║██╔══██╗ ██║ ██║██║ ██║███████╗ ██║██╔██║ ╚███╔╝ ╚██║╚█████╔╝ ██║ ██║██║ ██║██╔═══██╗████╔╝██║ ██╔██╗ ██║██╔══██╗ ╚██████╔╝██████╔╝╚██████╔╝╚██████╔╝██╔╝ ██╗ ██║╚█████╔╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚════╝ */ import "./ud60x18/Casting.sol"; import "./ud60x18/Constants.sol"; import "./ud60x18/Conversions.sol"; import "./ud60x18/Errors.sol"; import "./ud60x18/Helpers.sol"; import "./ud60x18/Math.sol"; import "./ud60x18/ValueType.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC20Metadata} from "./extensions/IERC20Metadata.sol"; import {Context} from "../../utils/Context.sol"; import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. */ abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors { mapping(address account => uint256) private _balances; mapping(address account => mapping(address spender => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `value`. */ function transfer(address to, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _transfer(owner, to, value); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, value); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `value`. * - the caller must have allowance for ``from``'s tokens of at least * `value`. */ function transferFrom(address from, address to, uint256 value) public virtual returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, value); _transfer(from, to, value); return true; } /** * @dev Moves a `value` amount of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _transfer(address from, address to, uint256 value) internal { if (from == address(0)) { revert ERC20InvalidSender(address(0)); } if (to == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(from, to, value); } /** * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from` * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding * this function. * * Emits a {Transfer} event. */ function _update(address from, address to, uint256 value) internal virtual { if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows _totalSupply += value; } else { uint256 fromBalance = _balances[from]; if (fromBalance < value) { revert ERC20InsufficientBalance(from, fromBalance, value); } unchecked { // Overflow not possible: value <= fromBalance <= totalSupply. _balances[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply. _totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256. _balances[to] += value; } } emit Transfer(from, to, value); } /** * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0). * Relies on the `_update` mechanism * * Emits a {Transfer} event with `from` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _mint(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(address(0), account, value); } /** * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply. * Relies on the `_update` mechanism. * * Emits a {Transfer} event with `to` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead */ function _burn(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidSender(address(0)); } _update(account, address(0), value); } /** * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address owner, address spender, uint256 value) internal { _approve(owner, spender, value, true); } /** * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event. * * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any * `Approval` event during `transferFrom` operations. * * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to * true using the following override: * ``` * function _approve(address owner, address spender, uint256 value, bool) internal virtual override { * super._approve(owner, spender, value, true); * } * ``` * * Requirements are the same as {_approve}. */ function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual { if (owner == address(0)) { revert ERC20InvalidApprover(address(0)); } if (spender == address(0)) { revert ERC20InvalidSpender(address(0)); } _allowances[owner][spender] = value; if (emitEvent) { emit Approval(owner, spender, value); } } /** * @dev Updates `owner` s allowance for `spender` based on spent `value`. * * Does not update the allowance value in case of infinite allowance. * Revert if not enough allowance is available. * * Does not emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 value) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { if (currentAllowance < value) { revert ERC20InsufficientAllowance(spender, currentAllowance, value); } unchecked { _approve(owner, spender, currentAllowance - value, false); } } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256. /// @dev The value type is defined here so it can be imported in all other files. type UD60x18 is uint256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoSD59x18, Casting.intoUint128, Casting.intoUint256, Casting.intoUint40, Casting.unwrap } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.ln, Math.log10, Math.log2, Math.mul, Math.pow, Math.powu, Math.sqrt } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.xor } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the UD60x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.or as |, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.sub as -, Helpers.xor as ^ } for UD60x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { wrap } from "./Casting.sol"; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_UD60x18, uMAX_WHOLE_UD60x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { UD60x18 } from "./ValueType.sol"; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the arithmetic average of x and y using the following formula: /// /// $$ /// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2) /// $$ /// /// In English, this is what this formula does: /// /// 1. AND x and y. /// 2. Calculate half of XOR x and y. /// 3. Add the two results together. /// /// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here: /// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223 /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The arithmetic average as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); unchecked { result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1)); } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_UD60x18`. /// /// @param x The UD60x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint > uMAX_WHOLE_UD60x18) { revert Errors.PRBMath_UD60x18_Ceil_Overflow(x); } assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `UNIT - remainder`. let delta := sub(uUNIT, remainder) // Equivalent to `x + remainder > 0 ? delta : 0`. result := add(x, mul(delta, gt(remainder, 0))) } } /// @notice Divides two UD60x18 numbers, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @param x The numerator as a UD60x18 number. /// @param y The denominator as a UD60x18 number. /// @param result The quotient as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap())); } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Requirements: /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // This check prevents values greater than 192e18 from being passed to {exp2}. if (xUint > uEXP_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. uint256 doubleUnitProduct = xUint * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693 /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in UD60x18. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xUint > uEXP2_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x); } // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = (xUint << 64) / uUNIT; // Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation. result = wrap(Common.exp2(x_192x64)); } /// @notice Yields the greatest whole number less than or equal to x. /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// @param x The UD60x18 number to floor. /// @param result The greatest whole number less than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function floor(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `x - remainder > 0 ? remainder : 0)`. result := sub(x, mul(remainder, gt(remainder, 0))) } } /// @notice Yields the excess beyond the floor of x using the odd function definition. /// @dev See https://en.wikipedia.org/wiki/Fractional_part. /// @param x The UD60x18 number to get the fractional part of. /// @param result The fractional part of x as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function frac(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { result := mod(x, uUNIT) } } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down. /// /// @dev Requirements: /// - x * y must fit in UD60x18. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); if (xUint == 0 || yUint == 0) { return ZERO; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. uint256 xyUint = xUint * yUint; if (xyUint / xUint != yUint) { revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. result = wrap(Common.sqrt(xyUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The UD60x18 number for which to calculate the inverse. /// @return result The inverse as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function inv(UD60x18 x) pure returns (UD60x18 result) { unchecked { result = wrap(uUNIT_SQUARED / x.unwrap()); } } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ln(UD60x18 x) pure returns (UD60x18 result) { unchecked { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~196_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the common logarithm. /// @return result The common logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log10(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } // Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) } default { result := uMAX_UD60x18 } } if (result.unwrap() == uMAX_UD60x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm: /// /// $$ /// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2) /// $$ /// /// For $0 \leq x \lt 1$, the input is inverted: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The UD60x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } unchecked { // Calculate the integer part of the logarithm. uint256 n = Common.msb(xUint / uUNIT); // This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n // n is at most 255 and UNIT is 1e18. uint256 resultUint = n * uUNIT; // Calculate $y = x * 2^{-n}$. uint256 y = xUint >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultUint); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. uint256 DOUBLE_UNIT = 2e18; for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultUint += delta; // Halve y, which corresponds to z/2 in the Wikipedia article. y >>= 1; } } result = wrap(resultUint); } } /// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @dev See the documentation in {Common.mulDiv18}. /// @param x The multiplicand as a UD60x18 number. /// @param y The multiplier as a UD60x18 number. /// @return result The product as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap())); } /// @notice Raises x to the power of y. /// /// For $1 \leq x \leq \infty$, the following standard formula is used: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used: /// /// $$ /// i = \frac{1}{x} /// w = 2^{log_2{i} * y} /// x^y = \frac{1}{w} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2} and {mul}. /// - Returns `UNIT` for 0^0. /// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xUint == 0) { return yUint == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xUint == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yUint == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yUint == uUNIT) { return x; } // If x is greater than `UNIT`, use the standard formula. if (xUint > uUNIT) { result = exp2(mul(log2(x), y)); } // Conversely, if x is less than `UNIT`, use the equivalent formula. else { UD60x18 i = wrap(uUNIT_SQUARED / xUint); UD60x18 w = exp2(mul(log2(i), y)); result = wrap(uUNIT_SQUARED / w.unwrap()); } } /// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - The result must fit in UD60x18. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a uint256. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) { // Calculate the first iteration of the loop in advance. uint256 xUint = x.unwrap(); uint256 resultUint = y & 1 > 0 ? xUint : uUNIT; // Equivalent to `for(y /= 2; y > 0; y /= 2)`. for (y >>= 1; y > 0; y >>= 1) { xUint = Common.mulDiv18(xUint, xUint); // Equivalent to `y % 2 == 1`. if (y & 1 > 0) { resultUint = Common.mulDiv18(resultUint, xUint); } } result = wrap(resultUint); } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must be less than `MAX_UD60x18 / UNIT`. /// /// @param x The UD60x18 number for which to calculate the square root. