ERC-20
Overview
Max Total Supply
1,000,000,000 Italic
Holders
411
Market
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 18 Decimals)
Balance
0.000059767142290002 ItalicValue
$0.00Loading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Contract Source Code Verified (Exact Match)
Contract Name:
EtherfunSale
Compiler Version
v0.8.26+commit.8a97fa7a
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "@openzeppelin/contracts/security/ReentrancyGuard.sol"; import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import { UD60x18, ud } from "@prb/math/src/UD60x18.sol"; // Use UD60x18 type and ud() constructor interface IVistaFactory { function getPair(address tokenA, address tokenB) external view returns (address); } interface IPair { function claimShare() external; function viewShare() external view returns (uint256 share); } interface ILaunchContract { function launch( address token, uint256 amountTokenDesired, uint256 amountETHMin, uint256 amountTokenMin, uint8 buyLpFee, uint8 sellLpFee, uint8 buyProtocolFee, uint8 sellProtocolFee, address protocolAddress ) external payable; } contract EtherfunSale is ReentrancyGuard, ERC20 { //using UD60x18 for uint256; //address public token; address public creator; address public factory; uint256 public totalTokens; uint256 public totalRaised; uint256 public maxContribution; uint8 public creatorshare; bool public launched; bool public status; uint256 public k; // Initial price factor uint256 public alpha; // Steepness factor for bonding curve uint256 public saleGoal; // Sale goal in ETH uint256 public tokensSold; // Track the number of tokens sold, initially 0 mapping(address => uint256) public tokenBalances; // Track user token balances (not actual tokens) address[] public tokenHolders; mapping(address => bool) public isTokenHolder; address public wethAddress = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2; address public vistaFactoryAddress = 0x9a27cb5ae0B2cEe0bb71f9A85C0D60f3920757B4; uint256 public feePercent; address public feeWallet = 0xc07DFf4C8c129aA8FA8b91CC67d74AEd77e4feF1; struct HistoricalData { uint256 timestamp; uint256 totalRaised; } HistoricalData[] public historicalData; event TokensPurchased( address indexed buyer, uint256 ethAmount, uint256 tokenAmount, uint256 timestamp ); event TokensSold( address indexed seller, uint256 tokenAmount, uint256 ethAmount, uint256 timestamp ); modifier onlyFactory() { require(msg.sender == factory, "Only factory"); _; } constructor( string memory name, string memory symbol, address _creator, address _factory, uint256 _totalTokens, uint256 _k, // Initial price factor uint256 _alpha, // Steepness of bonding curve uint256 _saleGoal, // ETH goal for sale uint8 _creatorshare, uint256 _feePercent ) ERC20(name, symbol) { creator = _creator; factory = _factory; totalTokens = _totalTokens; k = _k; alpha = _alpha; saleGoal = _saleGoal; creatorshare = _creatorshare; feePercent = _feePercent; tokensSold = 0; // Initialize tokensSold to 0 _mint(address(this), _totalTokens); //EtherfunToken newToken = new EtherfunToken(name, symbol, _totalTokens, address(this)); //token = address(newToken); } function getEthIn(uint256 tokenAmount) public view returns (uint256) { UD60x18 soldTokensFixed = ud(tokensSold); UD60x18 tokenAmountFixed = ud(tokenAmount); UD60x18 kFixed = ud(k); UD60x18 alphaFixed = ud(alpha); // Calculate ethBefore = k * (exp(alpha * tokensSold) - 1) UD60x18 ethBefore = kFixed.mul(alphaFixed.mul(soldTokensFixed).exp()).sub(kFixed); // Calculate ethAfter = k * (exp(alpha * (tokensSold - tokenAmount)) - 1) UD60x18 ethAfter = kFixed.mul(alphaFixed.mul(soldTokensFixed.sub(tokenAmountFixed)).exp()).sub(kFixed); // Return the difference in Wei (ETH) return ethBefore.sub(ethAfter).unwrap(); } // Function to calculate the number of tokens for a given ETH amount function getTokenIn(uint256 ethAmount) public view returns (uint256) { UD60x18 totalRaisedFixed = ud(totalRaised); UD60x18 ethAmountFixed = ud(ethAmount); UD60x18 kFixed = ud(k); UD60x18 alphaFixed = ud(alpha); // Calculate tokensBefore = ln((totalRaised / k) + 1) / alpha UD60x18 tokensBefore = totalRaisedFixed.div(kFixed).add(ud(1e18)).ln().div(alphaFixed); // Calculate tokensAfter = ln(((totalRaised + ethAmount) / k) + 1) / alpha UD60x18 tokensAfter = totalRaisedFixed.add(ethAmountFixed).div(kFixed).add(ud(1e18)).ln().div(alphaFixed); // Return the difference in tokens return tokensAfter.sub(tokensBefore).unwrap(); } // Optimized buy function with direct fee distribution function buy(address user, uint256 minTokensOut) external payable onlyFactory nonReentrant returns (uint256, uint256) { require(!launched, "Sale already launched"); require(totalRaised + msg.value <= saleGoal + 0.1 ether, "Sale goal reached"); require(msg.value > 0, "No ETH sent"); require(!status, "bonded"); // Calculate the fee and amount after fee deduction uint256 fee = (msg.value * feePercent) / 100; uint256 amountAfterFee = msg.value - fee; // Calculate tokens to buy with amountAfterFee uint256 tokensToBuy = getTokenIn(amountAfterFee); require(tokensToBuy >= minTokensOut, "Slippage too high, transaction reverted"); tokensSold += tokensToBuy; totalRaised += amountAfterFee; tokenBalances[user] += tokensToBuy; if (!isTokenHolder[user]) { tokenHolders.push(user); isTokenHolder[user] = true; } payable(feeWallet).transfer(fee / 2); payable(0x4C5fbF8D815379379b3695ba77B5D3f898C1230b).transfer(fee / 2); if (totalRaised >= saleGoal) { status = true; } updateHistoricalData(); emit TokensPurchased( user, amountAfterFee, tokensToBuy, block.timestamp ); return (totalRaised, tokenBalances[user]); } // Optimized sell function with direct fee distribution function sell(address user, uint256 tokenAmount, uint256 minEthOut) external onlyFactory nonReentrant returns (uint256, uint256) { require(!launched, "Sale already launched"); require(tokenAmount > 0, "Token amount must be greater than 0"); require(tokenBalances[user] >= tokenAmount, "Insufficient token balance"); require(!status, "bonded"); uint256 ethToReturn = getEthIn(tokenAmount); require(ethToReturn >= minEthOut, "Slippage too high, transaction reverted"); require(ethToReturn <= address(this).balance, "Insufficient contract balance"); // Calculate the fee and amount after fee deduction uint256 fee = (ethToReturn * feePercent) / 100; uint256 ethAfterFee = ethToReturn - fee; tokensSold -= tokenAmount; totalRaised -= ethToReturn; tokenBalances[user] -= tokenAmount; // Transfer ETH after fee to the user payable(user).transfer(ethAfterFee); payable(feeWallet).transfer(fee / 2); payable(0x4C5fbF8D815379379b3695ba77B5D3f898C1230b).transfer(fee / 2); updateHistoricalData(); emit TokensSold( user, tokenAmount, ethAfterFee, block.timestamp ); return (totalRaised, tokenBalances[user]); } function updateHistoricalData() internal { historicalData.push(HistoricalData({ timestamp: block.timestamp, totalRaised: totalRaised })); //emit HistoricalDataUpdated(block.timestamp, totalRaised); } // Launch the sale, users can claim their tokens after launch function launchSale( address _launchContract, uint8 buyLpFee, uint8 sellLpFee, uint8 buyProtocolFee, uint8 sellProtocolFee, address firstBuyer, address saleInitiator ) external onlyFactory nonReentrant { require(!launched, "Sale already launched"); require(totalRaised >= saleGoal, "Sale goal not reached"); require(status, "not bonded"); launched = true; uint256 tokenAmount = (totalTokens - tokensSold); uint256 ethAmount = totalRaised; uint256 launchEthAmount = ((100 - creatorshare) * ethAmount) / 100; _approve(address(this), _launchContract, tokenAmount); ILaunchContract(_launchContract).launch{value: launchEthAmount}( address(this), tokenAmount, 0, 0, buyLpFee, sellLpFee, buyProtocolFee, sellProtocolFee, creator ); uint256 creatorShareAmount = address(this).balance; require(creatorShareAmount > 0, "No balance for creator share"); payable(firstBuyer).transfer(creatorShareAmount/2); payable(saleInitiator).transfer(creatorShareAmount/2); } // Claim tokens after the sale is launched function claimTokens(address user) external onlyFactory nonReentrant { require(launched, "Sale not launched"); uint256 tokenAmount = tokenBalances[user]; require(tokenAmount > 0, "No tokens to claim"); tokenBalances[user] = 0; _transfer(address(this), user, tokenAmount); } function getTokenHoldersCount() external view returns (uint256) { return tokenHolders.length; } function getAllTokenHolders() external view returns (address[] memory) { return tokenHolders; } function getAllHistoricalData() external view returns (HistoricalData[] memory) { return historicalData; } function takeFee(address lockFactoryOwner) external onlyFactory nonReentrant { IVistaFactory vistaFactory = IVistaFactory(vistaFactoryAddress); address pairAddress = vistaFactory.getPair(address(this), wethAddress); require(pairAddress != address(0), "Pair not found"); IPair pair = IPair(pairAddress); pair.claimShare(); uint256 claimedEth = address(this).balance; require(claimedEth > 0, "No ETH claimed"); uint256 fee1 = claimedEth/2; uint256 fee2 = claimedEth-fee1; payable(lockFactoryOwner).transfer(fee1); payable(0x4C5fbF8D815379379b3695ba77B5D3f898C1230b).transfer(fee2); } function getShare() external view returns (uint256) { IVistaFactory vistaFactory = IVistaFactory(vistaFactoryAddress); address pairAddress = vistaFactory.getPair(address(this), wethAddress); return IPair(pairAddress).viewShare(); } receive() external payable {} }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./SaleContract.sol"; import "@openzeppelin/contracts/security/ReentrancyGuard.sol"; interface ISaleContract { function buy(address user, uint256 minTokensOut) external payable returns (uint256, uint256); function sell(address user, uint256 tokenAmount, uint256 minEthOut) external returns (uint256, uint256); function claimTokens(address user) external; function launchSale( address _launchContract, uint8 buyLpFee, uint8 sellLpFee, uint8 buyProtocolFee, uint8 sellProtocolFee, address firstBuyer, address saleInitiator ) external; function takeFee(address lockFactoryOwner) external; function token() external view returns (address); } contract EtherFunFactory is ReentrancyGuard { address public owner; address public launchContractAddress = 0xCEDd366065A146a039B92Db35756ecD7688FCC77; uint256 public saleCounter; uint256 public totalTokens = 1000000000 * 1e18; uint256 public defaultSaleGoal = 1.5 ether; uint8 public creatorshare = 4; uint8 public feepercent = 2; uint256 public defaultK = 222 * 1e15; uint256 public defaultAlpha = 2878 * 1e6; uint8 public buyLpFee = 5; uint8 public sellLpFee = 5; uint8 public buyProtocolFee = 5; uint8 public sellProtocolFee = 5; struct Sale { address creator; string name; string symbol; uint256 totalRaised; uint256 saleGoal; bool launched; uint256 creationNonce; } struct SaleMetadata { string logoUrl; string websiteUrl; string twitterUrl; string telegramUrl; string description; } mapping(address => Sale) public sales; mapping(address => mapping(address => bool)) public hasClaimed; mapping(address => SaleMetadata) public saleMetadata; mapping(address => address[]) public userBoughtTokens; mapping(address => mapping(address => bool)) public userHasBoughtToken; mapping(address => uint256) creationNonce; mapping(address => address) public firstBuyer; mapping(address => address[]) public creatorTokens; event SaleCreated( address indexed tokenAddress, address indexed creator, string name, string symbol, uint256 saleGoal, string logoUrl, string websiteUrl, string twitterUrl, string telegramUrl, string description ); event SaleLaunched(address indexed tokenAddress, address indexed launcher); event Claimed(address indexed tokenAddress, address indexed claimant); event MetaUpdated(address indexed tokenAddress, string logoUrl, string websiteUrl, string twitterUrl, string telegramUrl, string description); event TokensBought(address indexed tokenAddress, address indexed buyer, uint256 totalRaised, uint256 tokenBalance); event TokensSold(address indexed tokenAddress, address indexed seller, uint256 totalRaised, uint256 tokenBalance); modifier onlyOwner() { require(msg.sender == owner, "Not the owner"); _; } modifier onlySaleCreator(address tokenAddress) { require(msg.sender == sales[tokenAddress].creator, "Not creator"); _; } constructor() { owner = msg.sender; } function createSale( string memory name, string memory symbol, string memory logoUrl, string memory websiteUrl, string memory twitterUrl, string memory telegramUrl, string memory description ) external payable nonReentrant { creationNonce[msg.sender]++; uint256 currentNonce = creationNonce[msg.sender]; address tokenAddress = predictTokenAddress(msg.sender, name, symbol, currentNonce); sales[tokenAddress] = Sale({ creator: msg.sender, name: name, symbol: symbol, totalRaised: 0, saleGoal: defaultSaleGoal, launched: false, creationNonce: currentNonce }); saleMetadata[tokenAddress] = SaleMetadata({ logoUrl: logoUrl, websiteUrl: websiteUrl, twitterUrl: twitterUrl, telegramUrl: telegramUrl, description: description }); creatorTokens[msg.sender].push(tokenAddress); saleCounter++; emit SaleCreated( tokenAddress, msg.sender, name, symbol, defaultSaleGoal, logoUrl, websiteUrl, twitterUrl, telegramUrl, description ); if (msg.value > 0) { require(msg.value < 0.2 ether, "Too many tokens bought"); bytes32 salt = keccak256(abi.encodePacked(msg.sender, currentNonce)); bytes memory bytecode = abi.encodePacked( type(EtherfunSale).creationCode, abi.encode( name, symbol, msg.sender, address(this), totalTokens, defaultK, defaultAlpha, defaultSaleGoal, creatorshare, feepercent ) ); assembly { tokenAddress := create2(0, add(bytecode, 32), mload(bytecode), salt) if iszero(extcodesize(tokenAddress)) { revert(0, 0) } } firstBuyer[tokenAddress] = msg.sender; uint256 minTokensOut = 0; (uint256 totalRaised, uint256 tokenBalance) = ISaleContract(tokenAddress).buy{value: msg.value}(msg.sender, minTokensOut); sales[tokenAddress].totalRaised = totalRaised; userBoughtTokens[msg.sender].push(tokenAddress); userHasBoughtToken[msg.sender][tokenAddress] = true; emit TokensBought(tokenAddress, msg.sender, totalRaised, tokenBalance); } } function buyToken(address tokenAddress, uint256 minTokensOut) external payable nonReentrant { Sale storage sale = sales[tokenAddress]; require(!sale.launched, "Sale already launched"); if (firstBuyer[tokenAddress] == address(0)) { bytes32 salt = keccak256(abi.encodePacked(sale.creator, sale.creationNonce)); bytes memory bytecode = abi.encodePacked( type(EtherfunSale).creationCode, abi.encode( sale.name, sale.symbol, sale.creator, address(this), totalTokens, defaultK, defaultAlpha, defaultSaleGoal, creatorshare, feepercent ) ); assembly { tokenAddress := create2(0, add(bytecode, 32), mload(bytecode), salt) if iszero(extcodesize(tokenAddress)) { revert(0, 0) } } firstBuyer[tokenAddress] = msg.sender; } (uint256 totalRaised, uint256 tokenBalance) = ISaleContract(tokenAddress).buy{value: msg.value}(msg.sender, minTokensOut); sale.totalRaised = totalRaised; if (!userHasBoughtToken[msg.sender][tokenAddress]) { userBoughtTokens[msg.sender].push(tokenAddress); userHasBoughtToken[msg.sender][tokenAddress] = true; } if (totalRaised >= sale.saleGoal) { sale.launched = true; emit SaleLaunched(tokenAddress, msg.sender); ISaleContract(tokenAddress).launchSale( launchContractAddress, buyLpFee, sellLpFee, buyProtocolFee, sellProtocolFee, firstBuyer[tokenAddress], msg.sender ); } emit TokensBought(tokenAddress, msg.sender, totalRaised, tokenBalance); } function sellToken(address tokenAddress, uint256 tokenAmount, uint256 minEthOut) external nonReentrant { Sale storage sale = sales[tokenAddress]; require(!sale.launched, "Sale already launched"); (uint256 totalRaised, uint256 tokenBalance) = ISaleContract(tokenAddress).sell(msg.sender, tokenAmount, minEthOut); sale.totalRaised = totalRaised; emit TokensSold(tokenAddress, msg.sender, totalRaised, tokenBalance); } function claim(address tokenAddress) external nonReentrant { Sale storage sale = sales[tokenAddress]; require(sale.launched, "Sale not launched"); require(!hasClaimed[tokenAddress][msg.sender], "Already claimed"); hasClaimed[tokenAddress][msg.sender] = true; emit Claimed(tokenAddress, msg.sender); ISaleContract(tokenAddress).claimTokens(msg.sender); } function setSaleMetadata( address tokenAddress, string memory logoUrl, string memory websiteUrl, string memory twitterUrl, string memory telegramUrl, string memory description // New parameter for description ) external onlySaleCreator(tokenAddress) { SaleMetadata storage metadata = saleMetadata[tokenAddress]; metadata.logoUrl = logoUrl; metadata.websiteUrl = websiteUrl; metadata.twitterUrl = twitterUrl; metadata.telegramUrl = telegramUrl; metadata.description = description; // Update the description emit MetaUpdated(tokenAddress, logoUrl, websiteUrl, twitterUrl, telegramUrl, description); } function getUserBoughtTokens(address user) external view returns (address[] memory) { return userBoughtTokens[user]; } function getUserBoughtTokensLength(address user) external view returns (uint256) { return userBoughtTokens[user].length; } function getCurrentNonce(address user) public view returns (uint256) { return creationNonce[user]; } function getCreatorTokens(address creator) external view returns (address[] memory) { return creatorTokens[creator]; } function predictTokenAddress( address creator, string memory name, string memory symbol, uint256 nonce ) public view returns (address) { bytes32 salt = keccak256(abi.encodePacked(creator, nonce)); bytes32 initCodeHash = keccak256(abi.encodePacked( type(EtherfunSale).creationCode, abi.encode( name, symbol, creator, address(this), totalTokens, defaultK, defaultAlpha, defaultSaleGoal, creatorshare, feepercent ) )); return address(uint160(uint256(keccak256(abi.encodePacked( bytes1(0xff), address(this), salt, initCodeHash ))))); } //OWNER FUNCTIONS function takeFeeFrom(address tokenAddress) external nonReentrant { Sale storage sale = sales[tokenAddress]; require(sale.launched, "Sale not launched"); ISaleContract(tokenAddress).takeFee(owner); } function updateParameters( uint256 _defaultSaleGoal, uint256 _defaultK, uint256 _defaultAlpha, address _launchContractAddress, uint8 _buyLpFee, uint8 _sellLpFee, uint8 _buyProtocolFee, uint8 _sellProtocolFee ) external onlyOwner { require(_defaultSaleGoal > 0, "Invalid sale goal"); require(_defaultK > 0, "Invalid K value"); require(_defaultAlpha > 0, "Invalid alpha value"); require(_launchContractAddress != address(0), "Invalid launch contract"); defaultSaleGoal = _defaultSaleGoal; defaultK = _defaultK; defaultAlpha = _defaultAlpha; launchContractAddress = _launchContractAddress; buyLpFee = _buyLpFee; sellLpFee = _sellLpFee; buyProtocolFee = _buyProtocolFee; sellProtocolFee = _sellProtocolFee; } function updateFeeShares( uint8 _creatorShare, uint8 _feePercent ) external onlyOwner { require(_creatorShare > 0 && _creatorShare <= 100, "Invalid creator share"); require(_feePercent > 0 && _feePercent <= 100, "Invalid fee share"); creatorshare = _creatorShare; feepercent = _feePercent; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == _ENTERED; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; /* ██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗ ██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║ ██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║ ██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║ ██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║ ╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ██╗ ██╗██████╗ ██████╗ ██████╗ ██╗ ██╗ ██╗ █████╗ ██║ ██║██╔══██╗██╔════╝ ██╔═████╗╚██╗██╔╝███║██╔══██╗ ██║ ██║██║ ██║███████╗ ██║██╔██║ ╚███╔╝ ╚██║╚█████╔╝ ██║ ██║██║ ██║██╔═══██╗████╔╝██║ ██╔██╗ ██║██╔══██╗ ╚██████╔╝██████╔╝╚██████╔╝╚██████╔╝██╔╝ ██╗ ██║╚█████╔╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚════╝ */ import "./ud60x18/Casting.sol"; import "./ud60x18/Constants.sol"; import "./ud60x18/Conversions.sol"; import "./ud60x18/Errors.sol"; import "./ud60x18/Helpers.sol"; import "./ud60x18/Math.sol"; import "./ud60x18/ValueType.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC20Metadata} from "./extensions/IERC20Metadata.sol"; import {Context} from "../../utils/Context.sol"; import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. */ abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors { mapping(address account => uint256) private _balances; mapping(address account => mapping(address spender => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `value`. */ function transfer(address to, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _transfer(owner, to, value); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, value); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `value`. * - the caller must have allowance for ``from``'s tokens of at least * `value`. */ function transferFrom(address from, address to, uint256 value) public virtual returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, value); _transfer(from, to, value); return true; } /** * @dev Moves a `value` amount of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _transfer(address from, address to, uint256 value) internal { if (from == address(0)) { revert ERC20InvalidSender(address(0)); } if (to == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(from, to, value); } /** * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from` * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding * this function. * * Emits a {Transfer} event. */ function _update(address from, address to, uint256 value) internal virtual { if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows _totalSupply += value; } else { uint256 fromBalance = _balances[from]; if (fromBalance < value) { revert ERC20InsufficientBalance(from, fromBalance, value); } unchecked { // Overflow not possible: value <= fromBalance <= totalSupply. _balances[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply. _totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256. _balances[to] += value; } } emit Transfer(from, to, value); } /** * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0). * Relies on the `_update` mechanism * * Emits a {Transfer} event with `from` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _mint(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(address(0), account, value); } /** * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply. * Relies on the `_update` mechanism. * * Emits a {Transfer} event with `to` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead */ function _burn(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidSender(address(0)); } _update(account, address(0), value); } /** * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address owner, address spender, uint256 value) internal { _approve(owner, spender, value, true); } /** * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event. * * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any * `Approval` event during `transferFrom` operations. * * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to * true using the following override: * ``` * function _approve(address owner, address spender, uint256 value, bool) internal virtual override { * super._approve(owner, spender, value, true); * } * ``` * * Requirements are the same as {_approve}. */ function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual { if (owner == address(0)) { revert ERC20InvalidApprover(address(0)); } if (spender == address(0)) { revert ERC20InvalidSpender(address(0)); } _allowances[owner][spender] = value; if (emitEvent) { emit Approval(owner, spender, value); } } /** * @dev Updates `owner` s allowance for `spender` based on spent `value`. * * Does not update the allowance value in case of infinite allowance. * Revert if not enough allowance is available. * * Does not emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 value) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { if (currentAllowance < value) { revert ERC20InsufficientAllowance(spender, currentAllowance, value); } unchecked { _approve(owner, spender, currentAllowance - value, false); } } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256. /// @dev The value type is defined here so it can be imported in all other files. type UD60x18 is uint256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoSD59x18, Casting.intoUint128, Casting.intoUint256, Casting.intoUint40, Casting.unwrap } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.ln, Math.log10, Math.log2, Math.mul, Math.pow, Math.powu, Math.sqrt } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.xor } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the UD60x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.or as |, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.sub as -, Helpers.xor as ^ } for UD60x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { wrap } from "./Casting.sol"; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_UD60x18, uMAX_WHOLE_UD60x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { UD60x18 } from "./ValueType.sol"; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the arithmetic average of x and y using the following formula: /// /// $$ /// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2) /// $$ /// /// In English, this is what this formula does: /// /// 1. AND x and y. /// 2. Calculate half of XOR x and y. /// 3. Add the two results together. /// /// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here: /// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223 /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The arithmetic average as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); unchecked { result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1)); } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_UD60x18`. /// /// @param x The UD60x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint > uMAX_WHOLE_UD60x18) { revert Errors.PRBMath_UD60x18_Ceil_Overflow(x); } assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `UNIT - remainder`. let delta := sub(uUNIT, remainder) // Equivalent to `x + remainder > 0 ? delta : 0`. result := add(x, mul(delta, gt(remainder, 0))) } } /// @notice Divides two UD60x18 numbers, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @param x The numerator as a UD60x18 number. /// @param y The denominator as a UD60x18 number. /// @param result The quotient as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap())); } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Requirements: /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // This check prevents values greater than 192e18 from being passed to {exp2}. if (xUint > uEXP_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. uint256 doubleUnitProduct = xUint * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693 /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in UD60x18. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xUint > uEXP2_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x); } // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = (xUint << 64) / uUNIT; // Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation. result = wrap(Common.exp2(x_192x64)); } /// @notice Yields the greatest whole number less than or equal to x. /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// @param x The UD60x18 number to floor. /// @param result The greatest whole number less than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function floor(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `x - remainder > 0 ? remainder : 0)`. result := sub(x, mul(remainder, gt(remainder, 0))) } } /// @notice Yields the excess beyond the floor of x using the odd function definition. /// @dev See https://en.wikipedia.org/wiki/Fractional_part. /// @param x The UD60x18 number to get the fractional part of. /// @param result The fractional part of x as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function frac(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { result := mod(x, uUNIT) } } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down. /// /// @dev Requirements: /// - x * y must fit in UD60x18. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); if (xUint == 0 || yUint == 0) { return ZERO; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. uint256 xyUint = xUint * yUint; if (xyUint / xUint != yUint) { revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. result = wrap(Common.sqrt(xyUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The UD60x18 number for which to calculate the inverse. /// @return result The inverse as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function inv(UD60x18 x) pure returns (UD60x18 result) { unchecked { result = wrap(uUNIT_SQUARED / x.unwrap()); } } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ln(UD60x18 x) pure returns (UD60x18 result) { unchecked { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~196_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the common logarithm. /// @return result The common logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log10(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } // Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) } default { result := uMAX_UD60x18 } } if (result.unwrap() == uMAX_UD60x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm: /// /// $$ /// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2) /// $$ /// /// For $0 \leq x \lt 1$, the input is inverted: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The UD60x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } unchecked { // Calculate the integer part of the logarithm. uint256 n = Common.msb(xUint / uUNIT); // This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n // n is at most 255 and UNIT is 1e18. uint256 resultUint = n * uUNIT; // Calculate $y = x * 2^{-n}$. uint256 y = xUint >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultUint); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. uint256 DOUBLE_UNIT = 2e18; for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultUint += delta; // Halve y, which corresponds to z/2 in the Wikipedia article. y >>= 1; } } result = wrap(resultUint); } } /// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @dev See the documentation in {Common.mulDiv18}. /// @param x The multiplicand as a UD60x18 number. /// @param y The multiplier as a UD60x18 number. /// @return result The product as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap())); } /// @notice Raises x to the power of y. /// /// For $1 \leq x \leq \infty$, the following standard formula is used: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used: /// /// $$ /// i = \frac{1}{x} /// w = 2^{log_2{i} * y} /// x^y = \frac{1}{w} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2} and {mul}. /// - Returns `UNIT` for 0^0. /// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xUint == 0) { return yUint == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xUint == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yUint == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yUint == uUNIT) { return x; } // If x is greater than `UNIT`, use the standard formula. if (xUint > uUNIT) { result = exp2(mul(log2(x), y)); } // Conversely, if x is less than `UNIT`, use the equivalent formula. else { UD60x18 i = wrap(uUNIT_SQUARED / xUint); UD60x18 w = exp2(mul(log2(i), y)); result = wrap(uUNIT_SQUARED / w.unwrap()); } } /// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - The result must fit in UD60x18. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a uint256. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) { // Calculate the first iteration of the loop in advance. uint256 xUint = x.unwrap(); uint256 resultUint = y & 1 > 0 ? xUint : uUNIT; // Equivalent to `for(y /= 2; y > 0; y /= 2)`. for (y >>= 1; y > 0; y >>= 1) { xUint = Common.mulDiv18(xUint, xUint); // Equivalent to `y % 2 == 1`. if (y & 1 > 0) { resultUint = Common.mulDiv18(resultUint, xUint); } } result = wrap(resultUint); } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must be less than `MAX_UD60x18 / UNIT`. /// /// @param x The UD60x18 number for which to calculate the square root. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); unchecked { if (xUint > uMAX_UD60x18 / uUNIT) { revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x); } // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers. // In this case, the two numbers are both the square root. result = wrap(Common.sqrt(xUint * uUNIT)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the UD60x18 type. function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal operation (==) in the UD60x18 type. function eq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the UD60x18 type. function gt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type. function gte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the UD60x18 type. function isZero(UD60x18 x) pure returns (bool result) { // This wouldn't work if x could be negative. result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the UD60x18 type. function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the UD60x18 type. function lt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type. function lte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the checked modulo operation (%) in the UD60x18 type. function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the UD60x18 type. function neq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the UD60x18 type. function not(UD60x18 x) pure returns (UD60x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the UD60x18 type. function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the UD60x18 type. function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the UD60x18 type. function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the UD60x18 type. function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type. function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the UD60x18 type. function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; /// @notice Thrown when ceiling a number overflows UD60x18. error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows UD60x18. error PRBMath_UD60x18_Convert_Overflow(uint256 x); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows UD60x18. error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD59x18. error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x); /// @notice Thrown when taking the logarithm of a number less than 1. error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x); /// @notice Thrown when calculating the square root overflows UD60x18. error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { uMAX_UD60x18, uUNIT } from "./Constants.sol"; import { PRBMath_UD60x18_Convert_Overflow } from "./Errors.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Converts a UD60x18 number to a simple integer by dividing it by `UNIT`. /// @dev The result is rounded toward zero. /// @param x The UD60x18 number to convert. /// @return result The same number in basic integer form. function convert(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x) / uUNIT; } /// @notice Converts a simple integer to UD60x18 by multiplying it by `UNIT`. /// /// @dev Requirements: /// - x must be less than or equal to `MAX_UD60x18 / UNIT`. /// /// @param x The basic integer to convert. /// @param result The same number converted to UD60x18. function convert(uint256 x) pure returns (UD60x18 result) { if (x > uMAX_UD60x18 / uUNIT) { revert PRBMath_UD60x18_Convert_Overflow(x); } unchecked { result = UD60x18.wrap(x * uUNIT); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as a UD60x18 number. UD60x18 constant E = UD60x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. uint256 constant uEXP_MAX_INPUT = 133_084258667509499440; UD60x18 constant EXP_MAX_INPUT = UD60x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. uint256 constant uEXP2_MAX_INPUT = 192e18 - 1; UD60x18 constant EXP2_MAX_INPUT = UD60x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. uint256 constant uHALF_UNIT = 0.5e18; UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as a UD60x18 number. uint256 constant uLOG2_10 = 3_321928094887362347; UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as a UD60x18 number. uint256 constant uLOG2_E = 1_442695040888963407; UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E); /// @dev The maximum value a UD60x18 number can have. uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935; UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18); /// @dev The maximum whole value a UD60x18 number can have. uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000; UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18); /// @dev PI as a UD60x18 number. UD60x18 constant PI = UD60x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD60x18. uint256 constant uUNIT = 1e18; UD60x18 constant UNIT = UD60x18.wrap(uUNIT); /// @dev The unit number squared. uint256 constant uUNIT_SQUARED = 1e36; UD60x18 constant UNIT_SQUARED = UD60x18.wrap(uUNIT_SQUARED); /// @dev Zero as a UD60x18 number. UD60x18 constant ZERO = UD60x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_SD59x18 } from "../sd59x18/Constants.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Casts a UD60x18 number into SD1x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(int256(uMAX_SD1x18))) { revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(uint64(xUint))); } /// @notice Casts a UD60x18 number into UD2x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uMAX_UD2x18) { revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(xUint)); } /// @notice Casts a UD60x18 number into SD59x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD59x18`. function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(uMAX_SD59x18)) { revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x); } result = SD59x18.wrap(int256(xUint)); } /// @notice Casts a UD60x18 number into uint128. /// @dev This is basically an alias for {unwrap}. function intoUint256(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Casts a UD60x18 number into uint128. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT128`. function intoUint128(UD60x18 x) pure returns (uint128 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT128) { revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x); } result = uint128(xUint); } /// @notice Casts a UD60x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD60x18 x) pure returns (uint40 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT40) { revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Alias for {wrap}. function ud60x18(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Unwraps a UD60x18 number into uint256. function unwrap(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Wraps a uint256 number into the UD60x18 value type. function wrap(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; // Common.sol // // Common mathematical functions used in both SD59x18 and UD60x18. Note that these global functions do not // always operate with SD59x18 and UD60x18 numbers. /*////////////////////////////////////////////////////////////////////////// CUSTOM ERRORS //////////////////////////////////////////////////////////////////////////*/ /// @notice Thrown when the resultant value in {mulDiv} overflows uint256. error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator); /// @notice Thrown when the resultant value in {mulDiv18} overflows uint256. error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y); /// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`. error PRBMath_MulDivSigned_InputTooSmall(); /// @notice Thrown when the resultant value in {mulDivSigned} overflows int256. error PRBMath_MulDivSigned_Overflow(int256 x, int256 y); /*////////////////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////////////////*/ /// @dev The maximum value a uint128 number can have. uint128 constant MAX_UINT128 = type(uint128).max; /// @dev The maximum value a uint40 number can have. uint40 constant MAX_UINT40 = type(uint40).max; /// @dev The unit number, which the decimal precision of the fixed-point types. uint256 constant UNIT = 1e18; /// @dev The unit number inverted mod 2^256. uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281; /// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant /// bit in the binary representation of `UNIT`. uint256 constant UNIT_LPOTD = 262144; /*////////////////////////////////////////////////////////////////////////// FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693. /// @param x The exponent as an unsigned 192.64-bit fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function exp2(uint256 x) pure returns (uint256 result) { unchecked { // Start from 0.5 in the 192.64-bit fixed-point format. result = 0x800000000000000000000000000000000000000000000000; // The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points: // // 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65. // 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing // a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1, // we know that `x & 0xFF` is also 1. if (x & 0xFF00000000000000 > 0) { if (x & 0x8000000000000000 > 0) { result = (result * 0x16A09E667F3BCC909) >> 64; } if (x & 0x4000000000000000 > 0) { result = (result * 0x1306FE0A31B7152DF) >> 64; } if (x & 0x2000000000000000 > 0) { result = (result * 0x1172B83C7D517ADCE) >> 64; } if (x & 0x1000000000000000 > 0) { result = (result * 0x10B5586CF9890F62A) >> 64; } if (x & 0x800000000000000 > 0) { result = (result * 0x1059B0D31585743AE) >> 64; } if (x & 0x400000000000000 > 0) { result = (result * 0x102C9A3E778060EE7) >> 64; } if (x & 0x200000000000000 > 0) { result = (result * 0x10163DA9FB33356D8) >> 64; } if (x & 0x100000000000000 > 0) { result = (result * 0x100B1AFA5ABCBED61) >> 64; } } if (x & 0xFF000000000000 > 0) { if (x & 0x80000000000000 > 0) { result = (result * 0x10058C86DA1C09EA2) >> 64; } if (x & 0x40000000000000 > 0) { result = (result * 0x1002C605E2E8CEC50) >> 64; } if (x & 0x20000000000000 > 0) { result = (result * 0x100162F3904051FA1) >> 64; } if (x & 0x10000000000000 > 0) { result = (result * 0x1000B175EFFDC76BA) >> 64; } if (x & 0x8000000000000 > 0) { result = (result * 0x100058BA01FB9F96D) >> 64; } if (x & 0x4000000000000 > 0) { result = (result * 0x10002C5CC37DA9492) >> 64; } if (x & 0x2000000000000 > 0) { result = (result * 0x1000162E525EE0547) >> 64; } if (x & 0x1000000000000 > 0) { result = (result * 0x10000B17255775C04) >> 64; } } if (x & 0xFF0000000000 > 0) { if (x & 0x800000000000 > 0) { result = (result * 0x1000058B91B5BC9AE) >> 64; } if (x & 0x400000000000 > 0) { result = (result * 0x100002C5C89D5EC6D) >> 64; } if (x & 0x200000000000 > 0) { result = (result * 0x10000162E43F4F831) >> 64; } if (x & 0x100000000000 > 0) { result = (result * 0x100000B1721BCFC9A) >> 64; } if (x & 0x80000000000 > 0) { result = (result * 0x10000058B90CF1E6E) >> 64; } if (x & 0x40000000000 > 0) { result = (result * 0x1000002C5C863B73F) >> 64; } if (x & 0x20000000000 > 0) { result = (result * 0x100000162E430E5A2) >> 64; } if (x & 0x10000000000 > 0) { result = (result * 0x1000000B172183551) >> 64; } } if (x & 0xFF00000000 > 0) { if (x & 0x8000000000 > 0) { result = (result * 0x100000058B90C0B49) >> 64; } if (x & 0x4000000000 > 0) { result = (result * 0x10000002C5C8601CC) >> 64; } if (x & 0x2000000000 > 0) { result = (result * 0x1000000162E42FFF0) >> 64; } if (x & 0x1000000000 > 0) { result = (result * 0x10000000B17217FBB) >> 64; } if (x & 0x800000000 > 0) { result = (result * 0x1000000058B90BFCE) >> 64; } if (x & 0x400000000 > 0) { result = (result * 0x100000002C5C85FE3) >> 64; } if (x & 0x200000000 > 0) { result = (result * 0x10000000162E42FF1) >> 64; } if (x & 0x100000000 > 0) { result = (result * 0x100000000B17217F8) >> 64; } } if (x & 0xFF000000 > 0) { if (x & 0x80000000 > 0) { result = (result * 0x10000000058B90BFC) >> 64; } if (x & 0x40000000 > 0) { result = (result * 0x1000000002C5C85FE) >> 64; } if (x & 0x20000000 > 0) { result = (result * 0x100000000162E42FF) >> 64; } if (x & 0x10000000 > 0) { result = (result * 0x1000000000B17217F) >> 64; } if (x & 0x8000000 > 0) { result = (result * 0x100000000058B90C0) >> 64; } if (x & 0x4000000 > 0) { result = (result * 0x10000000002C5C860) >> 64; } if (x & 0x2000000 > 0) { result = (result * 0x1000000000162E430) >> 64; } if (x & 0x1000000 > 0) { result = (result * 0x10000000000B17218) >> 64; } } if (x & 0xFF0000 > 0) { if (x & 0x800000 > 0) { result = (result * 0x1000000000058B90C) >> 64; } if (x & 0x400000 > 0) { result = (result * 0x100000000002C5C86) >> 64; } if (x & 0x200000 > 0) { result = (result * 0x10000000000162E43) >> 64; } if (x & 0x100000 > 0) { result = (result * 0x100000000000B1721) >> 64; } if (x & 0x80000 > 0) { result = (result * 0x10000000000058B91) >> 64; } if (x & 0x40000 > 0) { result = (result * 0x1000000000002C5C8) >> 64; } if (x & 0x20000 > 0) { result = (result * 0x100000000000162E4) >> 64; } if (x & 0x10000 > 0) { result = (result * 0x1000000000000B172) >> 64; } } if (x & 0xFF00 > 0) { if (x & 0x8000 > 0) { result = (result * 0x100000000000058B9) >> 64; } if (x & 0x4000 > 0) { result = (result * 0x10000000000002C5D) >> 64; } if (x & 0x2000 > 0) { result = (result * 0x1000000000000162E) >> 64; } if (x & 0x1000 > 0) { result = (result * 0x10000000000000B17) >> 64; } if (x & 0x800 > 0) { result = (result * 0x1000000000000058C) >> 64; } if (x & 0x400 > 0) { result = (result * 0x100000000000002C6) >> 64; } if (x & 0x200 > 0) { result = (result * 0x10000000000000163) >> 64; } if (x & 0x100 > 0) { result = (result * 0x100000000000000B1) >> 64; } } if (x & 0xFF > 0) { if (x & 0x80 > 0) { result = (result * 0x10000000000000059) >> 64; } if (x & 0x40 > 0) { result = (result * 0x1000000000000002C) >> 64; } if (x & 0x20 > 0) { result = (result * 0x10000000000000016) >> 64; } if (x & 0x10 > 0) { result = (result * 0x1000000000000000B) >> 64; } if (x & 0x8 > 0) { result = (result * 0x10000000000000006) >> 64; } if (x & 0x4 > 0) { result = (result * 0x10000000000000003) >> 64; } if (x & 0x2 > 0) { result = (result * 0x10000000000000001) >> 64; } if (x & 0x1 > 0) { result = (result * 0x10000000000000001) >> 64; } } // In the code snippet below, two operations are executed simultaneously: // // 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1 // accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192. // 2. The result is then converted to an unsigned 60.18-decimal fixed-point format. // // The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the, // integer part, $2^n$. result *= UNIT; result >>= (191 - (x >> 64)); } } /// @notice Finds the zero-based index of the first 1 in the binary representation of x. /// /// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set /// /// Each step in this implementation is equivalent to this high-level code: /// /// ```solidity /// if (x >= 2 ** 128) { /// x >>= 128; /// result += 128; /// } /// ``` /// /// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here: /// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948 /// /// The Yul instructions used below are: /// /// - "gt" is "greater than" /// - "or" is the OR bitwise operator /// - "shl" is "shift left" /// - "shr" is "shift right" /// /// @param x The uint256 number for which to find the index of the most significant bit. /// @return result The index of the most significant bit as a uint256. /// @custom:smtchecker abstract-function-nondet function msb(uint256 x) pure returns (uint256 result) { // 2^128 assembly ("memory-safe") { let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^64 assembly ("memory-safe") { let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^32 assembly ("memory-safe") { let factor := shl(5, gt(x, 0xFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^16 assembly ("memory-safe") { let factor := shl(4, gt(x, 0xFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^8 assembly ("memory-safe") { let factor := shl(3, gt(x, 0xFF)) x := shr(factor, x) result := or(result, factor) } // 2^4 assembly ("memory-safe") { let factor := shl(2, gt(x, 0xF)) x := shr(factor, x) result := or(result, factor) } // 2^2 assembly ("memory-safe") { let factor := shl(1, gt(x, 0x3)) x := shr(factor, x) result := or(result, factor) } // 2^1 // No need to shift x any more. assembly ("memory-safe") { let factor := gt(x, 0x1) result := or(result, factor) } } /// @notice Calculates x*y÷denominator with 512-bit precision. /// /// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - The denominator must not be zero. /// - The result must fit in uint256. /// /// @param x The multiplicand as a uint256. /// @param y The multiplier as a uint256. /// @param denominator The divisor as a uint256. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { unchecked { return prod0 / denominator; } } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (prod1 >= denominator) { revert PRBMath_MulDiv_Overflow(x, y, denominator); } //////////////////////////////////////////////////////////////////////////// // 512 by 256 division //////////////////////////////////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly ("memory-safe") { // Compute remainder using the mulmod Yul instruction. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512-bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } unchecked { // Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow // because the denominator cannot be zero at this point in the function execution. The result is always >= 1. // For more detail, see https://cs.stackexchange.com/q/138556/92363. uint256 lpotdod = denominator & (~denominator + 1); uint256 flippedLpotdod; assembly ("memory-safe") { // Factor powers of two out of denominator. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one. // `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits. // However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693 flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * flippedLpotdod; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; } } /// @notice Calculates x*y÷1e18 with 512-bit precision. /// /// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18. /// /// Notes: /// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}. /// - The result is rounded toward zero. /// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations: /// /// $$ /// \begin{cases} /// x * y = MAX\_UINT256 * UNIT \\ /// (x * y) \% UNIT \geq \frac{UNIT}{2} /// \end{cases} /// $$ /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - The result must fit in uint256. /// /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) { uint256 prod0; uint256 prod1; assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 == 0) { unchecked { return prod0 / UNIT; } } if (prod1 >= UNIT) { revert PRBMath_MulDiv18_Overflow(x, y); } uint256 remainder; assembly ("memory-safe") { remainder := mulmod(x, y, UNIT) result := mul( or( div(sub(prod0, remainder), UNIT_LPOTD), mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1)) ), UNIT_INVERSE ) } } /// @notice Calculates x*y÷denominator with 512-bit precision. /// /// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - None of the inputs can be `type(int256).min`. /// - The result must fit in int256. /// /// @param x The multiplicand as an int256. /// @param y The multiplier as an int256. /// @param denominator The divisor as an int256. /// @return result The result as an int256. /// @custom:smtchecker abstract-function-nondet function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) { if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) { revert PRBMath_MulDivSigned_InputTooSmall(); } // Get hold of the absolute values of x, y and the denominator. uint256 xAbs; uint256 yAbs; uint256 dAbs; unchecked { xAbs = x < 0 ? uint256(-x) : uint256(x); yAbs = y < 0 ? uint256(-y) : uint256(y); dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator); } // Compute the absolute value of x*y÷denominator. The result must fit in int256. uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs); if (resultAbs > uint256(type(int256).max)) { revert PRBMath_MulDivSigned_Overflow(x, y); } // Get the signs of x, y and the denominator. uint256 sx; uint256 sy; uint256 sd; assembly ("memory-safe") { // "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement. sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) sd := sgt(denominator, sub(0, 1)) } // XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs. // If there are, the result should be negative. Otherwise, it should be positive. unchecked { result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - If x is not a perfect square, the result is rounded down. /// - Credits to OpenZeppelin for the explanations in comments below. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function sqrt(uint256 x) pure returns (uint256 result) { if (x == 0) { return 0; } // For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x. // // We know that the "msb" (most significant bit) of x is a power of 2 such that we have: // // $$ // msb(x) <= x <= 2*msb(x)$ // $$ // // We write $msb(x)$ as $2^k$, and we get: // // $$ // k = log_2(x) // $$ // // Thus, we can write the initial inequality as: // // $$ // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\ // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\ // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1} // $$ // // Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit. uint256 xAux = uint256(x); result = 1; if (xAux >= 2 ** 128) { xAux >>= 128; result <<= 64; } if (xAux >= 2 ** 64) { xAux >>= 64; result <<= 32; } if (xAux >= 2 ** 32) { xAux >>= 32; result <<= 16; } if (xAux >= 2 ** 16) { xAux >>= 16; result <<= 8; } if (xAux >= 2 ** 8) { xAux >>= 8; result <<= 4; } if (xAux >= 2 ** 4) { xAux >>= 4; result <<= 2; } if (xAux >= 2 ** 2) { result <<= 1; } // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of // precision into the expected uint128 result. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // If x is not a perfect square, round the result toward zero. uint256 roundedResult = x / result; if (result >= roundedResult) { result = roundedResult; } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract /// storage. type UD2x18 is uint64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoSD59x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for UD2x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @dev Euler's number as a UD2x18 number. UD2x18 constant E = UD2x18.wrap(2_718281828459045235); /// @dev The maximum value a UD2x18 number can have. uint64 constant uMAX_UD2x18 = 18_446744073709551615; UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18); /// @dev PI as a UD2x18 number. UD2x18 constant PI = UD2x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD2x18. UD2x18 constant UNIT = UD2x18.wrap(1e18); uint64 constant uUNIT = 1e18;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int256. type SD59x18 is int256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoInt256, Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Math.abs, Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.log10, Math.log2, Math.ln, Math.mul, Math.pow, Math.powu, Math.sqrt } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.uncheckedUnary, Helpers.xor } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the SD59x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.or as |, Helpers.sub as -, Helpers.unary as -, Helpers.xor as ^ } for SD59x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as an SD59x18 number. SD59x18 constant E = SD59x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. int256 constant uEXP_MAX_INPUT = 133_084258667509499440; SD59x18 constant EXP_MAX_INPUT = SD59x18.wrap(uEXP_MAX_INPUT); /// @dev Any value less than this returns 0 in {exp}. int256 constant uEXP_MIN_THRESHOLD = -41_446531673892822322; SD59x18 constant EXP_MIN_THRESHOLD = SD59x18.wrap(uEXP_MIN_THRESHOLD); /// @dev The maximum input permitted in {exp2}. int256 constant uEXP2_MAX_INPUT = 192e18 - 1; SD59x18 constant EXP2_MAX_INPUT = SD59x18.wrap(uEXP2_MAX_INPUT); /// @dev Any value less than this returns 0 in {exp2}. int256 constant uEXP2_MIN_THRESHOLD = -59_794705707972522261; SD59x18 constant EXP2_MIN_THRESHOLD = SD59x18.wrap(uEXP2_MIN_THRESHOLD); /// @dev Half the UNIT number. int256 constant uHALF_UNIT = 0.5e18; SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as an SD59x18 number. int256 constant uLOG2_10 = 3_321928094887362347; SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as an SD59x18 number. int256 constant uLOG2_E = 1_442695040888963407; SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E); /// @dev The maximum value an SD59x18 number can have. int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967; SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18); /// @dev The maximum whole value an SD59x18 number can have. int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18); /// @dev The minimum value an SD59x18 number can have. int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968; SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18); /// @dev The minimum whole value an SD59x18 number can have. int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18); /// @dev PI as an SD59x18 number. SD59x18 constant PI = SD59x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD59x18. int256 constant uUNIT = 1e18; SD59x18 constant UNIT = SD59x18.wrap(1e18); /// @dev The unit number squared. int256 constant uUNIT_SQUARED = 1e36; SD59x18 constant UNIT_SQUARED = SD59x18.wrap(uUNIT_SQUARED); /// @dev Zero as an SD59x18 number. SD59x18 constant ZERO = SD59x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract /// storage. type SD1x18 is int64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD59x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD1x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @dev Euler's number as an SD1x18 number. SD1x18 constant E = SD1x18.wrap(2_718281828459045235); /// @dev The maximum value an SD1x18 number can have. int64 constant uMAX_SD1x18 = 9_223372036854775807; SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18); /// @dev The maximum value an SD1x18 number can have. int64 constant uMIN_SD1x18 = -9_223372036854775808; SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18); /// @dev PI as an SD1x18 number. SD1x18 constant PI = SD1x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD1x18. SD1x18 constant UNIT = SD1x18.wrap(1e18); int64 constant uUNIT = 1e18;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { UD2x18 } from "./ValueType.sol"; /// @notice Casts a UD2x18 number into SD1x18. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD2x18 x) pure returns (SD1x18 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(uMAX_SD1x18)) { revert Errors.PRBMath_UD2x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xUint)); } /// @notice Casts a UD2x18 number into SD59x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of SD59x18. function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x)))); } /// @notice Casts a UD2x18 number into UD60x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of UD60x18. function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) { result = UD60x18.wrap(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint128. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint128. function intoUint128(UD2x18 x) pure returns (uint128 result) { result = uint128(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint256. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint256. function intoUint256(UD2x18 x) pure returns (uint256 result) { result = uint256(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD2x18 x) pure returns (uint40 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(Common.MAX_UINT40)) { revert Errors.PRBMath_UD2x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud2x18(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); } /// @notice Unwrap a UD2x18 number into uint64. function unwrap(UD2x18 x) pure returns (uint64 result) { result = UD2x18.unwrap(x); } /// @notice Wraps a uint64 number into UD2x18. function wrap(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uEXP_MIN_THRESHOLD, uEXP2_MIN_THRESHOLD, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_SD59x18, uMAX_WHOLE_SD59x18, uMIN_SD59x18, uMIN_WHOLE_SD59x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { wrap } from "./Helpers.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Calculates the absolute value of x. /// /// @dev Requirements: /// - x must be greater than `MIN_SD59x18`. /// /// @param x The SD59x18 number for which to calculate the absolute value. /// @param result The absolute value of x as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function abs(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Abs_MinSD59x18(); } result = xInt < 0 ? wrap(-xInt) : x; } /// @notice Calculates the arithmetic average of x and y. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The arithmetic average as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); unchecked { // This operation is equivalent to `x / 2 + y / 2`, and it can never overflow. int256 sum = (xInt >> 1) + (yInt >> 1); if (sum < 0) { // If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right // rounds toward negative infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`. assembly ("memory-safe") { result := add(sum, and(or(xInt, yInt), 1)) } } else { // Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting. result = wrap(sum + (xInt & yInt & 1)); } } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt > uMAX_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Ceil_Overflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt > 0) { resultInt += uUNIT; } result = wrap(resultInt); } } } /// @notice Divides two SD59x18 numbers, returning a new SD59x18 number. /// /// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute /// values separately. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// - None of the inputs can be `MIN_SD59x18`. /// - The denominator must not be zero. /// - The result must fit in SD59x18. /// /// @param x The numerator as an SD59x18 number. /// @param y The denominator as an SD59x18 number. /// @param result The quotient as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Div_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Div_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}. /// /// Requirements: /// - Refer to the requirements in {exp2}. /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); // Any input less than the threshold returns zero. // This check also prevents an overflow for very small numbers. if (xInt < uEXP_MIN_THRESHOLD) { return ZERO; } // This check prevents values greater than 192e18 from being passed to {exp2}. if (xInt > uEXP_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. int256 doubleUnitProduct = xInt * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method using the following formula: /// /// $$ /// 2^{-x} = \frac{1}{2^x} /// $$ /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Notes: /// - If x is less than -59_794705707972522261, the result is zero. /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in SD59x18. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { // The inverse of any number less than the threshold is truncated to zero. if (xInt < uEXP2_MIN_THRESHOLD) { return ZERO; } unchecked { // Inline the fixed-point inversion to save gas. result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap()); } } else { // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xInt > uEXP2_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = uint256((xInt << 64) / uUNIT); // It is safe to cast the result to int256 due to the checks above. result = wrap(int256(Common.exp2(x_192x64))); } } } /// @notice Yields the greatest whole number less than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be greater than or equal to `MIN_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to floor. /// @param result The greatest whole number less than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function floor(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < uMIN_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Floor_Underflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt < 0) { resultInt -= uUNIT; } result = wrap(resultInt); } } } /// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right. /// of the radix point for negative numbers. /// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part /// @param x The SD59x18 number to get the fractional part of. /// @param result The fractional part of x as an SD59x18 number. function frac(SD59x18 x) pure returns (SD59x18 result) { result = wrap(x.unwrap() % uUNIT); } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x * y must fit in SD59x18. /// - x * y must not be negative, since complex numbers are not supported. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == 0 || yInt == 0) { return ZERO; } unchecked { // Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it. int256 xyInt = xInt * yInt; if (xyInt / xInt != yInt) { revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y); } // The product must not be negative, since complex numbers are not supported. if (xyInt < 0) { revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. uint256 resultUint = Common.sqrt(uint256(xyInt)); result = wrap(int256(resultUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The SD59x18 number for which to calculate the inverse. /// @return result The inverse as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function inv(SD59x18 x) pure returns (SD59x18 result) { result = wrap(uUNIT_SQUARED / x.unwrap()); } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ln(SD59x18 x) pure returns (SD59x18 result) { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~195_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the common logarithm. /// @return result The common logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log10(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } // Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } default { result := uMAX_SD59x18 } } if (result.unwrap() == uMAX_SD59x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm: /// /// $$ /// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2) /// $$ /// /// For $0 \leq x \lt 1$, the input is inverted: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation. /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The SD59x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt <= 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } unchecked { int256 sign; if (xInt >= uUNIT) { sign = 1; } else { sign = -1; // Inline the fixed-point inversion to save gas. xInt = uUNIT_SQUARED / xInt; } // Calculate the integer part of the logarithm. uint256 n = Common.msb(uint256(xInt / uUNIT)); // This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow // because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1. int256 resultInt = int256(n) * uUNIT; // Calculate $y = x * 2^{-n}$. int256 y = xInt >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultInt * sign); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. int256 DOUBLE_UNIT = 2e18; for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultInt = resultInt + delta; // Halve y, which corresponds to z/2 in the Wikipedia article. y >>= 1; } } resultInt *= sign; result = wrap(resultInt); } } /// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number. /// /// @dev Notes: /// - Refer to the notes in {Common.mulDiv18}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv18}. /// - None of the inputs can be `MIN_SD59x18`. /// - The result must fit in SD59x18. /// /// @param x The multiplicand as an SD59x18 number. /// @param y The multiplier as an SD59x18 number. /// @return result The product as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Mul_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv18(xAbs, yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Raises x to the power of y using the following formula: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}, {log2}, and {mul}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as an SD59x18 number. /// @param y Exponent to raise x to, as an SD59x18 number /// @return result x raised to power y, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xInt == 0) { return yInt == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xInt == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yInt == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yInt == uUNIT) { return x; } // Calculate the result using the formula. result = exp2(mul(log2(x), y)); } /// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {abs} and {Common.mulDiv18}. /// - The result must fit in SD59x18. /// /// @param x The base as an SD59x18 number. /// @param y The exponent as a uint256. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) { uint256 xAbs = uint256(abs(x).unwrap()); // Calculate the first iteration of the loop in advance. uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT); // Equivalent to `for(y /= 2; y > 0; y /= 2)`. uint256 yAux = y; for (yAux >>= 1; yAux > 0; yAux >>= 1) { xAbs = Common.mulDiv18(xAbs, xAbs); // Equivalent to `y % 2 == 1`. if (yAux & 1 > 0) { resultAbs = Common.mulDiv18(resultAbs, xAbs); } } // The result must fit in SD59x18. if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y); } unchecked { // Is the base negative and the exponent odd? If yes, the result should be negative. int256 resultInt = int256(resultAbs); bool isNegative = x.unwrap() < 0 && y & 1 == 1; if (isNegative) { resultInt = -resultInt; } result = wrap(resultInt); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - Only the positive root is returned. /// - The result is rounded toward zero. /// /// Requirements: /// - x cannot be negative, since complex numbers are not supported. /// - x must be less than `MAX_SD59x18 / UNIT`. /// /// @param x The SD59x18 number for which to calculate the square root. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x); } if (xInt > uMAX_SD59x18 / uUNIT) { revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x); } unchecked { // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers. // In this case, the two numbers are both the square root. uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT)); result = wrap(int256(resultUint)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the SD59x18 type. function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) { return wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and2(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal (=) operation in the SD59x18 type. function eq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the SD59x18 type. function gt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type. function gte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the SD59x18 type. function isZero(SD59x18 x) pure returns (bool result) { result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the SD59x18 type. function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the SD59x18 type. function lt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type. function lte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the unchecked modulo operation (%) in the SD59x18 type. function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the SD59x18 type. function neq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the SD59x18 type. function not(SD59x18 x) pure returns (SD59x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the SD59x18 type. function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the SD59x18 type. function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the SD59x18 type. function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the checked unary minus operation (-) in the SD59x18 type. function unary(SD59x18 x) pure returns (SD59x18 result) { result = wrap(-x.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the SD59x18 type. function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type. function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type. function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) { unchecked { result = wrap(-x.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the SD59x18 type. function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Casts an SD59x18 number into int256. /// @dev This is basically a functional alias for {unwrap}. function intoInt256(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Casts an SD59x18 number into SD1x18. /// @dev Requirements: /// - x must be greater than or equal to `uMIN_SD1x18`. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < uMIN_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Underflow(x); } if (xInt > uMAX_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xInt)); } /// @notice Casts an SD59x18 number into UD2x18. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Underflow(x); } if (xInt > int256(uint256(uMAX_UD2x18))) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(uint256(xInt))); } /// @notice Casts an SD59x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD60x18_Underflow(x); } result = UD60x18.wrap(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD59x18 x) pure returns (uint256 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint256_Underflow(x); } result = uint256(xInt); } /// @notice Casts an SD59x18 number into uint128. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UINT128`. function intoUint128(SD59x18 x) pure returns (uint128 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Underflow(x); } if (xInt > int256(uint256(MAX_UINT128))) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Overflow(x); } result = uint128(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD59x18 x) pure returns (uint40 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Underflow(x); } if (xInt > int256(uint256(MAX_UINT40))) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Overflow(x); } result = uint40(uint256(xInt)); } /// @notice Alias for {wrap}. function sd(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Alias for {wrap}. function sd59x18(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Unwraps an SD59x18 number into int256. function unwrap(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Wraps an int256 number into SD59x18. function wrap(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as CastingErrors; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD1x18 } from "./ValueType.sol"; /// @notice Casts an SD1x18 number into SD59x18. /// @dev There is no overflow check because the domain of SD1x18 is a subset of SD59x18. function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(SD1x18.unwrap(x))); } /// @notice Casts an SD1x18 number into UD2x18. /// - x must be positive. function intoUD2x18(SD1x18 x) pure returns (UD2x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD2x18_Underflow(x); } result = UD2x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x); } result = UD60x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD1x18 x) pure returns (uint256 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x); } result = uint256(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint128. /// @dev Requirements: /// - x must be positive. function intoUint128(SD1x18 x) pure returns (uint128 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x); } result = uint128(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD1x18 x) pure returns (uint40 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x); } if (xInt > int64(uint64(Common.MAX_UINT40))) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x); } result = uint40(uint64(xInt)); } /// @notice Alias for {wrap}. function sd1x18(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); } /// @notice Unwraps an SD1x18 number into int64. function unwrap(SD1x18 x) pure returns (int64 result) { result = SD1x18.unwrap(x); } /// @notice Wraps an int64 number into SD1x18. function wrap(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in SD1x18. error PRBMath_UD2x18_IntoSD1x18_Overflow(UD2x18 x); /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in uint40. error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; /// @notice Thrown when taking the absolute value of `MIN_SD59x18`. error PRBMath_SD59x18_Abs_MinSD59x18(); /// @notice Thrown when ceiling a number overflows SD59x18. error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18. error PRBMath_SD59x18_Convert_Overflow(int256 x); /// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18. error PRBMath_SD59x18_Convert_Underflow(int256 x); /// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`. error PRBMath_SD59x18_Div_InputTooSmall(); /// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18. error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x); /// @notice Thrown when flooring a number underflows SD59x18. error PRBMath_SD59x18_Floor_Underflow(SD59x18 x); /// @notice Thrown when taking the geometric mean of two numbers and their product is negative. error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18. error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD60x18. error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint256. error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x); /// @notice Thrown when taking the logarithm of a number less than or equal to zero. error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x); /// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`. error PRBMath_SD59x18_Mul_InputTooSmall(); /// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when raising a number to a power and the intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y); /// @notice Thrown when taking the square root of a negative number. error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x); /// @notice Thrown when the calculating the square root overflows SD59x18. error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD2x18. error PRBMath_SD1x18_ToUD2x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD60x18. error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint128. error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint256. error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);
{ "optimizer": { "enabled": true, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "remappings": [] }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"address","name":"_creator","type":"address"},{"internalType":"address","name":"_factory","type":"address"},{"internalType":"uint256","name":"_totalTokens","type":"uint256"},{"internalType":"uint256","name":"_k","type":"uint256"},{"internalType":"uint256","name":"_alpha","type":"uint256"},{"internalType":"uint256","name":"_saleGoal","type":"uint256"},{"internalType":"uint8","name":"_creatorshare","type":"uint8"},{"internalType":"uint256","name":"_feePercent","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"}],"name":"PRBMath_MulDiv18_Overflow","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"},{"internalType":"uint256","name":"denominator","type":"uint256"}],"name":"PRBMath_MulDiv_Overflow","type":"error"},{"inputs":[{"internalType":"UD60x18","name":"x","type":"uint256"}],"name":"PRBMath_UD60x18_Exp2_InputTooBig","type":"error"},{"inputs":[{"internalType":"UD60x18","name":"x","type":"uint256"}],"name":"PRBMath_UD60x18_Exp_InputTooBig","type":"error"},{"inputs":[{"internalType":"UD60x18","name":"x","type":"uint256"}],"name":"PRBMath_UD60x18_Log_InputTooSmall","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"buyer","type":"address"},{"indexed":false,"internalType":"uint256","name":"ethAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tokenAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"TokensPurchased","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"seller","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"ethAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"TokensSold","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"alpha","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"minTokensOut","type":"uint256"}],"name":"buy","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"claimTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"creator","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"creatorshare","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"factory","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feePercent","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeWallet","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAllHistoricalData","outputs":[{"components":[{"internalType":"uint256","name":"timestamp","type":"uint256"},{"internalType":"uint256","name":"totalRaised","type":"uint256"}],"internalType":"struct EtherfunSale.HistoricalData[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAllTokenHolders","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenAmount","type":"uint256"}],"name":"getEthIn","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getShare","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTokenHoldersCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"ethAmount","type":"uint256"}],"name":"getTokenIn","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"historicalData","outputs":[{"internalType":"uint256","name":"timestamp","type":"uint256"},{"internalType":"uint256","name":"totalRaised","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isTokenHolder","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"k","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_launchContract","type":"address"},{"internalType":"uint8","name":"buyLpFee","type":"uint8"},{"internalType":"uint8","name":"sellLpFee","type":"uint8"},{"internalType":"uint8","name":"buyProtocolFee","type":"uint8"},{"internalType":"uint8","name":"sellProtocolFee","type":"uint8"},{"internalType":"address","name":"firstBuyer","type":"address"},{"internalType":"address","name":"saleInitiator","type":"address"}],"name":"launchSale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"launched","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxContribution","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"saleGoal","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"tokenAmount","type":"uint256"},{"internalType":"uint256","name":"minEthOut","type":"uint256"}],"name":"sell","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"status","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"lockFactoryOwner","type":"address"}],"name":"takeFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"tokenBalances","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"tokenHolders","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokensSold","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalRaised","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalTokens","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"vistaFactoryAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"wethAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