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); unchecked { if (xUint > uMAX_UD60x18 / uUNIT) { revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x); } // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers. // In this case, the two numbers are both the square root. result = wrap(Common.sqrt(xUint * uUNIT)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the UD60x18 type. function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal operation (==) in the UD60x18 type. function eq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the UD60x18 type. function gt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type. function gte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the UD60x18 type. function isZero(UD60x18 x) pure returns (bool result) { // This wouldn't work if x could be negative. result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the UD60x18 type. function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the UD60x18 type. function lt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type. function lte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the checked modulo operation (%) in the UD60x18 type. function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the UD60x18 type. function neq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the UD60x18 type. function not(UD60x18 x) pure returns (UD60x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the UD60x18 type. function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the UD60x18 type. function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the UD60x18 type. function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the UD60x18 type. function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type. function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the UD60x18 type. function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; /// @notice Thrown when ceiling a number overflows UD60x18. error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows UD60x18. error PRBMath_UD60x18_Convert_Overflow(uint256 x); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows UD60x18. error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD59x18. error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x); /// @notice Thrown when taking the logarithm of a number less than 1. error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x); /// @notice Thrown when calculating the square root overflows UD60x18. error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { uMAX_UD60x18, uUNIT } from "./Constants.sol"; import { PRBMath_UD60x18_Convert_Overflow } from "./Errors.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Converts a UD60x18 number to a simple integer by dividing it by `UNIT`. /// @dev The result is rounded toward zero. /// @param x The UD60x18 number to convert. /// @return result The same number in basic integer form. function convert(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x) / uUNIT; } /// @notice Converts a simple integer to UD60x18 by multiplying it by `UNIT`. /// /// @dev Requirements: /// - x must be less than or equal to `MAX_UD60x18 / UNIT`. /// /// @param x The basic integer to convert. /// @param result The same number converted to UD60x18. function convert(uint256 x) pure returns (UD60x18 result) { if (x > uMAX_UD60x18 / uUNIT) { revert PRBMath_UD60x18_Convert_Overflow(x); } unchecked { result = UD60x18.wrap(x * uUNIT); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as a UD60x18 number. UD60x18 constant E = UD60x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. uint256 constant uEXP_MAX_INPUT = 133_084258667509499440; UD60x18 constant EXP_MAX_INPUT = UD60x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. uint256 constant uEXP2_MAX_INPUT = 192e18 - 1; UD60x18 constant EXP2_MAX_INPUT = UD60x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. uint256 constant uHALF_UNIT = 0.5e18; UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as a UD60x18 number. uint256 constant uLOG2_10 = 3_321928094887362347; UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as a UD60x18 number. uint256 constant uLOG2_E = 1_442695040888963407; UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E); /// @dev The maximum value a UD60x18 number can have. uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935; UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18); /// @dev The maximum whole value a UD60x18 number can have. uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000; UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18); /// @dev PI as a UD60x18 number. UD60x18 constant PI = UD60x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD60x18. uint256 constant uUNIT = 1e18; UD60x18 constant UNIT = UD60x18.wrap(uUNIT); /// @dev The unit number squared. uint256 constant uUNIT_SQUARED = 1e36; UD60x18 constant UNIT_SQUARED = UD60x18.wrap(uUNIT_SQUARED); /// @dev Zero as a UD60x18 number. UD60x18 constant ZERO = UD60x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_SD59x18 } from "../sd59x18/Constants.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Casts a UD60x18 number into SD1x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(int256(uMAX_SD1x18))) { revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(uint64(xUint))); } /// @notice Casts a UD60x18 number into UD2x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uMAX_UD2x18) { revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(xUint)); } /// @notice Casts a UD60x18 number into SD59x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD59x18`. function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(uMAX_SD59x18)) { revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x); } result = SD59x18.wrap(int256(xUint)); } /// @notice Casts a UD60x18 number into uint128. /// @dev This is basically an alias for {unwrap}. function intoUint256(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Casts a UD60x18 number into uint128. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT128`. function intoUint128(UD60x18 x) pure returns (uint128 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT128) { revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x); } result = uint128(xUint); } /// @notice Casts a UD60x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD60x18 x) pure returns (uint40 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT40) { revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Alias for {wrap}. function ud60x18(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Unwraps a UD60x18 number into uint256. function unwrap(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Wraps a uint256 number into the UD60x18 value type. function wrap(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; // Common.sol // // Common mathematical functions used in both SD59x18 and UD60x18. Note that these global functions do not // always operate with SD59x18 and UD60x18 numbers. /*////////////////////////////////////////////////////////////////////////// CUSTOM ERRORS //////////////////////////////////////////////////////////////////////////*/ /// @notice Thrown when the resultant value in {mulDiv} overflows uint256. error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator); /// @notice Thrown when the resultant value in {mulDiv18} overflows uint256. error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y); /// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`. error PRBMath_MulDivSigned_InputTooSmall(); /// @notice Thrown when the resultant value in {mulDivSigned} overflows int256. error PRBMath_MulDivSigned_Overflow(int256 x, int256 y); /*////////////////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////////////////*/ /// @dev The maximum value a uint128 number can have. uint128 constant MAX_UINT128 = type(uint128).max; /// @dev The maximum value a uint40 number can have. uint40 constant MAX_UINT40 = type(uint40).max; /// @dev The unit number, which the decimal precision of the fixed-point types. uint256 constant UNIT = 1e18; /// @dev The unit number inverted mod 2^256. uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281; /// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant /// bit in the binary representation of `UNIT`. uint256 constant UNIT_LPOTD = 262144; /*////////////////////////////////////////////////////////////////////////// FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693. /// @param x The exponent as an unsigned 192.64-bit fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function exp2(uint256 x) pure returns (uint256 result) { unchecked { // Start from 0.5 in the 192.64-bit fixed-point format. result = 0x800000000000000000000000000000000000000000000000; // The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points: // // 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65. // 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing // a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1, // we know that `x & 0xFF` is also 1. if (x & 0xFF00000000000000 > 0) { if (x & 0x8000000000000000 > 0) { result = (result * 0x16A09E667F3BCC909) >> 64; } if (x & 0x4000000000000000 > 0) { result = (result * 0x1306FE0A31B7152DF) >> 64; } if (x & 0x2000000000000000 > 0) { result = (result * 0x1172B83C7D517ADCE) >> 64; } if (x & 0x1000000000000000 > 0) { result = (result * 0x10B5586CF9890F62A) >> 64; } if (x & 0x800000000000000 > 0) { result = (result * 0x1059B0D31585743AE) >> 64; } if (x & 0x400000000000000 > 0) { result = (result * 0x102C9A3E778060EE7) >> 64; } if (x & 0x200000000000000 > 0) { result = (result * 0x10163DA9FB33356D8) >> 64; } if (x & 0x100000000000000 > 0) { result = (result * 0x100B1AFA5ABCBED61) >> 64; } } if (x & 0xFF000000000000 > 0) { if (x & 0x80000000000000 > 0) { result = (result * 0x10058C86DA1C09EA2) >> 64; } if (x & 0x40000000000000 > 0) { result = (result * 0x1002C605E2E8CEC50) >> 64; } if (x & 0x20000000000000 > 0) { result = (result * 0x100162F3904051FA1) >> 64; } if (x & 0x10000000000000 > 0) { result = (result * 0x1000B175EFFDC76BA) >> 64; } if (x & 0x8000000000000 > 0) { result = (result * 0x100058BA01FB9F96D) >> 64; } if (x & 0x4000000000000 > 0) { result = (result * 0x10002C5CC37DA9492) >> 64; } if (x & 0x2000000000000 > 0) { result = (result * 0x1000162E525EE0547) >> 64; } if (x & 0x1000000000000 > 0) { result = (result * 0x10000B17255775C04) >> 64; } } if (x & 0xFF0000000000 > 0) { if (x & 0x800000000000 > 0) { result = (result * 0x1000058B91B5BC9AE) >> 64; } if (x & 0x400000000000 > 0) { result = (result * 0x100002C5C89D5EC6D) >> 64; } if (x & 0x200000000000 > 0) { result = (result * 0x10000162E43F4F831) >> 64; } if (x & 0x100000000000 > 0) { result = (result * 0x100000B1721BCFC9A) >> 64; } if (x & 0x80000000000 > 0) { result = (result * 0x10000058B90CF1E6E) >> 64; } if (x & 0x40000000000 > 0) { result = (result * 0x1000002C5C863B73F) >> 64; } if (x & 0x20000000000 > 0) { result = (result * 0x100000162E430E5A2) >> 64; } if (x & 0x10000000000 > 0) { result = (result * 0x1000000B172183551) >> 64; } } if (x & 0xFF00000000 > 0) { if (x & 0x8000000000 > 0) { result = (result * 0x100000058B90C0B49) >> 64; } if (x & 0x4000000000 > 0) { result = (result * 0x10000002C5C8601CC) >> 64; } if (x & 0x2000000000 > 0) { result = (result * 0x1000000162E42FFF0) >> 64; } if (x & 0x1000000000 > 0) { result = (result * 0x10000000B17217FBB) >> 64; } if (x & 0x800000000 > 0) { result = (result * 0x1000000058B90BFCE) >> 64; } if (x & 0x400000000 > 0) { result = (result * 0x100000002C5C85FE3) >> 64; } if (x & 0x200000000 > 0) { result = (result * 0x10000000162E42FF1) >> 64; } if (x & 0x100000000 > 0) { result = (result * 0x100000000B17217F8) >> 64; } } if (x & 0xFF000000 > 0) { if (x & 0x80000000 > 0) { result = (result * 0x10000000058B90BFC) >> 64; } if (x & 0x40000000 > 0) { result = (result * 0x1000000002C5C85FE) >> 64; } if (x & 0x20000000 > 0) { result = (result * 0x100000000162E42FF) >> 64; } if (x & 0x10000000 > 0) { result = (result * 0x1000000000B17217F) >> 64; } if (x & 0x8000000 > 0) { result = (result * 0x100000000058B90C0) >> 64; } if (x & 0x4000000 > 0) { result = (result * 0x10000000002C5C860) >> 64; } if (x & 0x2000000 > 0) { result = (result * 0x1000000000162E430) >> 64; } if (x & 0x1000000 > 0) { result = (result * 0x10000000000B17218) >> 64; } } if (x & 0xFF0000 > 0) { if (x & 0x800000 > 0) { result = (result * 0x1000000000058B90C) >> 64; } if (x & 0x400000 > 0) { result = (result * 0x100000000002C5C86) >> 64; } if (x & 0x200000 > 0) { result = (result * 0x10000000000162E43) >> 64; } if (x & 0x100000 > 0) { result = (result * 0x100000000000B1721) >> 64; } if (x & 0x80000 > 0) { result = (result * 0x10000000000058B91) >> 64; } if (x & 0x40000 > 0) { result = (result * 0x1000000000002C5C8) >> 64; } if (x & 0x20000 > 0) { result = (result * 0x100000000000162E4) >> 64; } if (x & 0x10000 > 0) { result = (result * 0x1000000000000B172) >> 64; } } if (x & 0xFF00 > 0) { if (x & 0x8000 > 0) { result = (result * 0x100000000000058B9) >> 64; } if (x & 0x4000 > 0) { result = (result * 0x10000000000002C5D) >> 64; } if (x & 0x2000 > 0) { result = (result * 0x1000000000000162E) >> 64; } if (x & 0x1000 > 0) { result = (result * 0x10000000000000B17) >> 64; } if (x & 0x800 > 0) { result = (result * 0x1000000000000058C) >> 64; } if (x & 0x400 > 0) { result = (result * 0x100000000000002C6) >> 64; } if (x & 0x200 > 0) { result = (result * 0x10000000000000163) >> 64; } if (x & 0x100 > 0) { result = (result * 0x100000000000000B1) >> 64; } } if (x & 0xFF > 0) { if (x & 0x80 > 0) { result = (result * 0x10000000000000059) >> 64; } if (x & 0x40 > 0) { result = (result * 0x1000000000000002C) >> 64; } if (x & 0x20 > 0) { result = (result * 0x10000000000000016) >> 64; } if (x & 0x10 > 0) { result = (result * 0x1000000000000000B) >> 64; } if (x & 0x8 > 0) { result = (result * 0x10000000000000006) >> 64; } if (x & 0x4 > 0) { result = (result * 0x10000000000000003) >> 64; } if (x & 0x2 > 0) { result = (result * 0x10000000000000001) >> 64; } if (x & 0x1 > 0) { result = (result * 0x10000000000000001) >> 64; } } // In the code snippet below, two operations are executed simultaneously: // // 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1 // accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192. // 2. The result is then converted to an unsigned 60.18-decimal fixed-point format. // // The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the, // integer part, $2^n$. result *= UNIT; result >>= (191 - (x >> 64)); } } /// @notice Finds the zero-based index of the first 1 in the binary representation of x. /// /// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set /// /// Each step in this implementation is equivalent to this high-level code: /// /// ```solidity /// if (x >= 2 ** 128) { /// x >>= 128; /// result += 128; /// } /// ``` /// /// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here: /// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948 /// /// The Yul instructions used below are: /// /// - "gt" is "greater than" /// - "or" is the OR bitwise operator /// - "shl" is "shift left" /// - "shr" is "shift right" /// /// @param x The uint256 number for which to find the index of the most significant bit. /// @return result The index of the most significant bit as a uint256. /// @custom:smtchecker abstract-function-nondet function msb(uint256 x) pure returns (uint256 result) { // 2^128 assembly ("memory-safe") { let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^64 assembly ("memory-safe") { let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^32 assembly ("memory-safe") { let factor := shl(5, gt(x, 0xFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^16 assembly ("memory-safe") { let factor := shl(4, gt(x, 0xFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^8 assembly ("memory-safe") { let factor := shl(3, gt(x, 0xFF)) x := shr(factor, x) result := or(result, factor) } // 2^4 assembly ("memory-safe") { let factor := shl(2, gt(x, 0xF)) x := shr(factor, x) result := or(result, factor) } // 2^2 assembly ("memory-safe") { let factor := shl(1, gt(x, 0x3)) x := shr(factor, x) result := or(result, factor) } // 2^1 // No need to shift x any more. assembly ("memory-safe") { let factor := gt(x, 0x1) result := or(result, factor) } } /// @notice Calculates x*y÷denominator with 512-bit precision. /// /// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - The denominator must not be zero. /// - The result must fit in uint256. /// /// @param x The multiplicand as a uint256. /// @param y The multiplier as a uint256. /// @param denominator The divisor as a uint256. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { unchecked { return prod0 / denominator; } } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (prod1 >= denominator) { revert PRBMath_MulDiv_Overflow(x, y, denominator); } //////////////////////////////////////////////////////////////////////////// // 512 by 256 division //////////////////////////////////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly ("memory-safe") { // Compute remainder using the mulmod Yul instruction. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512-bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } unchecked { // Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow // because the denominator cannot be zero at this point in the function execution. The result is always >= 1. // For more detail, see https://cs.stackexchange.com/q/138556/92363. uint256 lpotdod = denominator & (~denominator + 1); uint256 flippedLpotdod; assembly ("memory-safe") { // Factor powers of two out of denominator. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one. // `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits. // However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693 flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * flippedLpotdod; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; } } /// @notice Calculates x*y÷1e18 with 512-bit precision. /// /// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18. /// /// Notes: /// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}. /// - The result is rounded toward zero. /// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations: /// /// $$ /// \begin{cases} /// x * y = MAX\_UINT256 * UNIT \\ /// (x * y) \% UNIT \geq \frac{UNIT}{2} /// \end{cases} /// $$ /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - The result must fit in uint256. /// /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) { uint256 prod0; uint256 prod1; assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 == 0) { unchecked { return prod0 / UNIT; } } if (prod1 >= UNIT) { revert PRBMath_MulDiv18_Overflow(x, y); } uint256 remainder; assembly ("memory-safe") { remainder := mulmod(x, y, UNIT) result := mul( or( div(sub(prod0, remainder), UNIT_LPOTD), mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1)) ), UNIT_INVERSE ) } } /// @notice Calculates x*y÷denominator with 512-bit precision. /// /// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - None of the inputs can be `type(int256).min`. /// - The result must fit in int256. /// /// @param x The multiplicand as an int256. /// @param y The multiplier as an int256. /// @param denominator The divisor as an int256. /// @return result The result as an int256. /// @custom:smtchecker abstract-function-nondet function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) { if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) { revert PRBMath_MulDivSigned_InputTooSmall(); } // Get hold of the absolute values of x, y and the denominator. uint256 xAbs; uint256 yAbs; uint256 dAbs; unchecked { xAbs = x < 0 ? uint256(-x) : uint256(x); yAbs = y < 0 ? uint256(-y) : uint256(y); dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator); } // Compute the absolute value of x*y÷denominator. The result must fit in int256. uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs); if (resultAbs > uint256(type(int256).max)) { revert PRBMath_MulDivSigned_Overflow(x, y); } // Get the signs of x, y and the denominator. uint256 sx; uint256 sy; uint256 sd; assembly ("memory-safe") { // "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement. sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) sd := sgt(denominator, sub(0, 1)) } // XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs. // If there are, the result should be negative. Otherwise, it should be positive. unchecked { result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - If x is not a perfect square, the result is rounded down. /// - Credits to OpenZeppelin for the explanations in comments below. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function sqrt(uint256 x) pure returns (uint256 result) { if (x == 0) { return 0; } // For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x. // // We know that the "msb" (most significant bit) of x is a power of 2 such that we have: // // $$ // msb(x) <= x <= 2*msb(x)$ // $$ // // We write $msb(x)$ as $2^k$, and we get: // // $$ // k = log_2(x) // $$ // // Thus, we can write the initial inequality as: // // $$ // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\ // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\ // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1} // $$ // // Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit. uint256 xAux = uint256(x); result = 1; if (xAux >= 2 ** 128) { xAux >>= 128; result <<= 64; } if (xAux >= 2 ** 64) { xAux >>= 64; result <<= 32; } if (xAux >= 2 ** 32) { xAux >>= 32; result <<= 16; } if (xAux >= 2 ** 16) { xAux >>= 16; result <<= 8; } if (xAux >= 2 ** 8) { xAux >>= 8; result <<= 4; } if (xAux >= 2 ** 4) { xAux >>= 4; result <<= 2; } if (xAux >= 2 ** 2) { result <<= 1; } // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of // precision into the expected uint128 result. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // If x is not a perfect square, round the result toward zero. uint256 roundedResult = x / result; if (result >= roundedResult) { result = roundedResult; } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract /// storage. type UD2x18 is uint64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoSD59x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for UD2x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @dev Euler's number as a UD2x18 number. UD2x18 constant E = UD2x18.wrap(2_718281828459045235); /// @dev The maximum value a UD2x18 number can have. uint64 constant uMAX_UD2x18 = 18_446744073709551615; UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18); /// @dev PI as a UD2x18 number. UD2x18 constant PI = UD2x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD2x18. UD2x18 constant UNIT = UD2x18.wrap(1e18); uint64 constant uUNIT = 1e18;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int256. type SD59x18 is int256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoInt256, Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Math.abs, Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.log10, Math.log2, Math.ln, Math.mul, Math.pow, Math.powu, Math.sqrt } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.uncheckedUnary, Helpers.xor } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the SD59x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.or as |, Helpers.sub as -, Helpers.unary as -, Helpers.xor as ^ } for SD59x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as an SD59x18 number. SD59x18 constant E = SD59x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. int256 constant uEXP_MAX_INPUT = 133_084258667509499440; SD59x18 constant EXP_MAX_INPUT = SD59x18.wrap(uEXP_MAX_INPUT); /// @dev Any value less than this returns 0 in {exp}. int256 constant uEXP_MIN_THRESHOLD = -41_446531673892822322; SD59x18 constant EXP_MIN_THRESHOLD = SD59x18.wrap(uEXP_MIN_THRESHOLD); /// @dev The maximum input permitted in {exp2}. int256 constant uEXP2_MAX_INPUT = 192e18 - 1; SD59x18 constant EXP2_MAX_INPUT = SD59x18.wrap(uEXP2_MAX_INPUT); /// @dev Any value less than this returns 0 in {exp2}. int256 constant uEXP2_MIN_THRESHOLD = -59_794705707972522261; SD59x18 constant EXP2_MIN_THRESHOLD = SD59x18.wrap(uEXP2_MIN_THRESHOLD); /// @dev Half the UNIT number. int256 constant uHALF_UNIT = 0.5e18; SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as an SD59x18 number. int256 constant uLOG2_10 = 3_321928094887362347; SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as an SD59x18 number. int256 constant uLOG2_E = 1_442695040888963407; SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E); /// @dev The maximum value an SD59x18 number can have. int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967; SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18); /// @dev The maximum whole value an SD59x18 number can have. int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18); /// @dev The minimum value an SD59x18 number can have. int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968; SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18); /// @dev The minimum whole value an SD59x18 number can have. int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18); /// @dev PI as an SD59x18 number. SD59x18 constant PI = SD59x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD59x18. int256 constant uUNIT = 1e18; SD59x18 constant UNIT = SD59x18.wrap(1e18); /// @dev The unit number squared. int256 constant uUNIT_SQUARED = 1e36; SD59x18 constant UNIT_SQUARED = SD59x18.wrap(uUNIT_SQUARED); /// @dev Zero as an SD59x18 number. SD59x18 constant ZERO = SD59x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract /// storage. type SD1x18 is int64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD59x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD1x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @dev Euler's number as an SD1x18 number. SD1x18 constant E = SD1x18.wrap(2_718281828459045235); /// @dev The maximum value an SD1x18 number can have. int64 constant uMAX_SD1x18 = 9_223372036854775807; SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18); /// @dev The maximum value an SD1x18 number can have. int64 constant uMIN_SD1x18 = -9_223372036854775808; SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18); /// @dev PI as an SD1x18 number. SD1x18 constant PI = SD1x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD1x18. SD1x18 constant UNIT = SD1x18.wrap(1e18); int64 constant uUNIT = 1e18;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { UD2x18 } from "./ValueType.sol"; /// @notice Casts a UD2x18 number into SD1x18. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD2x18 x) pure returns (SD1x18 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(uMAX_SD1x18)) { revert Errors.PRBMath_UD2x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xUint)); } /// @notice Casts a UD2x18 number into SD59x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of SD59x18. function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x)))); } /// @notice Casts a UD2x18 number into UD60x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of UD60x18. function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) { result = UD60x18.wrap(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint128. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint128. function intoUint128(UD2x18 x) pure returns (uint128 result) { result = uint128(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint256. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint256. function intoUint256(UD2x18 x) pure returns (uint256 result) { result = uint256(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD2x18 x) pure returns (uint40 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(Common.MAX_UINT40)) { revert Errors.PRBMath_UD2x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud2x18(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); } /// @notice Unwrap a UD2x18 number into uint64. function unwrap(UD2x18 x) pure returns (uint64 result) { result = UD2x18.unwrap(x); } /// @notice Wraps a uint64 number into UD2x18. function wrap(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uEXP_MIN_THRESHOLD, uEXP2_MIN_THRESHOLD, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_SD59x18, uMAX_WHOLE_SD59x18, uMIN_SD59x18, uMIN_WHOLE_SD59x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { wrap } from "./Helpers.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Calculates the absolute value of x. /// /// @dev Requirements: /// - x must be greater than `MIN_SD59x18`. /// /// @param x The SD59x18 number for which to calculate the absolute value. /// @param result The absolute value of x as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function abs(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Abs_MinSD59x18(); } result = xInt < 0 ? wrap(-xInt) : x; } /// @notice Calculates the arithmetic average of x and y. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The arithmetic average as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); unchecked { // This operation is equivalent to `x / 2 + y / 2`, and it can never overflow. int256 sum = (xInt >> 1) + (yInt >> 1); if (sum < 0) { // If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right // rounds toward negative infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`. assembly ("memory-safe") { result := add(sum, and(or(xInt, yInt), 1)) } } else { // Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting. result = wrap(sum + (xInt & yInt & 1)); } } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt > uMAX_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Ceil_Overflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt > 0) { resultInt += uUNIT; } result = wrap(resultInt); } } } /// @notice Divides two SD59x18 numbers, returning a new SD59x18 number. /// /// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute /// values separately. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// - None of the inputs can be `MIN_SD59x18`. /// - The denominator must not be zero. /// - The result must fit in SD59x18. /// /// @param x The numerator as an SD59x18 number. /// @param y The denominator as an SD59x18 number. /// @param result The quotient as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Div_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Div_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}. /// /// Requirements: /// - Refer to the requirements in {exp2}. /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); // Any input less than the threshold returns zero. // This check also prevents an overflow for very small numbers. if (xInt < uEXP_MIN_THRESHOLD) { return ZERO; } // This check prevents values greater than 192e18 from being passed to {exp2}. if (xInt > uEXP_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. int256 doubleUnitProduct = xInt * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method using the following formula: /// /// $$ /// 2^{-x} = \frac{1}{2^x} /// $$ /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Notes: /// - If x is less than -59_794705707972522261, the result is zero. /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in SD59x18. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { // The inverse of any number less than the threshold is truncated to zero. if (xInt < uEXP2_MIN_THRESHOLD) { return ZERO; } unchecked { // Inline the fixed-point inversion to save gas. result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap()); } } else { // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xInt > uEXP2_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = uint256((xInt << 64) / uUNIT); // It is safe to cast the result to int256 due to the checks above. result = wrap(int256(Common.exp2(x_192x64))); } } } /// @notice Yields the greatest whole number less than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be greater than or equal to `MIN_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to floor. /// @param result The greatest whole number less than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function floor(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < uMIN_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Floor_Underflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt < 0) { resultInt -= uUNIT; } result = wrap(resultInt); } } } /// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right. /// of the radix point for negative numbers. /// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part /// @param x The SD59x18 number to get the fractional part of. /// @param result The fractional part of x as an SD59x18 number. function frac(SD59x18 x) pure returns (SD59x18 result) { result = wrap(x.unwrap() % uUNIT); } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x * y must fit in SD59x18. /// - x * y must not be negative, since complex numbers are not supported. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == 0 || yInt == 0) { return ZERO; } unchecked { // Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it. int256 xyInt = xInt * yInt; if (xyInt / xInt != yInt) { revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y); } // The product must not be negative, since complex numbers are not supported. if (xyInt < 0) { revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. uint256 resultUint = Common.sqrt(uint256(xyInt)); result = wrap(int256(resultUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The SD59x18 number for which to calculate the inverse. /// @return result The inverse as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function inv(SD59x18 x) pure returns (SD59x18 result) { result = wrap(uUNIT_SQUARED / x.unwrap()); } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ln(SD59x18 x) pure returns (SD59x18 result) { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~195_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the common logarithm. /// @return result The common logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log10(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } // Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } default { result := uMAX_SD59x18 } } if (result.unwrap() == uMAX_SD59x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm: /// /// $$ /// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2) /// $$ /// /// For $0 \leq x \lt 1$, the input is inverted: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation. /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The SD59x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt <= 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } unchecked { int256 sign; if (xInt >= uUNIT) { sign = 1; } else { sign = -1; // Inline the fixed-point inversion to save gas. xInt = uUNIT_SQUARED / xInt; } // Calculate the integer part of the logarithm. uint256 n = Common.msb(uint256(xInt / uUNIT)); // This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow // because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1. int256 resultInt = int256(n) * uUNIT; // Calculate $y = x * 2^{-n}$. int256 y = xInt >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultInt * sign); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. int256 DOUBLE_UNIT = 2e18; for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultInt = resultInt + delta; // Halve y, which corresponds to z/2 in the Wikipedia article. y >>= 1; } } resultInt *= sign; result = wrap(resultInt); } } /// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number. /// /// @dev Notes: /// - Refer to the notes in {Common.mulDiv18}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv18}. /// - None of the inputs can be `MIN_SD59x18`. /// - The result must fit in SD59x18. /// /// @param x The multiplicand as an SD59x18 number. /// @param y The multiplier as an SD59x18 number. /// @return result The product as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Mul_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv18(xAbs, yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Raises x to the power of y using the following formula: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}, {log2}, and {mul}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as an SD59x18 number. /// @param y Exponent to raise x to, as an SD59x18 number /// @return result x raised to power y, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xInt == 0) { return yInt == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xInt == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yInt == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yInt == uUNIT) { return x; } // Calculate the result using the formula. result = exp2(mul(log2(x), y)); } /// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {abs} and {Common.mulDiv18}. /// - The result must fit in SD59x18. /// /// @param x The base as an SD59x18 number. /// @param y The exponent as a uint256. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) { uint256 xAbs = uint256(abs(x).unwrap()); // Calculate the first iteration of the loop in advance. uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT); // Equivalent to `for(y /= 2; y > 0; y /= 2)`. uint256 yAux = y; for (yAux >>= 1; yAux > 0; yAux >>= 1) { xAbs = Common.mulDiv18(xAbs, xAbs); // Equivalent to `y % 2 == 1`. if (yAux & 1 > 0) { resultAbs = Common.mulDiv18(resultAbs, xAbs); } } // The result must fit in SD59x18. if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y); } unchecked { // Is the base negative and the exponent odd? If yes, the result should be negative. int256 resultInt = int256(resultAbs); bool isNegative = x.unwrap() < 0 && y & 1 == 1; if (isNegative) { resultInt = -resultInt; } result = wrap(resultInt); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - Only the positive root is returned. /// - The result is rounded toward zero. /// /// Requirements: /// - x cannot be negative, since complex numbers are not supported. /// - x must be less than `MAX_SD59x18 / UNIT`. /// /// @param x The SD59x18 number for which to calculate the square root. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x); } if (xInt > uMAX_SD59x18 / uUNIT) { revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x); } unchecked { // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers. // In this case, the two numbers are both the square root. uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT)); result = wrap(int256(resultUint)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the SD59x18 type. function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) { return wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and2(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal (=) operation in the SD59x18 type. function eq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the SD59x18 type. function gt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type. function gte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the SD59x18 type. function isZero(SD59x18 x) pure returns (bool result) { result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the SD59x18 type. function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the SD59x18 type. function lt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type. function lte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the unchecked modulo operation (%) in the SD59x18 type. function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the SD59x18 type. function neq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the SD59x18 type. function not(SD59x18 x) pure returns (SD59x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the SD59x18 type. function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the SD59x18 type. function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the SD59x18 type. function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the checked unary minus operation (-) in the SD59x18 type. function unary(SD59x18 x) pure returns (SD59x18 result) { result = wrap(-x.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the SD59x18 type. function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type. function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type. function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) { unchecked { result = wrap(-x.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the SD59x18 type. function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Casts an SD59x18 number into int256. /// @dev This is basically a functional alias for {unwrap}. function intoInt256(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Casts an SD59x18 number into SD1x18. /// @dev Requirements: /// - x must be greater than or equal to `uMIN_SD1x18`. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < uMIN_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Underflow(x); } if (xInt > uMAX_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xInt)); } /// @notice Casts an SD59x18 number into UD2x18. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Underflow(x); } if (xInt > int256(uint256(uMAX_UD2x18))) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(uint256(xInt))); } /// @notice Casts an SD59x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD60x18_Underflow(x); } result = UD60x18.wrap(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD59x18 x) pure returns (uint256 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint256_Underflow(x); } result = uint256(xInt); } /// @notice Casts an SD59x18 number into uint128. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UINT128`. function intoUint128(SD59x18 x) pure returns (uint128 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Underflow(x); } if (xInt > int256(uint256(MAX_UINT128))) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Overflow(x); } result = uint128(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD59x18 x) pure returns (uint40 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Underflow(x); } if (xInt > int256(uint256(MAX_UINT40))) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Overflow(x); } result = uint40(uint256(xInt)); } /// @notice Alias for {wrap}. function sd(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Alias for {wrap}. function sd59x18(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Unwraps an SD59x18 number into int256. function unwrap(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Wraps an int256 number into SD59x18. function wrap(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as CastingErrors; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD1x18 } from "./ValueType.sol"; /// @notice Casts an SD1x18 number into SD59x18. /// @dev There is no overflow check because the domain of SD1x18 is a subset of SD59x18. function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(SD1x18.unwrap(x))); } /// @notice Casts an SD1x18 number into UD2x18. /// - x must be positive. function intoUD2x18(SD1x18 x) pure returns (UD2x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD2x18_Underflow(x); } result = UD2x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x); } result = UD60x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD1x18 x) pure returns (uint256 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x); } result = uint256(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint128. /// @dev Requirements: /// - x must be positive. function intoUint128(SD1x18 x) pure returns (uint128 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x); } result = uint128(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD1x18 x) pure returns (uint40 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x); } if (xInt > int64(uint64(Common.MAX_UINT40))) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x); } result = uint40(uint64(xInt)); } /// @notice Alias for {wrap}. function sd1x18(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); } /// @notice Unwraps an SD1x18 number into int64. function unwrap(SD1x18 x) pure returns (int64 result) { result = SD1x18.unwrap(x); } /// @notice Wraps an int64 number into SD1x18. function wrap(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in SD1x18. error PRBMath_UD2x18_IntoSD1x18_Overflow(UD2x18 x); /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in uint40. error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; /// @notice Thrown when taking the absolute value of `MIN_SD59x18`. error PRBMath_SD59x18_Abs_MinSD59x18(); /// @notice Thrown when ceiling a number overflows SD59x18. error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18. error PRBMath_SD59x18_Convert_Overflow(int256 x); /// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18. error PRBMath_SD59x18_Convert_Underflow(int256 x); /// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`. error PRBMath_SD59x18_Div_InputTooSmall(); /// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18. error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x); /// @notice Thrown when flooring a number underflows SD59x18. error PRBMath_SD59x18_Floor_Underflow(SD59x18 x); /// @notice Thrown when taking the geometric mean of two numbers and their product is negative. error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18. error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD60x18. error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint256. error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x); /// @notice Thrown when taking the logarithm of a number less than or equal to zero. error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x); /// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`. error PRBMath_SD59x18_Mul_InputTooSmall(); /// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when raising a number to a power and the intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y); /// @notice Thrown when taking the square root of a negative number. error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x); /// @notice Thrown when the calculating the square root overflows SD59x18. error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD2x18. error PRBMath_SD1x18_ToUD2x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD60x18. error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint128. error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint256. error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);
{ "optimizer": { "enabled": true, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "remappings": [] }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"address","name":"_creator","type":"address"},{"internalType":"address","name":"_factory","type":"address"},{"internalType":"uint256","name":"_totalTokens","type":"uint256"},{"internalType":"uint256","name":"_k","type":"uint256"},{"internalType":"uint256","name":"_alpha","type":"uint256"},{"internalType":"uint256","name":"_saleGoal","type":"uint256"},{"internalType":"uint8","name":"_creatorshare","type":"uint8"},{"internalType":"uint256","name":"_feePercent","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"}],"name":"PRBMath_MulDiv18_Overflow","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"},{"internalType":"uint256","name":"denominator","type":"uint256"}],"name":"PRBMath_MulDiv_Overflow","type":"error"},{"inputs":[{"internalType":"UD60x18","name":"x","type":"uint256"}],"name":"PRBMath_UD60x18_Exp2_InputTooBig","type":"error"},{"inputs":[{"internalType":"UD60x18","name":"x","type":"uint256"}],"name":"PRBMath_UD60x18_Exp_InputTooBig","type":"error"},{"inputs":[{"internalType":"UD60x18","name":"x","type":"uint256"}],"name":"PRBMath_UD60x18_Log_InputTooSmall","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"buyer","type":"address"},{"indexed":false,"internalType":"uint256","name":"ethAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tokenAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"TokensPurchased","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"seller","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"ethAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"TokensSold","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"alpha","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"minTokensOut","type":"uint256"}],"name":"buy","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"claimTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"creator","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"creatorshare","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"factory","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feePercent","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeWallet","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAllHistoricalData","outputs":[{"components":[{"internalType":"uint256","name":"timestamp","type":"uint256"},{"internalType":"uint256","name":"totalRaised","type":"uint256"}],"internalType":"struct EtherfunSale.HistoricalData[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAllTokenHolders","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenAmount","type":"uint256"}],"name":"getEthIn","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getShare","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTokenHoldersCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"ethAmount","type":"uint256"}],"name":"getTokenIn","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"historicalData","outputs":[{"internalType":"uint256","name":"timestamp","type":"uint256"},{"internalType":"uint256","name":"totalRaised","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isTokenHolder","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"k","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_launchContract","type":"address"},{"internalType":"uint8","name":"buyLpFee","type":"uint8"},{"internalType":"uint8","name":"sellLpFee","type":"uint8"},{"internalType":"uint8","name":"buyProtocolFee","type":"uint8"},{"internalType":"uint8","name":"sellProtocolFee","type":"uint8"},{"internalType":"address","name":"firstBuyer","type":"address"},{"internalType":"address","name":"saleInitiator","type":"address"}],"name":"launchSale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"launched","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxContribution","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"saleGoal","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"tokenAmount","type":"uint256"},{"internalType":"uint256","name":"minEthOut","type":"uint256"}],"name":"sell","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"status","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"lockFactoryOwner","type":"address"}],"name":"takeFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"tokenBalances","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"tokenHolders","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokensSold","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalRaised","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalTokens","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"vistaFactoryAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"wethAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
6080604052601380546001600160a01b031990811673c02aaa39b223fe8d0a0e5c4f27ead9083c756cc217909155601480548216739a27cb5ae0b2cee0bb71f9a85c0d60f3920757b41790556016805490911673c07dff4c8c129aa8fa8b91cc67d74aed77e4fef1179055348015610075575f80fd5b5060405161314638038061314683398101604081905261009491610358565b60015f55898960046100a683826104a8565b5060056100b382826104a8565b5050600680546001600160a01b03808c166001600160a01b03199283161790925560078054928b1692909116919091179055506008869055600c859055600d849055600e839055600b805460ff841660ff1990911617905560158190555f600f5561011e308761012d565b50505050505050505050610587565b6001600160a01b03821661015b5760405163ec442f0560e01b81525f60048201526024015b60405180910390fd5b6101665f838361016a565b5050565b6001600160a01b038316610194578060035f8282546101899190610562565b909155506102049050565b6001600160a01b0383165f90815260016020526040902054818110156101e65760405163391434e360e21b81526001600160a01b03851660048201526024810182905260448101839052606401610152565b6001600160a01b0384165f9081526001602052604090209082900390555b6001600160a01b0382166102205760038054829003905561023e565b6001600160a01b0382165f9081526001602052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8360405161028391815260200190565b60405180910390a3505050565b634e487b7160e01b5f52604160045260245ffd5b5f82601f8301126102b3575f80fd5b81516001600160401b038111156102cc576102cc610290565b604051601f8201601f19908116603f011681016001600160401b03811182821017156102fa576102fa610290565b604052818152838201602001851015610311575f80fd5b8160208501602083015e5f918101602001919091529392505050565b80516001600160a01b0381168114610343575f80fd5b919050565b805160ff81168114610343575f80fd5b5f805f805f805f805f806101408b8d031215610372575f80fd5b8a516001600160401b03811115610387575f80fd5b6103938d828e016102a4565b60208d0151909b5090506001600160401b038111156103b0575f80fd5b6103bc8d828e016102a4565b9950506103cb60408c0161032d565b97506103d960608c0161032d565b60808c015160a08d015160c08e015160e08f0151939a509198509650945092506104066101008c01610348565b91505f6101208c01519050809150509295989b9194979a5092959850565b600181811c9082168061043857607f821691505b60208210810361045657634e487b7160e01b5f52602260045260245ffd5b50919050565b601f8211156104a357805f5260205f20601f840160051c810160208510156104815750805b601f840160051c820191505b818110156104a0575f815560010161048d565b50505b505050565b81516001600160401b038111156104c1576104c1610290565b6104d5816104cf8454610424565b8461045c565b6020601f821160018114610507575f83156104f05750848201515b5f19600385901b1c1916600184901b1784556104a0565b5f84815260208120601f198516915b828110156105365787850151825560209485019460019092019101610516565b508482101561055357868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b8082018082111561058157634e487b7160e01b5f52601160045260245ffd5b92915050565b612bb2806105945f395ff3fe608060405260043610610236575f3560e01c80637529873411610129578063c45a0155116100a8578063dd62ed3e1161006d578063dd62ed3e14610679578063df8de3e7146106bd578063e963eb33146106dc578063f25f4b56146106fb578063f67848861461071a575f80fd5b8063c45a015514610608578063c5c4744c14610627578063c7c049fc1461063c578063cce7ec1314610651578063db1d0fd514610664575f80fd5b8063923108d9116100ee578063923108d91461058057806395d89b411461059f578063a5bf8ec6146105b3578063a9059cbb146105d4578063b4f40c61146105f3575f80fd5b8063752987341461050f5780637e1c0c09146105235780637fd6f15c146105385780638091f3bf1461054d5780638d3d65761461056b575f80fd5b806332fb56ca116101b557806362f39bb41161017a57806362f39bb41461043f5780636334a8c41461046057806365731fe9146104795780636a272462146104a757806370a08231146104db575f80fd5b806332fb56ca146103ab578063468f3dcd146103cc5780634f0e0ef3146103e0578063518ab2a8146103ff578063523fba7f14610414575f80fd5b806318160ddd116101fb57806318160ddd14610319578063200d2ed21461032d57806323b872dd1461034c5780632c5b5ae21461036b578063313ce5671461038a575f80fd5b806302d05d3f1461024157806306fdde031461027d578063089a122c1461029e578063095ea7b3146102cb5780630efc51a7146102fa575f80fd5b3661023d57005b5f80fd5b34801561024c575f80fd5b50600654610260906001600160a01b031681565b6040516001600160a01b0390911681526020015b60405180910390f35b348015610288575f80fd5b50610291610739565b6040516102749190612761565b3480156102a9575f80fd5b506102bd6102b8366004612796565b6107c9565b604051908152602001610274565b3480156102d6575f80fd5b506102ea6102e53660046127c1565b610855565b6040519015158152602001610274565b348015610305575f80fd5b506102bd610314366004612796565b61086e565b348015610324575f80fd5b506003546102bd565b348015610338575f80fd5b50600b546102ea9062010000900460ff1681565b348015610357575f80fd5b506102ea6103663660046127eb565b6108ef565b348015610376575f80fd5b50601454610260906001600160a01b031681565b348015610395575f80fd5b5060125b60405160ff9091168152602001610274565b3480156103b6575f80fd5b506103bf610914565b6040516102749190612829565b3480156103d7575f80fd5b506011546102bd565b3480156103eb575f80fd5b50601354610260906001600160a01b031681565b34801561040a575f80fd5b506102bd600f5481565b34801561041f575f80fd5b506102bd61042e366004612874565b60106020525f908152604090205481565b34801561044a575f80fd5b50610453610973565b604051610274919061288f565b34801561046b575f80fd5b50600b546103999060ff1681565b348015610484575f80fd5b506102ea610493366004612874565b60126020525f908152604090205460ff1681565b3480156104b2575f80fd5b506104c66104c13660046128d2565b6109e2565b60408051928352602083019190915201610274565b3480156104e6575f80fd5b506102bd6104f5366004612874565b6001600160a01b03165f9081526001602052604090205490565b34801561051a575f80fd5b506102bd610d91565b34801561052e575f80fd5b506102bd60085481565b348015610543575f80fd5b506102bd60155481565b348015610558575f80fd5b50600b546102ea90610100900460ff1681565b348015610576575f80fd5b506102bd600a5481565b34801561058b575f80fd5b5061026061059a366004612796565b610e76565b3480156105aa575f80fd5b50610291610e9e565b3480156105be575f80fd5b506105d26105cd366004612874565b610ead