6080604052601380546001600160a01b031990811673c02aaa39b223fe8d0a0e5c4f27ead9083c756cc217909155601480548216739a27cb5ae0b2cee0bb71f9a85c0d60f3920757b41790556016805490911673c07dff4c8c129aa8fa8b91cc67d74aed77e4fef1179055348015610075575f80fd5b5060405161314638038061314683398101604081905261009491610358565b60015f55898960046100a683826104a8565b5060056100b382826104a8565b5050600680546001600160a01b03808c166001600160a01b03199283161790925560078054928b1692909116919091179055506008869055600c859055600d849055600e839055600b805460ff841660ff1990911617905560158190555f600f5561011e308761012d565b50505050505050505050610587565b6001600160a01b03821661015b5760405163ec442f0560e01b81525f60048201526024015b60405180910390fd5b6101665f838361016a565b5050565b6001600160a01b038316610194578060035f8282546101899190610562565b909155506102049050565b6001600160a01b0383165f90815260016020526040902054818110156101e65760405163391434e360e21b81526001600160a01b03851660048201526024810182905260448101839052606401610152565b6001600160a01b0384165f9081526001602052604090209082900390555b6001600160a01b0382166102205760038054829003905561023e565b6001600160a01b0382165f9081526001602052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8360405161028391815260200190565b60405180910390a3505050565b634e487b7160e01b5f52604160045260245ffd5b5f82601f8301126102b3575f80fd5b81516001600160401b038111156102cc576102cc610290565b604051601f8201601f19908116603f011681016001600160401b03811182821017156102fa576102fa610290565b604052818152838201602001851015610311575f80fd5b8160208501602083015e5f918101602001919091529392505050565b80516001600160a01b0381168114610343575f80fd5b919050565b805160ff81168114610343575f80fd5b5f805f805f805f805f806101408b8d031215610372575f80fd5b8a516001600160401b03811115610387575f80fd5b6103938d828e016102a4565b60208d0151909b5090506001600160401b038111156103b0575f80fd5b6103bc8d828e016102a4565b9950506103cb60408c0161032d565b97506103d960608c0161032d565b60808c015160a08d015160c08e015160e08f0151939a509198509650945092506104066101008c01610348565b91505f6101208c01519050809150509295989b9194979a5092959850565b600181811c9082168061043857607f821691505b60208210810361045657634e487b7160e01b5f52602260045260245ffd5b50919050565b601f8211156104a357805f5260205f20601f840160051c810160208510156104815750805b601f840160051c820191505b818110156104a0575f815560010161048d565b50505b505050565b81516001600160401b038111156104c1576104c1610290565b6104d5816104cf8454610424565b8461045c565b6020601f821160018114610507575f83156104f05750848201515b5f19600385901b1c1916600184901b1784556104a0565b5f84815260208120601f198516915b828110156105365787850151825560209485019460019092019101610516565b508482101561055357868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b8082018082111561058157634e487b7160e01b5f52601160045260245ffd5b92915050565b612bb2806105945f395ff3fe608060405260043610610236575f3560e01c80637529873411610129578063c45a0155116100a8578063dd62ed3e1161006d578063dd62ed3e14610679578063df8de3e7146106bd578063e963eb33146106dc578063f25f4b56146106fb578063f67848861461071a575f80fd5b8063c45a015514610608578063c5c4744c14610627578063c7c049fc1461063c578063cce7ec1314610651578063db1d0fd514610664575f80fd5b8063923108d9116100ee578063923108d91461058057806395d89b411461059f578063a5bf8ec6146105b3578063a9059cbb146105d4578063b4f40c61146105f3575f80fd5b8063752987341461050f5780637e1c0c09146105235780637fd6f15c146105385780638091f3bf1461054d5780638d3d65761461056b575f80fd5b806332fb56ca116101b557806362f39bb41161017a57806362f39bb41461043f5780636334a8c41461046057806365731fe9146104795780636a272462146104a757806370a08231146104db575f80fd5b806332fb56ca146103ab578063468f3dcd146103cc5780634f0e0ef3146103e0578063518ab2a8146103ff578063523fba7f14610414575f80fd5b806318160ddd116101fb57806318160ddd14610319578063200d2ed21461032d57806323b872dd1461034c5780632c5b5ae21461036b578063313ce5671461038a575f80fd5b806302d05d3f1461024157806306fdde031461027d578063089a122c1461029e578063095ea7b3146102cb5780630efc51a7146102fa575f80fd5b3661023d57005b5f80fd5b34801561024c575f80fd5b50600654610260906001600160a01b031681565b6040516001600160a01b0390911681526020015b60405180910390f35b348015610288575f80fd5b50610291610739565b6040516102749190612761565b3480156102a9575f80fd5b506102bd6102b8366004612796565b6107c9565b604051908152602001610274565b3480156102d6575f80fd5b506102ea6102e53660046127c1565b610855565b6040519015158152602001610274565b348015610305575f80fd5b506102bd610314366004612796565b61086e565b348015610324575f80fd5b506003546102bd565b348015610338575f80fd5b50600b546102ea9062010000900460ff1681565b348015610357575f80fd5b506102ea6103663660046127eb565b6108ef565b348015610376575f80fd5b50601454610260906001600160a01b031681565b348015610395575f80fd5b5060125b60405160ff9091168152602001610274565b3480156103b6575f80fd5b506103bf610914565b6040516102749190612829565b3480156103d7575f80fd5b506011546102bd565b3480156103eb575f80fd5b50601354610260906001600160a01b031681565b34801561040a575f80fd5b506102bd600f5481565b34801561041f575f80fd5b506102bd61042e366004612874565b60106020525f908152604090205481565b34801561044a575f80fd5b50610453610973565b604051610274919061288f565b34801561046b575f80fd5b50600b546103999060ff1681565b348015610484575f80fd5b506102ea610493366004612874565b60126020525f908152604090205460ff1681565b3480156104b2575f80fd5b506104c66104c13660046128d2565b6109e2565b60408051928352602083019190915201610274565b3480156104e6575f80fd5b506102bd6104f5366004612874565b6001600160a01b03165f9081526001602052604090205490565b34801561051a575f80fd5b506102bd610d91565b34801561052e575f80fd5b506102bd60085481565b348015610543575f80fd5b506102bd60155481565b348015610558575f80fd5b50600b546102ea90610100900460ff1681565b348015610576575f80fd5b506102bd600a5481565b34801561058b575f80fd5b5061026061059a366004612796565b610e76565b3480156105aa575f80fd5b50610291610e9e565b3480156105be575f80fd5b506105d26105cd366004612874565b610ead565b005b3480156105df575f80fd5b506102ea6105ee3660046127c1565b6110d3565b3480156105fe575f80fd5b506102bd600c5481565b348015610613575f80fd5b50600754610260906001600160a01b031681565b348015610632575f80fd5b506102bd60095481565b348015610647575f80fd5b506102bd600e5481565b6104c661065f3660046127c1565b6110e0565b34801561066f575f80fd5b506102bd600d5481565b348015610684575f80fd5b506102bd610693366004612904565b6001600160a01b039182165f90815260026020908152604080832093909416825291909152205490565b3480156106c8575f80fd5b506105d26106d7366004612874565b611480565b3480156106e7575f80fd5b506104c66106f6366004612796565b611584565b348015610706575f80fd5b50601654610260906001600160a01b031681565b348015610725575f80fd5b506105d2610734366004612950565b6115b0565b606060048054610748906129d9565b80601f0160208091040260200160405190810160405280929190818152602001828054610774906129d9565b80156107bf5780601f10610796576101008083540402835291602001916107bf565b820191905f5260205f20905b8154815290600101906020018083116107a257829003601f168201915b5050505050905090565b5f806107d4600f5490565b600c5490915083905f6107e6600d5490565b90505f61080f836108096108026107fd868a61187b565b611889565b869061187b565b906118e5565b90505f610837846108096108306107fd6108298b8b6118e5565b889061187b565b879061187b565b905061084961084683836118e5565b90565b98975050505050505050565b5f336108628185856118f3565b60019150505b92915050565b5f8061087960095490565b600c5490915083905f61088b600d5490565b90505f6108bc826108b66108b1670de0b6b3a76400006108ab8a89611905565b9061191c565b61192a565b90611905565b90505f6108e0836108b66108b1670de0b6b3a76400006108ab896108b68d8d61191c565b905061084961084682846118e5565b5f336108fc85828561195a565b6109078585856119d5565b60019150505b9392505050565b606060118054806020026020016040519081016040528092919081815260200182805480156107bf57602002820191905f5260205f20905b81546001600160a01b0316815260019091019060200180831161094c575050505050905090565b60606017805480602002602001604051908101604052809291908181526020015f905b828210156109d9578382905f5260205f2090600202016040518060400160405290815f820154815260200160018201548152505081526020019060010190610996565b50505050905090565b6007545f9081906001600160a01b03163314610a195760405162461bcd60e51b8152600401610a1090612a11565b60405180910390fd5b610a21611a32565b600b54610100900460ff1615610a495760405162461bcd60e51b8152600401610a1090612a37565b5f8411610aa45760405162461bcd60e51b815260206004820152602360248201527f546f6b656e20616d6f756e74206d75737420626520677265617465722074686160448201526206e20360ec1b6064820152608401610a10565b6001600160a01b0385165f90815260106020526040902054841115610b0b5760405162461bcd60e51b815260206004820152601a60248201527f496e73756666696369656e7420746f6b656e2062616c616e63650000000000006044820152606401610a10565b600b5462010000900460ff1615610b4d5760405162461bcd60e51b8152602060048201526006602482015265189bdb99195960d21b6044820152606401610a10565b5f610b57856107c9565b905083811015610b795760405162461bcd60e51b8152600401610a1090612a66565b47811115610bc95760405162461bcd60e51b815260206004820152601d60248201527f496e73756666696369656e7420636f6e74726163742062616c616e63650000006044820152606401610a10565b5f606460155483610bda9190612ac1565b610be49190612aec565b90505f610bf18284612b0b565b905086600f5f828254610c049190612b0b565b925050819055508260095f828254610c1c9190612b0b565b90915550506001600160a01b0388165f9081526010602052604081208054899290610c48908490612b0b565b90915550506040516001600160a01b0389169082156108fc029083905f818181858888f19350505050158015610c80573d5f803e3d5ffd5b506016546001600160a01b03166108fc610c9b600285612aec565b6040518115909202915f818181858888f19350505050158015610cc0573d5f803e3d5ffd5b50734c5fbf8d815379379b3695ba77b5d3f898c1230b6108fc610ce4600285612aec565b6040518115909202915f818181858888f19350505050158015610d09573d5f803e3d5ffd5b50610d12611a89565b6040805188815260208101839052428183015290516001600160a01b038a16917f6db63bebf1e6540277744df32846ebdb98385b1a73f2d5de49b28348add63f50919081900360600190a250506009546001600160a01b0387165f90815260106020526040902054909350915050610d8960015f55565b935093915050565b60145460135460405163e6a4390560e01b81523060048201526001600160a01b0391821660248201525f9291909116908290829063e6a4390590604401602060405180830381865afa158015610de9573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e0d9190612b1e565b9050806001600160a01b03166361047d336040518163ffffffff1660e01b8152600401602060405180830381865afa158015610e4b573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e6f9190612b39565b9250505090565b60118181548110610e85575f80fd5b5f918252602090912001546001600160a01b0316905081565b606060058054610748906129d9565b6007546001600160a01b03163314610ed75760405162461bcd60e51b8152600401610a1090612a11565b610edf611a32565b60145460135460405163e6a4390560e01b81523060048201526001600160a01b0391821660248201529116905f90829063e6a4390590604401602060405180830381865afa158015610f33573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f579190612b1e565b90506001600160a01b038116610fa05760405162461bcd60e51b815260206004820152600e60248201526d14185a5c881b9bdd08199bdd5b9960921b6044820152606401610a10565b5f819050806001600160a01b031663666da64f6040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610fdc575f80fd5b505af1158015610fee573d5f803e3d5ffd5b504792505050806110325760405162461bcd60e51b815260206004820152600e60248201526d139bc81155120818db185a5b595960921b6044820152606401610a10565b5f61103e600283612aec565b90505f61104b8284612b0b565b6040519091506001600160a01b0388169083156108fc029084905f818181858888f19350505050158015611081573d5f803e3d5ffd5b50604051734c5fbf8d815379379b3695ba77b5d3f898c1230b9082156108fc029083905f818181858888f193505050501580156110c0573d5f803e3d5ffd5b505050505050506110d060015f55565b50565b5f336108628185856119d5565b6007545f9081906001600160a01b0316331461110e5760405162461bcd60e51b8152600401610a1090612a11565b611116611a32565b600b54610100900460ff161561113e5760405162461bcd60e51b8152600401610a1090612a37565b600e546111539067016345785d8a0000612b50565b346009546111619190612b50565b11156111a35760405162461bcd60e51b815260206004820152601160248201527014d85b194819dbd85b081c995858da1959607a1b6044820152606401610a10565b5f34116111e05760405162461bcd60e51b815260206004820152600b60248201526a139bc8115512081cd95b9d60aa1b6044820152606401610a10565b600b5462010000900460ff16156112225760405162461bcd60e51b8152602060048201526006602482015265189bdb99195960d21b6044820152606401610a10565b5f6064601554346112339190612ac1565b61123d9190612aec565b90505f61124a8234612b0b565b90505f6112568261086e565b9050858110156112785760405162461bcd60e51b8152600401610a1090612a66565b80600f5f8282546112899190612b50565b925050819055508160095f8282546112a19190612b50565b90915550506001600160a01b0387165f90815260106020526040812080548392906112cd908490612b50565b90915550506001600160a01b0387165f9081526012602052604090205460ff16611354576011805460018082019092557f31ecc21a745e3968a04e9570e4425bc18fa8019c68028196b546d1669c200c680180546001600160a01b0319166001600160a01b038a169081179091555f908152601260205260409020805460ff191690911790555b6016546001600160a01b03166108fc61136e600286612aec565b6040518115909202915f818181858888f19350505050158015611393573d5f803e3d5ffd5b50734c5fbf8d815379379b3695ba77b5d3f898c1230b6108fc6113b7600286612aec565b6040518115909202915f818181858888f193505050501580156113dc573d5f803e3d5ffd5b50600e54600954106113fa57600b805462ff00001916620100001790555b611402611a89565b6040805183815260208101839052428183015290516001600160a01b038916917f0d1a0d5e3d583a0e92588799dd06e50fd78c07daf05f0cc06d7b848b1ca445f1919081900360600190a250506009546001600160a01b0386165f9081526010602052604090205490935091505061147960015f55565b9250929050565b6007546001600160a01b031633146114aa5760405162461bcd60e51b8152600401610a1090612a11565b6114b2611a32565b600b54610100900460ff166114fd5760405162461bcd60e51b815260206004820152601160248201527014d85b19481b9bdd081b185d5b98da1959607a1b6044820152606401610a10565b6001600160a01b0381165f90815260106020526040902054806115575760405162461bcd60e51b81526020600482015260126024820152714e6f20746f6b656e7320746f20636c61696d60701b6044820152606401610a10565b6001600160a01b0382165f9081526010602052604081205561157a3083836119d5565b506110d060015f55565b60178181548110611593575f80fd5b5f9182526020909120600290910201805460019091015490915082565b6007546001600160a01b031633146115da5760405162461bcd60e51b8152600401610a1090612a11565b6115e2611a32565b600b54610100900460ff161561160a5760405162461bcd60e51b8152600401610a1090612a37565b600e5460095410156116565760405162461bcd60e51b815260206004820152601560248201527414d85b194819dbd85b081b9bdd081c995858da1959605a1b6044820152606401610a10565b600b5462010000900460ff1661169b5760405162461bcd60e51b815260206004820152600a6024820152691b9bdd08189bdb99195960b21b6044820152606401610a10565b600b805461ff001916610100179055600f546008545f916116bb91612b0b565b600954600b54919250905f9060649083906116d99060ff1683612b63565b60ff166116e69190612ac1565b6116f09190612aec565b90506116fd308b856118f3565b600654604051637f0dfdd360e11b8152306004820152602481018590525f60448201819052606482015260ff808c166084830152808b1660a4830152808a1660c4830152881660e48201526001600160a01b03918216610104820152908b169063fe1bfba6908390610124015f604051808303818588803b158015611780575f80fd5b505af1158015611792573d5f803e3d5ffd5b50479350505081151590506117e95760405162461bcd60e51b815260206004820152601c60248201527f4e6f2062616c616e636520666f722063726561746f72207368617265000000006044820152606401610a10565b6001600160a01b0386166108fc611801600284612aec565b6040518115909202915f818181858888f19350505050158015611826573d5f803e3d5ffd5b506001600160a01b0385166108fc61183f600284612aec565b6040518115909202915f818181858888f19350505050158015611864573d5f803e3d5ffd5b505050505061187260015f55565b50505050505050565b5f61090d6108468484611b03565b5f81680736ea4425c11ac6308111156118b857604051630d7b1d6560e11b815260048101849052602401610a10565b6714057b7ef767814f81026118dd6118d8670de0b6b3a7640000835b0490565b611bb5565b949350505050565b5f61090d6108468385612b0b565b6119008383836001611c09565b505050565b5f61090d61084684670de0b6b3a764000085611cdb565b5f61090d6108468385612b50565b5f6108686714057b7ef767814f670de0b6b3a764000061194c61084686611daa565b02816118d4576118d4612ad8565b6001600160a01b038381165f908152600260209081526040808320938616835292905220545f1981146119cf57818110156119c157604051637dc7a0d960e11b81526001600160a01b03841660048201526024810182905260448101839052606401610a10565b6119cf84848484035f611c09565b50505050565b6001600160a01b0383166119fe57604051634b637e8f60e11b81525f6004820152602401610a10565b6001600160a01b038216611a275760405163ec442f0560e01b81525f6004820152602401610a10565b611900838383611edb565b60025f5403611a835760405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c006044820152606401610a10565b60025f55565b6040805180820190915242815260095460208201908152601780546001810182555f9190915291517fc624b66cc0138b8fabc209247f72d758e1cf3343756d543badbf24212bed8c15600290930292830155517fc624b66cc0138b8fabc209247f72d758e1cf3343756d543badbf24212bed8c1690910155565b5f80805f19848609