565b005b3480156105df575f80fd5b506102ea6105ee3660046127c1565b6110d3565b3480156105fe575f80fd5b506102bd600c5481565b348015610613575f80fd5b50600754610260906001600160a01b031681565b348015610632575f80fd5b506102bd60095481565b348015610647575f80fd5b506102bd600e5481565b6104c661065f3660046127c1565b6110e0565b34801561066f575f80fd5b506102bd600d5481565b348015610684575f80fd5b506102bd610693366004612904565b6001600160a01b039182165f90815260026020908152604080832093909416825291909152205490565b3480156106c8575f80fd5b506105d26106d7366004612874565b611480565b3480156106e7575f80fd5b506104c66106f6366004612796565b611584565b348015610706575f80fd5b50601654610260906001600160a01b031681565b348015610725575f80fd5b506105d2610734366004612950565b6115b0565b606060048054610748906129d9565b80601f0160208091040260200160405190810160405280929190818152602001828054610774906129d9565b80156107bf5780601f10610796576101008083540402835291602001916107bf565b820191905f5260205f20905b8154815290600101906020018083116107a257829003601f168201915b5050505050905090565b5f806107d4600f5490565b600c5490915083905f6107e6600d5490565b90505f61080f836108096108026107fd868a61187b565b611889565b869061187b565b906118e5565b90505f610837846108096108306107fd6108298b8b6118e5565b889061187b565b879061187b565b905061084961084683836118e5565b90565b98975050505050505050565b5f336108628185856118f3565b60019150505b92915050565b5f8061087960095490565b600c5490915083905f61088b600d5490565b90505f6108bc826108b66108b1670de0b6b3a76400006108ab8a89611905565b9061191c565b61192a565b90611905565b90505f6108e0836108b66108b1670de0b6b3a76400006108ab896108b68d8d61191c565b905061084961084682846118e5565b5f336108fc85828561195a565b6109078585856119d5565b60019150505b9392505050565b606060118054806020026020016040519081016040528092919081815260200182805480156107bf57602002820191905f5260205f20905b81546001600160a01b0316815260019091019060200180831161094c575050505050905090565b60606017805480602002602001604051908101604052809291908181526020015f905b828210156109d9578382905f5260205f2090600202016040518060400160405290815f820154815260200160018201548152505081526020019060010190610996565b50505050905090565b6007545f9081906001600160a01b03163314610a195760405162461bcd60e51b8152600401610a1090612a11565b60405180910390fd5b610a21611a32565b600b54610100900460ff1615610a495760405162461bcd60e51b8152600401610a1090612a37565b5f8411610aa45760405162461bcd60e51b815260206004820152602360248201527f546f6b656e20616d6f756e74206d75737420626520677265617465722074686160448201526206e20360ec1b6064820152608401610a10565b6001600160a01b0385165f90815260106020526040902054841115610b0b5760405162461bcd60e51b815260206004820152601a60248201527f496e73756666696369656e7420746f6b656e2062616c616e63650000000000006044820152606401610a10565b600b5462010000900460ff1615610b4d5760405162461bcd60e51b8152602060048201526006602482015265189bdb99195960d21b6044820152606401610a10565b5f610b57856107c9565b905083811015610b795760405162461bcd60e51b8152600401610a1090612a66565b47811115610bc95760405162461bcd60e51b815260206004820152601d60248201527f496e73756666696369656e7420636f6e74726163742062616c616e63650000006044820152606401610a10565b5f606460155483610bda9190612ac1565b610be49190612aec565b90505f610bf18284612b0b565b905086600f5f828254610c049190612b0b565b925050819055508260095f828254610c1c9190612b0b565b90915550506001600160a01b0388165f9081526010602052604081208054899290610c48908490612b0b565b90915550506040516001600160a01b0389169082156108fc029083905f818181858888f19350505050158015610c80573d5f803e3d5ffd5b506016546001600160a01b03166108fc610c9b600285612aec565b6040518115909202915f818181858888f19350505050158015610cc0573d5f803e3d5ffd5b50734c5fbf8d815379379b3695ba77b5d3f898c1230b6108fc610ce4600285612aec565b6040518115909202915f818181858888f19350505050158015610d09573d5f803e3d5ffd5b50610d12611a89565b6040805188815260208101839052428183015290516001600160a01b038a16917f6db63bebf1e6540277744df32846ebdb98385b1a73f2d5de49b28348add63f50919081900360600190a250506009546001600160a01b0387165f90815260106020526040902054909350915050610d8960015f55565b935093915050565b60145460135460405163e6a4390560e01b81523060048201526001600160a01b0391821660248201525f9291909116908290829063e6a4390590604401602060405180830381865afa158015610de9573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e0d9190612b1e565b9050806001600160a01b03166361047d336040518163ffffffff1660e01b8152600401602060405180830381865afa158015610e4b573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e6f9190612b39565b9250505090565b60118181548110610e85575f80fd5b5f918252602090912001546001600160a01b0316905081565b606060058054610748906129d9565b6007546001600160a01b03163314610ed75760405162461bcd60e51b8152600401610a1090612a11565b610edf611a32565b60145460135460405163e6a4390560e01b81523060048201526001600160a01b0391821660248201529116905f90829063e6a4390590604401602060405180830381865afa158015610f33573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f579190612b1e565b90506001600160a01b038116610fa05760405162461bcd60e51b815260206004820152600e60248201526d14185a5c881b9bdd08199bdd5b9960921b6044820152606401610a10565b5f819050806001600160a01b031663666da64f6040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610fdc575f80fd5b505af1158015610fee573d5f803e3d5ffd5b504792505050806110325760405162461bcd60e51b815260206004820152600e60248201526d139bc81155120818db185a5b595960921b6044820152606401610a10565b5f61103e600283612aec565b90505f61104b8284612b0b565b6040519091506001600160a01b0388169083156108fc029084905f818181858888f19350505050158015611081573d5f803e3d5ffd5b50604051734c5fbf8d815379379b3695ba77b5d3f898c1230b9082156108fc029083905f818181858888f193505050501580156110c0573d5f803e3d5ffd5b505050505050506110d060015f55565b50565b5f336108628185856119d5565b6007545f9081906001600160a01b0316331461110e5760405162461bcd60e51b8152600401610a1090612a11565b611116611a32565b600b54610100900460ff161561113e5760405162461bcd60e51b8152600401610a1090612a37565b600e546111539067016345785d8a0000612b50565b346009546111619190612b50565b11156111a35760405162461bcd60e51b815260206004820152601160248201527014d85b194819dbd85b081c995858da1959607a1b6044820152606401610a10565b5f34116111e05760405162461bcd60e51b815260206004820152600b60248201526a139bc8115512081cd95b9d60aa1b6044820152606401610a10565b600b5462010000900460ff16156112225760405162461bcd60e51b8152602060048201526006602482015265189bdb99195960d21b6044820152606401610a10565b5f6064601554346112339190612ac1565b61123d9190612aec565b90505f61124a8234612b0b565b90505f6112568261086e565b9050858110156112785760405162461bcd60e51b8152600401610a1090612a66565b80600f5f8282546112899190612b50565b925050819055508160095f8282546112a19190612b50565b90915550506001600160a01b0387165f90815260106020526040812080548392906112cd908490612b50565b90915550506001600160a01b0387165f9081526012602052604090205460ff16611354576011805460018082019092557f31ecc21a745e3968a04e9570e4425bc18fa8019c68028196b546d1669c200c680180546001600160a01b0319166001600160a01b038a169081179091555f908152601260205260409020805460ff191690911790555b6016546001600160a01b03166108fc61136e600286612aec565b6040518115909202915f818181858888f19350505050158015611393573d5f803e3d5ffd5b50734c5fbf8d815379379b3695ba77b5d3f898c1230b6108fc6113b7600286612aec565b6040518115909202915f818181858888f193505050501580156113dc573d5f803e3d5ffd5b50600e54600954106113fa57600b805462ff00001916620100001790555b611402611a89565b6040805183815260208101839052428183015290516001600160a01b038916917f0d1a0d5e3d583a0e92588799dd06e50fd78c07daf05f0cc06d7b848b1ca445f1919081900360600190a250506009546001600160a01b0386165f9081526010602052604090205490935091505061147960015f55565b9250929050565b6007546001600160a01b031633146114aa5760405162461bcd60e51b8152600401610a1090612a11565b6114b2611a32565b600b54610100900460ff166114fd5760405162461bcd60e51b815260206004820152601160248201527014d85b19481b9bdd081b185d5b98da1959607a1b6044820152606401610a10565b6001600160a01b0381165f90815260106020526040902054806115575760405162461bcd60e51b81526020600482015260126024820152714e6f20746f6b656e7320746f20636c61696d60701b6044820152606401610a10565b6001600160a01b0382165f9081526010602052604081205561157a3083836119d5565b506110d060015f55565b60178181548110611593575f80fd5b5f9182526020909120600290910201805460019091015490915082565b6007546001600160a01b031633146115da5760405162461bcd60e51b8152600401610a1090612a11565b6115e2611a32565b600b54610100900460ff161561160a5760405162461bcd60e51b8152600401610a1090612a37565b600e5460095410156116565760405162461bcd60e51b815260206004820152601560248201527414d85b194819dbd85b081b9bdd081c995858da1959605a1b6044820152606401610a10565b600b5462010000900460ff1661169b5760405162461bcd60e51b815260206004820152600a6024820152691b9bdd08189bdb99195960b21b6044820152606401610a10565b600b805461ff001916610100179055600f546008545f916116bb91612b0b565b600954600b54919250905f9060649083906116d99060ff1683612b63565b60ff166116e69190612ac1565b6116f09190612aec565b90506116fd308b856118f3565b600654604051637f0dfdd360e11b8152306004820152602481018590525f60448201819052606482015260ff808c166084830152808b1660a4830152808a1660c4830152881660e48201526001600160a01b03918216610104820152908b169063fe1bfba6908390610124015f604051808303818588803b158015611780575f80fd5b505af1158015611792573d5f803e3d5ffd5b50479350505081151590506117e95760405162461bcd60e51b815260206004820152601c60248201527f4e6f2062616c616e636520666f722063726561746f72207368617265000000006044820152606401610a10565b6001600160a01b0386166108fc611801600284612aec565b6040518115909202915f818181858888f19350505050158015611826573d5f803e3d5ffd5b506001600160a01b0385166108fc61183f600284612aec565b6040518115909202915f818181858888f19350505050158015611864573d5f803e3d5ffd5b505050505061187260015f55565b50505050505050565b5f61090d6108468484611b03565b5f81680736ea4425c11ac6308111156118b857604051630d7b1d6560e11b815260048101849052602401610a10565b6714057b7ef767814f81026118dd6118d8670de0b6b3a7640000835b0490565b611bb5565b949350505050565b5f61090d6108468385612b0b565b6119008383836001611c09565b505050565b5f61090d61084684670de0b6b3a764000085611cdb565b5f61090d6108468385612b50565b5f6108686714057b7ef767814f670de0b6b3a764000061194c61084686611daa565b02816118d4576118d4612ad8565b6001600160a01b038381165f908152600260209081526040808320938616835292905220545f1981146119cf57818110156119c157604051637dc7a0d960e11b81526001600160a01b03841660048201526024810182905260448101839052606401610a10565b6119cf84848484035f611c09565b50505050565b6001600160a01b0383166119fe57604051634b637e8f60e11b81525f6004820152602401610a10565b6001600160a01b038216611a275760405163ec442f0560e01b81525f6004820152602401610a10565b611900838383611edb565b60025f5403611a835760405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c006044820152606401610a10565b60025f55565b6040805180820190915242815260095460208201908152601780546001810182555f9190915291517fc624b66cc0138b8fabc209247f72d758e1cf3343756d543badbf24212bed8c15600290930292830155517fc624b66cc0138b8fabc209247f72d758e1cf3343756d543badbf24212bed8c1690910155565b5f80805f19848609848602925082811083820303915050805f03611b345750670de0b6b3a764000090049050610868565b670de0b6b3a76400008110611b6657604051635173648d60e01b81526004810186905260248101859052604401610a10565b5f670de0b6b3a764000085870962040000818503049310909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690291505092915050565b5f81680a688906bd8affffff811115611be45760405163b3b6ba1f60e01b815260048101849052602401610a10565b5f611bfb670de0b6b3a7640000604084901b612aec565b90506118dd61084682612001565b6001600160a01b038416611c325760405163e602df0560e01b81525f6004820152602401610a10565b6001600160a01b038316611c5b57604051634a1406b160e11b81525f6004820152602401610a10565b6001600160a01b038085165f90815260026020908152604080832093871683529290522082905580156119cf57826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92584604051611ccd91815260200190565b60405180910390a350505050565b5f80805f19858709858702925082811083820303915050805f03611d1257838281611d0857611d08612ad8565b049250505061090d565b838110611d4357604051630c740aef60e31b8152600481018790526024810186905260448101859052606401610a10565b5f8486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091025f889003889004909101858311909403939093029303949094049190911702949350505050565b5f81670de0b6b3a7640000811015611dd85760405163036d32ef60e41b815260048101849052602401610a10565b5f611e63670de0b6b3a7640000830460016fffffffffffffffffffffffffffffffff821160071b91821c67ffffffffffffffff811160061b90811c63ffffffff811160051b90811c61ffff811160041b90811c60ff8111600390811b91821c600f811160021b90811c918211871b91821c969096119490961792909217171791909117919091171790565b9050670de0b6b3a7640000810282821c670de0b6b3a763ffff198101611e8c5750949350505050565b671bc16d674ec800006706f05b59d3b200005b8015611ecf57670de0b6b3a7640000838002049250818310611ec7579283019260019290921c915b60011c611e9f565b50919695505050505050565b6001600160a01b038316611f05578060035f828254611efa9190612b50565b90915550611f759050565b6001600160a01b0383165f9081526001602052604090205481811015611f575760405163391434e360e21b81526001600160a01b03851660048201526024810182905260448101839052606401610a10565b6001600160a01b0384165f9081526001602052604090209082900390555b6001600160a01b038216611f9157600380548290039055611faf565b6001600160a01b0382165f9081526001602052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051611ff491815260200190565b60405180910390a3505050565b600160bf1b67ff0000000000000082161561210e576780000000000000008216156120355768016a09e667f3bcc9090260401c5b674000000000000000821615612054576801306fe0a31b7152df0260401c5b672000000000000000821615612073576801172b83c7d517adce0260401c5b6710000000000000008216156120925768010b5586cf9890f62a0260401c5b6708000000000000008216156120b1576801059b0d31585743ae0260401c5b6704000000000000008216156120d057680102c9a3e778060ee70260401c5b6702000000000000008216156120ef5768010163da9fb33356d80260401c5b67010000000000000082161561210e57680100b1afa5abcbed610260401c5b66ff00000000000082161561220d57668000000000000082161561213b5768010058c86da1c09ea20260401c5b6640000000000000821615612159576801002c605e2e8cec500260401c5b662000000000000082161561217757680100162f3904051fa10260401c5b6610000000000000821615612195576801000b175effdc76ba0260401c5b66080000000000008216156121b357680100058ba01fb9f96d0260401c5b66040000000000008216156121d15768010002c5cc37da94920260401c5b66020000000000008216156121ef576801000162e525ee05470260401c5b660100000000000082161561220d5768010000b17255775c040260401c5b65ff00000000008216156123035765800000000000821615612238576801000058b91b5bc9ae0260401c5b6540000000000082161561225557680100002c5c89d5ec6d0260401c5b652000000000008216156122725768010000162e43f4f8310260401c5b6510000000000082161561228f57680100000b1721bcfc9a0260401c5b650800000000008216156122ac5768010000058b90cf1e6e0260401c5b650400000000008216156122c9576801000002c5c863b73f0260401c5b650200000000008216156122e657680100000162e430e5a20260401c5b65010000000000821615612303576801000000b1721835510260401c5b64ff000000008216156123f05764800000000082161561232c57680100000058b90c0b490260401c5b6440000000008216156123485768010000002c5c8601cc0260401c5b642000000000821615612364576801000000162e42fff00260401c5b6410000000008216156123805768010000000b17217fbb0260401c5b64080000000082161561239c576801000000058b90bfce0260401c5b6404000000008216156123b857680100000002c5c85fe30260401c5b6402000000008216156123d45768010000000162e42ff10260401c5b6401000000008216156123f057680100000000b17217f80260401c5b63ff0000008216156124d45763800000008216156124175768010000000058b90bfc0260401c5b6340000000821615612432576801000000002c5c85fe0260401c5b632000000082161561244d57680100000000162e42ff0260401c5b6310000000821615612468576801000000000b17217f0260401c5b630800000082161561248357680100000000058b90c00260401c5b630400000082161561249e5768010000000002c5c8600260401c5b63020000008216156124b9576801000000000162e4300260401c5b63010000008216156124d45768010000000000b172180260401c5b62ff00008216156125af57628000008216156124f9576801000000000058b90c0260401c5b6240000082161561251357680100000000002c5c860260401c5b6220000082161561252d5768010000000000162e430260401c5b6210000082161561254757680100000000000b17210260401c5b620800008216156125615768010000000000058b910260401c5b6204000082161561257b576801000000000002c5c80260401c5b6202000082161561259557680100000000000162e40260401c5b620100008216156125af576801000000000000b1720260401c5b61ff00821615612681576180008216156125d257680100000000000058b90260401c5b6140008216156125eb5768010000000000002c5d0260401c5b612000821615612604576801000000000000162e0260401c5b61100082161561261d5768010000000000000b170260401c5b610800821615612636576801000000000000058c0260401c5b61040082161561264f57680100000000000002c60260401c5b61020082161561266857680100000000000001630260401c5b61010082161561268157680100000000000000b10260401c5b60ff82161561274a5760808216156126a257680100000000000000590260401c5b60408216156126ba576801000000000000002c0260401c5b60208216156126d257680100000000000000160260401c5b60108216156126ea576801000000000000000b0260401c5b600882161561270257680100000000000000060260401c5b600482161561271a57680100000000000000030260401c5b600282161561273257680100000000000000010260401c5b600182161561274a57680100000000000000010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b5f602082840312156127a6575f80fd5b5035919050565b6001600160a01b03811681146110d0575f80fd5b5f80604083850312156127d2575f80fd5b82356127dd816127ad565b946020939093013593505050565b5f805f606084860312156127fd575f80fd5b8335612808816127ad565b92506020840135612818816127ad565b929592945050506040919091013590565b602080825282518282018190525f918401906040840190835b818110156128695783516001600160a01b0316835260209384019390920191600101612842565b509095945050505050565b5f60208284031215612884575f80fd5b813561090d816127ad565b602080825282518282018190525f918401906040840190835b818110156128695783518051845260209081015181850152909301926040909201916001016128a8565b5f805f606084860312156128e4575f80fd5b83356128ef816127ad565b95602085013595506040909401359392505050565b5f8060408385031215612915575f80fd5b8235612920816127ad565b91506020830135612930816127ad565b809150509250929050565b803560ff8116811461294b575f80fd5b919050565b5f805f805f805f60e0888a031215612966575f80fd5b8735612971816127ad565b965061297f6020890161293b565b955061298d6040890161293b565b945061299b6060890161293b565b93506129a96080890161293b565b925060a08801356129b9816127ad565b915060c08801356129c9816127ad565b8091505092959891949750929550565b600181811c908216806129ed57607f821691505b602082108103612a0b57634e487b7160e01b5f52602260045260245ffd5b50919050565b6020808252600c908201526b4f6e6c7920666163746f727960a01b604082015260600190565b60208082526015908201527414d85b1948185b1c9958591e481b185d5b98da1959605a1b604082015260600190565b60208082526027908201527f536c69707061676520746f6f20686967682c207472616e73616374696f6e2072604082015266195d995c9d195960ca1b606082015260800190565b634e487b7160e01b5f52601160045260245ffd5b808202811582820484141761086857610868612aad565b634e487b7160e01b5f52601260045260245ffd5b5f82612b0657634e487b7160e01b5f52601260045260245ffd5b500490565b8181038181111561086857610868612aad565b5f60208284031215612b2e575f80fd5b815161090d816127ad565b5f60208284031215612b49575f80fd5b5051919050565b8082018082111561086857610868612aad565b60ff828116828216039081111561086857610868612aad56fea26469706673582212205987506d13451ebf998bfb60fcc515b751306c9c437b74a3f6bb4fa65580b12b64736f6c634300081a003300000000000000000000000000000000000000000000000000000000000001400000000000000000000000000000000000000000000000000000000000000180000000000000000000000000df769057eb42b27bd7dd4c8643779f0dfe49a6a2000000000000000000000000dd218bd2b591ce02782a1028dad9d314a5e1e7ea0000000000000000000000000000000000000000033b2e3c9fd0803ce80000000000000000000000000000000000000000000000000000000314b3d2e423000000000000000000000000000000000000000000000000000000000000ab8acb8000000000000000000000000000000000000000000000000014d1120d7b160000000000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000010566974616c696b204e616b616d6f746f0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000064974616c69630000000000000000000000000000000000000000000000000000
Deployed Bytecode
0x608060405260043610610236575f3560e01c80637529873411610129578063c45a0155116100a8578063dd62ed3e1161006d578063dd62ed3e14610679578063df8de3e7146106bd578063e963eb33146106dc578063f25f4b56146106fb578063f67848861461071a575f80fd5b8063c45a015514610608578063c5c4744c14610627578063c7c049fc1461063c578063cce7ec1314610651578063db1d0fd514610664575f80fd5b8063923108d9116100ee578063923108d91461058057806395d89b411461059f578063a5bf8ec6146105b3578063a9059cbb146105d4578063b4f40c61146105f3575f80fd5b8063752987341461050f5780637e1c0c09146105235780637fd6f15c146105385780638091f3bf1461054d5780638d3d65761461056b575f80fd5b806332fb56ca116101b557806362f39bb41161017a57806362f39bb41461043f5780636334a8c41461046057806365731fe9146104795780636a272462146104a757806370a08231146104db575f80fd5b806332fb56ca146103ab578063468f3dcd146103cc5780634f0e0ef3146103e0578063518ab2a8146103ff578063523fba7f14610414575f80fd5b806318160ddd116101fb57806318160ddd14610319578063200d2ed21461032d57806323b872dd1461034c5780632c5b5ae21461036b578063313ce5671461038a575f80fd5b806302d05d3f1461024157806306fdde031461027d578063089a122c1461029e578063095ea7b3146102cb5780630efc51a7146102fa575f80fd5b3661023d57005b5f80fd5b34801561024c575f80fd5b50600654610260906001600160a01b031681565b6040516001600160a01b0390911681526020015b60405180910390f35b348015610288575f80fd5b50610291610739565b6040516102749190612761565b3480156102a9575f80fd5b506102bd6102b8366004612796565b6107c9565b604051908152602001610274565b3480156102d6575f80fd5b506102ea6102e53660046127c1565b610855565b6040519015158152602001610274565b348015610305575f80fd5b506102bd610314366004612796565b61086e565b348015610324575f80fd5b506003546102bd565b348015610338575f80fd5b50600b546102ea9062010000900460ff1681565b348015610357575f80fd5b506102ea6103663660046127eb565b6108ef565b348015610376575f80fd5b50601454610260906001600160a01b031681565b348015610395575f80fd5b5060125b60405160ff9091168152602001610274565b3480156103b6575f80fd5b506103bf610914565b6040516102749190612829565b3480156103d7575f80fd5b506011546102bd565b3480156103eb575f80fd5b50601354610260906001600160a01b031681565b34801561040a575f80fd5b506102bd600f5481565b34801561041f575f80fd5b506102bd61042e366004612874565b60106020525f908152604090205481565b34801561044a575f80fd5b50610453610973565b604051610274919061288f565b34801561046b575f80fd5b50600b546103999060ff1681565b348015610484575f80fd5b506102ea610493366004612874565b60126020525f908152604090205460ff1681565b3480156104b2575f80fd5b506104c66104c13660046128d2565b6109e2565b60408051928352602083019190915201610274565b3480156104e6575f80fd5b506102bd6104f5366004612874565b6001600160a01b03165f9081526001602052604090205490565b34801561051a575f80fd5b506102bd610d91565b34801561052e575f80fd5b506102bd60085481565b348015610543575f80fd5b506102bd60155481565b348015610558575f80fd5b50600b546102ea90610100900460ff1681565b348015610576575f80fd5b506102bd600a5481565b34801561058b575f80fd5b5061026061059a366004612796565b610e76565b3480156105aa575f80fd5b50610291610e9e565b3480156105be575f80fd5b506105d26105cd366004612874565b610ead565b005b3480156105df575f80fd5b506102ea6105ee3660046127c1565b6110d3565b3480156105fe575f80fd5b506102bd600c5481565b348015610613575f80fd5b50600754610260906001600160a01b031681565b348015610632575f80fd5b506102bd60095481565b348015610647575f80fd5b506102bd600e5481565b6104c661065f3660046127c1565b6110e0565b34801561066f575f80fd5b506102bd600d5481565b348015610684575f80fd5b506102bd610693366004612904565b6001600160a01b039182165f90815260026020908152604080832093909416825291909152205490565b3480156106c8575f80fd5b506105d26106d7366004612874565b611480565b3480156106e7575f80fd5b506104c66106f6366004612796565b611584565b348015610706575f80fd5b50601654610260906001600160a01b031681565b348015610725575f80fd5b506105d2610734366004612950565b6115b0565b606060048054610748906129d9565b80601f0160208091040260200160405190810160405280929190818152602001828054610774906129d9565b80156107bf5780601f10610796576101008083540402835291602001916107bf565b820191905f5260205f20905b8154815290600101906020018083116107a257829003601f168201915b5050505050905090565b5f806107d4600f5490565b600c5490915083905f6107e6600d5490565b90505f61080f836108096108026107fd868a61187b565b611889565b869061187b565b906118e5565b90505f610837846108096108306107fd6108298b8b6118e5565b889061187b565b879061187b565b905061084961084683836118e5565b90565b98975050505050505050565b5f336108628185856118f3565b60019150505b92915050565b5f8061087960095490565b600c5490915083905f61088b600d5490565b90505f6108bc826108b66108b1670de0b6b3a76400006108ab8a89611905565b9061191c565b61192a565b90611905565b90505f6108e0836108b66108b1670de0b6b3a76400006108ab896108b68d8d61191c565b905061084961084682846118e5565b5f336108fc85828561195a565b6109078585856119d5565b60019150505b9392505050565b606060118054806020026020016040519081016040528092919081815260200182805480156107bf57602002820191905f5260205f20905b81546001600160a01b0316815260019091019060200180831161094c575050505050905090565b60606017805480602002602001604051908101604052809291908181526020015f905b828210156109d9578382905f5260205f2090600202016040518060400160405290815f820154815260200160018201548152505081526020019060010190610996565b50505050905090565b6007545f9081906001600160a01b03163314610a195760405162461bcd60e51b8152600401610a1090612a11565b60405180910390fd5b610a21611a32565b600b54610100900460ff1615610a495760405162461bcd60e51b8152600401610a1090612a37565b5f8411610aa45760405162461bcd60e51b815260206004820152602360248201527f546f6b656e20616d6f756e74206d75737420626520677265617465722074686160448201526206e20360ec1b6064820152608401610a10565b6001600160a01b0385165f90815260106020526040902054841115610b0b5760405162461bcd60e51b815260206004820152601a60248201527f496e73756666696369656e7420746f6b656e2062616c616e63650000000000006044820152606401610a10565b600b5462010000900460ff1615610b4d5760405162461bcd60e51b8152602060048201526006602482015265189bdb99195960d21b6044820152606401610a10565b5f610b57856107c9565b905083811015610b795760405162461bcd60e51b8152600401610a1090612a66565b47811115610bc95760405162461bcd60e51b815260206004820152601d60248201527f496e73756666696369656e7420636f6e74726163742062616c616e63650000006044820152606401610a10565b5f606460155483610bda9190612ac1565b610be49190612aec565b90505f610bf18284612b0b565b905086600f5f828254610c049190612b0b565b925050819055508260095f828254610c1c9190612b0b565b90915550506001600160a01b0388165f9081526010602052604081208054899290610c48908490612b0b565b90915550506040516001600160a01b0389169082156108fc029083905f818181858888f19350505050158015610c80573d5f803e3d5ffd5b506016546001600160a01b03166108fc610c9b600285612aec565b6040518115909202915f818181858888f19350505050158015610cc0573d5f803e3d5ffd5b50734c5fbf8d815379379b3695ba77b5d3f898c1230b6108fc610ce4600285612aec565b6040518115909202915f818181858888f19350505050158015610d09573d5f803e3d5ffd5b50610d12611a89565b6040805188815260208101839052428183015290516001600160a01b038a16917f6db63bebf1e6540277744df32846ebdb98385b1a73f2d5de49b28348add63f50919081900360600190a250506009546001600160a01b0387165f90815260106020526040902054909350915050610d8960015f55565b935093915050565b60145460135460405163e6a4390560e01b81523060048201526001600160a01b0391821660248201525f9291909116908290829063e6a4390590604401602060405180830381865afa158015610de9573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e0d9190612b1e565b9050806001600160a01b03166361047d336040518163ffffffff1660e01b8152600401602060405180830381865afa158015610e4b573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e6f9190612b39565b9250505090565b60118181548110610e85575f80fd5b5f918252602090912001546001600160a01b0316905081565b606060058054610748906129d9565b6007546001600160a01b03163314610ed75760405162461bcd60e51b8152600401610a1090612a11565b610edf611a32565b60145460135460405163e6a4390560e01b81523060048201526001600160a01b0391821660248201529116905f90829063e6a4390590604401602060405180830381865afa158015610f33573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f579190612b1e565b90506001600160a01b038116610fa05760405162461bcd60e51b815260206004820152600e60248201526d14185a5c881b9bdd08199bdd5b9960921b6044820152606401610a10565b5f819050806001600160a01b031663666da64f6040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610fdc575f80fd5b505af1158015610fee573d5f