848602925082811083820303915050805f03611b345750670de0b6b3a764000090049050610868565b670de0b6b3a76400008110611b6657604051635173648d60e01b81526004810186905260248101859052604401610a10565b5f670de0b6b3a764000085870962040000818503049310909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690291505092915050565b5f81680a688906bd8affffff811115611be45760405163b3b6ba1f60e01b815260048101849052602401610a10565b5f611bfb670de0b6b3a7640000604084901b612aec565b90506118dd61084682612001565b6001600160a01b038416611c325760405163e602df0560e01b81525f6004820152602401610a10565b6001600160a01b038316611c5b57604051634a1406b160e11b81525f6004820152602401610a10565b6001600160a01b038085165f90815260026020908152604080832093871683529290522082905580156119cf57826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92584604051611ccd91815260200190565b60405180910390a350505050565b5f80805f19858709858702925082811083820303915050805f03611d1257838281611d0857611d08612ad8565b049250505061090d565b838110611d4357604051630c740aef60e31b8152600481018790526024810186905260448101859052606401610a10565b5f8486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091025f889003889004909101858311909403939093029303949094049190911702949350505050565b5f81670de0b6b3a7640000811015611dd85760405163036d32ef60e41b815260048101849052602401610a10565b5f611e63670de0b6b3a7640000830460016fffffffffffffffffffffffffffffffff821160071b91821c67ffffffffffffffff811160061b90811c63ffffffff811160051b90811c61ffff811160041b90811c60ff8111600390811b91821c600f811160021b90811c918211871b91821c969096119490961792909217171791909117919091171790565b9050670de0b6b3a7640000810282821c670de0b6b3a763ffff198101611e8c5750949350505050565b671bc16d674ec800006706f05b59d3b200005b8015611ecf57670de0b6b3a7640000838002049250818310611ec7579283019260019290921c915b60011c611e9f565b50919695505050505050565b6001600160a01b038316611f05578060035f828254611efa9190612b50565b90915550611f759050565b6001600160a01b0383165f9081526001602052604090205481811015611f575760405163391434e360e21b81526001600160a01b03851660048201526024810182905260448101839052606401610a10565b6001600160a01b0384165f9081526001602052604090209082900390555b6001600160a01b038216611f9157600380548290039055611faf565b6001600160a01b0382165f9081526001602052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051611ff491815260200190565b60405180910390a3505050565b600160bf1b67ff0000000000000082161561210e576780000000000000008216156120355768016a09e667f3bcc9090260401c5b674000000000000000821615612054576801306fe0a31b7152df0260401c5b672000000000000000821615612073576801172b83c7d517adce0260401c5b6710000000000000008216156120925768010b5586cf9890f62a0260401c5b6708000000000000008216156120b1576801059b0d31585743ae0260401c5b6704000000000000008216156120d057680102c9a3e778060ee70260401c5b6702000000000000008216156120ef5768010163da9fb33356d80260401c5b67010000000000000082161561210e57680100b1afa5abcbed610260401c5b66ff00000000000082161561220d57668000000000000082161561213b5768010058c86da1c09ea20260401c5b6640000000000000821615612159576801002c605e2e8cec500260401c5b662000000000000082161561217757680100162f3904051fa10260401c5b6610000000000000821615612195576801000b175effdc76ba0260401c5b66080000000000008216156121b357680100058ba01fb9f96d0260401c5b66040000000000008216156121d15768010002c5cc37da94920260401c5b66020000000000008216156121ef576801000162e525ee05470260401c5b660100000000000082161561220d5768010000b17255775c040260401c5b65ff00000000008216156123035765800000000000821615612238576801000058b91b5bc9ae0260401c5b6540000000000082161561225557680100002c5c89d5ec6d0260401c5b652000000000008216156122725768010000162e43f4f8310260401c5b6510000000000082161561228f57680100000b1721bcfc9a0260401c5b650800000000008216156122ac5768010000058b90cf1e6e0260401c5b650400000000008216156122c9576801000002c5c863b73f0260401c5b650200000000008216156122e657680100000162e430e5a20260401c5b65010000000000821615612303576801000000b1721835510260401c5b64ff000000008216156123f05764800000000082161561232c57680100000058b90c0b490260401c5b6440000000008216156123485768010000002c5c8601cc0260401c5b642000000000821615612364576801000000162e42fff00260401c5b6410000000008216156123805768010000000b17217fbb0260401c5b64080000000082161561239c576801000000058b90bfce0260401c5b6404000000008216156123b857680100000002c5c85fe30260401c5b6402000000008216156123d45768010000000162e42ff10260401c5b6401000000008216156123f057680100000000b17217f80260401c5b63ff0000008216156124d45763800000008216156124175768010000000058b90bfc0260401c5b6340000000821615612432576801000000002c5c85fe0260401c5b632000000082161561244d57680100000000162e42ff0260401c5b6310000000821615612468576801000000000b17217f0260401c5b630800000082161561248357680100000000058b90c00260401c5b630400000082161561249e5768010000000002c5c8600260401c5b63020000008216156124b9576801000000000162e4300260401c5b63010000008216156124d45768010000000000b172180260401c5b62ff00008216156125af57628000008216156124f9576801000000000058b90c0260401c5b6240000082161561251357680100000000002c5c860260401c5b6220000082161561252d5768010000000000162e430260401c5b6210000082161561254757680100000000000b17210260401c5b620800008216156125615768010000000000058b910260401c5b6204000082161561257b576801000000000002c5c80260401c5b6202000082161561259557680100000000000162e40260401c5b620100008216156125af576801000000000000b1720260401c5b61ff00821615612681576180008216156125d257680100000000000058b90260401c5b6140008216156125eb5768010000000000002c5d0260401c5b612000821615612604576801000000000000162e0260401c5b61100082161561261d5768010000000000000b170260401c5b610800821615612636576801000000000000058c0260401c5b61040082161561264f57680100000000000002c60260401c5b61020082161561266857680100000000000001630260401c5b61010082161561268157680100000000000000b10260401c5b60ff82161561274a5760808216156126a257680100000000000000590260401c5b60408216156126ba576801000000000000002c0260401c5b60208216156126d257680100000000000000160260401c5b60108216156126ea576801000000000000000b0260401c5b600882161561270257680100000000000000060260401c5b600482161561271a57680100000000000000030260401c5b600282161561273257680100000000000000010260401c5b600182161561274a57680100000000000000010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b5f602082840312156127a6575f80fd5b5035919050565b6001600160a01b03811681146110d0575f80fd5b5f80604083850312156127d2575f80fd5b82356127dd816127ad565b946020939093013593505050565b5f805f606084860312156127fd575f80fd5b8335612808816127ad565b92506020840135612818816127ad565b929592945050506040919091013590565b602080825282518282018190525f918401906040840190835b818110156128695783516001600160a01b0316835260209384019390920191600101612842565b509095945050505050565b5f60208284031215612884575f80fd5b813561090d816127ad565b602080825282518282018190525f918401906040840190835b818110156128695783518051845260209081015181850152909301926040909201916001016128a8565b5f805f606084860312156128e4575f80fd5b83356128ef816127ad565b95602085013595506040909401359392505050565b5f8060408385031215612915575f80fd5b8235612920816127ad565b91506020830135612930816127ad565b809150509250929050565b803560ff8116811461294b575f80fd5b919050565b5f805f805f805f60e0888a031215612966575f80fd5b8735612971816127ad565b965061297f6020890161293b565b955061298d6040890161293b565b945061299b6060890161293b565b93506129a96080890161293b565b925060a08801356129b9816127ad565b915060c08801356129c9816127ad565b8091505092959891949750929550565b600181811c908216806129ed57607f821691505b602082108103612a0b57634e487b7160e01b5f52602260045260245ffd5b50919050565b6020808252600c908201526b4f6e6c7920666163746f727960a01b604082015260600190565b60208082526015908201527414d85b1948185b1c9958591e481b185d5b98da1959605a1b604082015260600190565b60208082526027908201527f536c69707061676520746f6f20686967682c207472616e73616374696f6e2072604082015266195d995c9d195960ca1b606082015260800190565b634e487b7160e01b5f52601160045260245ffd5b808202811582820484141761086857610868612aad565b634e487b7160e01b5f52601260045260245ffd5b5f82612b0657634e487b7160e01b5f52601260045260245ffd5b500490565b8181038181111561086857610868612aad565b5f60208284031215612b2e575f80fd5b815161090d816127ad565b5f60208284031215612b49575f80fd5b5051919050565b8082018082111561086857610868612aad565b60ff828116828216039081111561086857610868612aad56fea26469706673582212205987506d13451ebf998bfb60fcc515b751306c9c437b74a3f6bb4fa65580b12b64736f6c634300081a003300000000000000000000000000000000000000000000000000000000000001400000000000000000000000000000000000000000000000000000000000000180000000000000000000000000df769057eb42b27bd7dd4c8643779f0dfe49a6a2000000000000000000000000dd218bd2b591ce02782a1028dad9d314a5e1e7ea0000000000000000000000000000000000000000033b2e3c9fd0803ce80000000000000000000000000000000000000000000000000000000314b3d2e423000000000000000000000000000000000000000000000000000000000000ab8acb8000000000000000000000000000000000000000000000000014d1120d7b160000000000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000010566974616c696b204e616b616d6f746f0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000064974616c69630000000000000000000000000000000000000000000000000000
Deployed Bytecode
0x608060405260043610610236575f3560e01c80637529873411610129578063c45a0155116100a8578063dd62ed3e1161006d578063dd62ed3e14610679578063df8de3e7146106bd578063e963eb33146106dc578063f25f4b56146106fb578063f67848861461071a575f80fd5b8063c45a015514610608578063c5c4744c14610627578063c7c049fc1461063c578063cce7ec1314610651578063db1d0fd514610664575f80fd5b8063923108d9116100ee578063923108d91461058057806395d89b411461059f578063a5bf8ec6146105b3578063a9059cbb146105d4578063b4f40c61146105f3575f80fd5b8063752987341461050f5780637e1c0c09146105235780637fd6f15c146105385780638091f3bf1461054d5780638d3d65761461056b575f80fd5b806332fb56ca116101b557806362f39bb41161017a57806362f39bb41461043f5780636334a8c41461046057806365731fe9146104795780636a272462146104a757806370a08231146104db575f80fd5b806332fb56ca146103ab578063468f3dcd146103cc5780634f0e0ef3146103e0578063518ab2a8146103ff578063523fba7f14610414575f80fd5b806318160ddd116101fb57806318160ddd14610319578063200d2ed21461032d57806323b872dd1461034c5780632c5b5ae21461036b578063313ce5671461038a575f80fd5b806302d05d3f1461024157806306fdde031461027d578063089a122c1461029e578063095ea7b3146102cb5780630efc51a7146102fa575f80fd5b3661023d57005b5f80fd5b34801561024c575f80fd5b50600654610260906001600160a01b031681565b6040516001600160a01b0390911681526020015b60405180910390f35b348015610288575f80fd5b50610291610739565b6040516102749190612761565b3480156102a9575f80fd5b506102bd6102b8366004612796565b6107c9565b604051908152602001610274565b3480156102d6575f80fd5b506102ea6102e53660046127c1565b610855565b6040519015158152602001610274565b348015610305575f80fd5b506102bd610314366004612796565b61086e565b348015610324575f80fd5b506003546102bd565b348015610338575f80fd5b50600b546102ea9062010000900460ff1681565b348015610357575f80fd5b506102ea6103663660046127eb565b6108ef565b348015610376575f80fd5b50601454610260906001600160a01b031681565b348015610395575f80fd5b5060125b60405160ff9091168152602001610274565b3480156103b6575f80fd5b506103bf610914565b6040516102749190612829565b3480156103d7575f80fd5b506011546102bd565b3480156103eb575f80fd5b50601354610260906001600160a01b031681565b34801561040a575f80fd5b506102bd600f5481565b34801561041f575f80fd5b506102bd61042e366004612874565b60106020525f908152604090205481565b34801561044a575f80fd5b50610453610973565b604051610274919061288f565b34801561046b575f80fd5b50600b546103999060ff1681565b348015610484575f80fd5b506102ea610493366004612874565b60126020525f908152604090205460ff1681565b3480156104b2575f80fd5b506104c66104c13660046128d2565b6109e2565b60408051928352602083019190915201610274565b3480156104e6575f80fd5b506102bd6104f5366004612874565b6001600160a01b03165f9081526001602052604090205490565b34801561051a575f80fd5b506102bd610d91565b34801561052e575f80fd5b506102bd60085481565b348015610543575f80fd5b506102bd60155481565b348015610558575f80fd5b50600b546102ea90610100900460ff1681565b348015610576575f80fd5b506102bd600a5481565b34801561058b575f80fd5b5061026061059a366004612796565b610e76565b3480156105aa575f80fd5b50610291610e9e565b3480156105be575f80fd5b506105d26105cd366004612874565b610ead565b005b3480156105df575f80fd5b506102ea6105ee3660046127c1565b6110d3565b3480156105fe575f80fd5b506102bd600c5481565b348015610613575f80fd5b50600754610260906001600160a01b031681565b348015610632575f80fd5b506102bd60095481565b348015610647575f80fd5b506102bd600e5481565b6104c661065f3660046127c1565b6110e0565b34801561066f575f80fd5b506102bd600d5481565b348015610684575f80fd5b506102bd610693366004612904565b6001600160a01b039182165f90815260026020908152604080832093909416825291909152205490565b3480156106c8575f80fd5b506105d26106d7366004612874565b611480565b3480156106e7575f80fd5b506104c66106f6366004612796565b611584565b348015610706575f80fd5b50601654610260906001600160a01b031681565b348015610725575f80fd5b506105d2610734366004612950565b6115b0565b606060048054610748906129d9565b80601f0160208091040260200160405190810160405280929190818152602001828054610774906129d9565b80156107bf5780601f10610796576101008083540402835291602001916107bf565b820191905f5260205f20905b8154815290600101906020018083116107a257829003601f168201915b5050505050905090565b5f806107d4600f5490565b600c5490915083905f6107e6600d5490565b90505f61080f836108096108026107fd868a61187b565b611889565b869061187b565b906118e5565b90505f610837846108096108306107fd6108298b8b6118e5565b889061187b565b879061187b565b905061084961084683836118e5565b90565b98975050505050505050565b5f336108628185856118f3565b60019150505b92915050565b5f8061087960095490565b600c5490915083905f61088b600d5490565b90505f6108bc826108b66108b1670de0b6b3a76400006108ab8a89611905565b9061191c565b61192a565b90611905565b90505f6108e0836108b66108b1670de0b6b3a76400006108ab896108b68d8d61191c565b905061084961084682846118e5565b5f336108fc85828561195a565b6109078585856119d5565b60019150505b9392505050565b606060118054806020026020016040519081016040528092919081815260200182805480156107bf57602002820191905f5260205f20905b81546001600160a01b0316815260019091019060200180831161094c575050505050905090565b60606017805480602002602001604051908101604052809291908181526020015f905b828210156109d9578382905f5260205f2090600202016040518060400160405290815f820154815260200160018201548152505081526020019060010190610996565b50505050905090565b6007545f9081906001600160a01b03163314610a195760405162461bcd60e51b8152600401610a1090612a11565b60405180910390fd5b610a21611a32565b600b54610100900460ff1615610a495760405162461bcd60e51b8152600401610a1090612a37565b5f8411610aa45760405162461bcd60e51b815260206004820152602360248201527f546f6b656e20616d6f756e74206d75737420626520677265617465722074686160448201526206e20360ec1b6064820152608401610a10565b6001600160a01b0385165f90815260106020526040902054841115610b0b5760405162461bcd60e51b815260206004820152601a60248201527f496e73756666696369656e7420746f6b656e2062616c616e63650000000000006044820152606401610a10565b600b5462010000900460ff1615610b4d5760405162461bcd60e51b8152602060048201526006602482015265189bdb99195960d21b6044820152606401610a10565b5f610b57856107c9565b905083811015610b795760405162461bcd60e51b8152600401610a1090612a66565b47811115610bc95760405162461bcd60e51b815260206004820152601d60248201527f496e73756666696369656e7420636f6e74726163742062616c616e63650000006044820152606401610a10565b5f606460155483610bda9190612ac1565b610be49190612aec565b90505f610bf18284612b0b565b905086600f5f828254610c049190612b0b565b925050819055508260095f828254610c1c9190612b0b565b90915550506001600160a01b0388165f9081526010602052604081208054899290610c48908490612b0b565b90915550506040516001600160a01b0389169082156108fc029083905f818181858888f19350505050158015610c80573d5f803e3d5ffd5b506016546001600160a01b03166108fc610c9b600285612aec565b6040518115909202915f818181858888f19350505050158015610cc0573d5f803e3d5ffd5b50734c5fbf8d815379379b3695ba77b5d3f898c1230b6108fc610ce4600285612aec565b6040518115909202915f818181858888f19350505050158015610d09573d5f803e3d5ffd5b50610d12611a89565b6040805188815260208101839052428183015290516001600160a01b038a16917f6db63bebf1e6540277744df32846ebdb98385b1a73f2d5de49b28348add63f50919081900360600190a250506009546001600160a01b0387165f90815260106020526040902054909350915050610d8960015f55565b935093915050565b60145460135460405163e6a4390560e01b81523060048201526001600160a01b0391821660248201525f9291909116908290829063e6a4390590604401602060405180830381865afa158015610de9573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e0d9190612b1e565b9050806001600160a01b03166361047d336040518163ffffffff1660e01b8152600401602060405180830381865afa158015610e4b573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e6f9190612b39565b9250505090565b60118181548110610e85575f80fd5b5f918252602090912001546001600160a01b0316905081565b606060058054610748906129d9565b6007546001600160a01b03163314610ed75760405162461bcd60e51b8152600401610a1090612a11565b610edf611a32565b60145460135460405163e6a4390560e01b81523060048201526001600160a01b0391821660248201529116905f90829063e6a4390590604401