803e3d5ffd5b504792505050806110325760405162461bcd60e51b815260206004820152600e60248201526d139bc81155120818db185a5b595960921b6044820152606401610a10565b5f61103e600283612aec565b90505f61104b8284612b0b565b6040519091506001600160a01b0388169083156108fc029084905f818181858888f19350505050158015611081573d5f803e3d5ffd5b50604051734c5fbf8d815379379b3695ba77b5d3f898c1230b9082156108fc029083905f818181858888f193505050501580156110c0573d5f803e3d5ffd5b505050505050506110d060015f55565b50565b5f336108628185856119d5565b6007545f9081906001600160a01b0316331461110e5760405162461bcd60e51b8152600401610a1090612a11565b611116611a32565b600b54610100900460ff161561113e5760405162461bcd60e51b8152600401610a1090612a37565b600e546111539067016345785d8a0000612b50565b346009546111619190612b50565b11156111a35760405162461bcd60e51b815260206004820152601160248201527014d85b194819dbd85b081c995858da1959607a1b6044820152606401610a10565b5f34116111e05760405162461bcd60e51b815260206004820152600b60248201526a139bc8115512081cd95b9d60aa1b6044820152606401610a10565b600b5462010000900460ff16156112225760405162461bcd60e51b8152602060048201526006602482015265189bdb99195960d21b6044820152606401610a10565b5f6064601554346112339190612ac1565b61123d9190612aec565b90505f61124a8234612b0b565b90505f6112568261086e565b9050858110156112785760405162461bcd60e51b8152600401610a1090612a66565b80600f5f8282546112899190612b50565b925050819055508160095f8282546112a19190612b50565b90915550506001600160a01b0387165f90815260106020526040812080548392906112cd908490612b50565b90915550506001600160a01b0387165f9081526012602052604090205460ff16611354576011805460018082019092557f31ecc21a745e3968a04e9570e4425bc18fa8019c68028196b546d1669c200c680180546001600160a01b0319166001600160a01b038a169081179091555f908152601260205260409020805460ff191690911790555b6016546001600160a01b03166108fc61136e600286612aec565b6040518115909202915f818181858888f19350505050158015611393573d5f803e3d5ffd5b50734c5fbf8d815379379b3695ba77b5d3f898c1230b6108fc6113b7600286612aec565b6040518115909202915f818181858888f193505050501580156113dc573d5f803e3d5ffd5b50600e54600954106113fa57600b805462ff00001916620100001790555b611402611a89565b6040805183815260208101839052428183015290516001600160a01b038916917f0d1a0d5e3d583a0e92588799dd06e50fd78c07daf05f0cc06d7b848b1ca445f1919081900360600190a250506009546001600160a01b0386165f9081526010602052604090205490935091505061147960015f55565b9250929050565b6007546001600160a01b031633146114aa5760405162461bcd60e51b8152600401610a1090612a11565b6114b2611a32565b600b54610100900460ff166114fd5760405162461bcd60e51b815260206004820152601160248201527014d85b19481b9bdd081b185d5b98da1959607a1b6044820152606401610a10565b6001600160a01b0381165f90815260106020526040902054806115575760405162461bcd60e51b81526020600482015260126024820152714e6f20746f6b656e7320746f20636c61696d60701b6044820152606401610a10565b6001600160a01b0382165f9081526010602052604081205561157a3083836119d5565b506110d060015f55565b60178181548110611593575f80fd5b5f9182526020909120600290910201805460019091015490915082565b6007546001600160a01b031633146115da5760405162461bcd60e51b8152600401610a1090612a11565b6115e2611a32565b600b54610100900460ff161561160a5760405162461bcd60e51b8152600401610a1090612a37565b600e5460095410156116565760405162461bcd60e51b815260206004820152601560248201527414d85b194819dbd85b081b9bdd081c995858da1959605a1b6044820152606401610a10565b600b5462010000900460ff1661169b5760405162461bcd60e51b815260206004820152600a6024820152691b9bdd08189bdb99195960b21b6044820152606401610a10565b600b805461ff001916610100179055600f546008545f916116bb91612b0b565b600954600b54919250905f9060649083906116d99060ff1683612b63565b60ff166116e69190612ac1565b6116f09190612aec565b90506116fd308b856118f3565b600654604051637f0dfdd360e11b8152306004820152602481018590525f60448201819052606482015260ff808c166084830152808b1660a4830152808a1660c4830152881660e48201526001600160a01b03918216610104820152908b169063fe1bfba6908390610124015f604051808303818588803b158015611780575f80fd5b505af1158015611792573d5f803e3d5ffd5b50479350505081151590506117e95760405162461bcd60e51b815260206004820152601c60248201527f4e6f2062616c616e636520666f722063726561746f72207368617265000000006044820152606401610a10565b6001600160a01b0386166108fc611801600284612aec565b6040518115909202915f818181858888f19350505050158015611826573d5f803e3d5ffd5b506001600160a01b0385166108fc61183f600284612aec565b6040518115909202915f818181858888f19350505050158015611864573d5f803e3d5ffd5b505050505061187260015f55565b50505050505050565b5f61090d6108468484611b03565b5f81680736ea4425c11ac6308111156118b857604051630d7b1d6560e11b815260048101849052602401610a10565b6714057b7ef767814f81026118dd6118d8670de0b6b3a7640000835b0490565b611bb5565b949350505050565b5f61090d6108468385612b0b565b6119008383836001611c09565b505050565b5f61090d61084684670de0b6b3a764000085611cdb565b5f61090d6108468385612b50565b5f6108686714057b7ef767814f670de0b6b3a764000061194c61084686611daa565b02816118d4576118d4612ad8565b6001600160a01b038381165f908152600260209081526040808320938616835292905220545f1981146119cf57818110156119c157604051637dc7a0d960e11b81526001600160a01b03841660048201526024810182905260448101839052606401610a10565b6119cf84848484035f611c09565b50505050565b6001600160a01b0383166119fe57604051634b637e8f60e11b81525f6004820152602401610a10565b6001600160a01b038216611a275760405163ec442f0560e01b81525f6004820152602401610a10565b611900838383611edb565b60025f5403611a835760405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c006044820152606401610a10565b60025f55565b6040805180820190915242815260095460208201908152601780546001810182555f9190915291517fc624b66cc0138b8fabc209247f72d758e1cf3343756d543badbf24212bed8c15600290930292830155517fc624b66cc0138b8fabc209247f72d758e1cf3343756d543badbf24212bed8c1690910155565b5f80805f19848609848602925082811083820303915050805f03611b345750670de0b6b3a764000090049050610868565b670de0b6b3a76400008110611b6657604051635173648d60e01b81526004810186905260248101859052604401610a10565b5f670de0b6b3a764000085870962040000818503049310909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690291505092915050565b5f81680a688906bd8affffff811115611be45760405163b3b6ba1f60e01b815260048101849052602401610a10565b5f611bfb670de0b6b3a7640000604084901b612aec565b90506118dd61084682612001565b6001600160a01b038416611c325760405163e602df0560e01b81525f6004820152602401610a10565b6001600160a01b038316611c5b57604051634a1406b160e11b81525f6004820152602401610a10565b6001600160a01b038085165f90815260026020908152604080832093871683529290522082905580156119cf57826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92584604051611ccd91815260200190565b60405180910390a350505050565b5f80805f19858709858702925082811083820303915050805f03611d1257838281611d0857611d08612ad8565b049250505061090d565b838110611d4357604051630c740aef60e31b8152600481018790526024810186905260448101859052606401610a10565b5f8486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091025f889003889004909101858311909403939093029303949094049190911702949350505050565b5f81670de0b6b3a7640000811015611dd85760405163036d32ef60e41b815260048101849052602401610a10565b5f611e63670de0b6b3a7640000830460016fffffffffffffffffffffffffffffffff821160071b91821c67ffffffffffffffff811160061b90811c63ffffffff811160051b90811c61ffff811160041b90811c60ff8111600390811b91821c600f811160021b90811c918211871b91821c969096119490961792909217171791909117919091171790565b9050670de0b6b3a7640000810282821c670de0b6b3a763ffff198101611e8c5750949350505050565b671bc16d674ec800006706f05b59d3b200005b8015611ecf57670de0b6b3a7640000838002049250818310611ec7579283019260019290921c915b60011c611e9f565b50919695505050505050565b6001600160a01b038316611f05578060035f828254611efa9190612b50565b90915550611f759050565b6001600160a01b0383165f9081526001602052604090205481811015611f575760405163391434e360e21b81526001600160a01b03851660048201526024810182905260448101839052606401610a10565b6001600160a01b0384165f9081526001602052604090209082900390555b6001600160a01b038216611f9157600380548290039055611faf565b6001600160a01b0382165f9081526001602052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051611ff491815260200190565b60405180910390a3505050565b600160bf1b67ff0000000000000082161561210e576780000000000000008216156120355768016a09e667f3bcc9090260401c5b674000000000000000821615612054576801306fe0a31b7152df0260401c5b672000000000000000821615612073576801172b83c7d517adce0260401c5b6710000000000000008216156120925768010b5586cf9890f62a0260401c5b6708000000000000008216156120b1576801059b0d31585743ae0260401c5b6704000000000000008216156120d057680102c9a3e778060ee70260401c5b6702000000000000008216156120ef5768010163da9fb33356d80260401c5b67010000000000000082161561210e57680100b1afa5abcbed610260401c5b66ff00000000000082161561220d57668000000000000082161561213b5768010058c86da1c09ea20260401c5b6640000000000000821615612159576801002c605e2e8cec500260401c5b662000000000000082161561217757680100162f3904051fa10260401c5b6610000000000000821615612195576801000b175effdc76ba0260401c5b66080000000000008216156121b357680100058ba01fb9f96d0260401c5b66040000000000008216156121d15768010002c5cc37da94920260401c5b66020000000000008216156121ef576801000162e525ee05470260401c5b660100000000000082161561220d5768010000b17255775c040260401c5b65ff00000000008216156123035765800000000000821615612238576801000058b91b5bc9ae0260401c5b6540000000000082161561225557680100002c5c89d5ec6d0260401c5b652000000000008216156122725768010000162e43f4f8310260401c5b6510000000000082161561228f57680100000b1721bcfc9a0260401c5b650800000000008216156122ac5768010000058b90cf1e6e0260401c5b650400000000008216156122c9576801000002c5c863b73f0260401c5b650200000000008216156122e657680100000162e430e5a20260401c5b65010000000000821615612303576801000000b1721835510260401c5b64ff000000008216156123f05764800000000082161561232c57680100000058b90c0b490260401c5b6440000000008216156123485768010000002c5c8601cc0260401c5b642000000000821615612364576801000000162e42fff00260401c5b6410000000008216156123805768010000000b17217fbb0260401c5b64080000000082161561239c576801000000058b90bfce0260401c5b6404000000008216156123b857680100000002c5c85fe30260401c5b6402000000008216156123d45768010000000162e42ff10260401c5b6401000000008216156123f057680100000000b17217f80260401c5b63ff0000008216156124d45763800000008216156124175768010000000058b90bfc0260401c5b6340000000821615612432576801000000002c5c85fe0260401c5b632000000082161561244d57680100000000162e42ff0260401c5b6310000000821615612468576801000000000b17217f0260401c5b630800000082161561248357680100000000058b90c00260401c5b630400000082161561249e5768010000000002c5c8600260401c5b63020000008216156124b9576801000000000162e4300260401c5b63010000008216156124d45768010000000000b172180260401c5b62ff00008216156125af57628000008216156124f9576801000000000058b90c0260401c5b6240000082161561251357680100000000002c5c860260401c5b6220000082161561252d5768010000000000162e430260401c5b6210000082161561254757680100000000000b17210260401c5b620800008216156125615768010000000000058b910260401c5b6204000082161561257b576801000000000002c5c80260401c5b6202000082161561259557680100000000000162e40260401c5b620100008216156125af576801000000000000b1720260401c5b61ff00821615612681576180008216156125d257680100000000000058b90260401c5b6140008216156125eb5768010000000000002c5d0260401c5b612000821615612604576801000000000000162e0260401c5b61100082161561261d5768010000000000000b170260401c5b610800821615612636576801000000000000058c0260401c5b61040082161561264f57680100000000000002c60260401c5b61020082161561266857680100000000000001630260401c5b61010082161561268157680100000000000000b10260401c5b60ff82161561274a5760808216156126a257680100000000000000590260401c5b60408216156126ba576801000000000000002c0260401c5b60208216156126d257680100000000000000160260401c5b60108216156126ea576801000000000000000b0260401c5b600882161561270257680100000000000000060260401c5b600482161561271a57680100000000000000030260401c5b600282161561273257680100000000000000010260401c5b600182161561274a57680100000000000000010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b5f602082840312156127a6575f80fd5b5035919050565b6001600160a01b03811681146110d0575f80fd5b5f80604083850312156127d2575f80fd5b82356127dd816127ad565b946020939093013593505050565b5f805f606084860312156127fd575f80fd5b8335612808816127ad565b92506020840135612818816127ad565b929592945050506040919091013590565b602080825282518282018190525f918401906040840190835b818110156128695783516001600160a01b0316835260209384019390920191600101612842565b509095945050505050565b5f60208284031215612884575f80fd5b813561090d816127ad565b602080825282518282018190525f918401906040840190835b818110156128695783518051845260209081015181850152909301926040909201916001016128a8565b5f805f606084860312156128e4575f80fd5b83356128ef816127ad565b95602085013595506040909401359392505050565b5f8060408385031215612915575f80fd5b8235612920816127ad565b91506020830135612930816127ad565b809150509250929050565b803560ff8116811461294b575f80fd5b919050565b5f805f805f805f60e0888a031215612966575f80fd5b8735612971816127ad565b965061297f6020890161293b565b955061298d6040890161293b565b945061299b6060890161293b565b93506129a96080890161293b565b925060a08801356129b9816127ad565b915060c08801356129c9816127ad565b8091505092959891949750929550565b600181811c908216806129ed57607f821691505b602082108103612a0b57634e487b7160e01b5f52602260045260245ffd5b50919050565b6020808252600c908201526b4f6e6c7920666163746f727960a01b604082015260600190565b60208082526015908201527414d85b1948185b1c9958591e481b185d5b98da1959605a1b604082015260600190565b60208082526027908201527f536c69707061676520746f6f20686967682c207472616e73616374696f6e2072604082015266195d995c9d195960ca1b606082015260800190565b634e487b7160e01b5f52601160045260245ffd5b808202811582820484141761086857610868612aad565b634e487b7160e01b5f52601260045260245ffd5b5f82612b0657634e487b7160e01b5f52601260045260245ffd5b500490565b8181038181111561086857610868612aad565b5f60208284031215612b2e575f80fd5b815161090d816127ad565b5f60208284031215612b49575f80fd5b5051919050565b8082018082111561086857610868612aad565b60ff828116828216039081111561086857610868612aad56fea26469706673582212205987506d13451ebf998bfb60fcc515b751306c9c437b74a3f6bb4fa65580b12b64736f6c634300081a0033
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.