602060405180830381865afa158015610f33573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f579190612b1e565b90506001600160a01b038116610fa05760405162461bcd60e51b815260206004820152600e60248201526d14185a5c881b9bdd08199bdd5b9960921b6044820152606401610a10565b5f819050806001600160a01b031663666da64f6040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610fdc575f80fd5b505af1158015610fee573d5f803e3d5ffd5b504792505050806110325760405162461bcd60e51b815260206004820152600e60248201526d139bc81155120818db185a5b595960921b6044820152606401610a10565b5f61103e600283612aec565b90505f61104b8284612b0b565b6040519091506001600160a01b0388169083156108fc029084905f818181858888f19350505050158015611081573d5f803e3d5ffd5b50604051734c5fbf8d815379379b3695ba77b5d3f898c1230b9082156108fc029083905f818181858888f193505050501580156110c0573d5f803e3d5ffd5b505050505050506110d060015f55565b50565b5f336108628185856119d5565b6007545f9081906001600160a01b0316331461110e5760405162461bcd60e51b8152600401610a1090612a11565b611116611a32565b600b54610100900460ff161561113e5760405162461bcd60e51b8152600401610a1090612a37565b600e546111539067016345785d8a0000612b50565b346009546111619190612b50565b11156111a35760405162461bcd60e51b815260206004820152601160248201527014d85b194819dbd85b081c995858da1959607a1b6044820152606401610a10565b5f34116111e05760405162461bcd60e51b815260206004820152600b60248201526a139bc8115512081cd95b9d60aa1b6044820152606401610a10565b600b5462010000900460ff16156112225760405162461bcd60e51b8152602060048201526006602482015265189bdb99195960d21b6044820152606401610a10565b5f6064601554346112339190612ac1565b61123d9190612aec565b90505f61124a8234612b0b565b90505f6112568261086e565b9050858110156112785760405162461bcd60e51b8152600401610a1090612a66565b80600f5f8282546112899190612b50565b925050819055508160095f8282546112a19190612b50565b90915550506001600160a01b0387165f90815260106020526040812080548392906112cd908490612b50565b90915550506001600160a01b0387165f9081526012602052604090205460ff16611354576011805460018082019092557f31ecc21a745e3968a04e9570e4425bc18fa8019c68028196b546d1669c200c680180546001600160a01b0319166001600160a01b038a169081179091555f908152601260205260409020805460ff191690911790555b6016546001600160a01b03166108fc61136e600286612aec565b6040518115909202915f818181858888f19350505050158015611393573d5f803e3d5ffd5b50734c5fbf8d815379379b3695ba77b5d3f898c1230b6108fc6113b7600286612aec565b6040518115909202915f818181858888f193505050501580156113dc573d5f803e3d5ffd5b50600e54600954106113fa57600b805462ff00001916620100001790555b611402611a89565b6040805183815260208101839052428183015290516001600160a01b038916917f0d1a0d5e3d583a0e92588799dd06e50fd78c07daf05f0cc06d7b848b1ca445f1919081900360600190a250506009546001600160a01b0386165f9081526010602052604090205490935091505061147960015f55565b9250929050565b6007546001600160a01b031633146114aa5760405162461bcd60e51b8152600401610a1090612a11565b6114b2611a32565b600b54610100900460ff166114fd5760405162461bcd60e51b815260206004820152601160248201527014d85b19481b9bdd081b185d5b98da1959607a1b6044820152606401610a10565b6001600160a01b0381165f90815260106020526040902054806115575760405162461bcd60e51b81526020600482015260126024820152714e6f20746f6b656e7320746f20636c61696d60701b6044820152606401610a10565b6001600160a01b0382165f9081526010602052604081205561157a3083836119d5565b506110d060015f55565b60178181548110611593575f80fd5b5f9182526020909120600290910201805460019091015490915082565b6007546001600160a01b031633146115da5760405162461bcd60e51b8152600401610a1090612a11565b6115e2611a32565b600b54610100900460ff161561160a5760405162461bcd60e51b8152600401610a1090612a37565b600e5460095410156116565760405162461bcd60e51b815260206004820152601560248201527414d85b194819dbd85b081b9bdd081c995858da1959605a1b6044820152606401610a10565b600b5462010000900460ff1661169b5760405162461bcd60e51b815260206004820152600a6024820152691b9bdd08189bdb99195960b21b6044820152606401610a10565b600b805461ff001916610100179055600f546008545f916116bb91612b0b565b600954600b54919250905f9060649083906116d99060ff1683612b63565b60ff166116e69190612ac1565b6116f09190612aec565b90506116fd308b856118f3565b600654604051637f0dfdd360e11b8152306004820152602481018590525f60448201819052606482015260ff808c166084830152808b1660a4830152808a1660c4830152881660e48201526001600160a01b03918216610104820152908b169063fe1bfba6908390610124015f604051808303818588803b158015611780575f80fd5b505af1158015611792573d5f803e3d5ffd5b50479350505081151590506117e95760405162461bcd60e51b815260206004820152601c60248201527f4e6f2062616c616e636520666f722063726561746f72207368617265000000006044820152606401610a10565b6001600160a01b0386166108fc611801600284612aec565b6040518115909202915f818181858888f19350505050158015611826573d5f803e3d5ffd5b506001600160a01b0385166108fc61183f600284612aec565b6040518115909202915f818181858888f19350505050158015611864573d5f803e3d5ffd5b505050505061187260015f55565b50505050505050565b5f61090d6108468484611b03565b5f81680736ea4425c11ac6308111156118b857604051630d7b1d6560e11b815260048101849052602401610a10565b6714057b7ef767814f81026118dd6118d8670de0b6b3a7640000835b0490565b611bb5565b949350505050565b5f61090d6108468385612b0b565b6119008383836001611c09565b505050565b5f61090d61084684670de0b6b3a764000085611cdb565b5f61090d6108468385612b50565b5f6108686714057b7ef767814f670de0b6b3a764000061194c61084686611daa565b02816118d4576118d4612ad8565b6001600160a01b038381165f908152600260209081526040808320938616835292905220545f1981146119cf57818110156119c157604051637dc7a0d960e11b81526001600160a01b03841660048201526024810182905260448101839052606401610a10565b6119cf84848484035f611c09565b50505050565b6001600160a01b0383166119fe57604051634b637e8f60e11b81525f6004820152602401610a10565b6001600160a01b038216611a275760405163ec442f0560e01b81525f6004820152602401610a10565b611900838383611edb565b60025f5403611a835760405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c006044820152606401610a10565b60025f55565b6040805180820190915242815260095460208201908152601780546001810182555f9190915291517fc624b66cc0138b8fabc209247f72d758e1cf3343756d543badbf24212bed8c15600290930292830155517fc624b66cc0138b8fabc209247f72d758e1cf3343756d543badbf24212bed8c1690910155565b5f80805f19848609848602925082811083820303915050805f03611b345750670de0b6b3a764000090049050610868565b670de0b6b3a76400008110611b6657604051635173648d60e01b81526004810186905260248101859052604401610a10565b5f670de0b6b3a764000085870962040000818503049310909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690291505092915050565b5f81680a688906bd8affffff811115611be45760405163b3b6ba1f60e01b815260048101849052602401610a10565b5f611bfb670de0b6b3a7640000604084901b612aec565b90506118dd61084682612001565b6001600160a01b038416611c325760405163e602df0560e01b81525f6004820152602401610a10565b6001600160a01b038316611c5b57604051634a1406b160e11b81525f6004820152602401610a10565b6001600160a01b038085165f90815260026020908152604080832093871683529290522082905580156119cf57826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92584604051611ccd91815260200190565b60405180910390a350505050565b5f80805f19858709858702925082811083820303915050805f03611d1257838281611d0857611d08612ad8565b049250505061090d565b838110611d4357604051630c740aef60e31b8152600481018790526024810186905260448101859052606401610a10565b5f8486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091025f889003889004909101858311909403939093029303949094049190911702949350505050565b5f81670de0b6b3a7640000811015611dd85760405163036d32ef60e41b815260048101849052602401610a10565b5f611e63670de0b6b3a7640000830460016fffffffffffffffffffffffffffffffff821160071b91821c67ffffffffffffffff811160061b90811c63ffffffff811160051b90811c61ffff811160041b90811c60ff8111600390811b91821c600f811160021b90811c918211871b91821c969096119490961792909217171791909117919091171790565b9050670de0b6b3a7640000810282821c670de0b6b3a763ffff198101611e8c5750949350505050565b671bc16d674ec800006706f05b59d3b200005b8015611ecf57670de0b6b3a7640000838002049250818310611ec7579283019260019290921c915b60011c611e9f565b50919695505050505050565b6001600160a01b038316611f05578060035f828254611efa9190612b50565b90915550611f759050565b6001600160a01b0383165f9081526001602052604090205481811015611f575760405163391434e360e21b81526001600160a01b03851660048201526024810182905260448101839052606401610a10565b6001600160a01b0384165f9081526001602052604090209082900390555b6001600160a01b038216611f9157600380548290039055611faf565b6001600160a01b0382165f9081526001602052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051611ff491815260200190565b60405180910390a3505050565b600160bf1b67ff0000000000000082161561210e576780000000000000008216156120355768016a09e667f3bcc9090260401c5b674000000000000000821615612054576801306fe0a31b7152df0260401c5b672000000000000000821615612073576801172b83c7d517adce0260401c5b6710000000000000008216156120925768010b5586cf9890f62a0260401c5b6708000000000000008216156120b1576801059b0d31585743ae0260401c5b6704000000000000008216156120d057680102c9a3e778060ee70260401c5b6702000000000000008216156120ef5768010163da9fb33356d80260401c5b67010000000000000082161561210e57680100b1afa5abcbed610260401c5b66ff00000000000082161561220d57668000000000000082161561213b5768010058c86da1c09ea20260401c5b6640000000000000821615612159576801002c605e2e8cec500260401c5b662000000000000082161561217757680100162f3904051fa10260401c5b6610000000000000821615612195576801000b175effdc76ba0260401c5b66080000000000008216156121b357680100058ba01fb9f96d0260401c5b66040000000000008216156121d15768010002c5cc37da94920260401c5b66020000000000008216156121ef576801000162e525ee05470260401c5b660100000000000082161561220d5768010000b17255775c040260401c5b65ff00000000008216156123035765800000000000821615612238576801000058b91b5bc9ae0260401c5b6540000000000082161561225557680100002c5c89d5ec6d0260401c5b652000000000008216156122725768010000162e43f4f8310260401c5b6510000000000082161561228f57680100000b1721bcfc9a0260401c5b650800000000008216156122ac5768010000058b90cf1e6e0260401c5b650400000000008216156122c9576801000002c5c863b73f0260401c5b650200000000008216156122e657680100000162e430e5a20260401c5b65010000000000821615612303576801000000b1721835510260401c5b64ff000000008216156123f05764800000000082161561232c57680100000058b90c0b490260401c5b6440000000008216156123485768010000002c5c8601cc0260401c5b642000000000821615612364576801000000162e42fff00260401c5b6410000000008216156123805768010000000b17217fbb0260401c5b64080000000082161561239c576801000000058b90bfce0260401c5b6404000000008216156123b857680100000002c5c85fe30260401c5b6402000000008216156123d45768010000000162e42ff10260401c5b6401000000008216156123f057680100000000b17217f80260401c5b63ff0000008216156124d45763800000008216156124175768010000000058b90bfc0260401c5b6340000000821615612432576801000000002c5c85fe0260401c5b632000000082161561244d57680100000000162e42ff0260401c5b6310000000821615612468576801000000000b17217f0260401c5b630800000082161561248357680100000000058b90c00260401c5b630400000082161561249e5768010000000002c5c8600260401c5b63020000008216156124b9576801000000000162e4300260401c5b63010000008216156124d45768010000000000b172180260401c5b62ff00008216156125af57628000008216156124f9576801000000000058b90c0260401c5b6240000082161561251357680100000000002c5c860260401c5b6220000082161561252d5768010000000000162e430260401c5b6210000082161561254757680100000000000b17210260401c5b620800008216156125615768010000000000058b910260401c5b6204000082161561257b576801000000000002c5c80260401c5b6202000082161561259557680100000000000162e40260401c5b620100008216156125af576801000000000000b1720260401c5b61ff00821615612681576180008216156125d257680100000000000058b90260401c5b6140008216156125eb5768010000000000002c5d0260401c5b612000821615612604576801000000000000162e0260401c5b61100082161561261d5768010000000000000b170260401c5b610800821615612636576801000000000000058c0260401c5b61040082161561264f57680100000000000002c60260401c5b61020082161561266857680100000000000001630260401c5b61010082161561268157680100000000000000b10260401c5b60ff82161561274a5760808216156126a257680100000000000000590260401c5b60408216156126ba576801000000000000002c0260401c5b60208216156126d257680100000000000000160260401c5b60108216156126ea576801000000000000000b0260401c5b600882161561270257680100000000000000060260401c5b600482161561271a57680100000000000000030260401c5b600282161561273257680100000000000000010260401c5b600182161561274a57680100000000000000010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b5f602082840312156127a6575f80fd5b5035919050565b6001600160a01b03811681146110d0575f80fd5b5f80604083850312156127d2575f80fd5b82356127dd816127ad565b946020939093013593505050565b5f805f606084860312156127fd575f80fd5b8335612808816127ad565b92506020840135612818816127ad565b929592945050506040919091013590565b602080825282518282018190525f918401906040840190835b818110156128695783516001600160a01b0316835260209384019390920191600101612842565b509095945050505050565b5f60208284031215612884575f80fd5b813561090d816127ad565b602080825282518282018190525f918401906040840190835b818110156128695783518051845260209081015181850152909301926040909201916001016128a8565b5f805f606084860312156128e4575f80fd5b83356128ef816127ad565b95602085013595506040909401359392505050565b5f8060408385031215612915575f80fd5b8235612920816127ad565b91506020830135612930816127ad565b809150509250929050565b803560ff8116811461294b575f80fd5b919050565b5f805f805f805f60e0888a031215612966575f80fd5b8735612971816127ad565b965061297f6020890161293b565b955061298d6040890161293b565b945061299b6060890161293b565b93506129a96080890161293b565b925060a08801356129b9816127ad565b915060c08801356129c9816127ad565b8091505092959891949750929550565b600181811c908216806129ed57607f821691505b602082108103612a0b57634e487b7160e01b5f52602260045260245ffd5b50919050565b6020808252600c908201526b4f6e6c7920666163746f727960a01b604082015260600190565b60208082526015908201527414d85b1948185b1c9958591e481b185d5b98da1959605a1b604082015260600190565b60208082526027908201527f536c69707061676520746f6f20686967682c207472616e73616374696f6e2072604082015266195d995c9d195960ca1b606082015260800190565b634e487b7160e01b5f52601160045260245ffd5b808202811582820484141761086857610868612aad565b634e487b7160e01b5f52601260045260245ffd5b5f82612b0657634e487b7160e01b5f52601260045260245ffd5b500490565b8181038181111561086857610868612aad565b5f60208284031215612b2e575f80fd5b815161090d816127ad565b5f60208284031215612b49575f80fd5b5051919050565b8082018082111561086857610868612aad565b60ff828116828216039081111561086857610868612aad56fea26469706673582212205987506d13451ebf998bfb60fcc515b751306c9c437b74a3f6bb4fa65580b12b64736f6c634300081a0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
00000000000000000000000000000000000000000000000000000000000001400000000000000000000000000000000000000000000000000000000000000180000000000000000000000000df769057eb42b27bd7dd4c8643779f0dfe49a6a2000000000000000000000000dd218bd2b591ce02782a1028dad9d314a5e1e7ea0000000000000000000000000000000000000000033b2e3c9fd0803ce80000000000000000000000000000000000000000000000000000000314b3d2e423000000000000000000000000000000000000000000000000000000000000ab8acb8000000000000000000000000000000000000000000000000014d1120d7b160000000000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000010566974616c696b204e616b616d6f746f0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000064974616c69630000000000000000000000000000000000000000000000000000
-----Decoded View---------------
Arg [0] : name (string): Vitalik Nakamoto
Arg [1] : symbol (string): Italic
Arg [2] : _creator (address): 0xDf769057eB42b27Bd7dD4C8643779f0DFe49a6A2
Arg [3] : _factory (address): 0xdD218BD2B591Ce02782a1028dad9d314A5e1e7eA
Arg [4] : _totalTokens (uint256): 1000000000000000000000000000
Arg [5] : _k (uint256): 222000000000000000
Arg [6] : _alpha (uint256): 2878000000
Arg [7] : _saleGoal (uint256): 1500000000000000000
Arg [8] : _creatorshare (uint8): 4
Arg [9] : _feePercent (uint256): 2
-----Encoded View---------------
14 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000140
Arg [1] : 0000000000000000000000000000000000000000000000000000000000000180
Arg [2] : 000000000000000000000000df769057eb42b27bd7dd4c8643779f0dfe49a6a2
Arg [3] : 000000000000000000000000dd218bd2b591ce02782a1028dad9d314a5e1e7ea
Arg [4] : 0000000000000000000000000000000000000000033b2e3c9fd0803ce8000000
Arg [5] : 0000000000000000000000000000000000000000000000000314b3d2e4230000
Arg [6] : 00000000000000000000000000000000000000000000000000000000ab8acb80
Arg [7] : 00000000000000000000000000000000000000000000000014d1120d7b160000
Arg [8] : 0000000000000000000000000000000000000000000000000000000000000004
Arg [9] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [10] : 0000000000000000000000000000000000000000000000000000000000000010
Arg [11] : 566974616c696b204e616b616d6f746f00000000000000000000000000000000
Arg [12] : 0000000000000000000000000000000000000000000000000000000000000006
Arg [13] : 4974616c69630000000000000000000000000000000000000000000000000000
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.